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STOCHASTIC ALGORITHM FOR BAYESIAN MIXTURE EFFECT TEMPLATE
ESTIMATION

STEPHANIE ALLASSONNIERE! AND ESTELLE KUHN?

Abstract. The estimation of probabilistic deformable template models in computer vision or of prob-
abilistic atlases in Computational Anatomy are core issues in both fields. A first coherent statistical
framework where the geometrical variability is modelled as a hidden random variable has been given
by [S. Allassonniére et al., J. Roy. Stat. Soc. 69 (2007) 3-29]. They introduce a Bayesian approach
and mixture of them to estimate deformable template models. A consistent stochastic algorithm has
been introduced in [S. Allassonniére et al. (in revision)] to face the problem encountered in [S. Allas-
sonniére et al., J. Roy. Stat. Soc. 69 (2007) 3-29] for the convergence of the estimation algorithm
for the one component model in the presence of noise. We propose here to go on in this direction of
using some “SAEM-like” algorithm to approximate the MAP estimator in the general Bayesian setting
of mixture of deformable template models. We also prove the convergence of our algorithm toward a
critical point of the penalised likelihood of the observations and illustrate this with handwritten digit
images and medical images.
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1. INTRODUCTION

The issue of representing and analysing some geometrical structures upon which some deformations can act
is a challenging question in applied mathematics as well as in Computational Anatomy. One central point is
the modelisation of varying objects, and the quantification of this variability with respect to one or several
reference models which will be called templates. This is known as “Deformable Templates” [12]. To our best
knowledge, the problem of constructing probabilistic models of variable shapes in order to statistically quantify
this variability has not been successfully addressed yet in spite of its importance. For example, modelling
the anatomical variability of organs around an ideal shape is of a crucial interest in the medical domain in
order to find some characteristic differences between populations (pathological and control), or to exhibit some
pathological kind of deformations or shapes of an organ.

Many solutions have been proposed to face the problem of the template definition. They go from some
generalised Procruste’s means with a variational [11] or statistical [10] point of view to some statistical models
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like Active Appearance Model [6] or Minimum Description Length methods [16]. Unfortunately, all these
methods only focus on the template whereas the geometrical variability is computed afterwards (using PCA).
This contradicts with the fact that a metric is required to compute the template through the computation of
deformations. Moreover, they do not really differ from the variational point of view since they consider the
deformations as some nuisance parameters which have to be estimated and not as some unobserved random
variables.

The main goal of this paper is to propose a coherent estimation of both photometric model and geometrical
distribution in a given population. Another issue addressed here is the clustering problem. Given a set of
images, the statistical estimation of the component weights and of the image labels is usually supervised,
at least the number of components is fixed. The templates of each component and the label are estimated
iteratively (for example in methods like K-means) but the geometry, and related to this the metric used to
compute the distances between elements, is still fixed. Moreover, the label, which is not observed, is, as the
deformations, considered as a parameter and not as a hidden random variable. These methods do not lead to a
statistical coherent framework for the understanding of deformable template estimation and all these iterative
algorithms derived from those approaches do not have a statistical interpretation as the parameter optimisation
of a generative model describing the data.

In this paper we consider the statistical framework for dense deformable templates developed by Allas-
sonniere et al. in [1] in the generalised case of mixture model for multicomponent estimation. Each image taken
from a database is supposed to be generated from a noisy random deformation of a template image picked
randomly among a given set of possible templates. All the templates are assumed to be drawn from a common
prior distribution on the template image space. To propose a generative model, each deformation and each
image label have to be considered as hidden variables. The templates, the parameters of the deformation laws
and the components weights are the parameters of interest. This generative model allows to automatically
decompose the database into components and, at the same time, estimates the parameters corresponding to
each component while increasing the likelihood of the observations.

Given this parametric statistical Bayesian model, the parameter estimation is performed in [1] by a Maximum
A Posteriori (MAP). The authors carry out this estimation problem using a deterministic and iterative scheme
based on the EM (Expectation Maximisation) algorithm where the posterior distribution is approximated by
a Dirac measure on its mode. Unfortunately, this gives an algorithm whose convergence toward the MAP
estimator cannot be proved. Moreover, as shown by the experiments in that paper, the convergence is lost
within a noisy setting.

Our goal in this paper is to propose some stochastic iterative method to reach the MAP estimator for which
we will be able to get a convergence result as already done for the one component case in [3]. We propose to
use a stochastic version of the EM algorithm to reach the maximum of the posterior distribution.We use the
Stochastic Approximation EM (SAEM) algorithm introduced by Delyon et al. in [7] coupled with a Monte Carlo
Markov Chain (MCMC) method. This coupling algorithm has been introduced by Kuhn and Lavielle in [14] in
the case where the missing variables had a compact support. Contrary to the one component model where we
can couple the iteration of the SAEM algorithm with the Markov chain evolution (¢f. [3]), we show here that it
cannot be driven numerically. We need to consider an alternative method. We propose to simulate the hidden
variables using some auxiliary Markov chains, one per component, to approach the posterior distribution. We
prove the convergence of our algorithm for a non compact setting by adapting Delyon’s theorem about general
stochastic approximations and introducing truncation on random boundaries as in [5].

The paper is organised as follows: in Section 2 we first recall the observation mixture model proposed by
Allassonniére et al. in [1]. In Section 3, we describe the stochastic algorithm used in our particular setting.
Section 4 is devoted to the convergence theorem. Illustrative experiments on 2D real data sets are presented in
Section 5. The proofs of the convergence of the algorithm are postponed in Section 6 whereas conclusion and
discussion are given in Section 7.
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2. THE OBSERVATION MODEL

We consider the framework of multicomponent model introduced in [1]. Given a sample of gray level images
(yi)1<i<n observed on a grid of pixels {v, € D C R?,u € A} where D is a continuous domain and A the pixel
network, we are looking for some template images which explain the population. Each of these images is a real
function Iy : R? — R defined on the whole plane. An observation ¥ is supposed to be a discretisation on A of a
deformation of one of the templates plus an independent additive noise. This leads to assume the existence of
an unobserved deformation field z : R? — R? such that for u € A:

y(u) = Io(vu — 2(vu)) + €(u),
where € denotes an additive noise.

2.1. Models for templates and deformations

We use the same framework as chosen in [1] to describe both the templates Iy and the deformation fields z.
Our model takes into account two complementary sides: photometric — indexed by p — corresponding to the
templates and the noise variances, and geometric — indexed by g — corresponding to the deformations. The
templates Iy and the deformations z are assumed to belong to some finite dimensional subspaces of two re-
producing kernels Hilbert spaces V), and V, (determined by their respective kernels K, and K,;). We choose a
representation of both of them by finite linear combinations of the kernels centred at some fixed landmark points
in the domain D: (v, j)1<j<k, respectively (vg j)i<j<k,. They are therefore parametrised by the coefficients
a € R¥» and 8 € (R¥+)? which yield: Vv € D,

kP

I(v) & (Kpa)(v)éZKp(v,up,j)aj,
o

zp(v) £ (Kgﬁ)(v)éZKg(v,vg,j)ﬂj-

2.2. Parametrical model

In this paper, we consider a mixture of the deformable template models which allows a fixed number 7,
of components in each training set. This means that the data will be separated in 7, (at most) different
components by the algorithm.

Therefore, for each observation y;, we consider the pair (5;,7;) of unobserved variables which correspond
respectively to the deformation field and to the label of image i. We denote below by y* £ (y%,...,4%), by
B2 (BL,...,3) and by 7t £ (14,...,7,). The generative model is:

Tm
T~ @1y Y pide | (pe)i<i<ry »
t=1

B~ ®?:1N(Oarg,n) | T, (Fg,t)lﬁtSTma
Y~ QF N (zp 1o, 02 1dn) | B, T, (a1, 07)1<1<,0,

where zgly(u) = In(vy — 23(vy)) is the action of the deformation on the template I, for v in A and d; is
the Dirac function on ¢. The parameters of interest are the vectors (ay)i<i<r,, coding the templates, the
variances (07)1<t<r, of the additive noises, the covariance matrices (I'y+)1<t<r, of the deformation fields
and the component weights (p¢)1<i<r,,. We denote by (64, pt)1<i<r,, the parameters so that 6, corresponds
to the parameters composed of the photometric part (ay,0?) and the geometric part I’y for component ¢.
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We assume that for all 1 <t < 7, the parameter 6; = (ay, 07,1 ) belongs to the open space © defined as
O={ (0,02, 1)) |ae€R, |a|<R,0>0,T,€ Sym;kg,*(R) }, where R is an arbitrary positive constant and

Sym;kg’*(R) is the set of strictly positive symmetric matrices. Concerning the weights (p:)1<t<r,,, We assume
Tm

that they belong to the set o = {(pt)1<t<rm €lo, 1 | 3 pr= 1} .
i=1

Remark 2.1. This yields a generative model: given the parameters of the model, to get a realisation of an
Tm

image, we first draw a label 7 with respect to the probability law > p;d;. Then, we simulate a deformation
t=1

field 8 using the covariance matrix corresponding to component 7 according to N(0,T', -). We apply it to the

template of the 7th component. Last, we add an independent Gaussian noise of variance o2.

