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SPECTRAL GALERKIN APPROXIMATION OF FOKKER-PLANCK EQUATIONS
WITH UNBOUNDED DRIFT

David J. Knezevic
1

and Endre Süli
1

Abstract. This paper is concerned with the analysis and implementation of spectral Galerkin meth-
ods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A
relevant feature of the class of equations under consideration from the viewpoint of mathematical anal-
ysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth
convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D.
Using a symmetrization of the differential operator based on the Maxwellian M corresponding to U ,
which vanishes along ∂D, we remove the unbounded drift coefficient at the expense of introducing a
degeneracy, through M , in the principal part of the operator. The general class of admissible potentials
considered includes the FENE (finitely extendible nonlinear elastic) model. We show the existence of
weak solutions to the initial-boundary-value problem, and develop a fully-discrete spectral Galerkin
method for such degenerate Fokker-Planck equations that exhibits optimal-order convergence in the
Maxwellian-weighted H1 norm on D. In the case of the FENE model, we also discuss variants of these
analytical results when the Fokker-Planck equation is subjected to an alternative class of transforma-
tions proposed by Chauvière and Lozinski; these map the original Fokker-Planck operator with an un-
bounded drift coefficient into Fokker-Planck operators with unbounded drift and reaction coefficients,
that have improved coercivity properties in comparison with the original operator. The analytical
results are illustrated by numerical experiments for the FENE model in two space dimensions.
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1. Introduction

This paper is concerned with the numerical approximation of the Fokker-Planck equation

∂ψ

∂t
+ ∇∼ x · (u∼(x∼, t)ψ) + ∇∼ q ·

(
(∇≈ x u∼)q

∼
ψ
)

= εΔxψ +
1

2λ
∇∼ q ·

(
∇∼ qψ + F∼ (q

∼
)ψ
)
, (1.1)

that arises from the kinetic theory of dilute polymers [12,13]; see also [4,5,7] and references therein. Here,
ε and λ are two positive parameters, referred to as centre-of-mass diffusion coefficient and relaxation time,
respectively, Ω ⊂ R

d is the flow-domain of the polymer and D ⊂ R
d is the set of admissible orientation vectors

of polymer chains. Typically D = B(0∼;
√
b ), where b > 0 is a nondimensional parameter that measures the
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maximum possible extension of polymer chains, and B(0∼; s) is the open ball with radius s centred at the origin 0∼
in R

d, d ∈ {2, 3}. Henceforth, unless otherwise stated, D will denote B(0∼;
√
b ).

Equation (1.1) governs the evolution, over a nonempty, bounded and closed time interval [0, T ], of the
probability density function ψ : (x∼, q∼, t) ∈ Ω × D × [0, T ] �→ ψ(x∼, q∼, t) of a 2d-component stochastic process
that models random fluctuations of polymer molecules in a solvent due to thermal agitation. The solvent is
an incompressible Newtonian fluid with velocity u∼ whose motion is governed by the Navier-Stokes equation
forced by the divergence of the non-Newtonian extra stress tensor, defined as the integral of F∼ (q

∼
) ⊗ q

∼
ψ(x∼, q∼, t)

over D. In the simplest models of this kind, elastic effects are incorporated by modelling the polymer chains
as dumbbells, i.e., as pairs of massless beads connected by an elastic spring, with spring force F∼ : D → R

d

defined by a spring potential U : R≥0 → R through

F∼ (q
∼
) := U ′(1

2 |q∼|2) q∼, q
∼
∈ D. (1.2)

We adopt the following structural hypotheses.

Hypothesis A. The spring potential U ∈ C1([0, b2 )) is a non-negative monotonic increasing function, with
U(0) = 0, lims→b/2− U(s) = +∞, lims→b/2−( b2 − s)U ′(s) <∞.

Hypothesis A is consistent with the physical requirement that, in order to faithfully model finite stretching of
polymer chains, the spring force F∼ (q

∼
) should have infinite intensity when the maximum admissible elongation

|q
∼
| =

√
b is reached; i.e., the function q

∼
�→ U ′(1

2 |q∼|2) should tend to +∞ as d(q
∼
) := dist(q

∼
, ∂D) =

√
b−|q

∼
| → 0+.

Given a spring potential U , consider the associated (normalized) Maxwellian M defined by

q
∼
�→M(q

∼
) :=

1
C(b)

exp
(
−U(1

2 |q∼|2)
)
∈ L1(D), where C(b) :=

∫
D

exp
(
−U(1

2 |q∼|2)
)

dq
∼
.

Since, by Hypothesis A, U(1
2 |q∼|2) → +∞ as d(q

∼
) → 0+, we have that M(q

∼
) → 0+ as d(q

∼
) → 0+.

Hypothesis B.
√
M ∈ H1

0(D), andM is a weight function of type 3 on D in the sense of Triebel [33], p. 247, Def-
inition 3.2.1.3c; i.e., there exist positive constants c1, c2 and λ, and a positive monotonic increasing function τ ,
defined on the interval (0, λ), such that c1 τ(d(q∼)) ≤M(q

∼
) ≤ c2 τ(d(q∼)) for all q

∼
∈ D satisfying d(q

∼
) < λ.

Example 1.1. Consider the function U defined by

U(s) := −f(s) ln
(

1 − 2s
b

)
, s ∈ [0, b2 ), with b > 2,

where f ∈ C1[0, b2 ] is a nondecreasing function, positive on (0, b2 ], with f( b2 ) > 1; then U and the associated
Maxwellian M satisfy Hypotheses A and B, respectively.

Hypotheses A and B will be assumed throughout the paper. In Section 2 we shall also invoke the following
additional assumption, which is not required elsewhere.

Hypothesis C. With U as in Hypothesis A and L(s) := ln(1 − 2s
b ), there exist ω and γ in R such that the

mapping q
∼
�→ (U +γL)(1

2 |q∼|2) is ω-convex on D in the following sense: there exists c0 ∈ R>0 such that, for each
q
∼
∈ D, the Hessian

H(q
∼
) :=

(
∂2

∂qi ∂qj
(U + γL)(1

2 |q∼|2)
)

of q
∼
�→ (U + γL)(1

2 |q∼|2) satisfies H(q
∼
) ≥ c0(1 − |q

∼
|2/b)ω Id, where Id is the d× d identity matrix.

Example 1.2. In the case of the FENE (finitely extendible nonlinear elastic) polymer model

U(s) := − b

2
ln
(

1 − 2s
b

)
, U ′(s) =

1
1 − 2s

b

, s ∈ [0, b2 ), with b > 2.



SPECTRAL GALERKIN APPROXIMATION OF FOKKER-PLANCK EQUATIONS WITH UNBOUNDED DRIFT 447

It will be shown in Section 2 that the function q
∼
∈ D = B(0∼;

√
b) �→ (U + γL)(1

2 |q|2) is ω-convex with ω = −1
(or, briefly, (−1)-convex) and c0 = (b − 2γ)/b, for all γ ∈ [0, 1]. Thus the FENE spring potential U satisfies
Hypothesis C with ω = −1 and any γ ∈ [0, 1]. The associated normalized Maxwellian is

M(q
∼
) =

1
C(b)

(
1 −

|q
∼
|2
b

)b
2

, q
∼
∈ D = B(0∼;

√
b ).

