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LARGE DEVIATIONS AND FULL EDGEWORTH EXPANSIONS FOR FINITE
MARKOV CHAINS WITH APPLICATIONS TO THE ANALYSIS OF GENOMIC

SEQUENCES

Pierre Pudlo
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Abstract. To establish lists of words with unexpected frequencies in long sequences, for instance in
a molecular biology context, one needs to quantify the exceptionality of families of word frequencies in
random sequences. To this aim, we study large deviation probabilities of multidimensional word counts
for Markov and hidden Markov models. More specifically, we compute local Edgeworth expansions of
arbitrary degrees for multivariate partial sums of lattice valued functionals of finite Markov chains.
This yields sharp approximations of the associated large deviation probabilities. We also provide
detailed simulations. These exhibit in particular previously unreported periodic oscillations, for which
we provide theoretical explanations.
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Introduction

This paper is devoted to the determination of exact asymptotics of the probabilities of large deviations events
for multidimensional additive functionals of finite Markov chains. A motivation that arises in molecular biology
is the determination of under and over represented words in genomic sequences (DNA, RNA, and proteins), see
Reinert et al. [28] for example. Words with unexpected frequencies in genomic sequences are natural candidates
to represent biological signals. A well known example is the Chi motif in the sequence of Escherichia coli , namely
the word GCTGGTGG, which is massively over represented and which plays a crucial role in the conservation of
the genome of this bacterium. Of course, to detect words with unexpected frequencies, one must specify a
stochastic model of the sequence. The most usual models are Markovian, that is, either one assumes that the
sequence itself is Markov, or one uses hidden Markov models. Since hidden Markov chains can be represented as
functionals of Markov chains, and since Markov chains of higher order are projections of simple Markov chains
(that is, Markov chains of order 1) defined on product spaces, functionals of Markov chains and of hidden
Markov chains of any order can be viewed as functionals of simple Markov chains.

The distribution of the number of visits to a given state by a Markov chain is a much studied subject, in
particular in a molecular biology context. For instance, Robin and Daudin [29], Régnier [25] and Stefanov
et al. [33] provide exact formulas for these distributions. Nuel [23] turns the occurrences of any pattern over a
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1 I3M, Université Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex, France; pierre.pudlo@univ-montp2.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/ps/2009008
http://www.esaim-ps.org
http://www.edpsciences.org


436 P. PUDLO

Markovian model of order r into the occurrences of a subset of states over a Markov chain with minimal state
space. See also Lladser et al. [16]. Approximations using the normal distribution and the Poisson distribution
are in Schbath [31], Nicodème et al. [21], Reinert et al. [28] and Roquain and Schbath [30]. Large deviations
asymptotics are in Régnier and Szpankowski [27], Régnier [25] and Régnier and Denise [26]. Numerical algo-
rithms in Nuel [22] allow to study the significance of the count of one word or one pattern in a large deviations
regime. The results of Nuel’s software compare favorably with other asymptotic methods, when rare events are
considered. Finally, for memoryless models, Flajolet et al. [7] provide asymptotics of occurrences of patterns
with bounded or unbounded spacings between their letters.

In a statistical point of view, we want to test the null hypothesis that the observed frequency of a word is
correctly predicted by the random model. When this hypothesis is rejected, we say that the word has unexpected
frequency or that the observed counting is exceptional. The associated p-value is some probability in the tail
of the distribution of the counting of this word in the random model. Moreover, given different words with
unexpected frequency, we want to find the most unexpected one among them, that is the one with the lowest
p-value. Thus, we must have good approximations of those different p-values to compare them.

In this context, large deviations principles (LDP) may seem appealing, because one compares probabilities
of events on an exponential scale with respect to the length n of the sequence. Hence, one hopes for the events
associated to small values of the rate function of the LDP to be massively more likely than events associated to
large values of the rate function. While this conclusion is indeed correct in the limit n → ∞, LDP are in fact
used as a convenient tool to compare frequencies of words in real-world sequences, whose length can be large
but is obviously finite. To give a caricature of an example where this can go awry, assume that the countings
of the words w and w′ both deviate from their theoretical values in the model under consideration and that the
probability that the counting of w, respectively w′, corresponds approximately to the observed relative counting
in a sequence of length n is c exp{−n}, respectively c exp{−2n + 100n7/8}, for a suitable positive constant
c. Then, for any n � 1016, that is, in quite a few concrete situations, the observed counting of w is much
more exceptional than the observed counting of w′, although the simple comparison of the rates I(w) = 1 and
I(w′) = 2 of the corresponding LDP would lead to the opposite prediction.

Another important point is that one wants to establish ordered lists of words with unexpected frequencies,
rather than to show merely that one specific word is under or over represented. Hence, one must study joint laws
of occurrences of different words in a sequence, we give an example in Section 3.2. To sum up the preceding, we
are interested in precise asymptotics of large deviations probabilities for multidimensional functionals of Markov
chains.

The mathematical setting is as follows. We are given a Markov chain {Xn}n on a finite state space E,
with transition kernel Q. We write Pa for the probability measure P conditioned by the event {X0 = a}. Let
F : E → Zd and, for every n ≥ 1,

Sn :=
n−1∑
k=0

F (Xk).

For every x = {xj}j and y = {yj}j in Rd, the inequality x ≥ y means that, for every j, xj ≥ yj . Likewise, x > y
means that, for every j, xj > yj. The canonical basis of Rd are the vectors with a single one in each of the
j = 1 . . . d positions. We are interested in estimating the probabilities of events of the form {Sn ≥ nv}, where
v is in R

d, or {Sn ≥ σn}, where σn = nv + o(n) and σn ∈ Z
d. Let us introduce the following assumptions.

(H1) The Markov chain {Xn}n is irreducible and aperiodic, with invariant distribution π.
(H2) The additive process {(Xn, Sn)}n is aperiodic in the following sense: for every vector �e of
the canonical basis of Rd, there exists a positive integer n, states a and b, and a point σ in Zd,
such that Pa(Xn = b, Sn = σ) and Pa(Xn = b, Sn = σ + �e) are both positive.
(H3) The point v lies in the interior of the convex hull of the range of F and

v > Eπ(F (X0)) =
∫
F (x)π( dx).
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The large deviation probabilities Pa(Sn ≥ nv) follows an exponential decrease with finite asymptotic rate
Λ�(v) = − limn→∞ n−1 log Pa(Sn ≥ nv), that does not depend on the initial state a. Under (H1), (H2)
and (H3), we obtain an expansion of Pa(Sn ≥ nv) in Theorem 2.2, namely

Pa(Sn ≥ σn) =
e−J(v,n)

nd/2

[
k∑

�=0

n−�/2Θ�
a(n) +O

(
n−(k+1)/2

)]
, as n→ ∞, (0.1)

where J(v, n) = nΛ�(v) + tv · (σn − nv) for some tv ∈ Rd, and where Θ�
a(n) are finite coefficients that may be

explicitly calculated.
We use a classical method to prove this result, see Jensen [11]. The first step is an Edgeworth expansion of

ga(n, σ) = Ea(g(Xn)1{Sn = σ})

when g : E → R, σ ∈ Zd and n → ∞. For this aim, we introduce Q(z), an analytic perturbation of the
transition kernel Q, such that

Qn(z)ga = Ea

(
g(Xn) exp(z · Sn)

)
and we obtain spectral results in Propositions 4.2 and 4.3.