We choose a normal distribution for the unobserved deformation variable because of the background we have
in image analysis. Indeed, the registration problem is an issue that has been studied deeply for the past two
decades. The goal is, given two images, to find the best deformation that will match one image close to the
other. Such methods require to choose the kind of deformations that are allowed (smooth, diffeomorphic, etc.).
These conditions are equivalent, for some of these methods, to choose a covariance matrix that enables to define
an inner product between two deformations coded by a vector 8 (¢f. [4,18]). The regularisation term of the
matching energy in the small deformation framework treated in this paper can be written as: 6tI‘g’1 (. This
looks like the logarithm of the density of a Gaussian distribution on # with 0 mean and a covariance matrix I'y.
The link between these two points of view has been given in [1]; the mode of the posterior distribution equals
the solution of a general matching problem. This is why we therefore set on the deformation vector 3 such a
distribution. Moreover, many experiments have been run using a large variety of such a matrix which gives
us now a good initial guess for our parameter. This leads us to consider a Bayesian approach with a weakly
informative prior.

2.3. The Bayesian approach

The information given by the image analysis background is here introduced mathematically in terms of prior
laws on the parameters of model (2.1). As already mentioned in the previous paragraph, this background
knowledge enables to determine a good initial guess for the laws and the values of the hyper-parameters. As
well as for the covariance matrix I'y, the same arguments are true for the noise variance o2. In the registration
viewpoint, this variance is the tradeoff between the deformation cost and the data attachment term that compose
the energy to minimise. An empirical good initial guess is therefore known as well.

On another hand, the high dimensionality of the parameters can lead to degenerated maximum likelihood
estimator when the training sample is small. While introducing prior distributions, the estimation with small
samples is still possible. The importance of these prior distributions in the estimation problem has been shown
in [1]. The solution of the estimation equation can be interpreted as barycenters between the hyper-parameters
of the priors and the empirical values. This ensures easy computations and other theoretical properties as for
example, the invertibility of the covariance matrix I'y. The role of the other hyper-parameters are discussed in
the experiments.

We use a generative model which includes natural standard conjugate prior distributions with fized hyper-
parameters. These distributions are an inverse-Wishart priors on each I'y; and o? and a normal prior on each
ay, for all 1 <t < 7,. All priors are assumed independent. Then,

1 od \ 1 \™
v doz,da2 o« exp (—— o — ) Ha — ) (exp (——0 ) —) dana, a, > 3,
p( ) 2( Ip) ( ») (a Np) 202 ) /o2 P
1
vg(dly) o <exp(—<rg—1, zg>F/2)—> dly, ag > 4ky +1,

VT

where (A, B)r 2 tr(A'B) is the scalar product of two matrices A and B and tr stands for the trace.
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For the prior law v,, we choose the Dirichlet distribution, D(a,), with density

Tm @p
v,(p) x (H pt> , with fixed parameter a,,.
t=1

The choice of the hyper-parameters in practice will be discussed in Section 5.1.1.

3. PARAMETER ESTIMATION USING A STOCHASTIC VERSION OF THE EM ALGORITHM

For the sake of simplicity, let us denote by N £ 2nky and by T 2 {1,..., 7, }" so that the missing deformation
variables take their values in RY and the missing labels in 7. We also introduce the following notations:

n=(0,p) with 0 = (6;)1<i<r,, and p = (pt)1§t§7m .
In our Bayesian framework, we choose the MAP estimator to estimate the parameters:

iin = argmax qp(n|y) , (3.1)
n

where ¢p(n]y) denotes the distribution of n conditionally to y.

Remark 3.1. Even if we are working in a Bayesian framework, we do not want to estimate the distributions of
our parameters. Knowing the distribution of the template image and its possible deformations is not of great
interest from an image analysis point of view. Indeed, people are more interested, in particular in the medical
imaging community, in an atlas which characterises the populations of shapes that they consider rather than
its distribution. Moreover, the distribution of the deformation law makes even less sense. This is the reason
why we focus on the MAP.

In practice, to reach this estimator, we maximise this posterior distribution using a Stochastic Approximation
EM (SAEM) algorithm coupled with a Monte Carlo Markov Chain (MCMC) method. Indeed, due to the
intractable computation of the E step of the EM algorithm introduced by [8] encountered in this complex
non linear setting, we follow a stochastic variation called SAEM proposed in [7]. However, again due to the
expression of our model, the simulation required in this algorithm cannot be performed directly. Therefore, we
propose to use some MCMC methods to reach this simulation as proposed by Kuhn and Lavielle in [14] and
done for the one component model in [3]. Unfortunately, the direct generalisation of the algorithm presented
in [3] paper turns out to be of no use in practice because of some trapping state problems (cf. Sect. 3.2.). This
suggests to go back to some other extension of the SAEM procedure.

3.1. The SAEM algorithm using MCMC methods

Let us first recall the SAEM algorithm. It generates a sequence of estimated parameters (1), which converges
towards a critical point of 7 — log ¢(y,n) under some mild assumptions (¢f. [7]). These critical points coincide
with the critical points of n — log gp(n]y). The kth iteration consists in three steps:

Simulation step: the missing data, here the deformation parameters and the labels, (3, 1), are drawn
with respect to the distribution of (3, 7) conditionally to y denoted by 7, using the current parameter
Mk—1

(ﬂkaTk) ~ Tg_1s (3'2)

Stochastic approximation step: given (Ay); a decreasing sequence of positive step-sizes, a stochastic
approximation is done on the quantity log¢(y, 3, T,7), using the simulated value of the missing data:

Qr(n) = Qr—1(n) + Ax[log q(y, By, Tk, 1) — Qr—1(n)], (3.3)



STOCHASTIC ALGORITHM FOR BAYESIAN MIXTURE EFFECT TEMPLATE ESTIMATION 387

Maximisation step: the parameters are updated in the M-step,

Nk = argmax Qg (n). (3.4)
n

Initial values Q¢ and 7y are arbitrarily chosen.

We notice that the density function of the model proposed in paragraphs 2.2 and 2.3 belongs to the
curved exponential family. That is to say that the complete likelihood can be written as: q¢(y,3,7,n) =
exp [—1(n) + (S(B,7T),$(n))], where the sufficient statistic S is a Borel function on RY x T taking its values
in an open subset S of R™ and ¢, ¢ two Borel functions on © x g. (Note that S, ¢ and ¢ may depend also on
y, but since y will stay fixed in the sequel, we omit this dependency.) Thanks to this property of our model,
it is equivalent to do the stochastic approximation on the complete log-likelihood as well as on the sufficient
statistics. This yields equation (3.3) to be replaced by the following stochastic approximation s of the sufficient
statistics S:

Sk = Sk—1 +Ak(s(,6k,7'k)*5k71)- (3.5)
We now introduce the following function: L : S x © x o — R as L(s;n) = —¢(n) + (s, ¢(n)). It has been proved
in [1] that there exists a critical function 7) : S — © X p which is a zero of VL. It is straightforward to prove that
this function satisfies: Vn € © x o,Vs € S, L(s;7(s)) > L(s;n) so that the maximisation step (3.4) becomes:

Mk = 1(sk)-

Concerning the simulation step, in our model, the simulation of the missing variables with respect to the
conditional distribution m, cannot be carried out. Indeed, its probability density function (pdf) has a close
form but rather complicated; it does not correspond to some usual pdf. One solution proposed in [14] for
such cases is to couple the SAEM algorithm with Monte Carlo Markov Chain (MCMC) method. However, we
do not fit exactly into their requirements since the missing variable 8 does not have a compact support. We
introduce an ergodic Markov chain whose stationary distribution is the conditional distribution 7,. We denote
its transition kernel by II,. The simulation step (3.2) is thus replaced by the following step:

(lavak) NH’r]ka((/@k—laTk—l)a')' (3'6)

The most common choice of kernel is an accept-reject step which is carried out through a Metropolis-Hastings
algorithm. Unfortunately, in our particular setting, we deal with large dimensions for the missing variables.
This made us move to some other kind of MCMC methods, like a Gibbs sampler, to simulate our missing
variables.