Clearly, there exist positive constants c1 and c2 such that c1 ≤M(q
∼
)/[d(q

∼
)]b/2 ≤ c2 for all q

∼
∈ D (i.e., λ =

√
b );

hence M is a weight function of type 3 on D. Also, thanks to the assumption b > 2,
√
M ∈ H1

0(D). For b� 1,
M decays to 0 very rapidly as q

∼
approaches ∂D. In numerical simulations typically b ∈ [10, 100].

Following Kolmogorov [24], the Fokker-Planck equation can be recast as follows:

∂ψ

∂t
+ ∇∼ x · (u∼(x∼, t)ψ) + ∇∼ q ·

(
κ≈(x∼, t) q∼ψ

)
= εΔxψ +

1
2λ

∇∼ q ·
(
M(q

∼
)∇∼ q

(
ψ

M

))
,

where κ≈(x∼, t) := (∇≈ x u∼). The probability density ψ is a function of 2d+1 independent variables: x∼ ∈ R
d, q

∼
∈ R

d

and t ∈ R≥0. Since the dependence of the coefficients in the equation on x∼ and q
∼

is separated/factorized, an
efficient approach to the numerical solution of this equation in 2d + 1 variables is based on operator-splitting
with respect to (q

∼
, t) and (x∼, t); see Chauvière and Lozinski [17,18,27]. Thereby, the resulting time-dependent

transport-diffusion equation with respect to (x∼, t) is completely standard, ψt + ∇∼ x · (u∼(x∼, t)ψ) = εΔxψ, while
the transport-diffusion equation with respect to (q

∼
, t) is

∂ψ

∂t
+ ∇∼ q · (κ≈ q∼ψ) =

1
2λ

∇∼ q ·
(
M(q

∼
)∇∼ q

(
ψ

M

))
, (q

∼
, t) ∈ D × (0, T ]. (1.3)

Equation (1.3) is supplemented with the following initial and boundary conditions:

ψ(q
∼
, 0) = ψ0(q∼), for all q

∼
∈ D, (1.4)

ψ(q
∼
, t) = o

(√
M(q

∼
)
)
, as d(q

∼
) → 0+, for all t ∈ (0, T ]. (1.5)

Here, the initial datum ψ0 is such that ψ0 ≥ 0 and
∫
D ψ0(q∼) dq

∼
= 1.

The central difficulty, from both the analytical and the computational point of view, is now the presence
in (1.3) of the degenerate Maxwellian M(q

∼
), with limd(q

∼
) → 0+

M(q
∼
) = 0. Thus we shall ignore the coupling

between the Fokker-Planck equation and the Navier-Stokes system, suppress the dependence of the probability
density function ψ on the variable x∼, assume that the d × d tensor κ≈ = ∇≈ x u∼ is independent of x∼, belongs
to (C[0, T ])d×d and is such that tr(κ≈)(t) = 0 for all t ∈ [0, T ], and we focus our attention on the numerical
solution of (1.3), (1.4), (1.5). For theoretical results concerning the existence of weak solutions to coupled
Navier-Stokes-Fokker-Planck systems and a detailed survey of related literature we refer to [4,6,7] and [26].

Most numerical methods developed for the Fokker-Planck equation have been based on the ‘original’ form,

∂ψ

∂t
+ ∇∼ q ·

(
κ≈q∼ψ

)
=

1
2λ

∇∼ q ·
(
∇∼ qψ + F∼ (q

∼
)ψ
)
, (1.6)

see, for example, [17,18,27] or [1,2]. From the theoretical viewpoint at least, the advantage of (1.3) over (1.6), is
that on transformation into weak form the diffusion operator becomes symmetric (see (1.7)), which facilitates
the analysis of the Fokker-Planck equation for a general class of Maxwellians. Notwithstanding this potential
theoretical advantage, the computational benefits, or otherwise, of discretizing (1.3) rather then (1.6) remain
to be understood.
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The aim of this paper is therefore two-fold:
(a) Our principal objective is to develop the mathematical and numerical analysis of equation (1.3) for a

general class of Maxwellians. The discretization of the equation is based on a spectral Galerkin method
in the spatial variable q

∼
coupled with backward Euler time-stepping. One can, of course, consider more

accurate time discretization schemes, such as an nth-order backward differentiation formula, BDFn,
n ∈ {2, . . . , 6}, for example. High-order time discretization of the problem is, however, a secondary
consideration to the central theme of the paper, and we do not discuss it here.

(b) In the special case of the FENE model, we shall show how the results under (a) can be adapted to
the case of an alternative discretization proposed in [17,18,27], which applies a transformation, different
from Kolmogorov’s symmetrizing transformation considered under (a), to the ‘original’ form (1.6) of
the Fokker-Planck equation. The transformed equation is then approximated in the same way as in (a),
using a spectral Galerkin method in space and a backward Euler discretization in time.

Since the analytical arguments under (b) are almost identical to those under (a), for the sake of brevity we
shall focus our attention on (a), but we shall systematically indicate the key adjustments that need to be made
in order to obtain the corresponding results under (b). We begin by defining the relevant function spaces.

Let

H :=

{
ϕ ∈ L2

loc(D) :
∫
D

(
ϕ√
M

)2

dq
∼
<∞

}
, K :=

{
ϕ ∈ H :

∫
D

((
ϕ√
M

)2

+
∣∣∣√M ∇∼ q

( ϕ
M

)∣∣∣2
)

dq
∼
<∞

}

and define K0 as the closure of
√
MC∞

0 (D) in the norm of K. Taking our test functions as ϕ/M with ϕ ∈ K0,
we obtain the following weak formulation of the initial-boundary-value problem (1.3).

Given ψ0 ∈ H, find ψ ∈ L∞(0, T ; H) ∩ L2(0, T ; K0) such that

d
dt

∫
D

ψ ϕ

M
dq

∼
−
∫
D

(κ≈ q∼)
ψ√
M

·
√
M ∇∼ q

( ϕ
M

)
dq

∼
+

1
2λ

∫
D

√
M ∇∼ q

(
ψ

M

)
·
√
M ∇∼ q

( ϕ
M

)
dq

∼
= 0 ∀ϕ ∈ K0, (1.7)

in the sense of distributions on (0, T ), and ψ(·, 0) = ψ0(·).
Now, by introducing the notation

ϕ̂ :=
ϕ√
M

and ∇∼ M ϕ̂ :=
√
M ∇∼ q

(
ϕ̂√
M

)

we can reformulate (1.7) on observing that, by the definition of K, we have ϕ ∈ K0 if, and only if, ϕ̂ ∈ H1
0(D;M),

where H1
0(D;M) is the closure of C∞

0 (D) in the norm of H1(D;M), and

H1(D;M) :=
{
ζ ∈ L2(D) : ‖ζ‖2

H1(D;M) :=
∫
D

(
|ζ|2 + |∇∼ Mζ|2

)
dq

∼
<∞

}
·

When applied to an element of H1
0(D;M) the norm ‖ ·‖H1(D;M) will be written ‖ ·‖H1

0(D;M). As a matter of fact,
we shall show below that C∞

0 (D) is dense in H1(D;M) and therefore, perhaps somewhat counter-intuitively,
H1

0(D;M) = H1(D;M), and also K0 = K.