In a second time, we normalize the kernelQ(z), see (2.6), to build a new transition kernelQ(z), generally called
the twisted kernel. For a suitable z in Rd, under this twisted kernel, the additive process Sn has asymptotic
mean v, i.e., limn−1Sn = v almost surely, see (2.8). This change of measure and our Edgeworth expansion
leads us to our main result (Thm. 2.2).

Our main contributions are: the proof of an Edgeworth expansion of any order and a complete treatment
of the lattice case. Specifically, our assumption (H2) is milder than the classical ones in the literature, see
Remark (ii) after Theorem 2.2. This yields the term exp

(− tv · (σn − nv)
)

which is new, up to our knowledge,
see Remark (iii) after Theorem 2.2.

The rest of the paper is organized as follows. In Section 1, we recall some known bounds on the deviations
of functionals of Markov chains. In Section 2, we state the main results of the paper, namely local Edgeworth
expansions in Theorem 2.1 and precise large deviations estimates in Theorem 2.2, and we prove Theorem 2.2
assuming Theorem 2.1. In Section 3.1, we perform some simulations and we explain the phenomena of periodic
oscillations. In Section 3.2, we present numerical results on the genome of Escherichia coli. Section 4 is devoted
to some preliminaries and Section 5 to the proof itself of Theorem 2.1. This uses Lemma 5.2, which we prove
in Section 6.

1. State of the art

The seminal paper on large deviations of additive functionals of Markov chains is Miller [18]. The usual large
deviations asymptotics of those processes have been refined in two ways, the authors proving either rigorous
bounds, see Section 1.1, or exact asymptotic equivalents, see Section 1.2. Remarks (ii) and (iii) given after our
Theorem 2.2 compare our results with the existing literature.

1.1. Rigorous bounds

Iscoe et al. [10] prove that there exists finite positive constants K1 and K2, such that, for every positive
integer n and every state a,

K1 n
−d/2e−nΛ�(v) ≤ Pa(Sn ≥ nv) ≤ K2 e−nΛ�(v),

where Λ�(v) is the exponential rate given by a LDP. We use some techniques of Iscoe et al. [10], namely the
twisted kernel and the representation formula (see pp. 383–389 of this paper). In turn this transformation is
a generalisation of the conjugate distribution, used to prove exact large deviations estimates for sums of i.i.d.
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random variables, see for instance Bahadur and Rao [2], Ney [19] and pp. 110–113 of Dembo and Zeitouni [6].
A comprehensive reference on this method is Jensen [11].

Ney and Nummelin [20] improve on the tools of Iscoe et al. [10] and use the regenerative structure of the
Markov chain, under a weaker recurrence hypothesis.

León and Perron [15] prove upper bounds of large deviations events for Markov-additive processes in dimen-
sion d = 1, when the underlying Markov chain is finite and reversible, with stationary distribution π. These
authors get the upper bound

Pπ(Sn ≥ nv) ≤ e−n K ,

where K is a positive number that depends on the stationary mean Eπ(F (X0)), on the end-points of the support
of F , and on the second largest eigenvalue λ2 of the transition kernel. When λ2 is nonnegative, K is indeed the
exponential rate given by the large deviation principle.

In the same spirit, there is the results of Kargin [12]. In this article, the author obtains a Bernstein-Hoeffding
inequality for large deviation probabilities of multivariate additive functionals of a reversible, finite Markov
chain.

1.2. Exact asymptotic equivalents

Chaganty and Sethuraman [4] provide equivalents of the probabilities of large deviations events for arbitrary
random variables, making specific assumptions on the moment generating functions. To give a flavour of their
results, let {Tn}n denote a sequence of lattice valued random variables with span 1, and {tn}n a sequence
of integers such that tn = O(n). For every n, let rn denote the unique positive solution of M ′

n(rn) = tn,
where Mn(z) := log E(ez Tn), and let γn := E(ernTn). Then, assuming some technical conditions that we omit,
Chaganty and Sethuraman [4] show that, when n→ ∞,

P(Tn ≥ tn) = (2πM ′′
n (rn))−1/2(1 − e−rn)−1e−rntn γn (1 + o(1)). (1.1)

In dimension d = 1 and for partial sums of i.i.d. random variables, full asymptotic expansions of P(Sn ≥ nv) are
in Bahadur and Rao [2]. In dimension d ≥ 2, the behaviour of P(Sn ∈ nB) depends crucially on the geometry
of the boundary of the Borel set B. As a consequence, the situation is much more complicated, even in the
i.i.d. case. When B is convex and its interior is not empty, Ney [19] obtains asymptotics which depend on
the geometry of the boundary of B around its so-called dominating point. Iltis [8] strengthens these results.
Andriani and Baldi [1] recover this equivalent and focus on the geometric meaning of the terms involved. We
mention that Barbe and Broniatowski [3] settle the question for sums of i.i.d. random variables and arbitrary
Borel sets B.

Kontoyiannis and Meyn [14] prove an equivalent of the pre-exponent term for Markov-additive processes in
dimension d = 1, when the underlying Markov chain lives on a general state space and is geometrically ergodic.
Their main results are summed up in a multiplicative ergodic theorem, which gives asymptotics on the Fourier or
Laplace transform of Sn. To this aim, they impose a Lyapounov condition on the Markov chain, which ensures
the geometric ergodicity. These authors get the first two terms of the Edgeworth expansion of the distribution
function and they prove that the error term is o(n−1/2). No higher order Edgeworth expansion is given. Datta
and McCormick [5] also get the first two terms of the Edgeworth expansion. In the multidimensional case,
Iltis [9] gives an equivalent of P(Sn ∈ nB), thus reducing the problem to the evaluation of the asymptotics of
certain integrals, whose behaviour is however not studied.

2. Results

2.1. Local Edgeworth expansions

Consider a nonzero function g : E → R. Our aim is to prove local Edgeworth expansions, of any order and
uniform in σ, on

ga(n, σ) = Ea[g(Xn)1{Sn = σ}].
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In particular, when g ≡ 1, ga(n, σ) is the density of the distribution of Sn with respect to the counting measure
of Zd.

Theorem 2.1 below provides such expansions, and uses a sequence of bounded functions {ψk}k, which we
now construct. For every z in C

d, consider the kernel Q(z) such that, for every states a and b,

Q(z)(a, b) := Q(a, b) ez·F (a).

Note that, for all n ≥ 0, Qn(z)g in a vector indexed by the state space E, and that, for all state a,[
Qn(z)g

]
a

= Ea

(
g(Xn) exp(z · Sn)

)
.

At least when z belongs to a suitable neighbourhood V of the origin of Cd, since the state space E is finite,
Q(z) has a dominating eigenvalue, say eΛ(z). Actually, for every n ≥ 1, every z in V ,

Qn(z) = enΛ(z)N(z) +Rn(z),

where N(z) is a projection matrix and R(z) a matrix such that limn→∞ e−nΛ(z)‖Rn(z)‖ = 0. Thus,

G(z) := N(z)g (2.1)

is a right eigenvector of Q(z) of eigenvalue eΛ(z) and

G(z) = lim
n→∞ e−nΛ(z)Qn(z)g.

