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SURE SHRINKAGE OF GAUSSIAN PATHS AND SIGNAL IDENTIFICATION ∗

Nicolas Privault1 and Anthony Réveillac2

Abstract. Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Esti-
mator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By
almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-
noising procedure for an input signal perturbed by a continuous-time Gaussian noise.
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1. Introduction

Let X be a Gaussian random vector on R
d with unknown mean m and known covariance matrix σ2Id under

a probability measure Pm. It is well-known [19] that given g : R
d → R

d a sufficiently smooth function, the mean
square risk ‖X + g(X) − m‖2

Rd of X + g(X) to m can be estimated unbiasedly by

SURE := σ2d +
d∑

i=1

gi(X)2 + 2
d∑

i=1

∇ig(X), (1.1)

from the identity

IEm

[‖X + g(X) − m‖2
Rd

]
= σ2d + IEm

[
d∑

i=1

gi(X)2 + 2
d∑

i=1

∇ig(X)

]
(1.2)

which is obtained by Gaussian integration by parts under Pm. The estimator (1.1), which is independent of m,
is called the Stein Unbiased Risk Estimate (SURE).

When (gλ)λ∈Λ is a family of functions it makes sense to almost surely minimize the Stein Unbiased Risk
Estimate (1.1) of gλ with respect to the parameter λ. This point of view has been developed by Donoho and
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Johnstone [6] for the design of spatially adaptive estimators by shrinkage of wavelet coefficients of noisy data via

X + gλ(X) = λη(X/λ),

where η(x) is a threshold function.
In this paper we construct a Stein type Unbiased Risk Estimator for the random adapted drift (ut)t∈R+ of

a one dimensional Gaussian processes (Xt)t∈[0,T ] via an extension of the identity (1.2) introduced in [14,15] on
the Wiener space, cf. also [16] on the Poisson space. For example, given α(t) and λ(t) two functions given in
parametric form, we compute the SURE risk of the estimator

Xt + ξα,λ
t (Xt) = α(t) + λ(t)η

(
Xt − α(t)

λ(t)

)
, t ∈ [0, T ],

where η is a threshold function as in (3.1) and (4.1) below. We apply this technique to de-noising and identifi-
cation of the input signal in a Gaussian channel via the minimization of SURE (X + ξα,λ(X)) in the parameter
(α, λ). This yields in particular an estimator of the drift of Xt from the estimation of α(t), and an optimal noise
removal threshold from the estimation of λ. This approach differs from classical signal detection techniques
which usually rely on likelihood ratio tests, cf. e.g. [13], Chapter VI. It also requires an a priori hypothesis on
the parametric form of α(t).

The plan of the paper is as follows. In Section 2 we recall our framework of functional estimation of drift
trajectories and we derive Stein’s unbiased risk estimate for the estimation of the drift of Gaussian processes. In
Section 3 we discuss its application to soft thresholding for Gaussian processes using the local time and obtain
an upper bound for the risk of such estimators, with some examples. We also show the existence of an optimal
parameter and the smoothness of the risk function. In Section 4 we consider the case of hard thresholding and
show that the SURE risk can be computed due to the smoothing effect of the integral over time. In Section 5
we consider several numerical examples where α(t) is given in parametric form. In Section 6 we recall some
elements of stochastic analysis of Gaussian processes.

We close this section with some notation on the Gaussian model used in this paper. Given T > 0, let
X = (Xt)t∈[0,T ] be a centered real-valued Gaussian process on a probability space (Ω,F , P), where Ω = C([0, T ])
is a space of continuous functions on R+, and (Ft)t∈[0,T ] is the filtration generated by (Xt)t∈[0,T ]. In the sequel
we observe the paths of (Xt)t∈[0,T ] decomposed as

Xt = ut + Xu
t , t ∈ [0, T ],

where u = (ut)t∈[0,T ] is a square integrable F -adapted process and (Xu
t )t∈[0,T ] is a centered Gaussian process

under Pu. The covariance function

γ(s, t) = IEu[Xu
s , Xu

t ], 0 ≤ s, t ≤ T,

of (Xu
t )t∈[0,T ], where IEu denotes the expectation under Pu, is assumed to satisfy the integrability condition

∫ T

0

∫ T

0

(
1 − γ(s, t)√

γ(s, s)γ(t, t)

)−1/2

dsdt < ∞, (1.3)

with γ(t, t) > 0, t ∈ [0, T ], from Section 3 onwards.
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Let Γ be the covariance operator defined as

(Γg)(t) =
∫ T

0

g(s)γ(s, t)μ(ds), t ∈ [0, T ],

on the Hilbert space H of functions on [0, T ] with the inner product

〈h, g〉H = 〈h, Γg〉L2([0,T ],dμ), (1.4)

where μ is a finite measure on [0, T ]. The process (Xu
t )t∈[0,T ] can be used to construct an isometry Xu : H →

L2(Ω,F , P ) as

Xu(h) =
∫ T

0

h(s)Xu
s μ(ds), h ∈ H.