Remark 1.3. We note in passing that the substitution ϕ̂ = ϕ/
√
M also appears in the recent paper by

Du et al. [20], though the operator ∇∼ M does not.
In the case of the FENE Maxwellian (cf. Ex. 1.2), Chauvière and Lozinski [17,18,27] used a spectral method

to approximate ψ/M2s/b instead of ψ/
√
M , where s is a parameter that was chosen on the basis of numerical

experiments. Clearly, the two expressions coincide when s = b/4; on the other hand, the values s = 2 and
s = 2.5 were recommended in [17,18,27] on computational grounds for d = 2 and d = 3, respectively. More will
be said in Sections 3, 4 and 6 about the analytical implications of using, in the special case of the FENE model,
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the substitution ψ̂ := ψ/M2s/b instead of the substitution ψ̂ := ψ/
√
M . In particular, we shall show that both

substitutions result in unconditionally stable and convergent numerical methods, although in the case of the
Chauvière and Lozinski type substitution it will be necessary to assume for this purpose that b ≥ 4s2/(2s− 1)
with s > 1/2, while the Kolmogorov symmetrization will be seen to result in a stable and optimally convergent
scheme for all b > 2. In Section 7 we shall perform quantitative comparisons of the two approaches through
numerical experiments.

With the notational conventions defined above, (1.7) has the following form.

Given ψ̂0 := ψ0/
√
M ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) such that

d
dt

∫
D

ψ̂ ϕ̂ dq
∼
−
∫
D

(κ≈ q∼)ψ̂ · ∇∼ M ϕ̂ dq
∼

+
1
2λ

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

= 0 ∀ϕ̂ ∈ H1
0(D;M), (1.8)

in the sense of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).
The function space H1

0(D;M) may appear exotic. We shall see however in Section 2 that this is not so: it will
be shown in Section 2.2 that, under Hypotheses A and B, H1(D;M) = H1

0(D;M) and H1
0(D) ⊂ H1

0(D;M). We
shall further illuminate the structure of Maxwellian-weighted spaces by applying the Brascamp-Lieb inequality
with a probability measure whose Radon-Nikodým derivative is the Maxwellian. The connection between
H1

0(D;M) and H1
0(D) will prove helpful in the development of Galerkin methods for (1.8), since the construction

of finite-dimensional subspaces of H1
0(D) and the analysis of their approximation properties are well-understood.

In Section 3 we shall revisit the weak formulation (1.8) of the initial boundary value problem. We shall con-
struct a backward Euler semidiscretization of the weak formulation and show that this has a unique solution. We
shall then use a compactness argument to establish the existence of weak solutions to the initial-boundary-value
problem. We also show the uniqueness of the weak solution. In the process, we shall prove the unconditional sta-
bility of the temporal semidiscretization in the �∞(0, T ; L2(D)) and �2(0, T ; H1

0(D;M)) norms. Our arguments
do not invoke compact embedding of (Maxwellian-)weighted Sobolev spaces, and no growth/decay conditions
(such as a Muckenhaupt condition) need to be imposed on the Maxwellian M beyond the conditions on U
and M stated in Hypotheses A and B above. Elliptic and parabolic operators with unbounded drift coefficients,
albeit in nonconservative form, have been considered recently by Cerrai, Da Prato, Lunardi and others (see,
for example, [16,19]); the technique herein, based on semidiscretization in time and passage to the limit using
a weak compactness argument, is different from the semigroup theoretic approach used in those papers. We
also show how, in the case of the FENE model with b ≥ 4s2/(2s − 1) and s > 1/2, our results can be carried
across, independent of the spatial dimension d, to a weak formulation that results from using the alternative
substitution ψ̂ := ψ/M2s/b; the cases of s = 2 and s = 2.5 correspond to the methods proposed by Chauvière
and Lozinski [17,18,27] for d = 2 and d = 3, respectively.

In Section 4 we develop the fully-discrete method and, using the stability results from Section 3, we derive a
bound on the global error in terms of the approximation error in a suitably defined spectral projection operator.

In Section 5 we give the precise definition of our projection operator: its nonstandard form stems from a
decomposition lemma, Lemma 5.2, for elements of the Sobolev space H1(D) in polar co-ordinates. The result
can be seen as a Sobolev space variant of the Malgrange preparation theorem [22].

We complete our convergence analysis in Section 6 by showing that, under Hypotheses A and B, the method
exhibits optimal-order convergence in the Maxwellian-weighted norm ‖ · ‖�2(0,T ;H1

0(D;M)) with respect to the
spatial and temporal discretization parameters.

Section 7 is devoted to numerical experiments that illustrate the performance of the method. Since the case
of two space dimensions (d = 2) is sufficiently representative, for ease of presentation in Sections 5, 6 and 7 we
have confined ourselves to this case; all of our results in Sections 5 and 6 have obvious extensions to three space
dimensions. The stability bounds and existence and uniqueness results presented in Sections 3 and 4 are valid
in any number of space dimensions.
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2. The Brascamp-Lieb inequality

Suppose that D is a convex open set, D ⊂ R
d (e.g., D = B(0∼;

√
b ), b > 0). Consider a probability measure μ

supported on D with density exp(−V (q
∼
)), q

∼
∈ D, with respect to the Lebesgue measure dq

∼
on R

d, where V is
a convex function on D; μ is usually referred to as Boltzmann measure. In particular,

μ(B) =
∫
B

dμ =
∫
B

exp(−V (q
∼
)) dq

∼
,

for any μ-measurable set B ⊂ D, with μ(D) = 1. The following geometric functional inequality comes from the
paper of Bobkov and Ledoux [14].

Theorem 2.1 (Brascamp-Lieb inequality). Assume that V is a twice continuously differentiable and convex
function on a convex open set D ⊂ R

d, such that, for each q
∼
∈ D, the Hessian

H(q
∼
) :=

(
∂2V (q

∼
)

∂qi ∂qj

)

is positive definite. Then, for any sufficiently smooth function f ,

Varμ(f) := Eμ[(f − Eμ[f ])2] ≤
∫
D

〈H−1(q
∼
)∇∼ qf,∇∼ qf〉dμ, where Eμ[f ] =

∫
D

f dμ.

In terms of simpler notation, the Brascamp-Lieb inequality can be restated as follows:

∫
D

[
f(q

∼
) −
∫
D

f(p
∼
) e−V (p

∼
) dp

∼

]2
e−V (q

∼
) dq

∼
≤
∫
D

〈H−1(q
∼
)∇∼ qf,∇∼ qf〉 e−V (q

∼
) dq

∼
,

for any sufficiently smooth function f .

