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ESTIMATING A DISCRETE DISTRIBUTION VIA HISTOGRAM SELECTION

Nathalie Akakpo
1

Abstract. Our aim is to estimate the joint distribution of a finite sequence of independent categorical
variables. We consider the collection of partitions into dyadic intervals and the associated histograms,
and we select from the data the best histogram by minimizing a penalized least-squares criterion. The
choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our
estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax
sense. Moreover, its computational complexity is only linear in the length of the sequence. We also use
that estimator during the preliminary stage of a hybrid procedure for detecting multiple change-points
in the joint distribution of the sequence. That second procedure still satisfies adaptivity properties and
can be implemented efficiently. We provide a simulation study and apply the hybrid procedure to the
segmentation of a DNA sequence.
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1. Introduction

Let Y1, Y2, . . . , Yn be independent random variables taking values in the finite set {1, . . . , r}, where r is an
integer and r ≥ 2. Let s be the joint distribution of (Y1, Y2, . . . , Yn), that we consider as the R

r-valued function
defined on {1, . . . , n} with lth coordinate function

i ∈ {1, . . . , n} �→ P(Yi = l),

for l = 1, . . . , r. The aim of this paper is to study a nonparametric estimator of the distribution s. References
treating about this problem are so scarce that we can only cite three of them. Aerts and Veraverbeke [1]
propose a kernel estimator, whose convergence rate is given under a Lipschitz regularity condition. More
recently, Lebarbier and Nédélec [20] and then Durot et al. [15] have studied procedures based on the model
selection principle introduced by Barron et al. [3]. Thus, all their results are nonasymptotic. In both cases,
a family of linear spaces of real-valued functions defined on {1, . . . , n} is given, and the procedures allow to
select from the data, by minimizing some penalized criterion, one space among that family in which all the
coordinate functions of s are estimated. The choice of the penalty is supported by an oracle-type inequality.
Lebarbier and Nédélec [20] consider two different penalized criteria, one based on least-squares, the other one
on maximum-likelihood, and spaces of piecewise constant functions. Durot et al. [15] consider only a penalized
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least-squares criterion, but provide an oracle-type inequality that is valid for almost all finite families of linear
spaces. Moreover, they are particularly interested in three families of spaces. The so-called exhaustive indicator
strategy corresponds with the family made up of all spaces of functions piecewise constant on some partition
of {1, . . . , n}, a family already encountered in [20]; the exhaustive Haar and non-exhaustive Haar (or neH)
strategies are based on families made up of spaces generated by some Haar wavelets. In these three cases,
the resulting estimator is proved to have adaptivity properties. Due to the richness of the underlying families
of spaces, both exhaustive strategies yield estimators that only satisfy an oracle-type inequality up to a ln(n)
factor, but the non-exhaustive one does not have the same drawback. Besides, implementing the first strategy
requires O(n3) computations, against only O(n ln(n)) for the other two.

In this paper, we study the penalized least-squares estimator defined as in [15] but based on a fourth family
of linear spaces: in our case, each space is composed of functions piecewise constant on a partition of {1, . . . , n}
into dyadic intervals. Thus, we will refer to our estimator as the d-estimator. The collection of linear spaces we
consider has been chosen for its potential qualities of approximation, as suggested by approximation results for
real-valued functions due to DeVore and Yu [14] and DeVore (cf. [6]). Adapting the proofs to our framework, we
prove that our collection of spaces has indeed good approximation qualities with respect to R

r-valued functions
defined on {1, . . . , n} that either belong to Besov bodies – some discrete analogues of balls in a Besov space –
or have bounded variation. On the other hand, the number of spaces per dimension is low enough to yield an
oracle-type inequality with no extra logarithmic factor. The conjunction of both properties of our collection
allows to prove adaptivity results in the minimax sense. From a theoretical point of view, the d-estimator thus
satisfies properties similar to those of the neH-estimator, and is also proved to be adaptive for functions with
bounded variation. Moreover, the d-estimator can be implemented with only O(n) computations. Notice that
a similar collection of linear spaces has lately been used by Birgé [5,6] and Baraud and Birgé [2] for estimation
by model selection in various statistical frameworks.

As an application of our estimation procedure, we address the problem of multiple change-point detection
in the distribution s. Our aim is then to estimate s by a function that is piecewise constant on some partition
of {1, . . . , n} with a number of intervals much smaller than n. That issue has attracted much attention due
to its application to the segmentation of DNA sequences into regions of homogeneous composition (cf. the
review [8] by Braun and Müller). Owing to the length of sequences such as DNA ones, a special attention
must be paid to the computational complexity of the statistical procedures. Braun et al. [9] prove consistency
results for the estimation of the change-points and the number of change-points when using a penalized quasi-
deviance criterion, but their estimator suffers from a heavy computational complexity, of order O(n3). The
two-stage procedure proposed by Gey and Lebarbier [17] in a Gaussian regression framework can be adapted
to the framework considered here (cf. [19], Chap. 7). The preliminary stage uses CART algorithm to select a
partition. In order to reduce the size of the partition, the second stage consists in selecting a partition among
the rougher partitions built on the previous one, by minimizing a penalized least-squares criterion. In the best
case, the number of computations falls down to only O(n ln(n)) for the first stage of the procedure. Last, a few
linear time procedures exist, such as the one proposed by Fu and Curnow [16] (cf. [11] for the implementation)
and the one studied by Szpankowski et al. [23]. We propose in this paper a hybrid procedure similar to that
of [17], where the first stage consists this time in selecting a partition into dyadic intervals. In practice, our
hybrid procedure can be implemented quite efficiently. Moreover, unlike the CART-based hybrid estimator, our
hybrid estimator is proved to enjoy some adaptivity properties, which are similar to those of the d-estimator,
up to a multiplicative constant. Notice that, contrary to [9], our aim is not to detect all the change-points, but
only the most relevant ones.

The paper is organized as follows. In Section 2, we describe the statistical framework and introduce notation
used throughout the paper. The next section is devoted to the theoretical study of the d-estimator . Then,
we present the subsequent hybrid procedure. The performance of these procedures are illustrated in Section 5
through a simulation study. In particular, we discuss there the practical choice of the penalties constants.
Besides, we compare the d-estimator with the neH-estimator introduced in [15], and apply the hybrid procedure
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to a DNA sequence. The paper ends with the proof of the approximation result needed to derive one of the
adaptivity properties.

2. Framework and notation

2.1. Framework

We observe n independent random variables Y1, . . . , Yn defined on the same probability space (Ω,A, P) and
with values in {1, . . . , r}, where r is an integer and r ≥ 2. We assume that n is a power of 2, n ≥ 2, and write
n = 2N . The distribution of the n-uple (Y1, . . . , Yn) is represented by the r × n matrix s whose ith column is

si =
(
P(Yi = 1) . . . P(Yi = r)

)T
, for i = 1, . . . , n.

Observing (Y1, . . . , Yn) is equivalent to observing the random r × n matrix X whose ith column is

Xi =
(
1IYi=1 . . . 1IYi=r

)T
, for i = 1, . . . , n.

It should be noted that the distribution s to estimate is in fact the expectation of X .

2.2. Notation

All along the paper, we identify real-valued functions defined on {1, . . . , n} with R
n-vectors, so that u =

(u1 . . . un) ∈ R
n represents the function u : i ∈ {1, . . . , n} �→ ui. In particular, for any subset I of {1, . . . , n}, we

call indicator function of I, and denote by 1II , the R
n-vector whose ith coordinate is equal to 1 if i ∈ I, and null

otherwise. In the same way, we identify R
r-valued functions defined on {1, . . . , n} with elements of M (r, n),

the set of real matrices with r rows and n columns. Given an element t ∈M (r, n), we denote by t(l) its lth row
and by ti its ith column. Thus t ∈ M (r, n) represents the function, also denoted by t, defined on {1, . . . , n},
whose value in i is the R

r-vector ti, while t(1), . . . , t(r) are the coordinate functions of t.
The space M (r, n) is endowed with the inner product defined by

〈t, u〉 =
n∑

i=1

r∑
l=1

t
(l)
i u

(l)
i .

That product is linked with the standard inner products on R
r and R

n, denoted respectively by 〈., .〉r and 〈., .〉n,
by the relations

〈t, u〉 =
n∑

i=1

〈ti, ui〉r =
r∑

l=1

〈t(l), u(l)〉n.

The norms induced by these products on M (r, n), R
r and R

n are respectively denoted by ‖.‖, ‖.‖r and ‖.‖n.
Another norm on M (r, n) appearing in this paper is

‖t‖∞ := max
{
|t(l)i |; 1 ≤ i ≤ n, 1 ≤ l ≤ r

}
.

Let us now define some subsets of M (r, n) of special interest. The set composed of the r × n matrices whose
columns are probability distributions on {1, . . . , r} is denoted by P. Given a linear subspace S of R

n, the
notation R

r⊗S stands for the linear subspace of M (r, n) composed of the matrices whose rows all belong to S.
When the distribution of (Y1, . . . , Yn) is given by s, we denote respectively by Ps and Es the underlying

probability distribution on (Ω⊗n,A⊗n) and the associated expectation.
Last, in the many inequalities we shall encounter, the letters C, C1, c1, . . . stand for positive constants.

Sometimes, their dependence on one or several parameters will be indicated. For instance, the notation C(α, p)
means that C only depends on α and p. The only constant whose value is allowed to change from one line to
another is denoted by C, with no index.
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3. The d-estimator

We study in this section the d-estimator of the distribution s, thus called because it takes values in the set of
piecewise constant functions on some partition of {1, . . . , n} into dyadic intervals. We begin with the definition
of the estimator, explain the underlying model selection principle and justify the form of the involved penalty
thanks to [15]. Then, we present the main result of this paper, about the adaptivity of the d-estimator. They
greatly rely on an approximation result that will be proved later in the article. Last, we describe the algorithm
used to implement that procedure and give its computational complexity.