Then {Xu(h) : h ∈ H} is an isonormal Gaussian process on H , i.e. a family of centered Gaussian random
variables satisfying

IE[Xu(h)Xu(g)] = 〈h, g〉H , h, g ∈ H.

For any orthonormal basis (hk)k∈N of L2([0, T ], dμ), we have the Karhunen-Loève expansion

Xu
t =

∞∑
k=0

hk(t)Xu(hk), t ∈ [0, T ], (1.5)

where (Xu(hk))k∈N is a sequence of independent standard Gaussian random variables.

2. Stein’s unbiased risk estimate

We start by recalling the setting of functional drift estimation to be used in this paper. Given a continuous-time
observation of the process (Xt)t∈[0,T ] we consider an estimator ξ = (ξt)t∈[0,T ] of the unknown adapted drift pro-
cess u = (ut)t∈[0,T ]. Such an estimator (ξt)t∈[0,T ] will be called unbiased if

IEu[ξt] = IEu[ut], t ∈ [0, T ],

for all square-integrable Ft-adapted processes (ut)t∈[0,T ]. In the next definition the risk measure μ is the one
used to determine the scalar product (1.4).

Definition 2.1. The quadratic risk of an estimator ξ := (ξt)t∈[0,T ] to u = (ut)t∈[0,T ] is defined as

R(γ, μ, ξ) := IEu

[∫ T

0

|ξt − ut|2μ(dt)

]
. (2.1)

When decomposing (ξt)t∈[0,T ] in the basis (hk)k∈N as

ξt =
∞∑

k=0

hk(t)〈ξ, hk〉L2([0,T ],μ), t ∈ [0, T ], (2.2)

the risk (2.1) reads

R(γ, μ, ξ) := IEu

[ ∞∑
k=0

|〈ξ, hk〉L2([0,T ],μ) − Xu(hk)|2
]
.
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The canonical process (Xt)t∈[0,T ] can be viewed as an unbiased estimator û := (Xt)t∈[0,T ] of its random adapted
drift (ut)t∈[0,T ] under Pu, which is minimax in the sense that

R(γ, μ, û) = inf
ξ

sup
v∈Ω

IEv

[∫ T

0

|ξt − vt|2μ(dt)

]
,

cf. Proposition 3.2 of [15], without restricting ξ as in (2.4). In this case we have

R(γ, μ, û) = IEu

[∫ T

0

|Xt − ut|2μ(dt)

]

= IEu

[ ∞∑
k=0

|Xu(hk)|2
]

=
∞∑

k=0

〈hk, Γhk〉2L2([0,T ],dμ)

=
∫ T

0

γ(t, t)μ(dt),

and when in addition (Xt)t∈[0,T ] has independent increments and (ut)t∈[0,T ] is Pu ⊗ μ-square-integrable and
adapted, û = (Xt)t∈[0,T ] becomes an efficient estimator of its own drift u = (ut)t∈[0,T ] as the Cramer-Rao
bound

IEu

[∫ T

0

|ξt − ut|2μ(dt)

]
≥ R(γ, μ, û) (2.3)

holds for any unbiased and adapted estimator ξ = (ξt)t∈[0,T ] of u = (ut)t∈[0,T ] and is attained by û = (Xt)t∈[0,T ],
cf. Proposition 4.3 of [15].

Note that the standard framework of functional drift estimation, such as in Pinsker’s theory, is usually
concerned with the asymptotics of the minimax risk

inf
ξ

sup
v∈Ωr

IEv

[∫ T

0

|ξt − vt|2μ(dt)

]
,

as r → ∞, for a deterministic drift, where Ωr is an ellipsoid constructed by constraining the coefficients of
(vt)t∈[0,T ] to satisfy a condition of the form

∞∑
k=0

ak|〈v, hk〉L2([0,T ],μ)|2 ≤ r. (2.4)

This approach yields limiting results in small noise and large time or dimension, in relation to the smoothness
of the drift function, cf. e.g. [2,8,10,12].