Corollary 2.2. Assume that V is a twice continuously differentiable and ω-convex function on D = B(0∼;
√
b ),

in the sense that there exist c0 > 0 and ω ∈ R such that the Hessian H of V satisfies H(q) ≥ c0(1 − |q
∼
|2/b)ω Id

for each q
∼
∈ D. Then, for any sufficiently smooth function f ,

∫
D

[
f(q

∼
) −
∫
D

f(p
∼
) e−V (p

∼
) dp

∼

]2
e−V (q

∼
) dq

∼
≤ 1
c0

∫
D

(
1 −

|q
∼
|2
b

)−ω
|∇∼ qf(q

∼
)|2e−V (q

∼
) dq

∼
.

Proof. Under the hypotheses of the corollary

ξ
∼

TH(q
∼
)ξ
∼
≥ c0

(
1 −

|q
∼
|2
b

)ω
|ξ
∼
|2 ∀ξ

∼
∈ R

d, |q
∼
| <

√
b.

Thus, in particular, V is a convex function on D, with a positive definite Hessian at each point in D. Since
H(q

∼
), for |q

∼
| < √

b, is a symmetric positive definite matrix, we deduce that

〈H(q
∼
)−1η

∼
, η
∼
〉 = η

∼
TH(q

∼
)−1η

∼
≤ 1
c0

(
1 −

|q
∼
|2
b

)−ω
|η
∼
|2 ∀η

∼
∈ R

d, |q
∼
| <

√
b.

Hence, on taking η
∼

= ∇∼ qf , the desired bound follows directly from the Brascamp-Lieb inequality. �
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2.1. Application to the FENE potential

Let D = B(0∼;
√
b ) where b > 2, and define

Uβ(s) := −β
2

ln
(

1 − 2s
b

)
, C(β) :=

∫
D

e−Uβ( 1
2 |q∼|2) dq

∼
,

with 0 ≤ s < b
2 , β := b− 2γ, 0 ≤ γ ≤ 1. The FENE potential corresponds to β = b (i.e., to γ = 0). Further, let

V (q
∼
) := Uβ

(
1
2 |q∼|2

)
+ lnC(β), Mβ(q∼) :=

1
C(β)

(
1 −

|q
∼
|2
b

)b
2

=
C(b)
C(β)

Mb(q∼).

Note that the exponent in Mβ is b/2, not β/2, so Mβ is not the normalized Maxwellian of Uβ, except when
β = b. Note further that, for all ξ

∼
∈ R

d and all q
∼
∈ D,

d∑
i=1, j=1

ξiξj
∂2V (q

∼
)

∂qi∂qj
=

(
1 −

|q
∼
|2
b

)−2{
β

b
|ξ
∼
|2
(

1 −
|q
∼
|2
b

)
+

2β
b2

〈ξ
∼
, q
∼
〉2
}

≥ β

b

(
1 −

|q
∼
|2
b

)−1

|ξ
∼
|2.

Hence q
∼
�→ V (q

∼
) is (−1)-convex on D, with c0 = β/b. The same is true of q

∼
�→ Uβ(1

2 |q∼|2) = V (q
∼
) − lnC(β).

Since Uβ = Ub + γL, it follows that q
∼
�→ (Ub + γL)(1

2 |q∼|2) is (−1)-convex on D, with c0 = (b − 2γ)/b, for all
γ ∈ [0, 1]; hence Hypothesis C holds with ω = −1. Applying Corollary 2.2 with ω = −1 and c0 = β/b yields

∫
D

⎡
⎣f(q

∼
) −
∫

D

f(p
∼
)Mβ(p

∼
)

(
1 −

|p
∼
|2
b

)−γ

dp
∼

⎤
⎦

2

Mβ(q
∼
)

(
1 −

|q
∼
|2
b

)−γ

dq
∼
≤ b

β

∫
D

|∇∼ qf(q
∼
)|2Mβ(q

∼
)

(
1 −

|q
∼
|2
b

)1−γ

dq
∼
,

where γ ∈ [0, 1]. We shall now consider the two extreme cases: γ = 0 and γ = 1.

2.1.1. Case 1

Let γ = 0 (whereupon β = b). Then, by writing M := Mb and taking f = ψ̂/
√
M , we get

∫
D

[
ψ̂ −

√
M(q

∼
)
∫
D

ψ̂(p
∼
)
√
M(p

∼
) dp

∼

]2
dq

∼
+

1
b

∫
D

|q
∼
|2|∇∼ M ψ̂(q

∼
)|2 dq

∼
≤
∫
D

|∇∼ M ψ̂|2 dq
∼
.

This implies the following Poincaré inequality, on noting that Ker(∇∼ M ) = {λ√M : λ ∈ R}:

inf
c∈Ker(∇∼ M )

∫
D

|ψ̂ − c |2 dq
∼
≤
∫
D

|∇∼ M ψ̂|2 dq
∼
. (2.1)

2.1.2. Case 2

Let γ = 1, take f = ψ̂/
√
M and note that Mβ and M := Mb only differ by the multiplicative factor

C(b)/C(β), where β = b− 2 with b > 2. Then,

∫
D

⎡
⎣ψ̂(q

∼
) −

C(b)
√
M(q

∼
)

C(b − 2)

∫
D

ψ̂(p
∼
)
√
M(p

∼
)

(
1 −

|p
∼
|2
b

)−1

dp
∼

⎤
⎦

2(
1 −

|q
∼
|2
b

)−1

dq
∼
≤ b

b− 2

∫
D

|∇∼ M ψ̂|2 dq
∼
. (2.2)

Hence, we obtain the following Poincaré-Hardy inequality:

inf
c∈Ker(∇∼ M )

∫
D

|ψ̂ − c |2

1 − |q
∼
|2
b

dq
∼
≤ b

b− 2

∫
D

|∇∼ M ψ̂|2 dq
∼
. (2.3)
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This can be seen as a refinement of the Poincaré inequality (2.1) in the sense that the left-hand side of (2.3) is
an upper bound on the left-hand side of (2.1) (at the expense of increasing the multiplicative constant on the
right-hand side of (2.1) from 1 to b/(b− 2), b > 2). The inequalities (2.1) and (2.3) hold, in particular, for any
ψ̂ ∈ √

M C∞(D). Next, we shall show by a density argument that they are also valid for all ψ̂ ∈ H1(D;M).

2.2. Density results for the space H1(D; M)

Since the density results below are not specific to the FENE model, we shall state them more generally, for
any potential U and associated Maxwellian M that satisfy Hypotheses A and B, respectively. We shall then
state additional results that hold when the list of assumptions is supplemented by Hypothesis C. Recall that
the FENE model satisfies Hypotheses A, B and C (cf. Ex. 1.2).