(See Sect. 4 for the existence of Λ, N , R and G, and more specifically Prop. 4.2.) Moreover, z 
→ G(z) and
z 
→ Λ(z) are analytic functions on V and their Taylor expansions at the origin read

Λ(z) =
∑
k≥1

Λ(k)(z) Ga(z) =
∑
k≥0

G(k)
a (z),

for every state a, where, for every nonnegative integer k, each of Λ(k)(z) and G
(k)
a (z) is either zero or a

homogeneous polynomial in z of degree k. For instance,

Ga(0) = Eπ(g(X0)), Λ(1)(z) = m · z, Λ(2)(z) =
1
2
z · Γz

where m := Eπ(F (X0)) is the asymptotic mean and Γ is the asymptotic covariance matrix, hence, when n→ ∞,
Sn = nm+ o(n) almost surely and

Γ =
1
n

Var(Sn) + o(1). (2.2)

Since, {n−1 Var(Sn)} is a sequence of positive semidefinite symmetric matrices, Γ is also a positive semidefinite
symmetric matrix. Our assumptions imply that Γ is nonsingular, see Lemma 4.1.

Let L := Λ − Λ(1) − Λ(2). For every u in C and z in Cd such that uz belongs to V , let

P (u, z) := eL(uz)/u2
G(uz). (2.3)

For every z in Cd, this defines a vector function P (·, z), analytic at the origin, whose expansion along the powers
of u reads

P (u, z) =
∑
k≥0

P (k)(z)uk. (2.4)
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For every nonnegative integer k and every state a, we introduce a function ψk
a given by

ψk
a := P (k)

a (D)ϕΓ,

where ϕΓ is the density of the centered normal distribution on Rd with covariance matrix Γ and P
(k)
a (D) is a

differential operator defined as follows. For every vector K := {Kj}j of nonnegative integers, denote

zK :=
d∏

j=1

zj
Kj , DKϕ :=

∂K1+···+Kdϕ

∂t1
K1 · · · ∂tdKd

·

Note that, if the Kj are all equal to zero, DKϕ is ϕ itself. For every polynomial P (z) in C[z1, . . . , zd], the
conventions above allow to define the effect of the differential operator P (D) on every smooth function ϕ as

P (D)ϕ :=
∑
K

βKD
Kϕ, P (z) :=

∑
K

βKz
K .

The functions ψk
a are bounded. Each function P

(k)
a (z) is a polynomial function of z, of degree at most (3k),

which involves a finite number of functions Λ(�) and G
(�)
a . For instance, P (0)(z) = G(0)(z) = G(0), hence

P
(0)
a (z) = Eπ(g(X0)) does not depend on a, and

P (1)
a (z) = Λ(3)(z)G(0)

a (z) +G(1)
a (z).

Theorem 2.1. Assume that (H1) and (H2) hold. Then, for every nonnegative integer k, there exists a positive
constant Ck, which depends on (Q,F, a, g), but not on σ, such that, for every σ in Zd and every integer n,∣∣∣∣∣ga(n, σ) − n−d/2

k∑
�=0

n−�/2ψ�
a

(
n−1/2(σ − nm)

)∣∣∣∣∣ ≤ Ckn
−(d+k+1)/2.

The proof of Theorem 2.1 is postponed to Section 5.

Remarks. (i) The functions ψk
a depend on the transition kernel Q and on the functions F and g. What might

be more surprising is that, for every positive integer k, ψk
a also depends on the starting point a of the Markov

chain. On the other hand, ψ0
a does not depend on a. One can also observe that the constant Ck does not depend

on σ.
(ii) Since Theorem 2.1 holds for any order k, one may be tempted to consider the limit k → ∞, i.e. the

infinite series
∞∑

�=0

n−�/2ψ�
a

(
n−1/2(σ − nm)

)
.

However, as is well know even in the i.d.d. case, the resulting infinite series needs not converge for any n.
Actually, the sequence {Ck}k in Theorem 2.1 is not bounded and Ckn

−(d+k+1)/2 does not go to zero when n is
fixed and k → ∞.

(iii) When σ is far away from nm (we recall that m = Eπ(F (X0))), ga(n, σ) and its expansion might be both
small with respect to n−(d+k+1)/2. On the other hand, when σ is close to nm, ψ0

a(n−1/2(σ − nm)) is close to
the positive real number

〈Γ〉 := ϕΓ(0) = ((2π)d det Γ)−1/2,

and C0 n
−(d+1)/2 is small with respect to the first term of the expansion.
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Thus, Theorem 2.1 cannot be directly applied to get approximations of probabilities which quantify the
exceptionality of words in a biological sequence. Indeed, the difference between the observed frequency and the
expected frequency is, at least in interesting cases, large. What we need are asymptotics in the regime of large
deviations, cf. Theorem 2.2 below.

2.2. Precise large deviation expansions

When n → ∞, log Ea(exp(t · Sn)) = nΛ(t) + o(n) and Λ(t) does not depend on the initial state a of the
Markov chain. Furthermore, eΛ(t) is the greatest eigenvalue of the positive and irreducible matrix Q(t), see
Dembo and Zeitouni [6] (p. 73), and the sequence {n−1Sn}n satisfies a large deviation principle (LDP). The
rate function Λ� is given by

Λ�(v) = sup
t∈Rd

{t · v − Λ(t)}. (2.5)

To state our second result, we fix v in Rd. Without loss of generality, we can assume that v > m. Otherwise,
we can change the sign of some components of F .

The right eigenvector G(t) defined in (2.1) induces a twisted kernel Q(t), defined as follows: for every t in Rd

and every states a and b,
Q(t)(a, b) := Ga(t)−1Q(a, b) et·F (a)−Λ(t)Gb(t). (2.6)

Let P(t) denote the probability measure such that {Xn}n is a Markov chain of kernel Q(t), and E(t) denote
the expectation with respect to P(t). Assumption (H3) implies that there exists one and only one root t to
the equation Λ′(t) = v, see Ney and Nummelin [20]. Then Λ�(v) = t · v − Λ(t) and one gets the following
representation formula: for every function h and every state a,

Ea(h(Xn, Sn)) = e−nΛ�(v)Ga(t)E(t)
a

(
GXn(t)−1e−t·(Sn−nv)h(Xn, Sn)

)
. (2.7)

The main interest of this transformation is that, under P(t), the asymptotic mean of Sn is v, namely

lim
n→∞n−1Sn = E

(t)
π(t)(F (X0)) = v P

(t)-a.s., (2.8)

where π(t) denotes the stationary distribution of Q(t), see Ney and Nummelin [20].
Using Theorem 2.1, this transformation yields an expansion of

pa(n, σ) := exp
(
nΛ�(v) + t · (σ − nv)

)
Pa(Sn = σ),

which, in turn, yields a precise approximation of Pa(Sn = σ) when σ is around nv. Summing these, one also
gets an expansion of qa(n, σ) where, for every σ in Zd,

qa(n, σ) := exp
(
nΛ�(v) + t · (σ − nv)

)
Pa(Sn ≥ σ).

For every nonnegative integer k, introduce

ϑk
a(z) := Ga(t)ψk

a(z),

where {ψk
a}k denotes the sequence of Theorem 2.1 for the twisted kernel Q(t) and the function g(a) = Ga(t)−1.

Also, we consider

Θk
a(n) :=

∑
y≥0

e−t·y ϑk
a

(
n−1/2(σn + y − nv)

)
,

where the sum is taken over all y ≥ 0 in Zd. Note that v > m implies that t > 0. Moreover the functions ψk
a

are bounded. Thus Θk
a(n) is finite. With these notations in mind, one gets the following result.
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Theorem 2.2. Assume that (H1), (H2) and (H3) hold. Then, for every nonnegative integer k, there exists a
positive constant C′

k, which depends on (Q,F, a, g) but not on σ, such that, for every σ in Zd and every positive
integer n, ∣∣∣∣∣pa(n, σ) − n−d/2

k∑
�=0

n−�/2ϑ�
a

(
n−1/2(σ − nv)

)∣∣∣∣∣ ≤ C′
kn

−(d+k+1)/2.