In this paper, instead of applying the procedures described above, we will estimate the drift of (Xt)t∈[0,T ]

by the almost sure minimization of a Stein Unbiased Risk Estimator for Gaussian processes, constructed in the
next proposition by analogy with (1.1). For this we will use the gradient operator Dt whose definition and
properties are recalled in the appendix, cf. Definition 6.2 and Lemma 6.3.
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Proposition 2.2. For any (ξt)t∈[0,T ] ∈ L2(Ω × [0, T ], Pu ⊗ μ) such that ξt ∈ Dom (∇), t ∈ [0, T ], and
(Dtξt)t∈[0,T ] ∈ L1(Ω × [0, T ], Pu ⊗ μ), the quantity

SURE μ(X + ξ) := R(γ, μ, û) + ‖ξ‖2
L2([0,T ],dμ) + 2

∫ T

0

Dtξtμ(dt) (2.5)

is an unbiased estimator of the mean square risk ‖X + ξ − u‖2
L2([0,T ],dμ).

Proof. From Lemma 6.3 we have

IEu

[
‖X + ξ − u‖2

L2([0,T ],dμ)

]
= IEu

[∫ T

0

∣∣∣Xu
t + ξt

∣∣∣2μ(dt)

]

= IEu

[∫ T

0

|Xu
t |2μ(dt)

]
+ IEu

[
‖ξ‖2

L2([0,T ],dμ)

]
+ 2 IEu

[∫ T

0

Xu
t ξtμ(dt)

]

= R(γ, μ, û) + IEu

[
‖ξ‖2

L2([0,T ],dμ)

]
+ 2 IEu

[∫ T

0

Dtξtμ(dt)

]

= IEu [SURE μ(X + ξ)]. �

Unlike the pointwise mean square risk ‖X + ξ − u‖2
L2([0,T ],dμ), the SURE risk estimator does not depend on the

estimated parameter u = (ut)t∈[0,T ].
Given a family (ξλ)λ∈Λ of estimators indexed by a parameter space Λ, we consider the estimator X + ξλ∗

that almost-surely minimizes the SURE risk, where λ∗ is given by

λ∗ = argminλ∈ΛSURE μ(X + ξλ).

For all values of λ ∈ Λ, the SURE risk of the estimator X + ξλ∗
improves on the mean square risk of X + ξλ,

since for all ν ∈ Λ we have

IEu[SURE μ(X + ξλ∗
)] ≤ IEu[SURE μ(X + ξν)]

= IEu

[
‖ξν − u‖2

L2([0,T ],dμ)

]
≤ inf

λ
IEu

[
‖ξλ − u‖2

L2([0,T ],dμ)

]
.

In the sequel we will apply the above to a process (ξt)t∈[0,T ] given as a funtion

ξt = ξt(Xt) of Xt, t ∈ [0, T ].

In particular we will discuss estimation and thresholding for estimators of the form

Xt + ξα,λ
t (Xt) = α(t) + λ(t)η

(
Xt − α(t)

λ(t)

)
, (2.6)

where η : R → R is a threshold function with support in (−∞,−1]∪ [1,∞) and λ(t) ≥ 0 is a given level function.
In particular we will apply our method to the joint estimation of parameters α, λ, successively in case

α(t) = α, α(t) = αt, and λ(t) = λ
√

γ(t, t).
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3. Soft threshold

In this section we construct an example of SURE shrinkage by soft thresholding in the framework of Propo-
sition 2.2, with application to identification and de-noising in the Gaussian signal (Xt)t∈[0,T ]. In case η is the
soft threshold function

ηS(y) = sign(y)(|y| − 1)+, y ∈ R, (3.1)

the function ξα,λ
t in (2.6) becomes

ξα,λ
t (x) = −sign(x − α(t))min(λ(t), |x − α(t)|), x ∈ R.

In this setting the SURE risk can be computed as follows.