3.2. The transition of the MCMC method: a hybrid Gibbs sampler

If we consider the full vector (8, 7) as a single vector of missing data, we can use the hybrid Gibbs sampler
on RN x 7T as follows. For any b € R and 1 < j < N, let us denote by Byp—.; the unique configuration which is

= b and by 877 the vector 8 without the coordinate

j. Each coordinate of the deformation field 87 is updated using a Metropolis-Hastings step where the proposal
is given by the conditional distribution of B’ |,8_j , T coming from the current Gaussian distribution with the
corresponding parameters (pointed by 7). Then, the last coordinates corresponding to the missing variable 7
are drawn with respect to ¢(7|83,y,n).

Even if this procedure provides an estimated parameter sequence which would theoretically converge toward
the MAP estimator, in practice, as mentioned in [19], it would take a quite long time to reach its limit because of
the trapping state problem: when a small number of observations are assigned to a component, the estimation of
the component parameters is hardly concentrated and the probability of changing the label of an image to this
component or from this component to another is really small (most of the time under the computer precision).

We can interpret this from an image analysis viewpoint: the first iteration of the algorithm gives a random
label to the training set and computes the corresponding maximiser 7 = (6, p). Then, for each image, according

equal to 3 everywhere except the coordinate j where ,8{); y
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to its current label, it simulates a deformation field which only takes into account the parameters of this given
component. Indeed, the simulation of 3 through the Gibbs sampler involves a proposal whose corresponding
Markov chain has ¢(8|7,vy,n) as stationary distribution. Therefore, the deformation tries to match y to the
deformed template of the given component 7. The deformation field tries to get a better connection between
the component parameters and the observation, and there is only small probability that the observation given
this deformation field will be closer to another component. The update of the label 7 is therefore conditional
to this deformation which would not leave much chance to switch component.

To overcome the trapping state problem, we will simulate the optimal label, using as many Markov chains
in B as the number of components so that each component has a corresponding deformation which “computes”
its distance to the observation. Then we can simulate the optimal deformation corresponding to that optimal
label.

Since we aim to simulate (3, 7) through a transition kernel that has ¢(83, 7|y, n) as stationary distribution,
we simulate 7 with a kernel whose stationary distribution is ¢(7|y,n) and then 3 through a transition kernel
that has ¢(B|7,y,n) as stationary distribution.

For the first step, we need to compute the weights q(t|y;,n) o< q(t,y:|n) forall 1 <t <7, andall 1 <i<n
which cannot be easily reached. However, for any density function f, for any image y; and for any 1 <t < 7,

we have
-1
q(t, yiln) = (Equi,t,n) [%D : (3.7)

Obviously the computation of this expectation w.r.t. the posterior distribution is not tractable either but we
can approximate it by a Monte Carlo sum. However, we cannot easily simulate variables through the posterior
distribution ¢(-|y;,t,n) as well, so we use some realisations of an ergodic Markov chain having ¢(-|y;, t,n) as
stationary distribution instead of some independent realisations of this distribution.

The solution we propose is the following: suppose we are at the kth iteration of the algorithm and let n be
the current parameters. Given any initial deformation field & € R?*s, we run, for each component ¢, the hybrid
Gibbs sampler II,, ; on R?*s J times so that we get J elements & ; = (§§f2)1§l§J of an ergodic homogeneous
Markov chain whose stationary distribution is q(-|y;, t,n). Let us denote by & = (&:)1<t<r,, the matrix of all
the auxiliary variables. We then use these elements for the computation of the weights p(¢|&;, v:,n) through a

Monte Carlo sum:
() -t
(1l 3i0m) <J2[ flee) D , 35)

y’“ tz’t|77

where the normalisation is done such that their sum over ¢ equals one, involving the dependence on all the
auxiliary variables &;. The ergodic theorem ensures the convergence of our approximation toward the expected

value. We then simulate 7 through ®7,; Z ps(t|&i, yi,n)o¢.

Concerning the second step, we update B by re-running J times the hybrid Gibbs sampler 1I, - on RY
starting from a random initial point B3, in a compact subset of R"V. The size of J will depend on the iteration
k of the SAEM algorithm in a sense that will be precised later, thus we now index it by k.

The density function f involved in the Monte Carlo sum above needs to be specified to get the convergence
result proved in the last section of this paper. We show that using the prior on the deformation field enables to
get the sufficient conditions for convergence. This density is the Gaussian density function and depends on the
component we are working with:

B 1 1,1 >
= —=£'T . 3.9
ft(f) mgkg |]_—‘g’t| exXp ( 25 g,tf ( )

Algorithm 2 shows the detailed iteration.
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Remark 3.2. The use of one simulation of 8 per component is a point that was already used in [1] while
computing the best matching, /*, for all components by minimising the corresponding energies. This gives
as many (* as components for each image. Then, according to these best matchings, it computed the best
component which therefore pointed the matching to consider.

3.3. Truncation on random boundaries

Since our missing data have a non-compact support, some of the convergence assumptions of such algo-
rithms [14] are not satisfied. This leads to consider a truncation algorithm as suggested in [7] and extended
in [3].

Let (K¢)q>0 be an increasing sequence of compact subsets of S such as Uy>o/Cy = S and Ky C int(Ky41), Vg >
0. Let K be a compact subset of RY. Let IL,, be a transition kernel of an ergodic Markov chain on RN having T
as stationary distribution. We construct the homogeneous Markov chain ((8y,, Tk, Sk, fk))k>0 as explained in
Algorithm 1. As long as the stochastic approximation does not wander out the current compact set, we run our
“SAEM-MCMC” algorithm. As soon as this previous condition is not satisfied, we reinitialise the sequences of
s and (3, T) using a projection (for more details see [7]). The current compact is then enlarge. To point toward
the current compact, we use a counter sequence (ki) which remains unchanged when the previous condition
is satisfied and increases to point toward a bigger compact when re-projecting.

Algorithm 1 Stochastic approximation with truncation on random boundaries
Set B, € K, 70 € T, 59 € Ky and ko = 0.
for all £k > 1 do
compute 5 = 5,1 + Ar(S(B,7) — sp_1)
where (B,i‘) are sampled from a transition kernel II,, , (see Algorithm 2).
if 5€K,, , then
set (sg, By, Tk) = (5,8,7) and ki, = K1
else R
set (sg, B, Tr) = (5,8,7) € Ko x KX T and ki = k-1 + 1
and (3,3) can be chosen through different ways (cf. [7]).
end if

Nk = argmax7j(sg).
7

end for

4. CONVERGENCE THEOREM OF THE MULTICOMPONENT PROCEDURE

In this particular section the variances of the components (02)1<¢<,, are fixed. Alleviating this condition is
not straightforward and is an issue of our future work.

To prove the convergence of our parameter estimate toward the MAP, we have to go back to a convergence
theorem which deals with general stochastic approximations. Indeed, the SAEM-MCMC algorithm introduced
and detailed above is a Robbins-Monro type stochastic approximation procedure. One common tool to prove
the w.p.1 convergence of such a stochastic approximation has been introduced by Kushner and Clark in [15].
However, some of the assumptions they require are intractable with our procedure (in particular concerning the
mean field defined below). This leads us to slightly adapt the convergence theorem for stochastic approximations
given in [7].

We consider the following Robbins-Monro stochastic approximation procedure:

Sk = Skp—1 + Ak(h(skfl) + er + Tk), (41)
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Algorithm 2 Transition step & — k + 1 using a hybrid Gibbs sampler on (3, T)

Require: n=mn, , J = Ji
for all i=1:ndo
forall t=1:7, do

(0) —¢

ti — S0

forall [=1:Jdo
g=¢Y

Gibbs sampler II, ;:

for all j=1:2k, do
Metropolis-Hastings procedure:
b~ Q(b|€7j 4 77)
Compute 7;(&7,b;679,n,t) = %CI(;’ZE"’EL;)”) A 1}
u ~U[0,1]
if uw<r;(&,b;679,n,t) then

& =5

end if

end for

N=¢

end for

J (l)) -
Pt ) (Z[ 1 tln)D

Tm

Trer~ @ Y ps(téyemde and By ~TT) o (By).
t=1

end for
end for

where (ex)r>1 and (rg)r>1 are random processes defined on the same probability space taking their values in
an open subset S of R™s; h is referred to as the mean field of the algorithm; (r4)r>1 is a remainder term and
(er)r>1 is a stochastic excitation.

To be able to get a convergence result, we consider the truncated sequence (si)) defined as follow: let S, C S
and 8 = sg—1 + Aph(sg—1) + Arer + Agry, where

e Sk = Sk
lf Sk S ICI{;C,1 K = K/k, 1

=5 ES (4.2)
if§k§é/€mﬁ71 k= 2k a7

Krp = Kp—1+ 1.

The projection §; can be made through different ways (cf. [7]).

We will use Delyon’s theorem which gives sufficient conditions for the sequence (sg)r>0 truncated on random
boundaries to converge with probability one. The theorem we state here is a generalisation of the theorem
presented in [7]. Indeed, we have add the existence of an absorbing set for the stochastic approximation
sequence. The proof of this theorem can be carried out the same way Delyon et al. do theirs adding the
absorbing set. This is why it is not detailed here.