Moreover, for every sequence {σn}n of vectors in Zd such that σn = nv + o(
√
n) and every integer k, there

exists a positive constant C′′
k , which depends on (Q,F, a, v) but not on the sequence {σn}n, such that, for every

positive integer n, ∣∣∣∣∣qa(n, σn) − n−d/2
k∑

�=0

n−�/2Θ�
a(n)

∣∣∣∣∣ ≤ C′′
kn

−(d+k+1)/2.

Remarks. (i) The probabilities Pa(Sn = σn) and Pa(Sn ≥ σn) are equivalent up to a multiplicative constant,
in other words their ratios converge to a positive, finite number. Thus, the local behaviour of Sn near σn is
of the same order than its behaviour on {x ∈ Zd : x ≥ σn}. This is a classical phenomenon of large deviation
estimates in the logarithmic scale: a key principle is that any large deviation is done in the least unlikely of
all the available unlikely ways. See, for instance, the definition of a dominating point in Ney [19] as the least
unlikely point of a Borel set.

(ii) We need to introduce the sequence {σn}n because nv might not belong to Zd for every value of n, in
which case Pa(Sn = nv) would be zero. Even the behaviour of the tail probability Pa(Sn ≥ nv) depends on the
fact that nv is in Z

d or not. This is one of the difficulty in the lattice case. For instance, Dembo and Zeitouni [6]
need some restrictive assumptions to state the theorem of Bahadur and Rao [2] on p. 110. In the lattice case
and for i.i.d. random variables, this yields an approximation of P(Sn ≥ nv), provided P(F (X0) = v) is neither
0 nor 1. Alas, when studying the number of visits to a given state, F denotes an indicator function, hence this
assumption on P(F (X0) = v) implies that v = 0 or v = 1, while one wants to get asymptotics when v equals
the observed frequency of the given set, which is typically neither 0 nor 1.

(iii) Once we understand that we should replace nv by some sequence σn in Zd, a second issue arise. How
to get a tractable formula for Pa(Sn ≥ σn) when σn = nv + o(n−1/2)? For instance, the practical use of the
expansion of Chaganty and Sethuraman [4], given in (1.1) depends on one’s ability to get asymptotics for the
sequences of general term M ′′

n (rn), γn and rn. It might require heavy numerical calculations. On the contrary,
our results provide directly asymptotics of those probabilities. In particular, their equivalent does not explain
directly the oscillations observed in our simulations (see Sect. 3.1) whereas the term exp(−t · (σn − nv)) in our
results is a transparent explanation.

The equivalent of Kontoyiannis and Meyn [14] on Markov-additive processes in dimension d = 1 does not
explain directly the oscillations observed in our simulations. More precisely, Theorem 6.5 of [14] gives an
equivalent of P(Sn ≥ nvn) in dimension d = 1 and for vn lying in the support of Sn. However, the reasoning that
gives a simpler equivalent below this theorem, when vn converges to some v, misses the term exp(−t·(nvn−nv)).

(iv) In the biological context described in the introduction, v is a vector of observed frequencies. Thus the
coordinates of v are rational numbers. When n is the length of the observed sequence, the coordinates of nv
are of course integer numbers since these are counting numbers. But for many other values of n, nv does not
belong to Zd. Since {Sn ≥ nv} = {Sn ≥ �nv�}, we use σn = �nv� in biological applications. Note that, when v
is rational, the sequence {�nv�−nv}n is periodic and the factor exp(−t ·(σn−nv)) leads to periodic oscillations.
See Section 3.1 for more on this.

Proof of Theorem 2.2. Assume that Theorem 2.1 holds. The representation formula of equation (2.7) gives

pa(n, σ) = Ga(t)E(t)
a

[
GXn(t)−11{Sn = σ}] .

Note that, if a, b are two states, Q(a, b) > 0 if and only if Q(t)(a, b) > 0. Thus, if (H1) and (H2) hold for
the original Markov chain, they hold for the twisted Markov chain. Hence, Theorem 2.1 applied to the twisted
kernel, with g(a) = Ga(t)−1, completes the proof of the first part.
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Summing the previous inequalities, one gets the second part of the theorem. Indeed,

qa(n, σn) = Ga(t)
∑
y≥0

e−t·y g(t)
a (n, σn + y),

where the sum is taken over all y ≥ 0 in Zd, and

g(t)
a (n, σn + y) = E

(t)
a

[
GXn(t)−11{Sn = σn + y}] .

Theorem 2.1 applied uniformly on y ≥ 0 then concludes the proof of Theorem 2.2. �

3. Numerical illustrations

3.1. Simulations

In this section {σn}n denotes a sequence in Zd such that σn = nv + o(
√
n). We study the behaviour of

Pπ(Sn ≥ σn) through simulations. Let Γ(t) denote the d × d covariance matrix and π(t) the stationary distri-
bution of the Markov chain with respect to the twisted kernel Q(t). Lemma 4.1 shows that Γ(t) is nonsingular.
Let

〈Γ(t)〉 = ϕΓ(t)(0) =
(
(2π)d det Γ(t)

)−1/2
.

Theorem 2.2 implies that

Pa(Sn = σn) = ϑ0(0)n−d/2e−t·(σn−nv)−nΛ�(v) (1 + o(1)),

where the positive constant ϑ0(0) is ϑ0(0) = 〈Γ(t)〉Ga(t). If we assume furthermore that σn = nv +O(1), then

Pa(Sn = σn) = ϑ0(0)
(
1 +O(

√
n)

)
n−d/2e−t·(σn−nv)−nΛ�(v).

Since σn belongs to Zd, the hypothesis σn = nv+O(1) is the tighter control that one can impose sensibly upon
the behaviour of σn. The second part of Theorem 2.2 then implies that

Pa(Sn ≥ σn) = Θ0(0)n−d/2e−t·(σn−nv)−nΛ�(v) (1 + o(1)),

where Θ0(0) = ϑ0(0)τ(t)−1 and τ(t) :=
d∏

j=1

(1 − e−tj ).

Thanks to the representation formula in equation (2.7), it is enough to simulate

Rn := E
(t)
π(t)

(
e−t·(Sn−nv)1{Sn ≥ σn}

)
,

for the value of t such that v = Eπ(t)(F (X0)) is the asymptotic expected value of n−1Sn under P(t). Specifically,
we check the following predictions.

(i) The behaviour of P(Sn ≥ nv) depends on d through the factor nd/2.
(ii) The factor e−t·(σn−nv) may lead to periodic oscillations.
(iii) The factor 〈Γ(t)〉 τ(t)−1 is correct.

Additionally, we observe that the convergence of Rn to its limit points is slow when t is close to the origin.
Indeed,

Rn = e−t·(σn−nv)
∑
y≥0

e−t·yRn(y) where Rn(y) := P
(t)
π(t)(Sn = y + σn)·
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Figure 1. Here F = 10 − 11 and Xn+1 = Xn + Un modulo 7 for an i.i.d. sequence {Un}n

with distribution 7
10δ0 + 3

10δ1, t = 2, and Rn = E(e−t·Sn1{Sn ≥ 0}). Then n1/2Rn converges
to R ≈ .5650774.