(a) Suppose that the Maxwellian M satisfies Hypothesis B; M is then a weight-function of Type 3 in the
sense of Triebel. According to [33], Theorem 3.2.2a, the weighted Sobolev space H1

M (D) = {v ∈ L2
M (D) : ∇∼ qv ∈

(L2
M (D))d} is a Hilbert space with respect to the norm ‖ · ‖H1

M(D) defined by

‖v‖H1
M(D) :=

(
‖v‖2

L2
M(D) + ‖∇∼ qv‖2

L2
M (D)

) 1
2
,

and L2
M (D) = (1/

√
M ) L2(D) is a Hilbert space with norm ‖ · ‖L2

M (D) defined by ‖v‖L2
M (D) := ‖√Mv‖, where

‖·‖ denotes the L2(D) norm induced by the L2(D) inner product (·, ·). By [33], Theorem 3.2.2c, C∞(D) is dense
in both H1

M (D) and L2
M (D); see also Chapter I, Section 7, in Kufner [25], or one of [10,11]. Thus,

√
M C∞(D)

is dense in the Hilbert spaces H1(D;M) and L2(D), whereby H1(D;M) is dense in L2(D).
(b) Now suppose that U satisfies Hypothesis A and the associated Maxwellian M satisfies Hypothesis B. It

follows from Hardy’s inequality (see, for example, [3,28]) that

∫
D

(
1 −

|q
∼
|2
b

)−2

|ψ̂(q
∼
)|2 dq

∼
≤ 4b‖∇∼ qψ̂‖2 ∀ψ̂ ∈ H1

0(D). (2.4)

Since ∇∼ M ψ̂ = ∇∼ qψ̂ + 1
2q∼U

′
(

1
2 |q∼|2

)
ψ̂ and Hypothesis A implies the existence of C1 ∈ R>0 (for the FENE

model C1 = 1) such that (1 − |q
∼
|2/b)2|U ′(1

2 |q∼|2)|2 ≤ C2
1 for all q

∼
∈ D, it follows that

‖∇∼ M ψ̂‖ ≤ (1 + C1b)‖∇∼ qψ̂‖ ∀ψ̂ ∈ H1
0(D). (2.5)

Thus, (2.5) now implies that H1
0(D) ⊂ H1(D;M).

Let us show that H1(D;M) = H1
0(D;M). As

√
MC∞(D) ⊂ H1

0(D) ⊂ H1(D;M) and
√
MC∞(D) is dense in

H1(D;M) (cf. (a) above), we deduce that H1
0(D) is dense in H1(D;M). Since C∞

0 (D) is dense in H1
0(D), it then

follows from (2.5) that C∞
0 (D) is also dense in H1(D;M). By definition, H1

0(D;M) is the closure of C∞
0 (D) in

H1(D;M); thus we deduce that H1(D;M) = H1
0(D;M), and therefore K = K0. As H1(D;M) is continuously

and densely embedded into L2(D), it follows that H1
0(D;M) is continuously and densely embedded into L2(D).

(c) As the FENE potential U and Maxwellian M satisfy Hypotheses A and B, respectively, the density of√
M C∞(D) in H1(D;M) implies that (2.1) holds for all ψ̂ ∈ H1(D;M). To show that, in the case of the FENE

potential, (2.3) holds for all ψ̂ ∈ H1(D;M), note that (2.2) holds, with the outer integral on the left-hand side
of (2.2) replaced by an integral over Dε := {q

∼
∈ D : |q

∼
|2 < b(1 − ε)}, ε ∈ (0, 1), for any ψ̂ ∈ C∞

0 (D), and

hence, by the density of C∞
0 (D) in H1(D;M), for any ψ̂ ∈ H1(D;M). Letting ε → 0+, Lebesgue’s monotone

convergence theorem implies that (2.2) holds for all ψ̂ ∈ H1(D;M); hence (2.3) holds for all ψ̂ ∈ H1(D;M).
More generally, let U satisfy Hypotheses A and C with ω = −1 (and γ = 0 or γ = 1), and let the associated
Maxwellian satisfy Hypothesis B. If γ = 0, then (2.1) holds for all ψ̂ ∈ H1(D;M), as in the case of the FENE
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model, and if γ = 1, then (2.3) holds for all ψ̂ ∈ H1(D,M), with b/(b − 2) replaced by 1/c0 (and c0 > 0 as in
Hypothesis C).

3. Backward Euler semidiscretization: existence and uniqueness

of weak solutions

As was noted in the Introduction, by setting ψ̂(·, t) := ψ(·, t)/√M for t ∈ [0, T ] and ϕ̂ := ϕ/
√
M in (1.7) and

writing ψ̂0 := ψ0/
√
M , we arrive at the following weak formulation of the initial-boundary-value problem (1.3),

(1.4), (1.5):

Given ψ̂0 ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)) such that (1.8) holds in the sense of

distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).
The function ψ, representing a weak solution to the problem (1.7), is then recovered from ψ̂ through the

substitution ψ :=
√
M ψ̂. Thus, instead of constructing a Galerkin approximation to ψ, our aim is to construct

a Galerkin approximation to ψ̂ from a finite-dimensional subspace of the function space H1
0(D;M); we shall

then produce an approximation to ψ by multiplying the approximation to ψ̂ by
√
M . First, however, we shall

construct a time-semidiscretization of (1.8) and use a compactness argument to show the existence of weak
solutions; we shall then also show the uniqueness of weak solutions.

Let NT ≥ 1 be an integer, Δt = T/NT , and tn = nΔt, for n = 0, 1, . . . , NT . Discretizing (1.8) in time using
the backward Euler method yields the following semidiscrete numerical scheme.

Given ψ̂0 := ψ̂0 = ψ0/
√
M ∈ L2(D), find ψ̂n+1 ∈ H1

0(D;M), n = 0, . . . , NT − 1, such that

∫
D

ψ̂n+1 − ψ̂n

Δt
ϕ̂ dq

∼
−
∫
D

(κ≈
n+1 q

∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂
n+1 · ∇∼ M ϕ̂ dq

∼
= 0 ∀ϕ̂ ∈ H1

0(D;M). (3.1)

3.1. Well-posedness of the semidiscrete problem (3.1) and passage to the limit Δt → 0+

Let us first show that for any Δt, sufficiently small, problem (3.1) has a unique solution. To this end, we
consider the bilinear form B(·, ·) defined on H1

0(D;M) × H1
0(D;M) by

B(ψ̂, ϕ̂) :=
1

Δt

∫
D

ψ̂ ϕ̂ dq
∼
−
∫
D

(κ≈
n+1 q

∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼
,

and, for ψ̂n ∈ L2(D) fixed, we define the linear functional �(ψ̂n; ·) on H1
0(D;M) by

�(ψ̂n; ϕ̂) :=
1

Δt

∫
D

ψ̂n ϕ̂ dq
∼
.