Theorem 4.1. We consider the sequence (si)k>0 given by the truncated procedure (4.2). Assume that:
(SAQ’) There exists a closed conver set S, C S such that for all k > 0, s € S, w.p.1.
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[ee]
(SA1) (Ak)r>1 is a decreasing sequence of positive numbers such that >, Ay = oo.
k=1
(SA2) The wvector field h is continuous on S ou S, and there exists a continuously differentiable function
w:S — R such that
(i) for all s € S, F(s) = (0sw(s),h(s)) <0.
(ii) int(w(L')) = 0, where L' = {s € S: F(s) = 0}.
(STAB1’) There exist a continuous differentiable function W : RN — R and a compact set K such that
(i) For all ¢ > 0, we have W. NS, is a compact subset of S where W, = {s € S: W(s) < c} is a level
set.
(ii) (9sW(s),h(s)) <O, for all s e S\ K.

P
(STAB2) For any positive integer M, w.p.1 lim > Aperly (s, ,)<m exists and is finite and w.p.1

. p— 00 k:l
limsup |7 Ly (s, _y<m = 0.
k—o0
Then, w.p.1, limsupd(sg, L") = 0.
k—o0

Assumption (SA2), which involves a Lyapunov function w, replaces the usual condition that, w.p.1, the sequence
comes back infinitely often in a compact set which is not easy to check in practice. In addition, assumptions
(STAB1’) and (STAB2) give a recurrent condition introducing a Lyapunov function W which controls the
excursions outside the compact sets. The two Lyapunov functions w and W do not need to be the same.
Another interesting point is that the truncation does not change the mean field and therefore the stationary
points of the sequence.

This theorem does not ensure the convergence of the sequence to a maximum of the likelihood but to one of
its critical points. To ensure that the critical point reached is a maximum, we would have to satisfy two other
conditions (called (LOCI-2) in [7]) which are typical conditions. That is to say, it requires that the critical
points are isolated and for every stationary points s* € £’ the Hessian matrix of the observed log-likelihood is
negative definite.

We now want to apply this theorem to prove the convergence of our “SAEM like” procedure where the
missing variables are not simulated through the posterior density function but by a kernel which can be as close
as wanted -increasing Ji- to this posterior law (generalising Thm. 3 in [7]).

Let us consider the following stochastic approximation: (8,,7x) are simulated by the transition kernel
described in the previous section and

sk = 8sk—1 + Ap(S(Br Tk) — Sk—1)

which can be connected to the Robbins-Monro procedure using the notations introduced in [7]: let F = (Fi)r>1
be the filtration where 7} is the o-algebra generated by the random variables (So, By,..., Bk, T1,...,Tk), Ex,
is the expectation with respect to the posterior distribution 7, and

h(skfl) = Eﬂ-ﬁ(sk—l) [S(IB) T)] — Sk—1,
€ = S(/BkaTk)7E[S(ﬁk77k)|fk71]a
Tk = E[S(I@k‘77k‘)|]:k‘—1] _Eﬂ—ﬁ(sk,l) [S(/@aT)] .

Theorem 4.2. Let w(s) = —I(7(s)) where I(n) = log}" [on ¢(y,B,7,m)dB and h(s) = > [on(S(B,T) —
T T
8)Tis) (B, T)dB for s € S. Assume that:
(A1) the sequences (Ag)k>1 and (Jx)p>1 satisfy:
(i) (Ak)k>1 is non-increasing, positive, Y Ap =00 and Y, A? < .

k=1 k=1

(ii) (Jk)k>1 takes its values in the set of positive integers and klim Jp = 00.
—00
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(A2) L' £ {s €S, (dsw(s),h(s)) = 0} is included in a level set of w.

Let (si)k>0 be the truncated sequence defined in equation (4.2), K a compact set of RY and Ko € S(RM) a
compact subset of S. Then, for all B, € K, T € T and sy € Ky, we have

lim d(sk, £) =0 Pg, r,50,0 -0-S-,
k—oo

where I@gmfo,so,o is the probability measure associated with the chain (Zy = (By, Tk, Sk, Kk))k>0 Starting at
(ﬂOaT0750;O)-

The first assumption which concerns the two sequences involved in the algorithm, is not restrictive at all
since these sequences can be chosen arbitrarily.

The second assumption, however, is more complex. This is required to satisfy the assumptions of Theorem 4.1.
This is a condition we have not proved yet and is part of our future work.

Proof. The proof of this theorem is given in Section 6. We give here a quick sketch to emphasise the main
difficulties and differences between our proof and the convergence proof of the SAEM algorithm given in [7].

Even if the only algorithmic difference between our algorithm and the SAEM algorithm is the simulation of
the missing data which is not done with respect to the posterior law ¢(3, 7|y, n) but through an approximation
which can be arbitrarily close, this yields a very different proof. Indeed, whereas for the SAEM algorithm, the
stochastic approximation leads to a Robbins-Monro type equation (4.1) with no residual term rj, our method
induces one. The first difficulty is therefore to prove that this residual term tends to 0 while the number of
iterations k tends to infinity. Our proof is decomposed into two part, the first one concerning the deformation
variable 3 and the second one the label 7. The first term requires to prove the geometric ergodicity of the
Markov chain in 3 generated through our kernel. For this purpose, we prove some typical sufficient conditions
which include the existence of a small set for the transition kernel and a drift condition. Then, we use for
the second term some concentration inequalities for non stationary Markov chains to prove that the kernel
associated with the label distribution converges toward the posterior distribution ¢(7|y,7).

The second difficulty is to prove the convergence of the excitation term e. This can be carried out as in [7]
using the properties of our Markov chain and some martingale limits properties. O

Corollary 4.1. Under the assumptions of Theorem 4.2 we have for all By € K, 79 € 7,50 € Sy and no € © X g,
lim d(ne, £) =0 Pg, r0,50,0-0-5,
k—o00

where PBO,TO,SO,O, is the probability measure associated with the chain (Zy = (Bj, Ty Sks kk))k>0 starting at
(ﬂ057075050) and ‘C é {77 € ﬁ(8)7 g_f?(n) = O}

Proof. This is a direct consequence of the smoothness of the function s — 7(s) on § and of Lemma 2 of [7]
which links the sets £ and L'. O

5. ILLUSTRATIVE EXPERIMENTS

5.1. USPS database

To illustrate the previous algorithm for the deformable template model, we are considering handwritten digit
images. For each digit, referred as class later, we learn two templates, the corresponding noise variances and
the geometric covariance matrices. We use the USPS database which contains a training set of around 7000
images. Each picture is a (16 x 16) gray level image with intensity in [0, 2] where 0 corresponds to the black
background. In Figure 1 we show some of the training images used for the statistical estimation.
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FIGURE 1. Some examples of the training set: 40 images per class (inverse video).
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5.1.1. General setting of the hierarchical model

A natural choice for the prior laws on o and I'y is to set 0 for the mean on a and to induce the two
covariance matrices by the metric of the spaces V,, and V; involving the correlation between the landmarks
through the kernels: define the square matrices My (k, k') = K,(vpj,vp5) V1 < k, k' < k,, and My(k, k') =
Ky(vg,j,vg,5:) V1 <k, k' <kg. Then ¥, = szl and ¥, = Mg’l. In our experiments, we have chosen Gaussian
kernels for both K, and K,. Their respective standard deviations are fixed: ¢, = 0.2 and o, = 0.12 for an
estimation on [—1.5,1.5]2 and [—1, 1] respectively. Indeed, too large values of these standard deviations lead to
smooth images and deformations. The registration becomes less accurate and yields blurry estimated templates
and non optimal estimated covariance matrices. On the other hand, too small values of o, and o, concentrate
the information in a small neighbourhoods around the landmarks; for example the templates would be composed
of small balls centred on the landmarks.

Another issue is the calibration of the parameter a,. Indeed, to satisfy the theorical requirement a4 is
supposed to be larger than 4k, which equals 144 in our case. However, looking at the geometrical update
formula (6.2), this hyper-parameter corresponds to the weight of the prior matrix in the barycenter expression
between the prior and the empirical terms. Since we only have few images, this prior would predominate over
the empirical term. This would prevent the geometrical covariance from moving far away from the prior. So
we choose a, = 0.5 which leads to a well defined posterior distribution even if it does not satisfy the theoretical
assumption.

The influence of the other hyper-parameters a, and a, has been tested on simulation and is negligeable.
We choose a, = 200 and a, = 2.