Proposition 3.1. We have P-a.s

SURE μ(X + ξα,λ(X)) = R(γ, μ, û) +
∫ T

0

|Xt − α(t)|2 ∧ λ2(t)μ(dt) − 2
∫ T

0

1{|Xt−α(t)|≤λ(t)}γ(t, t)μ(dt). (3.2)

Proof. Since ∂
∂xξα,λ

t (x) = −1{|x−α(t)|≤λ(t)}, we have

∫ T

0

Dtξ
α,λ
t (Xt)μ(dt) = −

∫ T

0

1{|Xt−α(t)|≤λ(t)}DtXtμ(dt)

= −
∫ T

0

1{|Xt−α(t)|≤λ(t)}γ(t, t)μ(dt),

hence the conclusion from Proposition 2.2. �

In the simulations of Section 5 we will use the risk measure

μ(dt) =
n∑

i=1

aiδti(dt), a1, . . . , an > 0, (3.3)

associated to discrete values (Xt1 , . . . , Xtn) of the sample path observed at times t1, . . . , tn, n ≥ 1, in which
case Relation (3.2) becomes

SURE (X + ξα,λ(X)) = R(γ, μ, û) +
n∑

i=1

|Xti − α(ti)|2 ∧ λ2(ti) − 2
n∑

i=1

γ(ti, ti)1{|Xti
−α(ti)|≤λ(ti)},

which is analog to the finite dimensional SURE risk

SURE (X + gλ(X)) = d +
d∑

i=1

(|xi| ∧ λ)2 − 2#{i; |xi| ≤ λ} (3.4)

of [5]. In addition, when μ(dt) = f(t)dt has a density f(t) with respect to the Lebesgue measure and

μn(dt) =
n−1∑
i=1

f(ti)(ti+1 − ti)δti(dt),

Relation (3.2) shows that SURE μn(X+ξα,λ(X)) becomes a consistent estimator of the risk SURE μ(X+ξα,λ(X))
as n goes to infinity.
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In the sequel we take

μ(dt) = γ−1(t, t)dt and λ(t) = λ
√

γ(t, t), λ > 0, t ∈ [0, T ], (3.5)

and letting

L̄λ
T :=

∫ T

0

1{|Xt−α(t)|≤λ
√

γ(t,t)}dt (3.6)

denote the occupation time of the process

Zα,γ
t :=

Xt − α(t)√
γ(t, t)

, t ∈ [0, T ], (3.7)

up to time T in the set [−λ, λ], Proposition 3.1 yields the identity

SURE μ(X + ξα,λ(X)) = T +
∫ T

0

(|Zα,γ
t | ∧ λ)2 dt − 2L̄λ

T . (3.8)

As a consequence we obtain the following bound for the risk of the thresholding estimator X + ξα,λ(X), which
shows that SURE μ(X + ξα,λ(X)) is independent of large values ‖u − α‖L2([0,T ]), and grows at most as 1 + λ2

in λ ≥ 0.

Proposition 3.2. Assume that u ∈ L2([0, T ], dμ) is a deterministic function and that (3.5) holds. Then for all
fixed λ ≥ 0 we have

IEu[‖X + ξα,λ(X) − u‖2
L2([0,T ],dμ)] ≤ (1 + λ2)

(
T ∧

∫ T

0

|u(t) − α(t)|2μ(dt)

)
+ T (1 + λ)e−

λ2
2 .

Proof. From Proposition 3.1 we have

SURE μ(X + ξα,λ(X)) = T +
∫ T

0

(|Zα,γ
t | ∧ λ)2 dt − 2

∫ T

0

1{|Xt−α(t)|≤λ
√

γ(t,t)}dt, (3.9)

hence
IEu[SURE μ(X + ξα,λ(X))] ≤ T (1 + λ2),

and

IEu[SURE μ(X + ξα,λ(X))] ≤
∫ T

0

(1 + IEu[|Zα,γ
t |2] ∧ λ2 − 2Pu(|Zα,γ

t | ≤ λ))dt

≤
∫ T

0

(1 + λ2)
(

e−
λ2
2 +

|u(t) − α(t)|2
γ(t, t)

)
dt

≤ (1 + λ2)
∫ T

0

|u(t) − α(t)|2μ(dt) + T (1 + λ2)e−
λ2
2 ,

where we recall that from [5], Appendix 1, we have

1 + IEu[|Zα,γ
t |2] ∧ λ2 − 2Pu(|Zα,γ

t | ≤ λ) ≤ (1 + λ2)
(

e−
λ2
2 +

|u(t) − α(t)|2
γ(t, t)

)

for every t in [0, T ], and we conclude from Proposition 2.2. �
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Since λ �→ SURE μ(X + ξα,λ(X)) in (3.8) is lower bounded by −T and equal to 0 when λ = 0, the optimal
threshold

λ∗ := argminλSURE μ(X + ξα,λ(X)) (3.10)
exists almost surely in [0,∞).