Clearly,

B(ψ̂, ψ̂) ≥ 1
Δt

(
1 − Δtλb‖κ≈‖2

L∞(0,T )

) ∫
D

|ψ̂|2 dq
∼

+
1
4λ

∫
D

|∇∼ M ψ̂|2 dq
∼
,

and hence, on assuming that Δtλb‖κ≈‖2
L∞(0,T ) < 1 and letting cΔt := 1

Δt

(
1 − Δtλb‖κ≈‖2

L∞(0,T )

)
, we deduce that

B(ψ̂, ψ̂) ≥ min
(
cΔt,

1
4λ

)
‖ψ̂‖2

H1
0(D;M). (3.2)

Also, by a simple application of the Cauchy-Schwarz inequality, B(·, ·) is a bounded bilinear functional on
H1

0(D;M) × H1
0(D;M) and, for any ψ̂n ∈ L2(D), �(ψ̂n; ·) is a bounded linear functional on H1

0(D;M).
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Since H1
0(D;M) is a Hilbert space with norm ‖ · ‖H1

0(D;M), the Lax-Milgram theorem implies the existence
of a unique solution ψ̂n+1 ∈ H1

0(D;M) such that

B(ψ̂n+1, ϕ̂) = �(ψ̂n; ϕ̂) ∀ϕ̂ ∈ H1
0(D;M), n = 0, 1, . . . , NT − 1. (3.3)

As ψ̂0 ∈ L2(D), we have thus shown that, for any Δt = T/NT such that Δtλb‖κ≈‖2
L∞(0,T ) < 1, the problem (3.1)

has a unique solution {ψ̂n ∈ H1
0(D;M) : n = 1, . . . , NT }.

For the purposes of the convergence analysis that will be carried out below, we consider an extended version
of the scheme (3.1) with a nonzero right-hand side:

∫
D

ψ̂n+1 − ψ̂n

Δt
ϕ̂ dq

∼
− ∫D(κ≈

n+1 q
∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+ 1

2λ

∫
D∇∼ M ψ̂

n+1 · ∇∼ M ϕ̂dq
∼

=∫
D
μn+1ϕ̂ dq

∼
+
∫
D
ν∼
n+1 · ∇∼ M ϕ̂dq

∼
∀ϕ̂ ∈ H1

0(D;M), n = 0, . . . , NT − 1, (3.4)

where μn+1 ∈ L2(D) and ν∼
n+1 ∈ (L2(D))d for all n ≥ 0. We have the following stability result for (3.4).

Lemma 3.1 (the first stability inequality). Let Δt = T/NT , NT ≥ 1, κ≈ ∈ (C[0, T ])d×d, ψ̂0 ∈ L2(D), and define
c0 := 1 + 4λb‖κ≈‖2

L∞(0,T ). If Δt is such that 0 < c0Δt ≤ 1/2, then we have, for all m such that 1 ≤ m ≤ NT ,

‖ψ̂m‖2 +
m−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1 − ψ̂n√

Δt

∥∥∥∥∥
2

+
m−1∑
n=0

Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤ e2c0mΔt

{
‖ψ̂0‖2 +

m−1∑
n=0

2Δt
(‖μn+1‖2 + 4λ‖ν∼n+1‖2

)} ·

Proof. Let 0 ≤ n ≤ NT − 1. Setting ϕ̂ = ψ̂n+1, we write the first term in (3.4) as

∫
D

ψ̂n+1 − ψ̂n

Δt
ψ̂n+1 dq

∼
=

1
2Δt

(
‖ψ̂n+1‖2 − ‖ψ̂n‖2

)
+

1
2Δt

‖ψ̂n+1 − ψ̂n‖2

using the identity (α− β)α = 1
2 (α2 − β2) + 1

2 (α− β)2.
Applying the Cauchy-Schwarz inequality to the transport term in (3.4), we have∫

D

(κ≈
n+1 q

∼
ψ̂n+1) · ∇∼ M ψ̂

n+1 dq
∼
≤

√
b |κ≈n+1| ‖ψ̂n+1‖ ‖∇∼ M ψ̂

n+1‖.

Combining these results and applying the Cauchy-Schwarz inequality to the right-hand side terms in (3.4) gives

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
Δt
λ

‖∇∼ M ψ̂
n+1‖2 ≤ ‖ψ̂n‖2 + 2Δt

√
b |κ≈n+1|‖ψ̂n+1‖‖∇∼ M ψ̂

n+1‖
+ 2Δt‖μn+1‖‖ψ̂n+1‖ + 2Δt‖ν∼n+1‖‖∇∼ M ψ̂

n+1‖
=: ‖ψ̂n‖2 + T1 + T2 + T3.

Using Cauchy’s inequality 2αβ ≤ εα2 + ε−1β2 with ε > 0 on each of T1 and T3, we deduce that

T1 ≤ ε‖∇∼ M ψ̂
n+1‖2 +

1
ε
Δt2b|κ≈n+1|2‖ψ̂n+1‖2, T3 ≤ ε‖∇∼ M ψ̂

n+1‖2 +
1
ε
Δt2‖ν∼n+1‖2.

Choosing ε = Δt/(4λ) then gives

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤ ‖ψ̂n‖2 + 4Δtλb|κ≈n+1|2‖ψ̂n+1‖2 + 4Δtλ‖ν∼n+1‖2 + T2.
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Similarly, we have T2 ≤ Δt‖ψ̂n+1‖2 + Δt‖μn+1‖2, and therefore, on defining c0 := 1 + 4λb‖κ≈‖2
L∞(0,T ), we get

(1 − c0Δt)‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤ ‖ψ̂n‖2 + Δt‖μn+1‖2 + 4Δtλ‖ν∼n+1‖2.

As c0Δt ≤ 1
2 , dividing through by (1 − c0Δt) and using the fact that 1 ≤ 1

1−c0Δt ≤ 2, we have

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤ 1

1 − c0Δt

(
‖ψ̂n‖2 + Δt‖μn+1‖2 + 4Δtλ‖ν∼n+1‖2

)
≤ (1 + 2c0Δt)‖ψ̂n‖2 + 2Δt

(‖μn+1‖2 + 4λ‖ν∼n+1‖2
)
. (3.5)

Summing over n = 0, . . . ,m− 1 in (3.5) we obtain

‖ψ̂m‖2 +
m−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1 − ψ̂n√

Δt

∥∥∥∥∥
2

+
m−1∑
n=0

Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤

{
‖ψ̂0‖2 +

m−1∑
n=0

2Δt
(‖μn+1‖2 + 4λ‖ν∼n+1‖2

)}
+ 2c0

m−1∑
n=0

Δt‖ψ̂n‖2, (3.6)

for all m ∈ {1, . . . , NT }. By induction (or by a discrete Gronwall lemma) we deduce that

‖ψ̂m‖2 +
m−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1 − ψ̂n√

Δt

∥∥∥∥∥
2

+
m−1∑
n=0

Δt
2λ

‖∇∼ M ψ̂
n+1‖2 ≤

e2c0mΔt

{
‖ψ̂0‖2 +

m−1∑
n=0

2Δt
(‖μn+1‖2 + 4λ‖ν∼n+1‖2

)}
, 1 ≤ m ≤ NT ,

and that completes the proof. �

We shall now use this stability result to show the existence of weak solutions via a weak compactness
argument. We shall also show the uniqueness of the weak solution.