5.1.2. General setting of the algorithm

For the stochastic approximation step-size, we allow a heating period k; which corresponds to the absence
of memory for the first iterations. This allows the Markov chain to reach an area of interest in the posterior
probability density function ¢(8, 7|y, n) before exploring this particular region. In the experiments presented,
the heating time kj, lasts up to 150 iterations and the whole algorithm is stopped at, at most, 200 iterations
depending on the data set (noisy or not). This number of iterations corresponds to a point when the convergence
is reached. We choose, as suggested in [7] the step-size sequence as Ap = 1 for all 1 < k < kj, and Ay =
(k — k)06 otherwise.

The multicomponent case has to face the problem of its computational time. Indeed, as we have to approx-
imate the posterior density by running J; elements of 7,,, independent Markov chains, the computation time
increases linearly with Ji. In our experiments, we have chosen a fixed J for every EM iteration, J = 50. This is
enough to get a good approximation thanks to the coupling between the iterations of the SAEM algorithm and
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FIGURE 2. Estimated prototypes of the two components model for each digit (40 images per
class; 100 iterations; two components per class).
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FIGURE 3. Estimated prototypes of the two components model for each digit (40 images per
class, second random sample).

the iterations of the Markov chains. Indeed, even if the parameter 7 is modified along the SAEM iterations,
its successive jumps are small enough to ensure the convergence of the MCMC method. Intuitively speaking,
it is equivalent to consider not only 50 iterations of the MCMC method but 50 times the number of SAEM
iterations.

5.1.3. The estimated templates

We are showing here the results of the statistical learning algorithm for our generative model. To avoid the
problems shown in [3], we choose the same initialisation of the template parameter « as they did, that is to say,
we set the initial value of « such that the corresponding I, is the mean of the gray-level training images.

In Figure 2, we show the two estimated templates obtained by the multicomponent procedure with 40 training
examples per class. It appears that, as for the mode approximation algorithm which results are presented on this
database in [1], the two components reached are meaningful, such as the 2 with and without loop or American
and European 7. They even look alike.

In Figure 3, we show a second run of the algorithm with a different database, the training images are randomly
selected in the whole USPS training set. We can see that there are some variability, in particular for digit 7
where there were no European 7 in this training set. This generates two different clusters still relevant for this
digit. The other digits are quite stable, in particular the strongly constrained ones (like 3, 5, 8 or 9).

5.1.4. The photometric noise variance

Even if we prove the convergence result for fixed component noise variances, we still try to learn them in
the experiments. The same behaviour for our stochastic EM as for the mode approximation EM algorithm
done in [1] is observed for the noise variances. Indeed, allowing the decomposition of the class into components
enables the model to better fit the data yielding a lower residual noise. In addition, the stochastic algorithm
enables to look around the whole posterior distribution and not only focusing on its mode which increases the
accuracy of the geometric covariance and the template estimation. This yields lower noise required to explain
the gap between the model and the truth. The evolution of the estimated variances for the two components of
each digits are presented in Figure 4.

The convergence of this variance for some very constrained digits like digit 1 is faster. This is due to the
well defined templates and geometric variability in the class which can be easily captured. Therefore, a very
low level of noise is required very quickly. On the other hand, some very variable digits like digit 2 are slower
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FIGURE 4. Evolution of the two cluster variances along the iterations.
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FIGURE 5. Some synthetic examples of the components of digit 2: first four rows: templates
of the two components deformed through some deformation field 3 and —( drawn from their
respective geometric covariance. Two last row: template of the first component from Figure 2
with deformations drawn with respect to the second component covariance matrix.

to converge. The huge geometric variability adding to very complex shapes for the templates lead to a more
difficult estimation and therefore more iterations before convergence.

Last point that can be noticed is the convergence of the European 7 which looks slower than the other
component (American 7). The reason of this behaviour is that there are only two images of such a 7 in the
training set and it takes a longer time for the algorithm to put together and only together these two shapes so
that the clustering is better with respect to the likelihood. The other 7 does not suffer from this problem and
converges faster.

5.1.5. The estimated geometric distribution

To be able to compare the learnt geometry, we draw some synthetic examples using the mixture model with
the learnt parameters. Even when the templates look similar, the separation between two components can be
justified by the different geometry distributions. To show the effects of the geometry on the components, we
have drawn some “2” with their respective parameters in the four top rows of Figure 5.

For each component, we have drawn the deformation given by the variable 8 and its opposite —f since, as
soon as one is learnt, because of the symmetry of the centred Gaussian distribution, the opposite deformation
is learnt at the same time. This is why sometimes, one of the two looks strange whereas the other looks like
some element of the training set.
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FIGURE 6. First row: ten images of the training set representing the splenium and a part of
the cerebellum. Second row: Results from the template estimation. (a) gray level mean image
of the 47 images. Templates estimated (b) with the FAM (c) with the stochastic algorithm on
the simple model (d,e) on the two component model.

The simulation is done using a common standard Gaussian distribution which is then multiplied by a square
root of the covariance matrix we want to apply. We can see the effects of the covariance matrix on both
templates and the large variability learnt. This has to be compared with the bottom rows of Figure 5, where
the two samples are drawn on the one template but with the covariance matrix of the other one. Even if these
six lines represent some “2”s, the bottom ones suffer from the geometrical tendency of the other cluster and do
not look as natural. This shows the variability of the models into classes.

5.2. Medical images

We also test the algorithm on a database which consists in 47 2D medical images. Each of them represents
the splenium (back of the corpus calosum) and a part of the cerebellum. Some of the training images are shown
in Figure 6 first row.

The results of the estimation are presented in Figure 6, second row. The first picture presented, (a), is the
gray level mean of the 47 images. The second one, (b), shows the estimated template computed with the Fast
Approximation with Mode Algorithm presented in [1] for a single component model. This algorithm is an EM-
like algorithm where the E step is simplified. The posterior distribution of the hidden variable is approximated
by a Dirac distribution on its mode. This yields a deterministic algorithm, quite simple to implement but with
no theoretical convergence properties. It shows a well contrasted splenium whereas the cerebellum remains a
little bit blurry (note that it is still much better that the simple mean (a)).

This picture has to be compared with picture (c) which gives the estimated template computed with our
algorithm with 7,,, = 1. The great improvement from the gray level mean of the images (a) or the FAM
estimation (b) to our estimations is obvious. In particular, the splenium is still very contrasted, better localised
and the cerebellum is reconstructed with several branches. The background presents several structures whereas
the other estimates are blurry. The two anatomical shapes are relevant representants of the ones observed in
the training set.

The estimation has been done while enabling the decomposition of the database into two components with
our SAEM-MCMC algorithm presented here. The two estimated templates are shown in Figure 6(d) and 6(e).
The differences can be seen in particular on the shape of the splenium where the boundaries are more or less
curved. The thickness of the splenium varies as well between the two estimates. The position of the fornix is
also different, being closer to the boundary of the image. The number of branches in the two cerebella also
tends to be different from one template to the other (4 in the first component and 5 in the second one).

The estimation suffers from the small number of images we have. This can be seen in the estimation
of the background which is blurry in both images. To be able to explain the huge variability of the two
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anatomical shapes, more components would be interesting but at the same time more images required so that
the components will not end up empty.

6. PROOF OF THEOREM 4.2

We recall that in this section the variances of the components are fixed. This reduces the parameters 6; to
(a,Tgy) forall 1 <t < 7y,
First let exhibit sufficient statistics for the model. The complete log-likelihood equals:

n 1 |A]/2 1 v )
logq(y, B,7ln) = D <log (QMQ) exp (—glyi—Kflanll)

=1
k
1 g
— ) |Tym
(3) Iton

where K 5 a = zgl, and ||.|| denotes the Euclidean norm. This emphasises five sufficient statistics given in their
matricial form for all 1 <t < 7,,,

+ log

_ 1o
V2 oxp (AT, )

+ 10g(pn)} :

So(B,7m) = > L,
1<i<n
N\t
SiB,T) = Y 1. (Kgl) Yi s
1<i<n
N\t )
$2.087) = 3 Tt () (K7
1<i<n
SB,t(ﬁaT) = Z ]l‘r-;:tﬂfﬂiap
1<i<n
S1(Bi1) = 3 To—t|lull®
1<i<n

Thus we apply the stochastic approximation at iteration k& of the algorithm leading to:

Skomyt = Sk—1,m,t + Dk (Sm t(Brs Th) — Sk—1,m,t)

for 0 < m < 4 and rewrite the maximisation step. The weights and the covariance matrix are updated as
follows:

Sk,0,r T ap

- 2rUT T TP 6.1
P,k n+ T, ) ( )
1
Lyrr = m(Sk,O,TSk,S,T + agzg) . (6.2)

The photometric parameters are solution of the following system:

2
3
kS

I

—1
(Sk,o,rsk,z,r + J?—,k(zp)il) (Sk,o,rsk,l,r + Uf,k(Ep)*lup> : 63
6.3

0k = srotiara; (Skor (ks + (k) sk2rank = 2(ark) k1) + ap03)

which can be solved iteratively for each component 7 starting with the previous values. In this part, all 037 &
are fixed and this leads to an explicit form for the parameters o k.
We will now apply Theorem 4.1 to prove Theorem 4.2.
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(SAQ) is satisfied with the set S, defined by

Sa={SeS[0< S0 <n, [Suall <yl

0< Sy <|lyl>, VI<t<m,}.