In addition we have the following proposition which is important for the numerical search of the optimal
parameter value λ∗.

Proposition 3.3. Under (3.5) and Condition (1.3), the function λ �→ SURE μ(X + ξα,λ(X)) is continuously
differentiable.

Proof. Letting

Δ(s, t) = Var u[Zα,γ
t − Zα,γ

s ]

= Var u

[
Xu

t√
γ(t, t)

− Xu
s√

γ(s, s)

]

= 2 − 2
γ(s, t)√

γ(s, s)γ(t, t)
, 0 ≤ s, t ≤ T,

by (3.7), the local time


̄λ
T :=

d

dλ
L̄λ

T

of (|Zα,γ
t |)t∈[0,T ] exists almost surely under Condition (1.3), cf. [3,7] and Section 6.2, and by (3.9) we have

∂

∂λ
SURE μ(X + ξα,λ(X)) =

∂

∂λ

∫ T

0

(|Zα,γ
t | ∧ λ)2 dt − 2
̄λ

T

= 2λ

∫ T

0

1{|Xt−α(t)|≥λ
√

γ(t,t)}dt − 2
̄λ
T

= 2λ(T − L̄λ
T ) − 2
̄λ

T ,

which is a continuous function of λ since the covariance γ(s, t) does not vanish, cf. e.g. Theorem 26.1 of [7]. �

Consequently we have
∂

∂λ
SURE μ(X + ξα,λ(X))|λ=0 = −2
̄0

T ,

hence λ∗ > 0 a.s. when 
0
T is a.s. positive, which is the case for example when (Xt)t∈[0,T ] is a Brownian motion,

see Corollary 2.2, page 240 of [18], Chapter VI.
In practice we will compute λ∗ numerically by minimization of λ �→ SURE μ(X + ξα,λ(X)) over λ in a range

Λ = [0, C(T )] where C(T ) is such that

lim
T→∞

Pu

(
sup

t∈[0,T ]

|Zα,γ
t | ≤ C(T )

)
= 1, (3.11)

where (Zα,γ
t )t∈[0,T ] is defined in (3.7). This condition is analog to Condition (31) in [5] and allows us to restrict

the range of λ when searching for an optimal threshold using Proposition 6.4 in the appendix.
The function α(t) can be given in parametric form, in which case the parameters will be used to minimize

(α, λ) �→ SURE μ(X + ξα,λ(X)), cf. Section 5.
Examples of Gaussian processes Xu satisfying Condition (1.3) include Ornstein Uhlenbeck processes with

covariance function γ(s, t) =
σ2

2a
e−a|t−s|, s, t ∈ [0, T ], used in the simulations of Section 5, cf. Proposition 6.4
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below, and fractional Brownian processes with covariance function

γ(s, t) =
1
2
(|t|2H + |s|2H − |t − s|2H), s, t > 0.

Note that not all noise processes satisfy the above condition, for example the sine-cosine process

Xu
t := ξ1 cos(ωt) + ξ2 sin(ωt), t ∈ [0, T ],

cf. [1], where ω �= 0 is fixed and ξ1, ξ2 are two independent standard Gaussian random variables, does not have
a local time at all levels, and its covariance function

γ(s, t) = cos(ω(t − s))), s, t > 0,

does not satisfy (1.3).

4. Hard threshold

Here we use the threshold function

ηH(y) = y1{|y|>1}, y ∈ R, (4.1)

hence ξα,λ
t in (2.6) becomes

ξα,λ
t (x) = −(x − α(t))1{|x−α(t)|<λ

√
γ(t,t)}, x ∈ R,

where λ ≥ 0 is a level parameter.
In finite dimensions [5] the SURE estimator (1.1) cannot be computed due to the non-differentiability of ηH ,

however a deterministic optimal threshold equal to
√

2 log d can be obtained by other methods, cf. Theorem 4
of [5].

In continuous time the situation is different due to the smoothing effect of the integral over time, and
the SURE risk can be computed as in the next proposition, using the local time of Gaussian processes when
μ(dt) = γ−1(t, t)dt.

Proposition 4.1. Under Condition (1.3) we have P-a.s

SURE μ(X + ξα,λ(X)) = T +
∫ T

0

(Xt − α(t))2

γ(t, t)
1{|Xt−α(t)|≤λ

√
γ(t,t)}dt + 2λ
̄λ

T − 2L̄λ
T . (4.2)

Proof. Let φ ∈ C∞
c ([−1, 1]), φ ≥ 0 be symmetric around the origin, such that

∫ 1

−1 φ(x)dx = 1, and let

φε(x) = ε−1φ(ε−1x), x ∈ R, ε > 0.