Theorem 3.2. Suppose that ψ̂0 ∈ L2(D) and that κ≈ ∈ (C[0, T ])d×d. Then, there exists a unique function ψ̂ in
L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) ∩ C([0, T ]; L2(D)), such that

(ψ̂(·, 0) − ψ̂0, ŵ) = 0 ∀ŵ ∈ L2(D)

and

−(ψ̂0, ϕ̂(·, 0)) −
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq

∼
dt−

∫ T

0

∫
D

(κ≈ q∼ ψ̂) · ∇∼ M ϕ̂dq
∼

dt+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂dq
∼

dt = 0

∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)), ϕ̂(·, T ) = 0. (3.7)

The function ψ =
√
Mψ̂ will be called the weak solution of the initial-boundary-value problem (1.3), (1.4), (1.5).

Proof. Step 1. Let us denote by ψ̂Δt ∈ C([0, T ]; L2(D)) ∩ L2(0, T ; H1
0(D;M)) the continuous piecewise linear

interpolant, with respect to t ∈ [0, T ], of the semidiscrete solution {ψ̂n : n = 0, . . . , NT } to (3.1), defined by

ψ̂Δt(·, t)|[tn,tn+1] :=
t− tn

Δt
ψ̂n+1 +

tn+1 − t

Δt
ψ̂n, t ∈ [tn, tn+1], n = 0, . . . , NT − 1, (3.8)
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and let
ψ̂Δt,+(·, t) := ψ̂n+1(·), ψ̂Δt,−(·, t) := ψ̂n(·), t ∈ [tn, tn+1], n = 0, . . . , NT − 1. (3.9)

We shall denote by ψ̂Δt,(±) any one of the functions ψ̂Δt, ψ̂Δt,+, ψ̂Δt,− defined above; (ψ̂Δt,(±))Δt will denote
the sequence of functions ψ̂Δt,(±), indexed by Δt = T/NT → 0+, for T fixed, as NT → ∞.

Using analogous notation for κ≈, equation (3.1), with ϕ̂ ∈ H1
0(D;M) replaced by ϕ̂(t, ·) ∈ H1

0(D;M) for
t ∈ (0, T ] where ϕ̂ ∈ L2(0, T ; H1

0(D;M)), and summed over n = 0, . . . , NT − 1, yields

∫ T

0

∫
D

∂ψ̂Δt

∂t
ϕ̂ dq

∼
dt−

∫ T

0

∫
D

(κ≈
Δt,+ q

∼
ψ̂Δt,+) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂
Δt,+ · ∇∼ M ϕ̂dq

∼
dt = 0 ∀ϕ̂ ∈ L2(0, T ; H1

0(D;M)). (3.10)

It follows from Lemma 3.1 with μ = 0 and ν∼ = 0∼ that

(ψ̂Δt,(±))Δt is bounded in L∞(0, T ; L2(D)), (3.11)

(ψ̂Δt,(±))Δt is bounded in L2(0, T ; H1
0(D;M)), (3.12)(

ψ̂Δt,+ − ψ̂Δt,−
√

Δt

)
Δt

is bounded in L2(0, T ; L2(D)). (3.13)

Now, (3.11) and (3.12) imply that we can extract a subsequence from (ψ̂Δt,(±))Δt, which for the sake of
notational simplicity we still denote by (ψ̂Δt,(±))Δt, such that, as Δt→ 0+,

(ψ̂Δt,(±))Δt weak-∗ converges in L∞(0, T ; L2(D)), (3.14)

(ψ̂Δt,(±))Δt weakly converges in L2(0, T ; H1
0(D;M)). (3.15)

Specifically, (3.14) implies the existence of ψ̂ ∈ L∞(0, T ; L2(D)) such that∫ T

0

(ψ̂Δt(t) − ψ̂(t), ϕ̂(t)) dt→ 0 as Δt → 0+ ∀ϕ̂ ∈ L1(0, T ; L2(D)). (3.16)

On the other hand (3.15) implies the existence of ψ̂∗ such that∫ T

0

〈ψ̂Δt(t) − ψ̂∗(t), ϕ̂(t)〉dt→ 0 as Δt → 0+ ∀ϕ̂ ∈ L2(0, T ; H1
0(D;M)′), (3.17)

where 〈·, ·〉 is the duality pairing between the Hilbert space H1
0(D;M) and its dual space H1

0(D;M)′.
Identifying, by means of the Riesz representation theorem, L2(D) with L2(D)′, we deduce that H1

0(D;M) ⊂
L2(D) = L2(D)′ ⊂ H1

0(D;M)′, so that each space is dense in the next one in the chain, with continuous and
injective embedding (cf. Sect. 2.2). Hence, 〈ψ̂, ϕ̂〉 = (ψ̂, ϕ̂) for all ψ̂ ∈ H1

0(D;M) and all ϕ̂ ∈ L2(D). Returning
to (3.17), we then deduce that∫ T

0

(ψ̂Δt(t) − ψ̂∗(t), ϕ̂(t)) dt =
∫ T

0

〈ψ̂Δt(t) − ψ̂∗(t), ϕ̂(t)〉dt → 0 as Δt → 0+ ∀ϕ̂ ∈ L2(0, T ; L2(D)).

Subtracting this from (3.16) yields∫ T

0

(ψ̂(t) − ψ̂∗(t), ϕ̂(t)) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)),

and therefore ψ̂ = ψ̂∗ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)).
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It remains to show that the weak-∗ limits ψ̂± of the sequences (ψ̂Δt,±)Δt in L∞(0, T ; L2(D)) are also equal
to ψ̂. We shall show below that ψ̂+ = ψ̂−. Once we have done so, recalling from the definitions of ψ̂Δt and
ψ̂Δt,± that

ψ̂Δt(·, t) − ψ̂±(·, t) =
t− tn

Δt
(ψ̂Δt,+(·, t) − ψ̂+(·, t)) +

tn+1 − t

Δt
(ψ̂Δt,−(·, t) − ψ̂−(·, t))

for all t ∈ [tn, tn+1] and n = 0, . . . , NT − 1, and passing to the weak-∗ limit in L∞(0, T ; L2(D)) as Δt → 0+,
will imply that ψ̂ = ψ̂±.

To show that ψ̂+ = ψ̂−, observe that∣∣∣∣∣
∫ T

0

(ψ̂Δt,+ − ψ̂Δt,−, ϕ̂) dt

∣∣∣∣∣ ≤
∥∥∥∥∥ ψ̂

Δt,+ − ψ̂Δt,−
√

Δt

∥∥∥∥∥
L2(0,T ;L2(D))

√
Δt ‖ϕ̂‖L2(0,T ;L2(D)),

for any ϕ̂ ∈ L2(0, T ; L2(D)) ⊂ L1(0, T ; L2(D)). Since by (3.13) the first factor on the right-hand side is bounded,
independent of Δt, on passing to the limit Δt → 0+, it follows that

lim
Δt→0+

∫ T

0

(ψ̂Δt,+ − ψ̂Δt,−, ϕ̂) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)).

Therefore, ∫ T

0

(ψ̂+ − ψ̂−, ϕ̂) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)).