Thanks to the convexity of this set, the new value s; defined as a barycenter remains in S,.

Assumption (SA1) is trivially satisfied since we can choose our step-size sequence (Ay)g.

(SA2) holds as already proved in [3] for the one component case with w(s) = —I(7j(s)) such as (STAB1’(ii))
with the same function W(s) = —I(7j(s)). These conditions imply the contraction property of the Lyapunov
function w and the convergence of the stochastic approximation under some conditions on the perturbations.

We need to suppose, like in the one component case [3], that the critical points of our model are in a compact
subset of & which stands for (STAB1’(i)). This is an assumption which has to be considered in a future work.

We will now focus on (STAB2) which is the assumption which gives the control of the perturbations required
for the convergence.

We first show the convergence to zero of the remainder term |rg|Ly (s, ,)<p for any positive integer M.
We denote by 7 = 7, for any k > 0. We have ry, = E[S(B),, Tx)|Fr-1] — Ex,_, [S(B,T)] thus,

Tm

Z Sﬂ’ nk 1,T 1307 H/ka Tz|§zay’m77k 1 1_[1_[11777 (l 1), tz)dgtlz)dﬂ
t=110=1
72/]1@\’ S(B7T)Wnk—1(ﬁa7-)d,6~

Tm
We denote by Q(&)d&; = [] ﬁ Hm(«fg;l &y Z) d«ft and by
£=11=1

Ry, (Tly.mk—1) = I [ pse(7il&, vismk—1) Q(&) d&;. We can now rewrite
=1

IN

|7k

S(B.7) 155, (8o AR (7ly, me1)dB = 0, (B,7)] 4B

RN

/]RN S(ﬁaT) |:H7;Z 1,7 (/607/6) - Q(B|Tay;nk71):| dﬁ‘ |R.7k(7-|yank71)|

IN

2
R

[ 56Tl v )08 R el )~ atr i)

Denoting M., _, = max, [pn |S(B,7)|q(B|7,y,nk—1)dB, we obtain finally

(8.7 [T+ (808 - BTy )] 48| s year (640)

+Mnk71 Z IRy, (7Y me—1) — a(T1Y, me—1)| Ly (s, )< (6.5)

We will first show that the Gibbs sampler kernel II, - satisfies a lower bound condition and a Drift condition
(MDRI) to get its geometric ergodicity (as it has been done in [3]).

(MDRI): For any s € S and any T € T, Il + is irreducible and aperiodic. In addition there exists a
function V : RN — [1, 00[ such that for any p > 1 and any compact subset K C S, there exist a set C,
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an integer m, constants 0 < k < 1, B> 0, § > 0 and a probability measure v such that

. m N

se;ér,lfgn’?“)v*(ﬂ’ A) > dv(A) VB ecC,VAe BRY), (6.6)
sup IF,) VP(B) < ©wVP(B)+ Blc(B). (6.7)

sekK,7eT

Notation 6.1. Let (e;)1<j<n be the canonical basis of the 8-space and for any 1 < j < N, let E, - ; £{B¢c
RN | (B,e;)n+ = 0} be the orthogonal of Span{e;} and p, - ; be the orthogonal projection on E,, - ; i.e.

<ﬂ7 ej)ﬁv"’e‘

lejliz -

(1>

P75 (ﬂ) B8 —

2
n,T

where (8,8, = S, BT, L3l for B and B’ in RY (i.e. the natural dot product associated with the

9.7
covariance matrices (I'y;)¢) and [|.|[,~ is the corresponding norm.

We denote for any 1 < j < N,n € O xpand 7€ 7T, byll, - ; the Markov kernel on RN associated with the
j-th Metropolis-Hastings step of the Gibbs sampler on RY. We have I, =1, -Nyo0---0Il, 1.

Inequality (6.6) is equivalent to the existence of a small set C for the kernel Il;,) - independent of s € K.
We recall here the definition of a small set:

Definition 6.1 (c¢f. [17]). A set £ € B(RY) is called a small set for the kernel II if there exist an integer
m > 0 and a non trivial measure v, on B(RY), such that for all B € £, B € B(RY), II"(B3, B) > vm(B).
When this holds, we say that £ is v,-small.

We now prove the following lemma:

Lemma 6.1. Let £ be a compact subset of RY and IC be a compact subset of S, then & is a small set of RV
fO?” (Hﬁ(s),T)SEIC,TE’T-

Proof. The transition probability kernel of our Markov chain on 3 is defined as follows: for coordinate j, the
kernel is

Hn7T7j (IB’ dZ) = (®Tn;ﬁj65m (dzm)) P [QJ (dzj |ﬁ_ja 1, T)Tj (ﬁja dzj; /6_j7 1, T)

+%mu0/ﬂ—fﬂ%hﬂ”ﬂﬁﬁ%@ﬂﬂmﬁmb-(G&

Then note that there exists a. > 0 such that for any n € © x o, any 8 € RN and any b € R, the acceptance rate
ri(B7,b; 877, n,7) is uniformly lower bounded by a. so that for any 1 < j < N and any non-negative function f,

M, f(8) > a. / F(B7 + be;)g; ()87, 7, m)db = a, / Fnr(B) + 225/ le5lmr)g01 (),

where go 1 is the probability density function of the standard N (0,1). By induction, we have

N N
0 f(8) 2 0 [ puran(®)+ 3 smamserne)/leslr | TLaoati)dz,. (69)

j=1 j=1
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where py + g = Pprr © Pprr—10...0Dy rq for any integer ¢ < 7 and p, - nvy1,8 = Idgny. Let A, + € L(RN)
be the linear mapping on 2z = (z1,..., zx) defined by

N

A2l =3 2ipy g (es)/ e
j=1

0,7

One easily checks that for any 1 < k& < N, Span{ p, - j+1,n(€;j), k < j < N} = Span{e;,k < j < N} so that
Ay + is an invertible mapping. By a change of variable, we get

N
/]RN f (pn,‘r,l,N(/B) + An,‘rziv) H gO,l(Zj)de = /]RN f(u)gpn,.,.wlyN(ﬂ),An,.,.A}%.,. (u)dua

J=1

where g, » stands for the probability density function of the normal law N (u, X).

Since (n, T) — A+ is smooth on the set of invertible mappings in (1, 7), we deduce that there exist cx > 0
and Cx > 0 such that cxld < A, A . < Id/cx and Ipyran(B),An AL (W) = Ckgy, -, (8)1d/c(w) uniformly
for n = 7(s) with s € K and 7 € 7. Assuming that 8 € &, since  — p; 1, n is smooth and & is compact,
we have SUpgeg —i(s), sexc,re7 |Pnr1,8(B)| < 0o so that there exist other constants Cic > 0 and cx > 0 such

that for any (u,3) € RN x £ and any n =1j(s), s€ K, 7 €T
Ipnran(B)iAna Al L (1) = Cicgo,ta/ex (1) (6.10)

Using (6.9) and (6.10), we deduce that for any A II, - (8, A) > Cxav(A), with v equal to the density of the
normal law N(0,1d/c). This yields the existence of the small set as well as equation (6.6). O

This property also implies the ¢-irreducibility of the Markov Chain generated by II, . Moreover, the
existence of a v;-small set implies the aperiodicity of the chain (cf. [17]).

Now consider the Drift condition (6.7).
We set V : RV — [1,400] as the following function V(3) = 1 + ||3||?,where | - || denotes the Euclidean

norm. Define for any g : RV — R" the norm |g|y = sup % and the functional space Ly = {g :
BERN

RY — R™ | [|g|ly < +oo}. For any n € © x g and any T € 7, we introduce a (1, 7T) dependent function
Vor(B) £ 1+ 1187+

Lemma 6.2. Let K be a compact subset of © X o. For any integer p > 1, there exist 0 < p < 1 and C' > 0 such
that for anyn € K, any T € T, any B € RY we have

L, 7 VP (B) < pVip-(B) + C.