From Theorem 2.1, Rn(y) is approximated by R̃n(y) uniformly over y, with

R̃n(y) := ϕΓ(t)

(
y + sn − nv√

n

)
·

Every R̃n(y) converges to 〈Γ(t)〉 when n→ ∞ and the convergence is fast when y is close to the origin, otherwise
it is slow. Moreover, when t is close to the origin, many terms contribute to the overall sum. Thus, the overall
convergence is significantly slower when t is close to the origin. Such phenomena do not appear for P(t)(Sn = σn)
because only Rn(0) gets involved.

As regards the technical side of the simulations, we used the R language and environment [24]. We used
different random number generators, such as the Mersenne-Twister generator whose period is around 219937.
We obtained the same results with other, widely tested, random generators, such as the Marsaglia-Multicarry
generator.

Figures 1, 2 and 3 exhibit a convergence for d = 1, d = 3 and d = 2 respectively. In Figures 1 and 2, v = 0 is
in Zd, σn = nv is in Zd, and e−t (σn−nv) = 1 for every n. By contrast, in Figures 3 and 4, the factor e−t·(σn−nv)

leads to oscillations. To see why, note that {Sn ≥ n v} = {Sn ≥ �nv�} where, for every x = {xj}j in Rd, the
jth component of �x� is defined as the unique integer yj such that xj ≤ yj < xj + 1. Furthermore, when the
components of v are rational, the sequence �nv�− nv is periodic, with period 6 in the case of Figure 4. Indeed,
the simulations in Figure 4 use the �nv� round-off and the results are clearly 6 periodic. In Figure 3, we use the
other possible round-off, namely σn = �nv�. We obtain similar oscillations whose period is 4, that is, precisely
the period of the sequence �nv� − nv.

The values of the limit points in each figures are easy to compute since we know the law of the Markov chain
under Q(t) in each simulation. Indeed, we compute Γ(t) and use Theorem 2.2 to get numerical values of the
limits.
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Figure 2. Here F = (10 − 11,12 − 13,14 − 15) and Xn+1 = Xn + Un modulo 7 for an i.i.d.
sequence {Un}n with distribution 7

10δ0 + 3
10δ1, t = (1, 3, 1), and Rn = E(e−t·Sn1{Sn ≥ 0}).

Then n3/2Rn converges to R ≈ .3072178.
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Figure 3. Here F = (10,11) and Xn+1 = Xn+Un modulo 4 for an i.i.d. sequence {Un}n with
distribution 4

5δ0 + 1
10δ1 + 1

10δ2, t = (1, 2), v = (1
4 ,

1
4 ), and Rn = E(e−t·(Sn−nv)1{Sn ≥ �nv�}).

Then u(n) = nRn exhibits periodic oscillations. Indeed, u(4n + k) converges to R eβk when
n→ ∞, with R ≈ .2784627, β0 = 0, β1 = 3

4 , β2 = 3
2 and β3 = 9

4 .
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Figure 4. Here F = (10,11) and {Xn}n is i.i.d. with distribution 1
2δ0 + 1

6 (δ1 + δ2 + δ3),
t = (1, 2), v = (1

2 ,
1
6 ), and Rn = E(e−t·(Sn−nv)1{Sn ≥ nv}). Then u(n) = nRn exhibits

periodic oscillations. Indeed, u(6n+ k) converges to R eβk when n → ∞, with R ≈ 1.747124,
β0 = 0, β1 = − 13

6 , β2 = − 4
3 , β3 = − 3

2 , β4 = − 2
3 , and β5 = − 5

6 .

3.2. Genomic sequences

Assume we want to study the frequency of the word TCCAA in the genome of Escherichia coli. The random
model is Markovian of order 2. The parameters of this model are estimated by maximum likelihood on the
sequencing of the commensal K-12 strain, whose length is n ≈ 4.6 × 106. The observed frequency of TCCAA
is approximately 2.7631 × 10−4, which is much smaller than the one predicted by the random model, namely
9.053× 10−4. Let us denote p(TCCAA) the p-value associated with this word. This p-value is

p(TCCAA) = P(Sn ≤ nv),

where Sn denotes the counting of TCCAA in the random sequence. Assume that, for all integer k, Xk is the
variable that stands for the word of length 5 beginning at position k in the random sequence. (Remark that Xk

and Xk+1 overlap.) Since the model is Markovian of order 2, {Xk}k≥1 is a simple Markov chain, whose state
space is the set of words of length 5. Then, Sn =

∑n
k=1 1TCCAA(Xk) is clearly a Markov-additive process.

Up to a change of sign, Theorem 2.2 yields

log p(TCCAA) = −nΛ�(v) + tv · (�nv� − nv
) − 1

2
logn+ logϑ0(0) +O(n−1/2),

where v is the observed frequency of TCCAA.
Let us denote

χn =
n∑

k=1

δXk
,

where δx is the Dirac measure at x. The rate function Λ� of Sn is given by (2.5) and has no simpler expression.
However, the empirical measure χn of all words of length 5 has an explicit rate function, say J . See, for



LARGE DEVIATIONS EXPANSIONS AND GENOMIC SEQUENCES 447

instance, Dembo and Zeitouni [6] (pp. 78–82), specifically exercise 3.1.20. The counting Sn of TCCAA is equal to
nχn(TCCAA). Hence, the use of the contraction principle, see Theorem 4.2.1 (p. 126) of Dembo and Zeitouni [6]
leads us to a numerical value by minimizing J (ν) under the constrain that ν(TCCAA) is equal to the observed
frequency, say v:

Λ�(v) = inf
{J (ν) : ν(TCCAA) = v

}
. (3.1)

The parameter t = tv that appears in our theorems is such that Λ′(t) = v. Since Λ� is the convex-conjugate
function of Λ, we have Λ�′(v) = t. And (3.1) can also give a numerical value for t. This yields Λ�(v) ≈
3.183 × 10−4 and t ≈ 3.285 × 10−4 for the p-value of the frequency of TCCAA. Once Λ�(v) and t are known, we
can compute the twisted kernel. Moreover, the other coefficients of our approximation are given by the first
terms of power expansions and can be numerically computed, as in Section 3.1.

Actually, doing this study on all other necessary words, one sees that TCCAA is the word with the smallest
p-value, that is the most exceptional word, among the words of length 5 in the genome of Escherichi coli. To
find the second most exceptional word, we propose to condition the model by the observed frequency of TCCAA.
In an equivalent way, one seeks the word w with a minimal p(w, TCCAA), where p(w, TCCAA) is the p-value of the
null hypothesis that the counting of w as well as the counting of TCCAA are correctly predicted by the Markovian
model of order 2. This second most exceptional word is GGCCG.

4. Preliminaries to the proof of the main results

4.1. A technical lemma

Lemma 4.1. If (H1) and (H2) hold, the matrix Γ is nonsingular.

Proof. We will prove that, if v ∈ Rd is nonzero, then v · Γv > 0. We must extend the notation slightly insofar
as we will explicitly introduce the dependency on the function F in the Markov-additive process. This simply
means that, instead of writing Sn and Γ, we will use Sn(F ) and Γ(F ) for the remainder of the proof.