3.1. Definition of the d-estimator

A partition of {1, . . . , n} into dyadic intervals is a partition of {1, . . . , n} into sets of the form
{
kn2−j +

1, . . . , (k + 1)n2−j
}
, where j ∈ {0, . . . , N} is allowed to change from one interval of the partition to another,

and k ∈ {0, . . . , 2j − 1}. We denote by M the family of all such partitions of {1, . . . , n}. We consider the
collection of linear spaces of the form R

r ⊗ Sm, where m ∈ M and Sm is the linear subspace of R
n generated

by the indicator functions {1II , I ∈ m}. In the sequel, the term ‘model’ refers indifferently to such a subspace
of M (r, n) or to the associated partition in M. For all m ∈ M, the least-squares estimator of s in R

r ⊗ Sm is
defined by

ŝm = argmin
t∈Rr⊗Sm

‖X− t‖2.

Over each interval I ∈ m, ŝm is constant and equal to the mean of the R
r-vectors (Xi)i∈I .

Ideally, we would like to choose a model among the collectionM such that the risk of the associated estimator
is minimal. However, determining such a model requires the knowledge of s. Therefore the challenge is to define
a procedure m̂, based solely on the data, that selects a model for which the risk of ŝm̂ almost reaches the
minimal one. In other words, the estimator ŝm̂ should satisfy a so-called oracle inequality

Es

[
‖s− ŝm̂‖2

]
≤ C inf

m∈M
Es

[
‖s− ŝm‖2

]
.

Besides, as often, the risk of each estimator ŝm breaks down into an approximation error and an estimation
error roughly proportional to the dimension of the model. Indeed, for all m ∈M, the estimator ŝm satisfies

‖s− sm‖2 +
(
1− ‖s‖∞

)
Dm ≤ Es

[
‖s− ŝm‖2

]
≤ ‖s− sm‖2 +

(
1− 1

r

)
Dm, (3.1)

where sm is the orthogonal projection of s on R
r⊗Sm and Dm is the dimension of Sm (cf. [15], proof of Cor. 1).

Reaching the minimal risk among the estimators of the collection thus amounts to realizing the best trade-off
between the approximation error and the dimension of the model, which vary in opposite ways. Therefore, we
consider the procedure

m̂ = argmin
m∈M

{
‖X− ŝm‖2 + pen(m)

}
,

where pen :M→ R
+ is called penalty function. The d-estimator s̃ of s is then defined as

s̃ = ŝm̂.

Our choice of penalty, that relies on results proved in [15], is justified by an oracle inequality, up to a quantity
that depends on ‖s‖∞ (cf. inequality (3.4) below).

Proposition 3.1. Let pen :M→ R
+ be a penalty of the form

pen(m) = c0Dm, (3.2)
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where, for m ∈ M, Dm is the dimension of Sm. If c0 is positive and large enough, then

Es

[
‖s− s̃‖2

]
≤ C(c0) inf

m∈M
{
‖s− sm‖2 + Dm

}
. (3.3)

Moreover, if ‖s‖∞ < 1, then

Es

[
‖s− s̃‖2

]
≤ C(c0)(1 − ‖s‖∞)−1 inf

m∈M
Es

[
‖s− ŝm‖2

]
. (3.4)

Proof. For all 1 ≤ D ≤ n, we introduce the subcollection of models of dimension D:

MD = {m ∈M s.t. Dm = D}.

In order to evaluate the cardinal ofMD, let us describeM in a more constructive way. Let T be the complete
binary tree with root (0, 0) such that:

• for all j ∈ {1, . . . , N}, the nodes at level j are indexed by the elements of the set
Λ(j) = {(j, k), k = 0, . . . , 2j − 1};

• for all j ∈ {0, . . . , N − 1} and all k ∈ {0, . . . , 2j − 1}, the left branch that stems from node (j, k) leads
to node (j + 1, 2k), and the right one, to node (j + 1, 2k + 1).

The node set of T is N = ∪N
j=0Λ(j), where Λ(0) = {(0, 0)}. The dyadic intervals of {1, . . . , n} are the sets

I(j,k) =
{
k2N−j + 1, . . . , (k + 1)2N−j

}
indexed by the elements ofN . Hence we deduce a one-to-one correspondence between the partitions of {1, . . . , n}
that belong to M and the subsets of N composed of the leaves of any complete binary tree resulting from an
elagation of T . The cardinal of MD is thus equal to the number of complete binary trees with D leaves
resulting from an elagation of T . So it is given by the Catalan number D−1

(
2(D−1)

D−1

)
and upper-bounded by 4D.

Therefore, choosing for instance L = ln(8), we get

∑
m∈M

exp(−LDm) =
n∑

D=1

|MD| exp(−LD) ≤ 1.

Inequality (3.3) thus follows from Theorem 1 in [15]. Inequality (3.4) results from the upper-bound (3.3) and
the lower-bound given in (3.1). �

From now on, we will always assume that the d-estimator derives from a penalty of the form pen(m) = c0Dm,
where the constant c0 is positive and large enough to yield an oracle-type inequality. Choosing in practice an
adequate value of c0 is an issue that will be treated in Section 5. By way of comparison, let us mention that the
neH-procedure studied in [15] satisfies the same kind of oracle-type inequality (cf. [15], Prop. 3). But the similar
procedure based on the exhaustive collection of partitions of {1, . . . , n} only satisfies an oracle-type inequality
such as (3.4) within a ln(n) factor, owing to the greater number of models per dimension (cf. [15], Prop. 1).

Last, notice that s̃ does not necessarily belong to P. Nevertheless, since the vector (1 . . . 1) belongs to any
Sm, for m ∈ M, the elements in a same row of s̃ sum up to 1. In order to get an estimator of s with values
in P, we may consider the orthogonal projection of s̃ on the closed convex P, whose risk is even smaller than
that of s̃.

3.2. Adaptivity of the d-estimator

Though the oracle-type inequality (3.4) ensures that, under a minor constraint on s, the estimator s̃ is almost
as good as the best estimator in the collection {ŝm}m∈M, it does not allow to compare s̃ with other estimators
of s. Therefore, we now pursue the study of s̃ adopting a minimax point of view. We consider a large family
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of subsets of P, to be defined in the next paragraph. Let us denote by S some subset in that family. Our
aim is to compare the maximal risk of s̃ when s belongs to S to the minimax risk over S. We may rewrite the
upper-bound (3.3) for the risk of s̃ as

Es

[
‖s− s̃‖2

]
≤ C(c0) inf

1≤D≤n

{
inf

m∈MD

‖s− sm‖2 + D
}
, (3.5)

where we recall thatMD = {m ∈M s.t. Dm = D} and sm is the orthogonal projection of s on R
r⊗Sm. Thus,

the approximation qualities of our family of models with respect to each subset S remain to be evaluated. More
precisely, for each subset S, and each dimension D, we shall provide upper-bounds for the approximation error
infm∈MD ‖s− sm‖2 when s ∈ S.

On the one hand, we consider subsets of P introduced in [15], whose definition is inspired from the charac-
terization in terms of wavelet coefficients of balls in Besov spaces. In order to define them, we equip R

n with
an orthonormal wavelet basis, the Haar basis.

Definition 3.2. Let ϕ : R→ {−1, 1} be the function with support (0, 1] that takes value 1 on (0, 1/2] and −1
on (1/2, 1]. Let Λ = ∪N−1

j=−1Λ(j), where Λ(−1) = {(−1, 0)} and

Λ(j) = {(j, k), k = 0, . . . , 2j − 1}, for j = 0, . . . , N − 1.

If λ = (−1, 0), φλ is the R
n-vector whose coordinates are all equal to 1/

√
n.

If λ = (j, k), where j 
= −1 and k ∈ Λ(j), φλ is the R
n-vector whose ith coordinate is

φλ i =
2j/2

√
n

ϕ

(
2j i

n
− k

)
, for i = 1, . . . , n.

The functions {φλ}λ∈Λ are called the Haar functions. They form an orthonormal basis of R
n called the Haar

basis.

Any element t ∈M (r, n) can be decomposed into

t =
N−1∑
j=−1

∑
λ∈Λ(j)

βλφλ

where, for all λ ∈ Λ, βλ is the column-vector in R
r whose lth coefficient is β

(l)
λ = 〈t(l), φλ〉n, for l = 1, . . . , r. So,

we improperly refer to the βλ’s as the wavelet coefficients of t. Besov bodies are then defined as follows.

Definition 3.3. Let α > 0, p > 0 and R ≥ 0. The set composed of all the elements t ∈M (r, n) such that

1√
n

(
N−1∑
j=0

2jp(α+1/2−1/p)
∑

λ∈Λ(j)

‖βλ‖pr

)1/p

≤ R,

where, for l = 1, . . . , r, β
(l)
λ = 〈t(l), φλ〉n, is denoted by B(α, p, R) and called a Besov body. The set of all the

elements of P that belong to B(α, p, R) is denoted by BP(α, p, R).

We also consider subsets of P whose definition is inspired from functions of bounded α-variation.

Definition 3.4. Let α > 0 and R ≥ 0. For t ∈M (r, n), let

Vα(t) = sup
1≤i≤n−1

sup
x0<...<xi

s.t. 1≤x0<xi≤n

{
i∑

j=1

‖txj − txj−1‖1/α
r

}α

.
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The set composed of all the elements t ∈ M (r, n) such that Vα(t) ≤ R is denoted by V (α, R). The set of all
the elements of P that belong to V (α, R) is denoted by V P(α, R).

Notice that, for all t ∈M (r, n), when α ≥ 1,

Vα(t) =

{
n∑

i=2

‖ti − ti−1‖1/α
r

}α

so that Vα(t) may be interpreted as the �1/α-norm of the “jumps” of t.
For a wide range of values of the parameters (α, p, R) or (α, R), we are able to bound the approximation

errors appearing in (3.5) uniformly over BP(α, p, R) and V P(α, R).