Proof. The proposal distribution for II, - ; is given by g, B | B, T, y.m) faw P, (B) + mej , where

z ~ N(0,1). Then, for any B8 € RY and any measurable set A € B(RY), there exists a,  ;(3) uniformly
bounded from below by a. > 0 such that

Iy 58,4) = (1= e (BNLA(B) +0(8) [ L (pn,m ) + ) go1(d2),

llejlin.r
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Since (py,r,;(8),€j)n+ = 0, we get V;, - (pn,-,-,j(ﬂ) + m%) = Vyr(pnr.;(B)) + 2% We deduce that there
exists C such that for any 8 € RV:

Hmf,jvrﬁ«r(/@) (1- an,ﬂj(/@))Vanr (B) + an7‘l'7j(ﬂ)/R (Vn,‘r(pn,‘r,j(:@)) + 22);; 90,1(d2)
(]— - an,‘r,j(/g))vnlj‘r (ﬁ) + an,‘r,j(/g)]P)
(Ve oar s 80 + V27 0r s 8D [ (12 01(02))

< (1= anr i (B)Vy(8) + anr BV (pyr 5(B) + CVIZ (py.r 5(8))-

IN

We have used in the last inequality the fact that a Gaussian variable has bounded moment of any order. Since
an,r;i(B) > ac and ||py.+;(B)|ln+ < I1Bl/n,+ (Pn,r,; is an orthonormal projection for the dot product (-, )y +),
we get that for any & > 0, there exists Ck . such that for any 3 € RY andn e K,7 €T

7 Ve (B) < (1 = ac)ViPr(B) + (ac + )V - (pnr 5 (B)) + Ok e
By induction, we get

N

. y c
Hm‘l’V’l’;D,‘r(ﬂ) S Z (1 - aC)l i (ac + 5) vaﬁq-(pmf,u(/@)) + —};,E ((1 + 5)N+1 — 1) s
ue{0,1}VN j=1

where py o = (1 — un)Id + unpyr n) o ... 0 ((1 —ur)ld + uipy,r.1).
Let p, + = py,+,~ ©---0py .+ 1 and note that p, -, is contracting so that

)~ VE(8) < be, Vi (B) + (ac+ &)V VP (py,~(8)) + C?e (14 )

for b = (ZuG{O,I}N, w1 H;V:1 (1—a.)t"%(a. + E)uj). To end the proof, we need to check that p, - is strictly
contracting uniformly on K. Indeed, ||py+~(8)|l5,+ = ||Bll5,+ implies that p, - ;(8) = B for any 1 < j < N so
that (8,ej)n.- = 0 and B8 = 0 since (ej)i<j<n is a basis. Using the continuity of the norm of p, , and the
compactness of K, we deduce that there exists 0 < px < 1 such that |[p, +(8)|y.» < px |8+ for any B8 € RV,
n € K and any 7 € 7. Changing px for 1 > ple > prc we get (1 + p% (|87 )P < PP+ 18l17 -)? + Ck for
some uniform constant Ci so that

I, VP (8) < be. e VEL(B) + p/ % ac + )V VP (B) + Clke.

Since we have igg {bc,E + 0/ (ae + E)N} < 1 the result is straightforward. O

Lemma 6.3. For any compact set K C ©Pp, any integer p > 0, there exist 0 < p < 1, C > 0 and a positive
integer mo such thatVm >mg ,Vne K, VB8 €T

I, V7(8) < pV?(B) + C.

Proof. Indeed, there exist 0 < ¢; < ¢ such that ¢;V(8) <V, ~(8) < c2V(B) for any (8,1, 7) €e RN x K x T.
Then, using the previous lemma, we have IL" VP(8) < ¢ "II", VP (B) < ¢, "(p™VP (B) + C/(1 —p)) <
(c2/c1)P(pmVP(B) 4+ C/(1 — p)). Choosing m large enough for (ca/c1)Pp™ < 1 gives the result. O

This finishes the proof of (6.7) and in the same time the (MDRI).
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Thanks to this property we can use the following proposition (¢f. [5,17] Prop. B1) and lemma applied to

every sequence ( é?)l with stationary distribution ¢(-|y;,t,n) for all 1 <t <7, and all 1 <4 < n.

Proposition 6.1. Suppose that II is irreducible and aperiodic and that I (By,.) > 1c(By)ov(.) for a set
¢ € B(RY), some integer m and 6 > 0 and that there is a Drift condition to C in the sense that, for some
0< k<1, B>0 and a function V. : RN — [1, 400,

IV (By) < KV (By) VB, ¢ Cand SUEPC(V(ﬂo) +11V(By)) < B.

Then, there exist constants K and 0 < p < 1, depending only upon m,d, r, B, such that, for all B, € RN, and
all g € Ly

" g(Bo) = m(g)llv < Kp"llgllv-

Lemma 6.4. Assume that there exist an integer m and constants 0 < k < 1 and ¢ > 0 and a set C such that
"V (8,) < £V (Bo) VBy ¢ Cand TIV(B,) < <V (By) VB, € RY

for some function V. : RN — [1,4+o0[. Then there exists a function V and constants 0 < p<1lc>0 and
C > 0, depending only upon m, k,s, such that,

IV (8,) < pV(By) VB, & Cand cV <V < CV.
Proof. Define
V=> sgTmETY.
j=1

For 3, ¢ C, we have

m—1
IV(B,) < Y w'"77/™IVV(8,)+rV(By)
j=1
< ”l/mf/(ﬁo)~

Therefore we obtain:
nl_l/mV§‘7§ Zﬂl_j/mé-j_l V.
j=1

This ends the proof of Lemma 6.4. O

Thus, applying the Proposition 6.1 and Lemma 6.4 to the Drift conditions of Lemmas 6.2 and 6.3, we get
that each Gibbs sampler kernel 1I,, ~ is geometrically ergodic.

Let us now go back to the convergence of the first part of the residual term (6.4) towards 0.

We use the term Ty (s, ,)<as to show that the parameters 7,1 are constrained to move in a compact set of
© x p. We show first that the observed log-likelihood [ tends to minus infinity as the parameters tend to the
boundary of © x p. Equation (2.1) implies that for any 6 € © we have:

_ _ _ 1 _
q(Wil Bis i, @, ) q(Bi|T g 7y) < (2m0?) TN 2(2m)~Ho D, L7 2 exp (—§ﬁfrg,;ﬂi) ;
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so that denoting C' as a constant:

n 2
a0, Al + a
lou(a(y. 1)) < 3 [~ (054 5) A OIS
i=1 i
1 ty—1
*i(a'ri — k)", (o, — pp) —aplogpr | +C.
It was shown in [1] that we have il HlirnlH - @ L) r + 1Jr%log|I‘*1| = —oo and | ll'}m —(a—
4[|’ =] —oc al|—oco

fip)' X, (@ — pp) = —oco. Moreover, we have lim, g log(p) = —o0, so we get lim, _a@x) logq(y,n) = —oo,

which ensures that for all M > 0 there exists £ > 0 such that |Joy|| > ¢ or ||T¢|| + [|T; Y]] > £ or p; < 4 implies
—l(n) > M.

So W (sk—1) < M implies that for all 1 <t < 7, we have |Joy| < ¢, [|[Ty]| + [T || < Cand $ < p, <1— 1
because >_;™ pr = 1.

Let us denote by V, = ©;™ x {(pt)lgtgm € [%, 1-— }

Tm

i pe =1}, where
6= {e — (@) [0 €BY, T, € Symf () | ol < 6.7 < |ITyl| < 6}

So there exists a compact set Vy of © x g such that W(s,_1) < M implies 7j(sx—1) € Ve and the first term (6.4)
can be bounded as follows:

2

T

/]RN S(ﬁvT) [H#: 1, ‘r(ﬁOaﬁ) - Q(B|T7yank71)] dlg‘ ]IW(sk,l)gM

Y
T neVe

| S08.7) 180, 8) ~ Bl y.1)] a5

Since for each 7 the function 8 — S(8, ) belongs to Ly, since we have proved that each transition kernel II, -
is geometrically ergodic and since the set Vy is compact, we can deduce that the first term (6.4) converges to
zero as Ji tends to infinity.

We now consider the second term (6.5). We first need to prove that M,, Ly (s, ,)<ns is uniformly bounded
that is to say the integral of the sufficient statistics are uniformly bounded on {W(s;_1) < M}; we only need
to focus on the sufficient statistic which is not bounded itself: let (j,m) € {1, ..., 2k, }*:

i T, Y,
[ By 8L e < [T gy,
(7, Y, k1)

I J (e i
(TMM/W |exp< ﬂl“gfklﬂ>dﬁ

c) [ QB Tyrss)exw (~31617) a6 < .