Easy algebra shows that v·Γv = limn−1 Var(Sn(v·F )) = Γ(v·F ). Fix j so that vj �= 0. Apply assumption (H2)
with �e being the vector with one single one in the j position. We get a positive integer n, states a, b and a
point σ ∈ Zd such that Pa(Xn = b, Sn(v · F ) = v · σ) and Pa(Xn = b, Sn(v · F ) = v · σ + vj) are both positive.
In other words, Sn(v · F ) takes at least two different values, depending on the realization of the Markov chain.
Thus, v · F is not constant. And, since v · F is a one-dimensional function, the real number Γ(v · F ), which is
the asymptotic variance of a one-dimensional Markov additive process, is positive. �

4.2. Asymptotics on the Fourier transform of Sn

In this section, we fix a function g : E → C and we study the asymptotics of ĝa(n, it) when n → ∞, for a
fixed value of t in Rd, where

ĝa(n, it) := Ea

(
g(Xn) exp(it · Sn)

)
is the Fourier transform of ga(n, σ) = Ea (g(Xn)1{Sn = σ}). Then the vector {ĝa(n, it)}a indexed by the states
of the Markov chain is equal to Q(it)ng, where g is seen as a column vector. The leading term of the asymptotics
of ĝa(n, it) when t is close to the origin is due to Mann [17] (pp. 24–33), and is given in Proposition 4.2 below.

Call λ a dominating eigenvalue of a given matrix if λ is a simple eigenvalue and if the modulus of every other
eigenvalue is strictly smaller than |λ|. Then there exists a neighbourhood U of the origin in R

d and a function
ρ0 defined on U such that ρ0 has an entire expansion in U and for every t in U , ρ0(t) is a dominating eigenvalue
of Q(it). See Mann [17] for the proof.

We establish the uniform convergence of ĝa(n, it) in a neighbourhood of the origin. Propositions 4.2 and 4.3
below and every other result in this paper are independent of Mann’s result. Let R denote any real number,
greater than the second greatest modulus of the eigenvalues of the transition kernel Q. One can and we will
assume that R < 1.
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Proposition 4.2. There exists a positive constant C1, a neighbourhood V of the origin in Cd, a holomorphic
function z 
→ ρ(z) on V with values in C and a holomorphic function z 
→ N(z) on V with values in the space
of projection matrices, such that, for every positive integer n and every z in V ,

‖ρ(z)−nQn(z) −N(z)‖ ≤ C1R
n.

Proof of Proposition 4.2. In this proof, CE is equipped with the Hermitian product

G ·H =
∑
a∈E

H̄aGa, if G = {Ga}a, H = {Ha}a are in C
E .

First step. We first show that there exists a neighbourhood V of the origin in Cd and some functions z 
→ ρ(z),
z 
→ H(z) and z 
→ K(z), defined on V with values in C, CE and CE respectively, such that

1. H(0) = {1}a∈E;
2. for every z in V , ρ(z) is a dominating eigenvalue of Q(z);
3. H(z) is a right eigenvector of Q(z) for the eigenvalue ρ(z); and
4. K(z) is a left eigenvector of Q(z) for the eigenvalue ρ(z).

Indeed, the characteristic polynomial of Q(z) is an analytic perturbation of the characteristic polynomial of
Q = Q(0), and 1 is a dominating eigenvalue of Q. Hence, at least on a neighbourhood of the origin in Cd, an
eigenvalue of Q(z) is dominating, say ρ(z), and z 
→ ρ(z) is analytic at the origin because ρ(0) is simple.

Likewise, a right eigenvector (respectively, a left eigenvector) of Q(z) for the eigenvalue ρ(z) solves an analytic
perturbation of the linear system which gives a right eigenvector (respectively, a left eigenvector) of Q for the
simple eigenvalue 1. Since I = {1}a∈E is a right eigenvector of Q, one can choose H(0) = I.

Second step. Next, we show that, if z is in some neighbourhood of the origin, Q(z) is conjugate to some matrix,
that depends analytically on z and is diagonal by block. Let K(−z)⊥ denote the orthogonal space of the vector
K(−z) in CE . Since K(−z) is a left eigenvector of Q(−z) = Q(z), one obtains for every vector G in K(−z)⊥,

K(−z) ·Q(z)G = K(−z)Q(z) ·G = ρ(−z)K(−z) ·G = 0,

i.e., K(−z)⊥ is mapped into itself by Q(z).
By Perron-Frobenius theorem, the coordinates of H(0) and K(0) are positive, hence the Hermitian product

of K(0) and H(0) is positive. By continuity, the modulus of the Hermitian product of K(−z) and H(z) is
positive for all z in a neighbourhood of the origin. Hence H(z) is not in K(−z)⊥ and the space CE decomposes
into a pair of supplementary subspaces as

C
E = K(−z)⊥ ⊕ CH(z).

Moreover, Q(z) maps each of those subspaces into itself.
Next, we choose a basis B(z) of K(−z)⊥ which depends analytically on z on a neighbourhood of the origin.

Then B(z)∪{H(z)} is a basis of CE and the transfer matrix T (z) from the canonical basis of CE to B(z)∪{H(z)}
depends analytically on z on a neighbourhood of the origin. Furthermore, the matrix of the endomorphism
Q(z) in the basis B(z) ∪ {H(z)} is diagonal by blocks because CH(z) and K(−z)⊥ are stable by Q(z).

Thus, there exists holomorphic applications z 
→ T (z) and z 
→M(z) from V to the spaces of square matrices
of dimension d and (d− 1) respectively such that, for every z in V , T (z) is nonsingular and

ρ(z)−1Q(z) = T (z)
(

1 0
0 M(z)

)
T (z)−1.
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Conclusion. Let rM denote the spectral radius of M(0). Since R is greater than rM , for any r in (rM , R),
Householder’s theorem, see Serre [32] (p. 66), provides the existence of a norm ‖ · ‖† on CE such that the norm
of M(0) with respect to the associated norm on matrices, namely

‖M(0)‖† = sup

{∥∥∥∥(
0 0
0 M(0)

)
G

∥∥∥∥
†

: G ∈ C
E , ‖G‖† = 1

}
,

is at most r. By continuity of z 
→ M(z), the norm ‖M(z)‖† is at most R > r for every z in a neighbourhood of
the origin. By continuity of z 
→ T (z) and z 
→ T (z)−1, the norms of T (z) and T (z)−1 are uniformly bounded
for z in a neighbourhood of the origin, say by C3. Introduce the matrix

N(z) = T (z)
(

1 0
0 0

)
T (z)−1.

Then the norm ‖ρ(z)−nQn(z) −N(z)‖† is at most C2
3 R

n. And, since CE is a finite dimensional vector space,
there exists C4 such that ‖ · ‖ ≤ C4‖ · ‖†. Choosing C1 = C4

√
C3 concludes the proof of Proposition 4.2. �

The results above describe the behaviour of the characteristic function of Sn near the origin. We also need
to control the characteristic functions of Sn when n → +∞, outside a neighbourhood of 0. Hypothesis (H2) is
crucial in the proof of this proposition.

Proposition 4.3.

1. If λ is an eigenvalue of Q(it) where t belongs to T := [−π; +π]d and t �= 0, then |λ| < 1;
2. For every positive real number ε, there exists positive constants C2 and A, with A < 1, such that, for

every t in T such that ‖t‖ ≥ ε,
|Ea(eit·Sn)| ≤ C2A

n.

The proof of Proposition 4.3 uses the following, classical lemma.