Theorem 3.5. Let p ∈ (0, 2], α > 1/p− 1/2 and R ≥ 0. For all s ∈ BP(α, p, R) and all D ∈ {1, . . . , n}, there
exists a partition m ∈M such that Dm = D and

‖s− sm‖2 ≤ C(α, p)nR2D−2α.

That result will be proved in Section 6.

Theorem 3.6. Let α > 0 and R ≥ 0. Let k1(α) =
(
1 − 2−(1+2α)/(2α)

)
/
(
1− 2−1/(2α)

)
. For all s ∈ V P(α, R)

and all j ∈ {0, . . . , N}, there exists a partition m ∈ M such that 1 ≤ Dm ≤ k1(α)2j and

‖s− sm‖2 ≤ C(α)nR22−2αj.

Proof. The proof of Proposition 3 in [6] can be readily adapted to our framework, whatever α > 0. In the proof
of that proposition, the assumption α ∈ (0, 1] is only used to bound k1(α) and C(α). �

Let us now come back to our initial problem, that is comparing the performance of s̃ with that of any other
estimator of s. For α > 0, p > 0 and R ≥ 0, the minimax risk over BP(α, p, R) is given by

RB(α, p, R) = inf
ŝ

sup
s∈BP(α,p,R)

Es

[
‖s− ŝ‖2

]
where the infimum is taken over all the estimators ŝ of s. We denote by RV (α, R) the minimax risk over
V P(α, R). Thanks to the above approximation results, we obtain, as stated below, that, for a whole range of
values of (α, p, R) or (α, R), the estimator s̃ reaches the minimax risk over BP(α, p, R) and V P(α, R) within
a multiplicative constant. Therefore, s̃ is adaptive in the minimax sense not only over the same range of Besov
bodies as the neH-estimator (cf. [15], Cor. 4) but also on a wide range of sets in the scale {V P(α, R)}α>0,R≥0.

Theorem 3.7. For all p ∈ (0, 2] and α > 1/p− 1/2, if n−1/2 ≤ R < nα, then

sup
s∈BP(α,p,R)

Es

[
‖s− s̃‖2

]
≤ C(c0, α, p)RB(α, p, R).

For all α > 0, there exists a real k2(α) ∈ (0, 1) such that, if R ≥ n−1/2 and R ≤ k2(α)nα, then

sup
s∈V P(α,R)

Es

[
‖s− s̃‖2

]
≤ C(c0, α)RV (α, R).

Proof. Let us fix p ∈ (0, 2], α > 1/p− 1/2 and n−1/2 ≤ R < nα. Combining inequality (3.5) and Theorem 3.5
leads to

sup
s∈BP(α,p,R)

Es

[
‖s− s̃‖2

]
≤ C(c0, α, p) inf

1≤D≤n

{
nR2D−2α + D

}
. (3.6)
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In order to realize approximately the best trade-off between the terms nR2D−2α and D, which vary in opposite
ways when D increases, we choose D as large as possible under the constraint D ≤ nR2D−2α. Let us denote
by D� the largest integer D such that D ≤ (nR2)1/(1+2α). One can easily check that, given the hypotheses
linking n and R, D� does belong to {1, . . . , n}. Since 2D� > (nR2)1/(1+2α), we deduce from inequality (3.6) the
upper-bound

sup
s∈BP(α,p,R)

Es

[
‖s− s̃‖2

]
≤ C(c0, α, p)(nR2)1/(2α+1).

The matching lower-bound for the minimax risk over BP(α, p, R) is proved in [15] (Thm. 3).
In the same way, for α > 0 and n−1/2 ≤ R ≤ nα, we get

sup
s∈V P(α,R)

Es

[
‖s− s̃‖2

]
≤ C(c0, α)(nR2)1/(2α+1).

The definition of k2(α) and the matching lower-bound for the minimax risk over V P(α, R), for n−1/2 ≤ R ≤
k2(α)nα, are given in Proposition 7.1. �

3.3. Computing the d-estimator

Since the penalty only depends on the dimension of the models, we denote by pen(D) the penalty assigned
to all models in MD, for 1 ≤ D ≤ n. A way to compute s̃ could rely on the equality

min
m∈M

{
‖X − ŝm‖2 + pen(m)

}
= min

1≤D≤n

{
min

m∈MD

‖X − ŝm‖2 + pen(D)
}

.

We should thus compute the best estimator for each dimension D ∈ {1, . . . , n}, and choose one among them
by taking into account the penalty term, as in [19] (Chap. 3) or [9]. But, even with Bellman’s algorithm, that
requires polynomial time. Here, we shall see that we can avoid such a computationaly intensive way by taking
advantage of the form of the penalty.

Let us express more explicitly the criterion to minimize. The dyadic intervals of a given partition m ∈M are
denoted by {ik, . . . , ik+1 − 1}, k = 1, . . . , Dm, with 1 = i1 < i2 . . . < iDm+1 = n + 1. For all 1 ≤ k ≤ Dm, any
column of ŝm whose index belongs to {ik, . . . , ik+1 − 1} is equal to the mean X̄(ik : ik+1) of the columns of X
whose indices belong to the interval {ik, . . . , ik+1 − 1}. Owing to the form of the penalty, and to the additivity
of the least-squares criterion, the whole criterion to minimize breaks down into a sum:

‖X − ŝm‖2 + pen(m) =
Dm∑
k=1

L(ik, ik+1), (3.7)

where, for all 1 ≤ k ≤ Dm,

L(ik, ik+1) = c0 +
ik+1−1∑

i=ik

‖Xi − X̄(ik : ik+1)‖2r.

By comparison with the method suggested in the previous paragraph, we are left with only one minimization
problem, with no dimension constraint, instead of n. We now turn to graph theory where our minimization
problem finds a natural interpretation. We consider the weighted directed graph G having {1, . . . , n + 1} as
vertex set and whose edges are the pairs (i, j) such that {i, . . . , j− 1} is a dyadic interval of {1, . . . , n} assigned
with the weight L(i, j). We say that a vertex j is a successor to a vertex i if (i, j) is an edge of the graph G and
we associate to each vertex i its successor list Γi. For all 1 ≤ D ≤ n, a D + 1-uple (i1, i2, . . . , iD+1) of vertices
of G such that i1 = 1, iD+1 = n + 1 and each vertex is a successor to the previous one, will be called a path
leading from 1 to n + 1 in D steps. The length of such a path is defined as

∑D
k=1 L(ik, ik+1). Determining m̂

thus amounts to finding a shortest path leading from 1 to n + 1 in the graph G. That problem can be solved
by using a simple shortest-path algorithm dedicated to acyclic directed graphs, presented for instance in [10]
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Table 1. Algorithm for computing s̃.

Step 1: Initialization
Set d(1) = 0 and p(1) = +∞.
For i = 2, . . . , n + 1,

set d(i) = +∞ and p(i) = +∞.

Step 2: Determining the lengths of the shortest paths with origin 1
For i = 1, . . . , n,

for j ∈ Γi,
if d(j) > d(i) + L(i, j),

then do d(j)← d(i) + L(i, j) and p(j)← i.

Step 3: Determining a shortest path P from 1 to n + 1
Set pred = p(n + 1) and P = (n + 1).
While pred 
= +∞,

replace P with the concatenation of pred followed by P ,
do pred← p(pred).

Step 4: Computing the d-estimator
Set D̃ = length(P )− 1.
For k = 1, . . . , D̃,

for i = P (k), . . . , P (k + 1)− 1,
set s̃i = X̄(P (k) : P (k + 1)).

(Sect. 24.2). For the sake of completeness, we also describe it in Table 1. We have to underline that there are
only 2n − 1 dyadic intervals of {1, . . . , n}. Therefore, the graph G, with n + 1 vertices and 2n − 1 edges, can
be represented by only O(n) data: the weights L(i, j), for 1 ≤ i ≤ n and j ∈ Γi, and the successor lists Γi, for
1 ≤ i ≤ n. In the key step of the algorithm, i.e. step 2, each edge is considered only once. When the time comes
to consider the edges with origin i, the variables d(i) and p(i) respectively contain the length of a shortest path
from 1 to i and a predecessor of i in such a path. Just before the edge (i, j), where j ∈ Γi, be processed, the
variables d(j) and p(j) contain respectively the length of a shortest path leading from 1 to j and a predecessor
of j in such a path, based solely on the edges that have already been encountered. Then dealing with the edge
(i, j) consists in testing whether the length of the path leading from 1 to j can be shortened by going via i and
updating, if necessary, d(j) and p(j). What clearly appears from the above description of the algorithm is that
its complexity is only linear in the length n of the sequence.

4. Hybrid procedure

We shall now apply the previous procedure to the detection of multiple change-points in the distribution s.
Let us give a first glimpse of what can be expected from the d-estimator for that problem. In Figure 1, we
plot the first coordinate function of a distribution sa ∈M (2, 1024) that is piecewise constant over a partition
with only 3 segments together with the first coordinate of a realization of s̃a. The value of c0 has been chosen
so as to minimize the distance between sa and its estimator. If both change-points in sa are indeed detected,
the selected partition, due to its special nature, also points at irrelevant ones. In order to get rid of them, we
propose a two-stage procedure, that we name hybrid procedure. After describing it, we provide an adaptivity
result for that procedure and end this section with computational issues.

In the sequel, we suppose that n ≥ 4. We shall work with the set M (r, n/2) of r × (n/2) real matrices and
introduce other notation. For all t ∈M (r, n), we denote by t• (resp. t◦) the element of M (r, n/2) composed
of the columns of t whose indices are even (resp. odd). We equip M (r, n/2) with the norm analogous to the
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Figure 1. (Color online) First coordinate functions of the distribution sa (thin black line) and
of its d-estimator s̃a (thick yellow line).

norm ‖.‖ on M (r, n). For the sake of simplicity, we also denote by ‖.‖ that norm on M (r, n/2). For a partition
m of {1, . . . , n/2}, we denote by S′

m the linear subspace of R
n/2 generated by the indicator functions of the

intervals I ∈ m and by D′
m its dimension. We are now able to describe the hybrid procedure. First, the previous

procedure based on X• provide us with a random partition of {1, . . . , n/2} into dyadic intervals denoted by m̂•.
Then, we consider the random collection M̂• of all the partitions of {1, . . . , n/2} that are built on m̂•. For each
partition m of {1, . . . , n/2}, we define the least-squares estimator of s◦ in R

r ⊗ S′
m by

ŝ◦m = argmin
t∈Rr⊗S′

m

‖X◦ − t‖2.