Let

ξα,λ,ε
t (x) = φ

ε
√

γ(t,t)
∗ ξα,λ

t (x) =
∫ ∞

−∞
φ

ε
√

γ(t,t)
(y)ξα,λ

t (x − y)dy,
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denote the convolution of φ
ε
√

γ(t,t)
with ξα,λ

t , with

d
dx

φ
ε
√

γ(t,t)
∗ ξα,λ

t (x) = φ
ε
√

γ(t,t)
∗ d

dx
ξα,λ
t (x)

= λ
√

γ(t, t)φ
ε
√

γ(t,t)
(−λ

√
γ(t, t) + x − α(t))

+λ
√

γ(t, t)φ
ε
√

γ(t,t)
(λ
√

γ(t, t)) + x − α(t)

−
∫ ∞

−∞
φ

ε
√

γ(t,t)
(y)1{|x−y−α(t)|<λ

√
γ(t,t)}dy.

From the occupation time density formula (6.3) below we have

∫ T

0

Dtξ
α,λ,ε
t (Xt)μ(dt) = λ

∫ T

0

√
γ(t, t)φ

ε
√

γ(t,t)
(−λ

√
γ(t, t) + Xt − α(t))dt

+λ

∫ T

0

√
γ(t, t)φ

ε
√

γ(t,t)
(λ
√

γ(t, t) + Xt − α(t))dt

−
∫ T

0

∫ ∞

−∞
φ

ε
√

γ(t,t)
(y)1{|x−y−α(t)|<λ

√
γ(t,t)}dydt

= λ

∫ ∞

−∞
(φε(−λ + Zα,γ

t ) + φε(−λ − Zα,γ
t ))dt

−
∫ T

0

∫ ∞

−∞
φ

ε
√

γ(t,t)
(y)1{|x−y−α(t)|<λ

√
γ(t,t)}dydt

= λ

∫ ∞

−∞
φε(a − λ)
̄a

T da

−
∫ T

0

∫ ∞

−∞
φ

ε
√

γ(t,t)
(y)1{|x−y−α(t)|<λ

√
γ(t,t)}dydt,

which converges in L2(Ω, Pu) to

λ
̄λ
T −

∫ T

0

1{|Xt−α(t)|<λ
√

γ(t,t)}dt

as ε tends to zero. �

5. Numerical examples

In this section present some numerical estimations of the parameters α, λ in (2.6), successively in case
α(t) = α, α(t) = αt, and λ(t) = λ

√
γ(t, t). We take Xu to be a centered stationary Ornstein-Uhlenbeck process

solution of
dXu

t = −aXu
t dt + σdBt, t ∈ [0, T ], (5.1)

with Xu
0 ∼ N

(
0, σ2

2a

)
and covariance function

γ(s, t) =
σ2

2a
e−a|t−s|, s, t ∈ [0, T ],

which satisfies (1.3) for σ, a > 0. From (3.11) above and Proposition 6.4 in the appendix, we take Λ =
[0,

√
2 logT ] as parameter range for λ when T is large.
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Figure 1. Risk function λ �→ SURE μ(X + ξ0,λ(X)).
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Figure 2. (a) Process trajectory. (b) Estimated trajectory.

In the next figures we present some numerical simulations when the signal (Xt)t∈[0,T ] is a deterministic
function (u(t))t∈[0,T ] perturbed by (Xu

t )t∈[0,T ] a centered Ornstein-Uhlenbeck process, with parameters a = 0.5,
σ = 0.05, T = 1.

In each of the following 3 examples we represent
– the risk function (α, λ) �→ SURE μ(X + ξα,λ(X)) whose minimum gives the optimal parameter value,

cf. Figures 1, 3 and 5.
– a simulated sample path with the optimal thresholds obtained by soft thresholding, and the de-noised

signal after hard thresholding, cf. Figures 2, 4 and 6.
The hard threshold function has not been used for estimation due to increased numerical instabilities linked to
the simulation of the local time in (4.2).