Lemma 4.4. Let pj, xj and yj, j = 1, . . . ,K, be real numbers such that, 0 < pj ≤ 1, 0 ≤ xj ≤ 1 for all j and∑
j pj = 1. The equality ∣∣∣∣∣∣

K∑
j=1

pjxj exp(iyj)

∣∣∣∣∣∣ = 1

implies that, first, all xj are equal to 1 and, second, y1 = y2 = . . . = yK modulo 2π.

Proof of Proposition 4.3. 1. The modulus of an eigenvalue of Q(it) is at most 1. Indeed, for every state a,∑
b

|Q(it)(a, b)| =
∑

b

Q(a, b) = 1.

We assume that a complex number of modulus 1, say exp(is), s ∈ R, is an eigenvalue of Q(it), and we want to
show that t = 0. Let Y denote a right eigenvector of Q(it) for the eigenvalue eis. Fix to 1 the maximum of |Ya|
over the states a. We will first prove that |Yb| = 1 for all state b, and then that t = 0.

Choose a state a0 such that |Ya0 | = 1. Since we assume (H1), the transition kernel is irreducible. Thus, we
can choose n0 such that Qn0(a0, b) > 0 for all state b. Then

1 =
∣∣ein0s Ya0

∣∣ =

∣∣∣∣∣ein0t·F (a0)
∑

b

Qn0(a0, b)Yb

∣∣∣∣∣ =

∣∣∣∣∣∑
b

Qn0(a0, b)Yb

∣∣∣∣∣ .
Since the sum over the states b of Qn0(a0, b) is 1, every Qn0(a0, b) > 0 and every |Yb| ≤ 1, Lemma 4.4 shows
that |Yb| = 1 for every state b. Therefore every Ya can be written Ya = exp(i y(a)) for some y(a) in R.
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For every nonnegative integer n, Y is a right eigenvector of Q(it)n for the eigenvalue exp(ins), that is,

Ea exp
(
it · Sn + iy(Xn)

)
= exp

(
ins+ iy(a)

)
.

Lemma 4.4 implies that, Pa almost surely,

t · Sn + y(Xn) = ns+ y(a) modulo 2π.

By hypothesis (H2), for every �e in the canonical basis of Zd, there exists a, b, n and x, such that the events
{Sn = x, Xn = b} and {Sn = x+ �e, Xn = b} both have positive Pa probabilities. Hence

t · x+ y(b) = ns+ y(a) = t · (x+ �e) + y(b) modulo 2π,

that is, t · �e = 0 modulo 2π, for every �e. Finally, since t ∈ T, t = 0.
2. Let r(t) denote the spectral radius of Q(it). Since Q(it) depends continuously on t, r(t) depends continu-

ously on t. The first item of Proposition 4.3 implies that r(t) < 1 for every t in T such that ‖t‖ ≥ ε. Hence the
supremum of the function r on this compact set is at most A′ < 1. Recall that, for every matrix M of spectral
radius rM , the norm of Mn is (rM )n+o(n) when n → ∞. Thus, for every A > A′, the sequence A−n|Ea(eit·Sn)|
is bounded. This concludes the proof of Proposition 4.3. �

5. Proof of Theorem 2.1

We are ready to prove an asymptotic expansion of the distribution of Sn. We write the two terms involved
in the left hand side of Theorem 2.1 as Fourier transforms. On the one hand,

Ea

[
g(Xn)1{Sn = σ}] = (2π)−d

∫
T

ĝa(n, it) e−it·σ dt,

where we recall that T := [−π;π]d. On the other hand, for every nonnegative integer k,

n−d/2 ψk
a(y) = (2π)−d

∫
Rd

P (k)
a (it) exp

(
−1

2
t · Γt− it · y

)
dt
nd/2

= (2π)−d

∫
Rd

P (k)
a (it

√
n) exp

(
−1

2
n t · Γt− it · y√n

)
dt.

(Note that P (k)
a is not homogeneous of degree k.) Using this for y := (σ − nm)/

√
n, one sees that (2π)d times

the left-hand side of the theorem is bounded by the sum of three terms I1(n), I2(n), and I3(n), defined as

I1(n) :=
∫
‖t‖≤ε

∣∣∣∣∣ĝa(n, it) −
k∑

�=0

n−�/2 P (�)
a (it

√
n) e−

1
2n t·Γt+in t·m

∣∣∣∣∣ dt,

I2(n) :=
∫
‖t‖≥ε, t∈T

|ĝa(n, it)| dt,

I3(n) :=
∫
‖t‖≥ε

∣∣∣∣∣
k∑

�=0

n−�/2 P (�)
a (it

√
n) e−

1
2n t·Γt

∣∣∣∣∣ dt,

where we cancelled unnecessary factors such as e−it·σ in I1(n) and I2(n) and e−it·y √
n in I3(n).

In the next steps of the proof, we first show that I2(n) and I3(n) are exponentially small, then we use the
approximation of ĝ(n, it) given by Proposition 4.2 to replace ĝ(n, it) in I1(n) by G(it) en Λ(it), and finally we
show that I1(n) is bounded by a power of n.
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5.1. Bounding I2(n) and I3(n)

Proposition 4.3 yields |ĝa(n, it)| ≤ C2A
n with A < 1. Hence I2(n) is exponentially small, more precisely

I2(n) ≤ C2 A
n Vol(T) = C2 A

n (2π)d.

As regards I3(n), P (�)
a is a polynomial of degree at most (3�), hence, for every ‖z‖ ≥ ε, |P (�)

a (z)| ≤ c�,a,ε ‖z‖3�.
Using this for z := it

√
n, one gets

I3(n) ≤
k∑

�=0

c�,a,εn
�

∫
‖t‖≥ε

e−
1
2n t·Γt ‖t‖3� dt.

Since Γ is positive definite, there exists a positive γ such that tΓ t ≥ γ ‖t‖2, hence for every positive integer n,∫
‖t‖≥ε

e−
1
2 n t·Γt ‖t‖3� dt ≤ e−

1
4 nγε2

∫
e−

1
4 t·Γt ‖t‖3� dt.

The last integral above converges, hence I3(n) is exponentially small.

5.2. Approximating ĝa(n, it) in I1(n)

Proposition 4.2 gives an approximation of ĝa(n, z) for all z in a neighbourhood V of the origin. If we choose
ε small enough so that {it, ‖t‖ ≤ ε} ⊂ V , then for every ‖t‖ ≤ ε, one has∣∣∣ĝa(n, it) −Ga(it) en Λ(it)

∣∣∣ ≤ C1 R
n

∣∣∣en Λ(it)
∣∣∣ .

Hence I1(n) ≤ I4(n) + C1 R
n I5(n), with

I4(n) :=
∫
‖t‖≤ε

∣∣∣∣∣Ga(it) en Λ(it) −
k∑

�=0

n−�/2 P (�)
a (it

√
n) e−

1
2n t·Γt+int·m

∣∣∣∣∣ dt

I5(n) :=
∫
‖t‖≤ε

∣∣∣en Λ(it)
∣∣∣ dt.

Since Λ(0)(z) = 0, Λ(1)(z) = m · z and Λ(2)(z) = 1
2z · Γ z, one gets

nΛ(it) = −1
2
n t · Γt+ in t ·m+ nL(it),

where we recall that L := Λ − Λ(1) − Λ(2). One may cancel the terms ein t·m in I4(n) and I5(n), and factorise
the terms e−

1
2n t·Γt in I4(n). This yields

I4(n) =
∫
‖t‖≤ε

∣∣∣∣∣Ga(it) en L(it) −
k∑

�=0

n−�/2 P (�)
a (it

√
n)

∣∣∣∣∣ e−
1
2n t·Γt dt

I5(n) =
∫
‖t‖≤ε

∣∣∣en L(it)
∣∣∣ e−

1
2n t·Γt dt.
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5.3. Bounding I1(n)

We use the following elementary lemma of complex analysis, see Knopp [13] (p. 77) for instance.