Then we select
m̂◦ = argmin

m∈M̂•

{
‖X◦ − ŝ◦m‖2 + p̂en◦(m)

}
,

where the penalty p̂en◦ will be chosen in the next paragraph. That partition provide us with the estimated
change-points in the distribution s. As a matter of fact, we define the hybrid estimator s̃hyb of s as the random
r × n matrix whose submatrices composed respectively of columns with even indices and of columns with odd
indices are both equal to ŝ◦m̂◦ . The application of this procedure to sa is illustrated by Figure 4. Notice that
other ways of splitting the sample could be considered. This one has been chosen for ease of notation.

We obtain the following upper-bound for the risk of s̃hyb.

Theorem 4.1. Let D̂ be the cardinal of m̂• and p̂en◦ : M̂• → R
+ be a penalty of the form

p̂en◦(m) =
(
c1 + c2 ln

(
D̂/D′

m

))
D′

m, (4.8)

where c1 and c2 are positive. If c0, c1 and c2 are large enough, then

Es

[
‖s− s̃hyb‖2

]
≤ C(c0, c1, c2)

[
inf

m∈M
{
‖s− sm‖2 + Dm

}
+ ‖s◦ − s•‖2

]
.

Thus, if s also satisfies ‖s◦ − s•‖2 ≤ λ infm∈M
{
‖s− sm‖2 + Dm

}
, then

Es

[
‖s− s̃hyb‖2

]
≤ C(c0, c1, c2, λ) inf

m∈M
{
‖s− sm‖2 + Dm

}
. (4.9)

Inequality (4.9) must be compared with inequality (3.3). In particular, provided s◦ and s• are close enough, the
adaptivity properties of the hybrid estimator are similar to those of the d-estimator. The constant C(c0, c1, c2, λ)
in (4.9) is expected to be larger than the constant C(c0) in (3.3), but we will see in Section 5.3 that, in practice,
provided the penalty constants are well chosen, the risk of s̃hyb is not so far from that of s̃.



ESTIMATING A DISCRETE DISTRIBUTION VIA HISTOGRAM SELECTION 11

Proof. For all 1 ≤ D ≤ D̂, the number N̂D of partitions in M̂• with D pieces satisfies

N̂D =
(

D̂ − 1
D − 1

)
≤
(

eD̂

D

)D

·

The above inequality results from a property of binomial coefficients that may be found in [21] (Prop. 2.5) for
instance. So the weights defined by

L̂(D) = ln(2e) + ln(D̂/D), for 1 ≤ D ≤ D̂,

are such that
D̂∑

D=1

N̂D exp(−DL̂(D)) ≤ 1.

Moreover, given X•, the penalty p̂en◦ given by (4.8) fulfills the hypotheses of Theorem 1 in [15] provided c1

and c2 are large enough. With a slight abuse of notation, for any partition m of {1, . . . , n/2}, we still denote
by tm the orthogonal projection of an element t ∈ M (r, n/2) on R

r ⊗ S′
m. Working conditionally to X•, the

collection M̂• is deterministic, so we deduce from Theorem 1 of [15] applied to the estimator ŝ◦m̂◦ of s◦ that

Es◦
[
‖s◦ − ŝ◦m̂◦‖2|X•] ≤ C(c1, c2)

[
‖s◦ − s◦m̂•‖2 + p̂en◦(m̂•)

]
. (4.10)

We recall that the d-estimator of s• is s̃• = ŝ•m̂• . So, thanks to the triangle inequality, and since an orthogonal
projection is a shrinking map, we get

‖s◦ − s◦m̂•‖2 ≤ C
(
‖s◦ − s•‖2 + ‖s• − s̃•‖2

)
.

By definition, D̂ = D′
m̂• , so

p̂en◦(m̂•) = c1D̂.

Taking into account the last two inequalities and integrating with respect to X• leads from (4.10) to

Es

[
‖s◦ − ŝ◦m̂◦‖2

]
≤ C(c1, c2)

[
‖s◦ − s•‖2 + Es•

[
‖s• − s̃•‖2

]
+ Es•(D̂)

]
.

Besides, it follows from the definition of s̃hyb that

‖s− s̃hyb‖2 = ‖s• − ŝ◦m̂◦‖2 + ‖s◦ − ŝ◦m̂◦‖2.

Applying the triangle inequality, we then get

‖s− s̃hyb‖2 ≤ C
(
‖s• − s◦‖2 + ‖s◦ − ŝ◦m̂◦‖2

)
.

Consequently,

Es

[
‖s− s̃hyb‖2

]
≤ C(c1, c2)

[
‖s◦ − s•‖2 + Es•

[
‖s• − s̃•‖2

]
+ Es•(D̂)

]
. (4.11)

Let us denote by M′ the set of all partitions of {1, . . . , n/2} into dyadic intervals. For the risk of s̃•, inequal-
ity (3.3) provides

Es•
[
‖s• − s̃•‖2

]
≤ C(c0) inf

m∈M′

{
‖s• − s•m‖2 + D′

m

}
. (4.12)

In order to bound the term Es•(D̂), we need to go back to the proof of Theorem 1 in [15] (Sect. 8.1). As already
seen during the proof of Proposition 3.1, we can choose a positive constant L such that

∑
m∈M′ exp(−LD′

m) ≤ 1.
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Let us fix a partition m ∈ M′ and ξ > 0. Using the same notation as in [15], we deduce from the proof of
Theorem 1 in [15] that there exists an event Ωξ(m) such that Ps•(Ωξ(m)) ≥ 1− exp(−ξ) and on which

c0D̂ ≤ C1‖s• − s•m‖2 + C2(c0)D′
m + C3D̂ + C4ξ.

Therefore, if c0 > C3, then
D̂ ≤ C(c0)

(
‖s• − s•m‖2 + D′

m + ξ
)
.

Integrating this inequality and taking the infimum over m ∈ M′ then yields

Es•(D̂) ≤ C(c0) inf
m∈M′

{
‖s• − s•m‖2 + D′

m

}
. (4.13)

Moreover, one can check that

inf
m∈M′

{
‖s• − s•m‖2 + D′

m

}
≤ inf

m∈M
{
‖s− sm‖2 + Dm

}
. (4.14)

Combining Inequalities (4.11) to (4.14), we finally get

Es

[
‖s− s̃hyb‖2

]
≤ C(c0, c1, c2)

[
‖s◦ − s•‖2 + inf

m∈M
{
‖s− sm‖2 + Dm

}]
. �

Regarding the computation of s̃hyb, we know from Section 3.3 that determining s̃• only requires O(n) compu-
tations. On the other hand, since p̂en◦ is not linear in the dimension of the models, m̂◦ has to be determined
following the method suggested at the beginning of Section 3.3 and using Bellman’s algorithm. Thus, the sec-
ond stage requires O(D̂3) computations. However, if s belongs to BP(α, p, R) or V P(α, p, R), it follows from
Inequalities (4.13) and (4.14) and the proof of Theorem 3.7 that the expectation of D̂ is of order n1/(1+2α).
In such a case, the second stage of the hybrid procedure is thus expected to require much less than O(n3)
computations.

5. Simulation study

In the previous sections, our main concern has been to propose a form of penalty yielding, in theory, a
performant estimator. In this section, we study some practical choice of the penalty for each procedure. Besides,
we compare the d-estimator with the neH-estimator proposed in [15] on several simulated examples. We also
compare on a DNA sequence our hybrid procedure with that based on CART (cf. [19]) and that based on the
neH-procedure (cf. [15], Sect. 7).

5.1. Choosing the penalty constant for the d-estimator

We have examined some examples for r = 2 and r = 4, with different values of n = 2N . For r = 2, the
distribution s is entirely determined by its first coordinate function, that is the only one to be plotted (cf.
Fig. 2). For r = 4, examples sd to sf are plotted in Figure 3 (left column).

As already said in Section 3.1, the d-estimator has been designed for satisfying an oracle inequality, what it
almost does according to Proposition 3.1. Therefore, the risk of the oracle, i.e. infm∈M Es

[
‖s− ŝm‖2

]
, serves

as a benchmark in order to judge of the quality of s̃, and also of the quality of a method for choosing a penalty
constant. The different quantities introduced in the sequel have been estimated over 500 simulations. Denoting
by s̃(c) the d-estimator when c0 takes the value c, we have first estimated

c�(s) := argmin
c

Es

[
‖s− s̃(c)‖2

]
,

where, in practice, we have varied c from 0 to 4, by step 0.1, and from 4 to 6 by step 0.5. We plot in Table 2
an estimation of c� and the ratio Q� between an estimation of Es

[
‖s − s̃(c�)‖2

]
and the estimated risk of the
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Figure 2. (Color online) Left column: first coordinate functions of s (thin black line) and s̃
(thick orange line) for s ∈ {sa, sb, sc}; Right column: first coordinate functions of s (thin black
line) and s̃neH (thick green line) for s ∈ {sa, sb, sc}.