5.1. Simple thresholding

Here we take
ut = 0.2 × max(0, sin(3πt)),

with λ(t) = λ
√

γ, and we aim at de-noising the signal around the level α(t) = 0, t ∈ [0, T ].
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Figure 3. Risk function (α, λ) �→ SURE μ(X + ξα,λ(X)).
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Figure 4. (a) Process trajectory. (b) Estimated trajectory.

From Figure 1 we estimate the optimal threshold to λ∗√γ = 0.018, after numerical minimization on a grid,
which leads to the thresholding described in Figure 2.

5.2. Level detection and thresholding

We apply our method to the joint estimation of parameters α, λ, in case

ut = 0.3 + 0.2 × sign(sin(2πt)) × max(0, sin(3πt)),

with α(t) = α and λ(t) = λ
√

γ, i.e. we aim at detecting simultaneously the level α = 0.3 and the threshold λ
√

γ
at which the noise can be removed. For this we have the following proposition that completes Proposition 3.3
for the search of an optimal parameter value.

Proposition 5.1. Under Condition (1.3), the function (α, λ) �→ SURE μ(X + ξα,λ(X)) is continuously differ-
entiable.
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Figure 5. Risk function (α, λ) �→ SURE μ(X + ξα,λ(X)).
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Figure 6. (a) Process trajectory. (b) Estimated trajectory.

Proof. We have

∂

∂α
SURE μ(X + ξα,λ(X)) = −2

∫ T

0

Xt − α

γ(t, t)
1{|Xt−α|≤λ

√
γ(t,t)}dt + 2
α,λ

T − 2
α,−λ
T ,

where 
α,λ
T denotes the local time at level α of the process (Xt + λ

√
γ(t, t)))t∈[0,T ]. �

From Figure 3 we estimate the optimal threshold and shift parameters at λ∗√γ = 0.017 and α∗ = 0.30,
which leads to the thresholding described in Figure 4 below.

Figure 3 also shows that the values 0.5 and 0.1 are other candidates to an estimation of α. These values
correspond to the extrema in the sample trajectory of Figure 4.

5.3. Drift detection and thresholding

We apply our method to the joint estimation of parameters α, λ, in case

ut = 0.3t + 0.2 × sign(sin(2πt)) × max(0, sin(3πt)),

with α(t) = αt, and λ(t) = λ
√

γ, i.e. we aim at locating noise with threshold λ
√

γ around a line of slope
α = 0.3. Analogously to Propositions 3.3 and 5.1 we have the following result for the search of an optimal
parameter value.

Proposition 5.2. Under Condition (1.3), the function (α, λ) �→ SURE μ(X + ξα,λ(X)) is continuously differ-
entiable.
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Proof. We have

∂

∂α
SURE μ(X + ξα,λ(X)) = −2

∫ T

0

Xt − αt

γ(t, t)
1{|Xt−αt|≤λ

√
γ(t,t)}tdt + 2
α,λ

T − 2
α,−λ
T ,

where 
α,λ
T denotes the local time at level α of the process ((Xt + λ

√
γ(t, t))/t)t∈[0,T ]. �

The optimal threshold and slope parameters are numerically estimated at λ∗√γ = 0.0093 and α∗ = 0.294.
In Figure 6 the threshold and slope appear to have been slightly underestimated, as the larger noise at the

right end of the slope line has been interpreted as being part of the signal.

6. Appendix

In this section we review three aspects of stochastic analysis for Gaussian processes, including local time and
the Malliavin calculus calculus.

6.1. Malliavin calculus on Gaussian space

Here we recall some elements of the Malliavin calculus on Gaussian space for the centered Gaussian process
(Xu

t )t∈[0,T ] under Pu, see e.g. [9].
Let S denote the space of cylindrical functionals of the form

F = fn (Xu(h1), . . . , Xu(hn)), (6.1)

where fn is in the space of infinitely differentiable rapidly decreasing functions on R
n, n ≥ 1.

Definition 6.1. The H-valued Malliavin derivative is defined as

∇tF =
n∑

i=1

hi(t)∂ifn (Xu(h1), . . . , Xu(hn)),

for F ∈ S of the form (6.1).

It is known that ∇ is closable, cf. Proposition 1.2.1 of [9], and its closed domain will be denoted by Dom (∇).

Definition 6.2. Let Dt be defined on F ∈ Dom (∇) as

DtF := (Γ∇F )(t), t ∈ [0, T ].