Lemma 5.1. Assume that the function h is analytic at the origin in Cd, that the Taylor expansion of h around
the origin reads

h(z) =
∑
k≥0

h(k)(z),

where each h(k) is zero or a homogeneous polynomial of degree k, and that this expansion converges absolutely
for ‖z‖ ≤ α, for some positive constant α. Then, there exists a positive constant β such that the following
properties hold.

(i) For every nonnegative integer k and every z in Cd such that ‖z‖ ≤ α,∣∣∣h(k)(z)
∣∣∣ ≤ β (α−1 ‖z‖)k.

(ii) For every nonnegative integer k and every z in Cd such that ‖z‖ ≤ 1
2α,∣∣∣∣∣h(z) −

k∑
�=0

h(�)(z)

∣∣∣∣∣ ≤ 2β(α−1‖z‖)k+1.

We apply part (ii) of Lemma 5.1 to h = Λ and k = 2. If ε is small enough, this yields |L(it)| ≤ C4 ‖t‖3 for every
t such that ‖t‖ ≤ ε, for a finite C4. Since Γ is definite positive, there exists a positive γ such that t ·Γt ≥ γ ‖t‖2

for every t. Hence, if 4C4ε ≤ γ and ‖t‖ ≤ ε, then |L(it)| ≤ 1
4 t · Γt. This implies that

I5(n) ≤
∫
‖t‖≤ε

e−
1
4 nγ‖t‖2

dt = O(n−d/2).

As regards I4(n), equations (2.3) and (2.4) read

Ga(it) en L(it) =
∑
�≥0

n−�/2 P (�)
a (it

√
n).

Hence,

I4(n) =
∫
‖t‖≤ε

∣∣∣∣∣∣
∑

�≥k+1

n−�/2 P (�)
a (it

√
n)

∣∣∣∣∣∣ e−
1
2n t·Γt dt.

We use Lemma 5.2 below, whose proof is postponed to Section 6, to control each P (�)
a .

Lemma 5.2. There exists positive constants α and β such that, for every � and every z such that ‖z‖ ≤ 1
2α,

|P (�)
a (z)| ≤ β (2y)�

�∑
j=0

(β y2)j

j!
, where y := α−1‖z‖.

Applying this to I4(n), we use the fact that t·Γt ≥ γ‖t‖2 and the change of variables s = α−1‖t‖√n. Considering
separately the indexes j in the upper bound of P (�) of Lemma 5.2 such that j ≤ k and the indexes j such that
j > k, one gets

I4(n) ≤ (2α)dωd−1 β n
−d/2(I6(n) + I7(n)),
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where ωd−1 denotes the surface of the unit sphere in Rd,

I6(n) :=
k∑

j=0

I8(j, n), I7(n) :=
∞∑

j=k+1

I8(j, n),

and, for every nonnegative integer j,

I8(j, n) :=
∑

i≥max{k+1,j}

∫ α−1ε
√

n

0

(
2s√
n

)i (β s2)j

j!
sd−1 e−

1
2γα2s2

ds.

From now on, we assume that 4ε ≤ α. Then 4s ≤ √
n uniformly on the integration interval 0 ≤ s ≤ α−1ε

√
n.

Hence, for any I, ∑
i≥I

(
2s√
n

)i

≤ 2
(

2s√
n

)I

· (5.1)

Using (5.1) with I = k + 1 to bound the terms I8(j, n) such that j ≤ k, one gets

I6(n) ≤ 2k+2n−(k+1)/2
k∑

j=0

∫ +∞

0

(βs2)j

j!
sk+d e−

1
2α2γs2

ds.

The last sum involves a finite number of finite integrals, hence there exists a finite C6, independent of n, such
that

I6(n) ≤ C6 n
−(k+1)/2.

As regards I7(n), one uses (5.1) with I = j to bound the terms I8(j, n) such that j > k. Furthermore,

∑
j>k

2
(

2s√
n

)j (β s2)j

j!
≤ 2

(
2s√
n

)k+1

(β s2)k+1 e(2s/
√

n)β s2
.

Since the last exponential above is at most e2α−1εβ s2
,

I7(n) ≤ 2
(

2β√
n

)k+1 ∫ +∞

0

s3k+d+1 e−γ′ s2
ds

where γ′ := 1
2γα

2 − 2α−1εβ. If ε is small enough, γ′ is positive and the last integral above is finite. Hence,
I7(n) ≤ C7 n

−(k+1)/2.
Finally, I4(n), hence I1(n), hence the left hand side of the inequality in Theorem 2.1, are bounded by multiples

of n−(k+d+1)/2. This concludes the proof of Theorem 2.1. �

6. Proof of Lemma 5.2

From part (ii) of Lemma 5.1, there exists positive constants α and β such that, for every integer k,

|G(k)
a (z)| ≤ β yk, |Λ(k)(z)| ≤ β yk, where y := α−1‖z‖.

In equation (2.3), one can expand the exponential as

eL(uz)/u2
=

∑
j≥0

(
L(uz)
u3

)j
uj

j!
·



454 P. PUDLO

Furthermore, L(uz) =
∑

k≥3 Λ(k)(uz), and Λ(k) is a homogeneous polynomial of degree k, thus,

(
L(uz)
u3

)j

=
∑

i1,...,ij≥0

ui1+···+ij λ(i1, . . . , ij)(z),

where
λ(i1, . . . , ij)(z) := Λ(i1+3)(z) · · ·Λ(ij+3)(z).

Evaluating the u� term in the expansion of equation (2.4), one gets

P (�)
a (z) =

∑
∗
G(i)

a (z)λ(i1, . . . , ij)(z)
1
j!
,

where the summation * runs over every non-negative integers i, j, i1, . . . , ij , such that

i+ j + i1 + · · · + ij = �.

Since |Λ(k)(z)| ≤ β yk for every positive integer k, one gets

|λ(i1, . . . , ij)(z)| ≤ βj yi1+···+ij+3j = βj y�−i+2j .

Thus,

|P (�)
a (z)| ≤

∑
j≤�

βj+1 y�+2j n�(j)
j!

,

where n�(j) denotes the number of juples (i1, . . . , ij) such that there exists a positive integer i such that
i+ j + i1 + · · · + ij = �, that is, such that

j + i1 + · · · + ij ≤ �.

Lemma 6.1 below shows that n�(j) ≤ 2�. This concludes the proof of Lemma 5.2.

Lemma 6.1. For every nonnegative integers j ≤ �, n�(j) =
(
�

j

)
.

Proof of Lemma 6.1. Say that n�(j) enumerates a set N�(j) of juples. Assume that j is positive. Consider the
map which associates to any juple (i1, . . . , ij) such that i1 = 0 the (j − 1)uple (i2, . . . , ij), and to any juple
such that i1 ≥ 1 the juple (i1 − 1, . . . , ij). The images of the juples in N�(j) of the first kind span N�−1(j − 1),
while the images of the juples of the second kind span N�−1(j). Since the map is injective, this shows that
n�(j) = n�−1(j − 1) + n�−1(j). Since n0(j) = 1 for every nonnegative integer j, the proof of Lemma 6.1 is
complete. �
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