Table 2. Performance of the d-estimator for different choices of the penalty constant.

s r N c� Q� c̄j σj Qj

sa 2 10 1.7 2.4 1.9 0.2 2.7
sb 2 10 1.7 1.9 2.0 0.2 2.1
sc 2 13 2.2 1.7 2.0 0.1 1.8
sd 4 10 2.1 1.4 2.4 0.2 1.4
se 4 12 2.5 1.3 2.3 0.1 1.3
sf 4 13 2.7 1.3 2.5 0.1 1.3

oracle. In view of the results obtained here, it seems difficult to propose a value of c0 that would be convenient
for any s. Therefore, as in [15], Section 8, we have tried a data-driven method, inspired from results proved by
Birgé and Massart in a Gaussian framework (cf. [7]). Given a simulation of (Y1, . . . , Yn), the procedure we have
followed can be decomposed into three steps:

• determine the dimension D̂(c) of the selected partition for each value c of the penalty constant c0, where
c increases from 0, by step 0.1, until D̂(c) = 1;
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Figure 3. (Color online) For s ∈ {sd, se, sf}. Left column: four coordinate functions of s;
center column: four coordinate functions of s (thin black line) and s̃ (thick orange line); right
column: four coordinate functions of s (thin black line) and s̃neH (thick green line).
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Table 3. Comparison between the d-estimator and the neH-estimator.

s r N riskd riskneH riskd/riskneH timed/timeneH

sa 2 10 11.5 16.4 0.7 8.6
sb 2 10 22.1 26.5 0.8 1.1
sc 2 13 40.2 36.2 1.1 0.5
sd 4 10 14.0 19.4 0.7 1.2
se 4 12 18.3 23.8 0.8 0.6
sf 4 13 33.0 37.7 0.9 0.3

• compute the difference between the dimensions of the selected partitions for two consecutive values
of c0 and retain the value ĉ corresponding to the biggest jump in dimension under the constraint
D̂(ĉ) ≤ Dmax, where Dmax is a prescribed maximal dimension;
• set ĉj = 2ĉ and compute the d-estimator with pen(D) = ĉjD.

Here we have taken Dmax = 60 when N = 10, Dmax = 200 when N = 12 and Dmax = 300 when N = 13. We
give in Table 2 the ratio Qj between the estimated risk of s̃ for that procedure and the estimated risk of the
oracle. We also give estimations of the mean value and standard-error of ĉj , denoted respectively by c̄j and σj .
One realization of each d-estimator computed with that method is plotted in Figures 2 (left column) and 3
(center column).

Let us analyze the results of the simulations. The data-driven method really seems to adapt to the unknown
distribution s: in terms of risk, it is almost as good as if we knew the constant that minimizes the risk of s̃.
Let us now compare the different values of Q� (or Qj). As foreseen by the oracle-type inequality (3.4), the
ratio between the risk of the d-estimator and that of the oracle depends on s. In particular, the ratios Q� or
Qj reach their highest value for sa. It should be noted that the first coordinate function of this example takes
values very close to 1 on a large segment (cf. Fig. 2), a critical case according to the oracle-type inequality.
However, for all examples studied here, the values of those ratios remain quite low, inferior or close to 2, except
for sa.

5.2. Comparing the d-estimator with the neH-estimator

For examples sa to sf , we have realized 500 simulations of the d-estimator and the neH-estimator, using
a data-driven penalty (cf. [15], Sect. 8, and the previous paragraph). We provide in Table 3 the estimated
risks of each procedure, denoted by riskd and riskneH . Thanks to MATLAB “tic” and “toc” functions, we have
measured the computational time of those 500 simulations for each estimator, denoted by timed and timeneH .
The ratio of those computational times is given in Table 3. The neH-estimators of examples sa to sf are plotted
in Figures 2 and 3 (right columns).

Those results confirm that both procedures have about the same quality of estimation, with a slight advantage
though for the d-procedure for almost all the examples. As to their computational time, let us recall that the
neH-procedure requiresO(n ln(n)) computations, against only O(n) for the d-procedure. That difference clearly
appears through our simulations. The d-estimator seems faster to compute if n is large enough, and else requires
roughly the same computational time as the neH-estimator. The only exception here occurs with sa, but 500
simulations of s̃a can be computed within a few minutes only.

5.3. Choosing the penalty for the hybrid procedure

For the first stage of the hybrid procedure, the d-estimator has been computed using the data-driven penalty.
For the second stage, the practical choice of an adequate penalty is more delicate, since the theoretical penalty
depends in this case on two constants and on the dimension D̂ of the partition selected during the first stage.
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Table 4. Comparison between the hybrid estimator and the d-estimator.

s D D̂d D̂hyb Qhyb:d

sa 3 9.5 (3.3) 2.9 (0.4) 1.6
sb 8 16.1 (3.1) 4.5 (1.0) 1.6
sd 5 8.9 (2.0) 3.0 (0.8) 1.7
se 5 12.3 (2.1) 4.9 (1.1) 1.7

Figure 4. (Color online) First coordinate functions of s (thin black line) and s̃hyb (thick yellow
line) for (a) s = sa and (b) s = sb.

Since those two constants seem difficult to determine, we have assigned to all partitions of {1, . . . , n/2} into D
intervals the penalty

p̂en◦(D) = β̂D.

The value of β̂ is determined once again according to the same process as ĉj (cf. Sect. 5.1), varying the value of
the constant by step 1, and taking Dmax = D̂. Since that penalty is a linear funtion of D, the second stage of the
hybrid procedure can be implemented in that case with the same algorithm as the d-procedure (cf. Sect. 3.3).
As the graph associated with all the partitions built on a partition with D̂ intervals has O(D̂2) vertices, the
second stage thus requires O(D̂2) computations, instead of O(D̂3) if we had used a penalty with two constants.

We have tested the hybrid procedure on examples sa, sb, sd and se. The hybrid estimators of these examples
are plotted in Figures 4 and 5. In order to draw a comparison between the hybrid procedure and the d-procedure,
we give in Table 4 the following information for distributions sa, sb, sd and se, still computed over 500 simulations.
We first recall the dimension D of the partition on which s is built. Then we indicate the estimated mean of
the dimensions D̂d and D̂hyb of the partitions selected respectively by the d-procedure and the hybrid procedure
with data-driven penalties, and give between parentheses their estimated standard errors. We also give the
ratio Qhyb:d between the estimated risk of the hybrid estimator and the estimated risk of the d-estimator. The
estimated means of D̂hyb and D̂d indicate that the dimension of the partition selected by the hybrid procedure
is much closer to the true one. Moreover, Figures 4 and 5 show that the most significant change-points are still
detected and quite close to the true ones, and that irrelevant change-points are much fewer with the hybrid
procedure. The only price to pay is an increase in risk, but only by a factor of the order of 2.

5.4. Application to the segmentation of a DNA sequence

A DNA sequence of length n can be considered as a realization of a n-uple (Y1, . . . , Yn) of independent
categorical variables with values in {1, . . . , 4}, when coding the set of bases {A,C,G,T} by {1, . . . , 4} for instance.
We have tested our hybrid procedure on a DNA sequence taken from the Bacillus subtilis genome. The whole
genome of that bacterium (available on the NCBI website, under accession number NC 000964 in the Genome
database) is composed of two complementary strands, each counting approximately 4 millions of bases. We
have applied our procedure on the DNA sequence composed of the first 221 =2 097 152 bases of the strand
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Figure 5. (Color online) Coordinate functions of s (thin black line) and s̃hyb (thick yellow
line) for (d) s = sd and (e) s = se.

usually referred to as the (+) strand. For the sake of readability, we only represent in Figure 6, realized with
MuGeN software [18], the genes corresponding to the first 178 000 base pairs (bp) of B. subtilis genome. We
shall mainly distinguish between two kinds of genes: those coding for proteins and those coding for structural
RNA. The first ones are represented by cyan or magenta arrows, depending on their orientation, an unfilled
arrow indicating that the protein function is still unknown. The other ones are represented by red arrows if they
code for ribosomal RNA (rRNA), dark blue arrows if they code for transfer RNA (tRNA), and by an empty box
if they code for a small cytoplasmic RNA (scRNA). The rest of the sequence corresponds to intergenic regions,
that do not contain any gene.

Let us first analyze our results for the subsequence represented in Figure 6. Our hybrid procedure delineates
19 segments: in Figure 6, the 18 corresponding change-points are represented by the highest vertical bars,
and numbered from 2 to 19 so that the number i indicates the beginning of the ith segment. The estimated
proportions of bases A,C,G,T in each segment are given in Table 5. Segments 2, 8, 12 and 18 clearly correspond
with the 4 regions of the sequence composed at the same time of genes coding for rRNA and of genes coding for
tRNA. Table 5 shows that these segments have almost the same composition, that differs from the composition of
any other segment. Segments 3, 5, 16 and 17 correspond with 4 regions mainly composed of protein coding genes
oriented in the negative sense. We detect all such regions except for the smallest one of about 300 bases (near
45 000 bp). All the other segments are mainly composed of protein coding genes oriented in the positive sense.
In particular, segment 15 includes all the genes known to code for ribosomal proteins. Let us also underline
that segments 9 and 13 have similar compositions and are both situated just after one of the 4 segments coding
for rRNA and tRNA. But, as the function of the protein coded by gene csfB in segment 9 is unknown, we do
not know whether such similarities are related to a biological feature.

Let us now compare our results to the aforementionned procedures. The hybrid procedures based on CART
and on the neH-procedures have been tested on the subsequences composed respectively of the first 200 000
bases of B. subtilis (+) strand in [19] (Sect. 7.2.3) and of the first 221 bases of that same strand in [15] (Sect. 7.2).
In Figure 6, the resulting change-points are represented by the smallest vertical bars, numbered from 2 to 10,
for the former procedure, and by the medium height bars, numbered from 2 to 17, for the latter procedure.
As [19] and [15], we detect all the regions composed of genes coding for rRNA and tRNA. We recover the same
changes of orientation as [15], except for the shortest region, and also detect another change (near 160 000 bp).
The 15th segment obtained with our dyadic based hybrid procedure can be compared with the 13th segment
obtained by [15], that contains all genes known to code for ribosomal proteins except for the one following gene
sigH. Consequently, as [15], we slightly improve on the results obtained by [19]. Besides, unlike [19] or [15], we
detect two segments that might be relevant to the biologist. Moreover, our method is expected to be the fastest
since its first stage has the lowest computational complexity.
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Figure 6. (Color online) Annotation of the first 178 000 base pairs (bp) of B. subtilis genome,
and change-points detected by the hybrid procedures based on CART (small bars), on the
neH-procedure (medium bars) and on the dyadic procedure (tall bars). Protein coding genes
are represented by cyan or magenta arrows, depending on their orientation, unfilled when the
protein function is unknown. Red and dark blue arrows represent genes coding respectively for
rRNA and tRNA. The empty box stands for a gene coding for scRNA.
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Table 5. Estimated proportions of bases A, C, G, T (in percentage) in the 18 first segments
obtained by applying our hybrid procedure to B. subtilis (+) strand.