Let δ : L2
u(Ω; H) → L2(Ω, Pu) denote the closable adjoint of ∇, i.e. the divergence operator under Pu, which

satisfies the integration by parts formula

IEu[Fδ(v)] = IEu[〈v,∇F 〉H ], F ∈ Dom (∇), v ∈ Dom (δ), (6.2)

where IEu denotes the expectation under Pu, with the relation

δ(hF ) = FX(h) − 〈h,∇F 〉H ,

cf. [9], for F ∈ Dom (∇) and h ∈ H such that hF ∈ Dom (δ). The next lemma will be needed in Proposition 2.2
below to establish Stein’s Unbiased Risk Estimate for Gaussian processes.

Lemma 6.3. For any F ∈ Dom (∇) and u ∈ H we have

IEu[FXu
t ] = IEu[DtF ], t ∈ [0, T ].
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Proof. We have

IEu[FXu
t ] =

∞∑
k=0

hk(t) IEu[FXu(hk)]

=
∞∑

k=0

hk(t) IEu[Fδ(hk)]

=
∞∑

k=0

hk(t) IEu[〈hk,∇F 〉H ]

=
∞∑

k=0

hk(t) IEu[〈hk, Γ∇F 〉L2([0,T ],dμ)]

= IEu[(Γ∇F )(t)], F ∈ Dom (∇), t ∈ [0, T ]. �

Note that since u ∈ H we have ∇sXt(h) = ∇sX
u
t (h) = h(s) and

DtXt = (Γ∇Xt)(t)

=
∫ T

0

γ(s, t)∇sXtμ(ds)

=
∞∑

k=0

hk(t)
∫ T

0

γ(s, t)∇sX(hk)μ(ds)

=
∞∑

k=0

hk(t)〈γ(·, t), hk〉L2([0,T ],dμ)

= γ(t, t), t ∈ [0, T ].

6.2. Local time and supremum of Gaussian processes

Given (Zt)t∈[0,T ] a Gaussian process let

Δ(s, t) = Var (Zt − Zs), 0 ≤ s, t ≤ T,

and denote by

Lλ
T :=

∫ T

0

1{Zt≤λ}dt

the occupation time of (Zt)t∈[0,T ] up to T in the set (−∞, λ].
Recall that a classical result of Berman [3], see Theorems 21.9 and 22.1 of [7], shows that under the condition

∫ T

0

∫ T

0

(Δ(s, t))−1/2dsdt < ∞,

the local time


λ
T :=

∂

∂λ
Lλ

T

of (Zt)t∈[0,T ] exists at all levels λ ∈ R and the occupation time density formula

∫ T

0

f(Zt)dt =
∫

R

f(λ)
λ
T dλ (6.3)
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holds for every positive measurable function f on R. The local time 
̄λ
T of |Zt| is given by 
̄λ

T = 
−a
T + 
a

T and
the related occupation time formula can be obtained under the same condition from the relation

∫ T

0

f(|Zt|)dt =
∫ ∞

−∞
f(|a|)
a

T da =
∫ ∞

0

f(a)
̄a
T da.

In case Xu is a centered stationary Ornstein-Uhlenbeck process solution of (5.1) the supremum of (Xu
t )t∈[0,T ]

over [0, T ] admits the following asymptotic estimate.

Proposition 6.4. Assume that ‖α‖L∞([0,∞)) < ∞ and ‖u‖L∞([0,∞)) < ∞. Then for any r > 1 we have

lim
T→∞

Pu

(
sup

t∈[0,T ]

|Zt| ≤
√

2r log T

)
= 1.

Proof. From Theorem 1.1 of [20] (see also [11], Thm. 2.1 of [17], and [4], p. 488) there exists a universal constants
c1, c2 > 0 such that for all λ, T > 0,

Pu

(
sup

t∈[0,T ]

|Zt| > λ

)
≤ c1M(2aT, c2/λ)Ψ (λ),

where Ψ(x) =
∫∞

x
e−y2/2dy/

√
2π and M(2aT, c2/λ) is the maximal cardinal of all sequences S in [0, 2aT ] such

that

‖Zt − Zs‖L2(Ω) = σ

√
1 − e−a|t−s|

a
>

c2

λ
, s, t ∈ S.

Setting λ =
√

2r log T , r > 0, T > 1, and using the bound Ψ(λ) ≤ e−λ2/2/(λ
√

2π) this yields, for all T large
enough:

P

(
sup

t∈[0,T ]

|Zt| ≤
√

2r log T

)
≥ 1 − c

r√
a
T 1−r,

which tends to 1 as T → ∞ provided r > 1. �
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