IN

IN

where C'(V,) is a constant depending only on the set Vg, f’gﬂ. is the diagonal block matrix with all the I'y -,
given by the label vector 7 and we have changed the variable in the last inequality and @ is a quadratic form
in B whose coeflicients are continuous functions of elements of the matrix I';. So we obtain that for all M > 0
there exists £ > 0 such that for all integer k we have: M., Ly (s, y<u < C(Ve).
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We now prove the convergence to 0 of the second term of the product involved in (6.5). Let us denote by
R,k for the term |Rjy, (T]y,nx—1) — ¢(T|y, Mk—1)|. Thus we have:

Rryi = H / o (e, 1)Q(ENAE — [Tl )
< Z [ pontrles s Q&N il me)
=S / 19 (73066950 1) — a7l 1) QUENE;
< /‘ Sa(Tis Yil&riisMe—1)  a(Tis Yilme—1) Qe des,

D> S5 (8, Yils iy Me—1) q(yilme—1)

. (l)
where we denote by S;(t,yi|¢.:,n) the quantity ( & > #
’ =1 Q(yuﬁt,lﬂf\ﬂ)

We write each term of this sum as follows:

S (Tis Yilriis Me—1) q(1i, yilme—1)

> S5 (5, yil€s,i,Me—1) q(yilme—1)
s=1

S 1 (Tis Yil&ra i Me—1) (@ (s | M—1) — 21 S7. (8, Yil&syis Me—1))

Tm
q(yilmk—1) > Su. (8, Yil&sis Mh—1)
s=1

(S7 (7o, Yl &rivi Me—1) — a(Tis yalmk—1)) D S5, (5, il sy Me—1)
s=1

+ -
q(yilnk—1) 21 S7.(5, Vil iy Me—1)
s=

Denoting by 7; the set of 7,,, + 1 integers {1,...,7,,} U {7}, we obtain finally:

IN

7?f‘r,y,k Z yz e 1 Z/'SJk S yz|§s iy Nk— 1)_Q(3 yz|77k 1)|Q(§’L d&

Defining the event Ay ;= {157, (¢, yil&t.is Me—1) — q(t, yilme—1)| > (&} for some positive sequence (()r, we get:

n

Reyk < Zm Z/ |Slk 8, Yil&s,ir Me—1) — (8, yilme—1)| Q(&)d&

seT;

Z/ |SI;C S yz|£szank 1)7(1(5 yz|77k 1)|Q(£z)d£z

seT;

n

+Z(

yz|77k 1
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So we deduced that:

n
7?/‘r,y,k < Z

i=1

Tm + 1)Ck
—~q yzlnk 1)
" S 1|88, ()
(supss 7. (8, Yils.i, 1) +1) <Z p(Ak’i,s)JrP(Ak,i,ﬂ))
=1

yzlnk 1 sET;

—~q yz|"7k 1)

Assuming ( < min; ¢ ¢(t, y;|nk—1), we obtain:

SupSJ S, Yi €S,'ank— +q S, Yi | Mk— PAk,',s
q(yzlnk 1)5;( e (8,il€s,i 1) + 4(8, yilme—1)) P (Akis)

Mz

+

IN

~.

M:

+

P(A% ) = PS5t yiléime—1) — q(t yilme—1)] < k)
> p ( 1 B 1 Ck )
Syt yil&isme—1)  q(t, yilme—1) q(t, yilnk—1)(q(t, yilme—1) + Ck)
1 1
>

(] - < )
Sr (tyleisme—1)  a(t yilme—1)| — 2q(t, yi|nr—1)?

2
Using the first inequality of Theorem 2 of [9], we get: P(Ag,i+) < c1exp (702(1@;\6%) , where ¢; and co are

independent of k since (n;;) only moves in a compact set Vy thanks to the condition Ny (s),_,<ar)- This yields:

supg 5 S, (8, yil&s,ir Mk—1) ) ( JiC? )
Rryk <cC +1)(r+Dexp | —co————EF
vh ' ; ( q(yilmk—1) (Fm 1) exp QmaXiQ(yz‘|7lk71)4

- 1
+ sup ———— | (T + 1)G-
o1 €L <; Q(yi|77k—1)>

We have to prove that the Monte Carlo sum involved in Sy, (s, y;|&s.i, mk—1) does not equal zero everywhere, so
k )
that sup, .Sy, (s, yil€s.s,Mk—1) is finite. For this purpose, we can choose a particular probability density function
£,s k Y Jis 11
f- Indeed, if we set f to be the prior density function on the simulated deformation fields &, we have for all

ne Vo:
J (l))
e

(1
yz,fft 'L))t|77

~l=
B

1
1 [q(yi|€§f37t,n)q(tln)]
1

l

> (2m0”) A,

v
S
M~

0)
=1 @Tlg)weXp(—ﬁHyi—Kg atHQ)

where o is the lower bound of the variances (oy).
We choose the sequence ({)r depending upon (Ji)r such that klim (r = 0 and klim JiC? = +oo. We can

take for example (; = Jk_l/3 for all k > 1.

We will now prove the convergence of the sequence of excitation terms.
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n
For any M > 0 we define M, = > Agerly (s, ,)<m and let F = (Fi)r>1 be the filtration, where 7, is the
k=1

o-algebra generated by the random variables (So,31,...,084, T1,-.-,Tk). We have M,, = Z Ak (S(B, Tk)—

E[S(By, Tk )| Fr-1]) Lw(s,_,)<m so this shows us that (M,) is a F-martingale. In addltlon to this we have:

E [Aflerl Tw(s_y<nr | Freo1] <Y AFE [[lex])? | Fii]
k=1

RE [[1S(Brs 1) = E[S (B Ti)|Fr-1] II* | Fror]

S CE[IMy — Mya|? | Fioa] =
k=1

IN

1 T4
L7

el
Il
=

<

hE

AZE [IS(Bs i) | Fra] -

el
Il
=

We now evaluate this last integral term:

E [HS(IBkaTk)H2 | fkfl} = Z/ /”S ﬁ; | an 1,7 ﬁo; Hp‘]kﬂ?k 1 Tzafn,z;yz)Q(fn,i)dfn,idﬁ

[Z/ ISP (80908 | [T 260000

The last term equals one and again we only need to focus on the sufficient statistic which is not bounded itself.
Indeed S5 +(8,T) for all 1 <t < 7, so using the fact that the function V' dominates this sufficient statistic, we
obtain:

IN

E [HS&t(/@vak)HQ | ]:k—l]

IN

S [ 108 DI £ (80,8)3

IN

OX [ VO (ByB8 < O V(B
Applying Lemma 6.3 for p = 2, we get:

EISBrmi)l? | Froa] < CD (pV(By)* +C) < Crin(pV (By)? + C).

o0 o)
Finally it remains: Y. E [[|[M}, — My_1||*| Fe—1] < C Y. A}, which ensures that the previous series converges.
k=1 k=1

This involves that (Mk)keN is a martingale bounded in L? so that klim M;, exists (see [13]). This proves the
—00

first part of (STAB2).
To conclude this proof we apply Theorem 4.1 and get that klim d(sg, L) =

7. CONCLUSION AND DISCUSSION

We consider the setting of Bayesian non-rigid deformable models building in the context of [1] and the
associated MAP estimator. We approximate this estimator of this generative model parameters thanks to a
stochastic algorithm which derives from an EM algorithm. We also prove its theoretical convergence toward a
critical point of the observed likelihood. This is, to our best knowledge, the first convergent estimation algorithm
of the templates and geometrical variabilities in the framework of mixture model for deformable templates.
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The algorithm is based on a stochastic approximation of the EM algorithm using a MCMC approximation of the
posterior distribution and truncation on random boundaries. We present experiments on the US-postal database
as well as on some 2D medical data. This shows that the stochastic approach can be easily implemented with
the algorithm detailed here and is robust to noisy situations, giving better result than the previous deterministic
schemes.

Many interesting questions remain open.

The first goal of these model and algorithm is the estimation of some atlases in a given population and the
acceptable deformations of these atlases that can explain the variability in the population. However, this model,
as soon as the parameters are estimated, can be used to create a classifier. Given a new image, one can compute
the most likely component that this image belongs to. This computation requires to evaluate the integral of
the complete likelihood with respect to the posterior distribution as well as in the estimation process. A first
proposition to overcome this difficulty has been given in [1] while approximating the posterior distribution by a
Dirac on its mode. This gave very interesting results which are presented in that paper. However, in the case of
noisy images, the same problem occurs and leads to bad classification ratios. Another way has been proposed
in [2] using the same methods as in this paper, that is to say, using Monte Carlo Markov Chain methods. The
results are impressive and the improvement noticeable.

We have presented here a set of experiments on 2D images. The generative model as well as the algorithm
and the proof of its convergence do not depend on the dimension of the images. The implementation for 3D
images is only a numerical issue. We are currently working on the 3D codes to test this algorithm on real
medical databases.

An interesting extension would be to consider diffeomorphic mapping and not only displacement fields for
the hidden deformation. This appears to be particularly interesting in the context of Computational Anatomy
where a one to one correspondence between the template and the observation is usually needed and cannot be
guaranteed with linear spline interpolation schemes. This extension could be done in principle using tangent
models based on geodesic shooting in the spirit of [20]. Many numerical as well as theoretical work need to be
done in this area.
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