Segment 1 2 3 4 5 6 7 8 9 10
Begin 1 9730 14850 16386 22530 26626 29698 30210 35330 35842

A 32 26 30 31 27 33 30 26 37 33
C 22 31 18 25 22 24 22 30 19 23
G 26 21 33 26 31 24 33 21 29 26
T 20 23 18 18 20 18 15 23 15 18

Segment 11 12 13 14 15 16 17 18
Begin 49154 90114 101378 102402 114690 158722 159746 160770

A 31 26 37 31 31 24 26 26
C 24 30 20 25 23 20 21 30
G 26 22 27 26 27 40 34 21
T 19 22 16 18 19 17 19 22

Let us end with a comparison of our results with those obtained in [22] by using hidden Markov chain models
on the whole (+) strand of B. subtilis genome. At the level of gene detection, our procedure, that relies on
the assumption that the bases are independent, cannot rival with that used in [22]. But we can compare the
biological features of the groups of genes that our procedure highlights with those associated with the hidden
states of the most complex model fitted by [22] (see their Fig. 3). Our method does not seem to detect neither
intergenic regions and protein coding genes having a similar composition (called atypical genes in [22]), nor genes
coding for hydrophobic proteins. But we detect the other four features, since we delineate large groups of genes
coding for structural RNA, groups of protein coding genes with negative orientation, groups of protein coding
genes with positive orientation, and among them the group of genes coding for ribosomal proteins, described
in [22] as the main region composed of highly expressed genes. Notice also that the distinction between those
four features is not made by any of the less complex models tested by [22].

6. Proof of the approximation result over Besov bodies

This section is devoted to the proof of Theorem 3.5, that extends the approximation result of DeVore and
Yu [14] (Sect. 3) to the approximation of R

r-valued functions defined on {1, . . . , n} by piecewise constant
functions. For r = 1, that extension simply results from [14] (Cor. 3.2) and Proposition 6.5 (cf. Sect. 6.2),
which is not the case anymore for r ≥ 2. We first describe the approximation algorithm adapted from [14].
Then, we give the main lines of the proof and also demonstrate the key result, which is a direct consequence of
the approximation algorithm. The proofs of more technical points are postponed to the next subsections.

6.1. Approximation algorithm

Let us fix p ∈ (0, 2], α > 1/p− 1/2, R > 0 and D ∈ {1, . . . , n}. In order to prove Theorem 3.5, we look for
an upper bound for

inf
m∈MD

‖t− tm‖2

uniformly over t ∈ B(α, p, R). Let I be a dyadic interval of {1, . . . , n}. The restriction of the norm ‖.‖ to I is
denoted by ‖.‖I . Let U be the linear subspace of R

n generated by the vector (1 . . . 1), we denote by E2(t, I) the
error in approximating t on I by an element of R

r ⊗ U , i.e.

E2(t, I) = inf
c∈Rr⊗U

‖t− c‖I .



20 N. AKAKPO

Besides, both intervals obtained by dividing I into two intervals of same length are called the children of I.
The algorithm proposed by DeVore and Yu [14] (Sect. 2) proceeds as follows. We fix a threshold ε > 0. At the
beginning, the set I1(t, ε) contains I(0,0) = {1, . . . , n}. If E2

(
t, I(0,0)

)
≤ ε, then the algorithm stops. Else, I(0,0)

is replaced in the partition I1(t, ε) with his children, hence a new partition I2(t, ε) of {1, . . . , n}. In the same
way, the kth step starts with a partition Ik(t, ε) of {1, . . . , n} into k dyadic intervals. If supI∈Ik(t,ε) E2(t, I) ≤ ε,
then the algorithm stops, else an interval I such that E2(t, I) > ε is chosen in Ik(t, ε) and replaced with his
children, hence a new partition Ik+1(t, ε) of {1, . . . , n} into k + 1 dyadic intervals. The algorithm finally stops,
giving a partition I(t, ε). Denoting by S(t, ε) the linear space composed of the functions that are piecewise
constant on I(t, ε), the approximation A(t, ε) of t associated with this partition is defined as the orthogonal
projection of t on R

r ⊗ S(t, ε). So, the approximation error of t by A(t, ε) satisfies

‖t−A(t, ε)‖2 =
∑

I∈I(t,ε)

(
E2(t, I)

)2 ≤ |I(t, ε)|ε2.
For any ε > 0 such that the algorithm stops at the latest at step D, the approximation of t that we get belongs
to the collection {Rr ⊗ Sm}m∈MD . Therefore

inf
m∈MD

‖t− tm‖2 ≤ |I(t, ε)|ε2.

Let us denote by ED(t) the infimum of |I(t, ε)|ε2 taken over all ε > 0 satisfying |I(t, ε)| ≤ D. This is in fact the
quantity that we shall bound, as indicated in Theorem 6.1 below.

Theorem 6.1. Let p ∈ (0, 2], α > 1/p− 1/2 and R > 0. For all D ∈ {1, . . . , n} and t ∈ B(α, p, R),

ED(t) ≤ C(α, p)nR2D−2α.

We then get Theorem 3.5 as a straightforward consequence of Theorem 6.1.

6.2. Proof of Theorem 6.1: the main lines

We shall prove Theorem 6.1 by following the path of DeVore and Yu in [14] (Sect. 3). Here are the notions
and notation that we will need along the proof. Let p > 0, α > 0 and t ∈ M (r, n). For every subset I of
{1, . . . , n}, let

Ep(t, I) = inf
v∈Rr

(∑
k∈I

‖tk − v‖pr
)1/p

.

We define the vector t�,α,p in R
n whose coordinates are

t�,α,p
i = sup

I	i
|I|−(α+1/p)Ep(t, I), for i = 1, . . . , n,

where the supremum is taken over all the dyadic intervals I of {1, . . . , n} that contain i. We denote by ‖.‖�p

the (quasi-)norm defined on R
n by

‖u‖�p =
( n∑

i=1

|ui|p
)1/p

(that is a norm only for p ≥ 1) and by ‖.‖�p,I its restriction to a subset I of {1, . . . , n}. We define on R
n the

discrete Hardy-Littlewood maximal function Mp by(
Mp(u)

)
i
= sup

I	i
|I|−1/p‖u‖�p,I , for i = 1, . . . , n,
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where the supremum is taken over all the dyadic intervals I of {1, . . . , n} containing i. Last, we recall that
every vector u ∈ R

n is identified with the function u : i ∈ {1, . . . , n} �→ ui, hence the meaning of notation such
as u ≤ v or uq, for u ∈ R

n, v ∈ R
n and q > 0.

The beginning of the proof directly results from the way the algorithm works out. A dimension D being fixed,
choosing ε > 0 as small as possible such that the algorithm generates a partition with at most D intervals leads
to a first comparison between the quantities ED(t) and D−2α, without making use of any particular hypothesis
on t.

Proposition 6.2. Let α > 0 and p(α) = (α + 1/2)−1. For all D ∈ {1, . . . , n} and t ∈M (r, n),

ED(t) ≤ C(α)‖t�,α,2‖2�p(α)
D−2α.

Proof. If t�,α,2 = 0, then, whatever ε > 0, E2
(
t, I(0,0)

)
≤ ε, so ED(t) = 0, which completes the proof in that case.

Let us now assume that t�,α,2 is non-null, and let ε > 0. If E2
(
t, I(0,0)

)
≤ ε, then |I(t, ε)| = 1. Else, let I be a

dyadic interval that belongs to I(t, ε), then I is a child of a dyadic interval Ĩ such that

ε < E2
(
t, Ĩ
)
.

Using the definition of t�,α,2, we get, for all i ∈ Ĩ,

E2
(
t, Ĩ
)
≤
∣∣Ĩ∣∣α+1/2

t�,α,2
i .

Since I ⊂ Ĩ, |Ĩ| = 2|I| and p(α) = (α + 1/2)−1, the last two inequalities lead, for all i ∈ I, to

ε < 21/p(α)|I|1/p(α)t�,α,2
i ,

hence
εp(α) < 2

∑
i∈I

(
t�,α,2
i

)p(α)
.

Then we deduce by summing over all the intervals I in the partition I(t, ε) that

|I(t, ε)| ≤ 2‖t�,α,2‖p(α)

�p(α)
ε−p(α).

Whether E2
(
t, I(0,0)

)
≤ ε or not, by choosing ε = 21/p(α)‖t�,α,2‖�p(α)

D−1/p(α), we get a partition I(t, ε) that
contains at most D elements and satisfies

|I(t, ε)|ε2 ≤ D1−2/p(α)22/p(α)‖t�,α,2‖2�p(α)
.

As p(α) = (α + 1/2)−1, we conclude that

|I(t, ε)|ε2 ≤ 4α+1/2‖t�,α,2‖2�p(α)
D−2α. �

The proof of Theorem 6.1 now relies upon three inequalities. The first one allows to draw a comparison between
ED(t) and D−2α via a term that does not depend on t�,α,2 anymore but on t�,α,p(α). It is the discrete analogue
of a particular case of Theorem 4.3. of [13].

Proposition 6.3. Let α > 0 and p(α) = (α + 1/2)−1. For all t ∈M (r, n),

t�,α,2 ≤ C(α)Mp(α)

(
t�,α,p(α)

)
.
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For α > 0, p(α) = (α + 1/2)−1 and D ∈ {1, . . . , n}, Propositions 6.2 and 6.3 immediately lead to

ED(t) ≤ C(α)
∥∥Mp(α)

(
t�,α,p(α)

)∥∥2
�p(α)

D−2α.

Let us now fix p ∈ (0, 2]. By Jensen’s inequality, we have∥∥Mp(α)

(
t�,α,p(α)

)∥∥
�p(α)

≤ n1/p(α)−1/p
∥∥Mp(α)

(
t�,α,p(α)

)∥∥
�p

and
t�,α,p(α) ≤ t�,α,p,

hence
ED(t) ≤ C(α)n2(α+1/2−1/p)

∥∥Mp(α)(t�,α,p)
∥∥2

�p
D−2α.

The following maximal inequality (inequality (6.15) below) ensures a control of u over its maximal functions. It
is in fact the discrete version of the Hardy-Littlewood maximal inequality, that may be found in [4] (Thm. 3.10,
p. 125).

Proposition 6.4. Let q > 1. For all u ∈ R
n,

‖M1(u)‖�q ≤ C(q)‖u‖�q .

Since the maximal function Mq, q > 0, is related to M1 by the property

Mq(u) =
(
M1(uq)

)1/q
, for all u ∈ R

n,

Proposition 6.4 yields, for all r > q > 0 and u ∈ R
n,

‖Mq(u)‖�r ≤ C(r, q)‖u‖�r . (6.15)

Thus, when applied with u = t�,α,p, r = p and q = p(α), this inequality leads to

ED(t) ≤ C(α, p)n2(α+1/2−1/p)‖t�,α,p‖2�p
D−2α.

Last, Proposition 6.5 below provides the adequate control of the �p-(quasi-)norm of t�,α,p by the size of the
wavelet coefficients of t and allows to complete immediately the proof of Theorem 6.1.

Proposition 6.5. Let p ∈ (0, 2] and α > 1/p− 1/2. For all t ∈M (r, n),

‖t�,α,p‖�p ≤ C(α, p)n−(α+1/2−1/p)

(
N−1∑
j=0

2jp(α+1/2−1/p)
∑

λ∈Λ(j)

‖βλ‖pr

)1/p

,

where, for all λ ∈ Λ, βλ is the column-vector of R
r with lth line β

(l)
λ = 〈t(l), φλ〉n, for l = 1, . . . , r.

6.3. Proof of Proposition 6.3

The proof of Proposition 6.3 mostly relies on a lemma that we demonstrate after introducing some notation.
Let I be a dyadic interval of {1, . . . , n}, t ∈ M (r, n), and p > 0. By a compactness argument, there exists at
least one vector in R

r, denoted by vp(t, I), satisfying

Ep(t, I) =
(∑

k∈I

‖tk − vp(t, I)‖pr
)1/p

.
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We define the vectors up(t, I) and t�,α,p,I in R
n whose coordinates are null outside of I and given otherwise

respectively by (
up(t, I)

)
i
= ‖ti − vp(t, I)‖r, for i ∈ I,

and
t�,α,p,I
i = sup

I⊃J	i
|J |−(α+1/p)Ep(t, J), for i ∈ I,

where the supremum is taken over all dyadic intervals J of {1, . . . , n} that are contained in I and contain i.
Last, for u ∈ R

n, we denote by u� its decreasing rearrangement, i.e. the R
n-vector satisfying

u�
1 ≥ u�

2 ≥ . . . ≥ u�
n and {u�

i ; 1 ≤ i ≤ n} = {|ui|; 1 ≤ i ≤ n}.

Lemma 6.6. Let α > 0, p > 0 and t ∈ M (r, n). Let I be a dyadic interval of {1, . . . , n} containing at least
two elements. For all j ∈ {1, . . . , |I|/2},

(
up(t, I)

)�
j
≤ C(α, p)

( |I|/2∑
k=j

kα−1
(
t�,α,p,I

)�
k

+ jα
(
t�,α,p,I

)�
j

)
.

Proof. We fix j ∈ {1, . . . , |I|/2}. Let E be the set composed of all the indices i in {1, . . . , n} satisfying (t�,α,p,I)i >
(t�,α,p,I)�

j . As |E| ≤ j − 1, we only have to prove that

(
up(t, I)

)
i
≤ C(α, p)

( |I|/2∑
k=j

kα−1
(
t�,α,p,I

)�
k

+ jα
(
t�,α,p,I

)�
j

)
(6.16)

for all the indices i ∈ {1, . . . , n}, except maybe for those belonging to E. Consider i ∈ {1, . . . , n} such that
i /∈ E. If i /∈ I, then

(
up(t, I)

)
i
= 0, so inequality (6.16) is trivial. Suppose now that i ∈ I and i /∈ E, and let

{Il}1≤l≤m be the sequence of dyadic intervals defined by

I1 = I, Il+1 is the child of Il containing i, and Im = {i},

where m ≥ 2 because |I| ≥ 2. Notice that, for all l ∈ {0, . . . , m − 1}, |Il+1| = 2−l|I|. Let q be the strictly
positive integer such that

2−(q+1)|I| < j ≤ 2−q|I|.
That definition implies, in particular, that 2−q|I| ≥ 1, hence q < m. From the triangle inequality,

(
up(t, I)

)
i
≤

q∑
l=2

‖vp(t, Il−1)− vp(t, Il)‖r +
m∑

l=q+1

‖vp(t, Il−1)− vp(t, Il)‖r, (6.17)

with the convention that the first sum in inequality (6.17) is null for q = 1. Let us fix l ∈ {2, . . . , m} and
determine an upper-bound for the term ‖vp(t, Il−1) − vp(t, Il)‖r. We recall that Il ⊂ Il−1 and |Il−1| = 2|Il|.
Besides, for all p > 0, the (quasi-)norm ‖.‖�p satisfies a triangle inequality within a multiplicative constant C(p),
where we can take C(p) = 1 for p ≥ 1, and C(p) = 21/p for 0 < p < 1. Therefore, we get

‖vp(t, Il−1)− vp(t, Il)‖r ≤ C(p)|Il|−1/p
(
Ep(t, Il−1) + Ep(t, Il)

)
,

which leads to
‖vp(t, Il−1)− vp(t, Il)‖r ≤ C(α, p)|Il|α min

k∈Il

t�,α,p,I
k . (6.18)
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Let us bound the first sum appearing in (6.17). For all l ∈ {2, . . . , m}, we have

min
k∈Il

t�,α,p,I
k ≤

(
t�,α,p,I

)�
|Il| = min

1≤k≤|Il|
(
t�,α,p,I

)�
k
,

and, as |Il+1| = |Il|/2,

|Il|α = C(α)
∫ |Il|

|Il+1|
xα−1 dx ≤ C(α)

|Il|∑
k=|Il+1|

kα−1.

Consequently, when q ≥ 2, inequality (6.18) yields

q∑
l=2

‖vp(t, Il−1)− vp(t, Il)‖r ≤ C(α, p)
q∑

l=2

|Il|∑
k=|Il+1|

kα−1
(
t�,α,p,I

)�
k

≤ C(α, p)
|I|/2∑
k=j

kα−1
(
t�,α,p,I

)�
k
.

Regarding the second sum appearing in (6.17), we now use inequality (6.18) combined with the following
remarks. For all l such that q + 1 ≤ l ≤ m, we have mink∈Il

t�,α,p,I
k ≤ t�,α,p,I

i , since Il contains i, and we recall
that |Il| = 2−(l−1)|I|. Therefore,

m∑
l=q+1

‖vp(t, Il−1)− vp(t, Il)‖r ≤ C(α, p)|I|α
(
t�,α,p,I

)
i

m∑
l=q+1

2−(l−1)α.

Furthermore, remember that 2−(q+1)|I| < j and i /∈ E, so we finally obtain

m∑
l=q+1

‖vp(t, Il−1)− vp(t, Il)‖r ≤ C(α, p)jα
(
t�,α,p,I

)�
j
.

We have thus proved inequality (6.16) and Lemma 6.6. �

Let us now prove Proposition 6.3. Let α > 0, p(α) = (α + 1/2)−1, t ∈M (r, n) and i ∈ {1, . . . , n}. From the
definition of E2(t, I) for a subset I of {1, . . . , n}, and due to the fact that E2(t, {i}) = 0, we have

t�,α,2
i ≤ sup

I	i
|I|−1/p(α)‖up(α)(t, I)‖�2 ,

where the supremum is taken over all the dyadic intervals I of {1, . . . , n} that contain i, except for {i}. We fix
such an interval I. The sequence

{(
up(α)(t, I)

)�
j

}
1≤j≤n

decreases and is null for j ≥ |I|+ 1, hence

∥∥up(α)(t, I)
∥∥2

�2
≤ 2

|I|/2∑
j=1

((
up(α)(t, I)

)�
j

)2

.

For 0 < p, q < +∞, we denote by ‖.‖�p,q the Lorentz (quasi-)norm defined on R
n by

‖u‖�p,q =
( n∑

i=1

i−1(i1/pu�
i )

q

)1/q

.
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For all subset I of {1, . . . , n}, we denote by ‖.‖�p,q,I the restriction of ‖.‖�p,q to I. In particular, notice that, for
all u ∈ R

n and 0 < p, q < +∞,
‖u‖�p,p = ‖u‖�p and ‖u�‖�p,q = ‖u‖�p,q .

From Lemma 6.6 and the definition of p(α), we get

∥∥up(α)(t, I)
∥∥2

�2
≤ C(α)

( |I|/2∑
j=1

j−1

(
j1/2

|I|/2∑
k=j

kα−1
(
t�,α,p(α),I

)�
k

)2

+
∥∥(t�,α,p(α),I

)�∥∥2
�p(α),2

)
.

Using a discrete version of Hardy’s inequality (3.19), in [4] (p. 124), and noticing that t�,α,p(α),I ≤ t�,α,p(α), we
are led to ∥∥up(α)(t, I)

∥∥
�2
≤ C(α)‖t�,α,p(α)‖�p(α),2,I .

Last, since p(α) < 2, we conclude thanks to classical inequalities between Lorentz (quasi-)norms (cf. [4],
Prop. 4.2, p. 217) that

t�,α,2
i ≤ C(α) sup

I	i
|I|−1/p(α)‖t�,α,p(α)‖�p(α),I

where the supremum is taken over all the dyadic intervals I of {1, . . . , n} that contain i.

6.4. Proof of Proposition 6.4

Let q > 1 and u ∈ R
n. As M1(u) = M1(|u|), we can suppose that u has positive or null coordinates. Let us

first demonstrate that, for all i ∈ {1, . . . , n},

(M1(u))�
i ≤ C

(
i−1

i∑
k=1

u�
k

)
. (6.19)

If i = 1, then this inequality easily follows from the definitions of (M1(u))�
1 and u�

1. Let us now fix i ∈ {2, . . . , n}.
We can write u as u = v + w, where v and w are the R

n-vectors whose respective coordinates are

vk = max{uk − u�
i , 0} and wk = min{uk, u�

i }, for k = 1, . . . , n.

From the triangle inequality, we deduce that M1(u) ≤ M1(v) + M1(w). Properties of discrete decreasing
rearrangements analogous to Inequalities (1.14) and (1.16), in [4] (p. 41), then lead to

(M1(u))�
i ≤ (M1(v))�

�i/2� + (M1(w))�

i/2�.

Moreover,
(M1(w))�


i/2� ≤ ‖M1(w)‖�∞ ≤ ‖w‖�∞ ,

and, from the discrete version of Theorem 3.3, in [4] (p. 119),

(M1(v))�
�i/2� ≤ 2i−1‖v‖�1.

Consequently,
(M1(u))�

i ≤ C
(
i−1‖v‖�1 + ‖w‖�∞

)
. (6.20)

Let I be the set of all the indices l ∈ {1, . . . , n} such that ul > u�
i . From the definitions of v and w, we get

‖v‖�1 + i‖w‖�∞ ≤
|I|∑

k=1

u�
k + (i− |I|)u�

i =
i∑

k=1

u�
k,
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which, given inequality (6.20), completes the proof of (6.19). We now have

‖(M1(u))�‖q�q
≤ C(q)

n∑
i=1

(
i−1

i∑
k=1

u�
k

)q

. (6.21)

Let us denote by q′ the conjugate exponent of q and write, for all 1 ≤ k ≤ n, u�
k = k−1/qq′

k1/qq′
u�

k. We deduce
from Hölder’s inequality that

n∑
i=1

(
i−1

i∑
k=1

u�
k

)q

≤
n∑

i=1

(
q′i−1/q

)q/q′(
i−1

i∑
k=1

k1/q′
(u�

k)q

)
.

Interchanging the order of the summations, we obtain

n∑
i=1

(
i−1

i∑
k=1

u�
k

)q

≤ C(q)
n∑

k=1

(u�
k)q

.

Consequently,
‖(M1(u))�‖�q ≤ C(q)‖u�‖�q ,

hence Proposition 6.4.

6.5. Proof of Proposition 6.5

Let p ∈ (0, 2], α > 1/p− 1/2 and t ∈M (r, n). For all i ∈ {1, . . . , n} and all 0 ≤ J ≤ N , we denote by I(J, i)
the only dyadic interval of length n2−J that is contained in {1, . . . , n} and contains i. From the definition of
t�,α,p, we deduce

‖t�,α,p‖p�p
≤

N−1∑
J=0

(n−12J)αp+1
n∑

i=1

(
Ep
(
t, I(J, i)

))p

. (6.22)

Let us first suppose that 0 < p ≤ 1. From the definition of Ep(t, I(J, i)), we have(
Ep
(
t, I(J, i)

))p

≤
∑

k∈I(J,i)

‖tk − ti‖pr .

For all −1 ≤ j ≤ N − 1, the functions {φλ}λ∈Λ(j) are constant over any dyadic interval of length n2−(j+1).
Therefore, if k belongs to I(J, i), then

tk − ti =
N−1∑
j=J

∑
λ∈Λ(j)

βλ(φλ k − φλ i).

As 0 < p ≤ 1, we deduce from the classical inequality between �p-quasi-norm and �1-norm

n∑
i=1

(
Ep
(
t, I(J, i)

))p

≤ 2n2−p/22−J
N−1∑
j=J

2jp(1/2−1/p)
∑

λ∈Λ(j)

‖βλ‖pr .

Interchanging the order of the summations, we get

‖t�,α,p‖p�p
≤ C(α, p)n1−p(α+1/2)

N−1∑
j=0

2jp(α+1/2−1/p)
∑

λ∈Λ(j)

‖βλ‖pr .
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Let us now consider the case 1 < p ≤ 2. We fix 0 ≤ J ≤ N − 1 and define

T (J) =
N−1∑
j=J

∑
λ∈Λ(j)

βλφλ.

As t− T (J) is constant over any dyadic interval of length n2−J ,

Ep
(
t, I(J, i)

)
= Ep

(
T (J), I(J, i)

)
.

This equality and the definition of Ep
(
T (J), I(J, i)

)
lead to

n∑
i=1

(
Ep
(
t, I(J, i)

))p

≤
n∑

i=1

∑
k∈I(J,i)

∥∥(T (J)
)
k

∥∥p

r

≤ n2−J
n∑

k=1

(N−1∑
j=J

∑
λ∈Λ(j)

‖βλ‖r|φλ k|
)p

.

From (6.22) and this last inequality, we get

‖t�,α,p‖p�p
≤ n−αp

n∑
k=1

N−1∑
J=0

(
2Jα

N−1∑
j=J

∑
λ∈Λ(j)

‖βλ‖r|φλ k|
)p

.

Then, using one of Hardy’s inequalities (cf. [12], Lem. 3.4, p. 27) and remembering that, for all j ∈ {−1, . . . , N−
1}, the functions {φλ}λ∈Λ(j) have disjoint supports, we conclude that

‖t�,α,p‖p�p
≤ C(α, p)n−αp

N−1∑
j=0

2jαp
∑

λ∈Λ(j)

‖βλ‖pr
n∑

k=1

|φλ k|p,

hence Proposition 6.5.

7. Lower bound for the minimax risk over V P(α, R)

Proposition 7.1. For all α > 0, there exists a real k2(α) ∈ (0, 1) such that, if R ≥ n−1/2 and R ≤ k2(α)nα,
then

RV (α, R) ≥ C(α)(nR2)1/(2α+1).

Proof. Let R ≥ 0 and 0 ≤ J ≤ N . For θ ∈ {0, 1}2J

, we use the notation θ = (θ0, . . . , θ2J−1). The Hamming

distance between two elements θ and θ′ in {0, 1}2J

is δ(θ, θ′) =
∑2J−1

k=0 |θk−θ′k|. The Kullback-Leibler divergence
is denoted by K. We shall construct a family {sθ}θ∈Θ of elements of V P(α, R) indexed by a properly chosen
subset Θ of {0, 1}2J

. According to Birgé’s version of Fano’s lemma (cf. [21], Cor. 2.19), if maxθ,θ′∈Θ K(sθ, sθ′) ≤
κ ln(|Θ|), where κ is a universal constant that belongs to (0, 1), then

RV (α, R) ≥ 1− κ

4
η2
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where η2 = minθ,θ′∈Θ,θ �=θ′ ‖sθ − sθ′‖2. Let us fix θ ∈ {0, 1}2J

. We define sθ ∈M (r, n) by⎧⎪⎪⎨⎪⎪⎩
s
(1)
θ = 1/2 + agθ

s
(2)
θ = 1/2− agθ

s
(l)
θ = 0 for 3 ≤ l ≤ r, if r ≥ 3

where a =
√

2R2−αJ/4 and gθ =
∑2J−1

k=0 (2θk − 1)1II(J,k) . For all 1 ≤ i < j ≤ n,

‖sθ j − sθ i‖r = a
√

2|gθ(j)− gθ(i)|.

Since gθ is constant on any dyadic interval of length n/2J and takes values in {−1, 1},

V 1/α
α (sθ) ≤ 2J(2

√
2a)1/α ≤ R1/α,

so sθ ∈ V (α, R). Besides, as ‖gθ‖∞ ≤ 1, if we assume that R2−αJ ≤
√

2, then sθ ∈ P. Let us rather assume
that

√
2R2−αJ ≤ 1. We can then apply Lemma 4 of [15] and get, for all θ, θ′ ∈ {0, 1}2J

,

K(sθ, sθ′) ≤ 4‖sθ − sθ′‖2.

Now, according to Varshamov-Gilbert’s lemma (cf. [21], Lem. 4.7, for instance), we can choose Θ ⊂ {0, 1}2J

such that, for any two distinct elements θ, θ′ ∈ Θ,

δ(θ, θ′) > 2J/4 (7.23)

and ln(|Θ|) > 2J/8. For all θ, θ′ ∈ {0, 1}2J

, ‖sθ − sθ′‖2 = 8a2n2−Jδ(θ, θ′), so, for all θ, θ′ ∈ Θ,

K(sθ, sθ′) ≤ 28a2n2−J ln(|Θ|)

and
η2 ≥ 2na2.

Let us now set k2(α) = min
(√

κ/25, (25/κ)α2−(α+1/2)
)

and assume that n−1/2 ≤ R ≤ k2(α)nα. We can then
define J as the smallest integer in {0, . . . , N} such that 28a2n2−J ≤ κ, i.e.

J = min
{
0 ≤ j ≤ N s.t. (κ−125nR2)1/(2α+1) ≤ 2j

}
.

Such an integer J does satisfy
√

2R2−αJ ≤ 1 and leads to

RV (α, R) ≥ C(κ, α)(nR2)1/(2α+1). �
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