This, in turn, implies that ψ̂+ = ψ̂−. Thereby, as has been argued above, ψ̂ = ψ̂+ = ψ̂−.
Step 2. Next we pass to the limit Δt → 0+ in (3.10). Integrating by parts in the first term appearing on the
left-hand side of equation (3.10), with ϕ̂ ∈ H1(0, T ; H1

0(D;M)) ↪→ C([0, T ]; H1
0(D;M)), we deduce that

(ψ̂Δt(·, T ), ϕ̂(·, T )) − (ψ̂Δt(·, 0), ϕ̂(·, 0)) −
∫ T

0

∫
D

ψ̂Δt ∂ϕ̂

∂t
dq

∼
dt−

∫ T

0

∫
D

(κ≈
Δt,+ q

∼
ψ̂Δt,+) · ∇∼ M ϕ̂dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂
Δt,+ · ∇∼ M ϕ̂dq

∼
dt = 0 ∀ϕ̂ ∈ H1(0, T ; H1

0(D;M)). (3.18)

As ψ̂Δt(·, 0) := ψ̂0(·) and the sequence (κ≈
Δt,+)Δt converges (strongly) in (L∞(0, T ))d×d to κ≈, passing to the limit

Δt → 0+ in (3.18) we deduce that the associated limiting function ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M))

satisfies (3.7). In particular, on choosing ϕ̂ = ζ̂ · ŵ ∈ C∞
0 (0, T ) ⊗ H1

0(D;M) in (3.7), where ζ̂ ∈ C∞
0 (0, T ) and

ŵ ∈ H1
0(D;M) are arbitrary, it follows from (3.7) that

d
dt

(ψ̂, ŵ) − (κ≈ q∼ψ̂,∇∼ M ŵ) +
1
2λ

(∇∼ M ψ̂,∇∼ M ŵ) = 0 ∀ŵ ∈ H1
0(D;M), (3.19)

in the sense of distributions on (0, T ), with ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)). Hence, the limiting

function ψ̂ satisfies (1.8), as required.

Step 3. It remains to show that ψ̂ also satisfies the required initial condition. We proceed as follows. Since, for
ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)), the second and third term on the left-hand side of (3.19) belong to
L2(0, T ) for every ŵ ∈ H1

0(D;M), the same is true of the first term on the left-hand side of (3.19). Therefore,
t ∈ [0, T ] �→ (ψ̂(·, t), ŵ) belongs to H1(0, T ) for all ŵ ∈ H1

0(D;M). By the Sobolev embedding H1(0, T ) ↪→ C[0, T ]
we deduce that, for every ŵ ∈ H1

0(D;M), t ∈ [0, T ] �→ (ψ̂(·, t), ŵ) is a.e. equal to a function that is defined and
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continuous on [0, T ]; i.e., ψ̂ ∈ Cweak([0, T ]; L2(D)), the set of all weakly continuous functions from [0, T ] into
L2(D).

Thus it makes sense to multiply (3.19) by ζ̂ ∈ H1(0, T ), such that ζ̂(T ) = 0, integrate over [0, T ] and integrate
by parts with respect to t in the first term to deduce, on writing ϕ̂ = ζ̂ · ŵ, that

−(ψ̂(·, 0), ϕ̂(·, 0)) −
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq

∼
dt−

∫ T

0

∫
D

(κ≈ q∼ ψ̂) · ∇∼ M ϕ̂dq
∼

dt+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂dq
∼

dt = 0

∀ϕ̂ ∈ H1(0, T ) ⊗ H1
0(D;M), ϕ̂(·, T ) = 0. (3.20)

Applying (3.7) with ϕ̂ ∈ H1(0, T ) ⊗ H1
0(D;M) ⊂ H1(0, T ; H1

0(D;M)) and comparing with (3.20) it follows that
(ψ̂(·, 0) − ψ̂0, ϕ̂(·, 0)) = 0 for all ϕ̂ ∈ H1(0, T ) ⊗ H1

0(D;M), ϕ̂(·, T ) = 0, and therefore, since H1
0(D;M) is dense

in L2(D), it follows that (ψ̂(·, 0) − ψ̂0, ŵ) = 0 for all ŵ ∈ L2(D). We shall prove in Step 4 that, in fact,
ψ̂ ∈ C([0, T ]; L2(D)), which will then show that the function ψ̂ satisfies the initial condition ψ̂(·, 0) = ψ̂0 (and
therefore ψ =

√
Mψ̂ satisfies the corresponding initial condition ψ(·, 0) = ψ0 (=

√
Mψ̂0)).

Step 4. Let us show that ψ =
√
Mψ̂, with ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) defined by (3.7), is
the unique weak solution to the initial-boundary-value problem. We begin by observing that, for any ψ̂ ∈
L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)),∣∣∣∣∣
∫ T

0

{
(κ≈ q∼ψ̂,∇∼ M ϕ̂) − 1

2λ
(∇∼ M ψ̂,∇∼ M ϕ̂)

}
dt

∣∣∣∣∣ ≤ C‖ψ̂‖L2(0,T ;H1
0(D;M))‖∇∼ M ϕ̂‖L2(0,T ;L2(D))

for all ϕ̂ ∈ L2(0, T ; H1
0(D;M)), where C :=

(
b‖κ≈‖2

L∞(0,T ) + 1/(4λ2)
) 1

2
. On bounding ‖∇∼ M ϕ̂‖L2(0,T ;L2(D)) by

‖ϕ̂‖L2(0,T ;H1
0(D;M)), we deduce the existence of G ∈ L2(0, T ; H1

0(D;M)′) such that, by (3.7),

−(ψ̂0, ϕ̂(·, 0)) −
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq

∼
dt =

∫ T

0

〈G, ϕ̂〉dt ∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)), ϕ̂(·, T ) = 0.

Hence,

−
∫ T

0

〈
ψ̂,
∂ϕ̂

∂t

〉
dt =

∫ T

0

〈G, ϕ̂〉dt ∀ϕ̂ ∈ C∞
0 (0, T ; H1

0(D;M)).

By virtue of Lemma 1.1 in Chapter 3, Section 1.1 of Temam [32] with X = H1
0(D;M)′,

d
dt

〈ψ̂, ŵ〉 = 〈G, ŵ〉 ∀ŵ ∈ H1
0(D;M),

in the sense of distributions on (0, T ), and ψ̂ is almost everywhere equal to a continuous function from [0, T ]
into H1

0(D;M)′. In fact, since ψ̂ ∈ L2(0, T ; H1
0(D;M)) and

∂ψ̂

∂t
= G ∈ L2(0, T ; H1

0(D;M)′),

it follows from Lemma 1.2 in Chapter 3, Section 1.2 of Temam [32] (with V = H1
0(D;M), H = L2(D) and

V ′ = H1
0(D;M)′) that ψ̂ is a.e. equal to a continuous function from [0, T ] into L2(D) and the following identity

holds in the sense of distributions of (0, T ):

d
dt

‖ψ̂‖2 = 2

〈
∂ψ̂

∂t
, ψ̂

〉
·
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Now, suppose that ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)) is a weak solution of the initial-boundary-value

problem, defined by (3.7). Then, for any s ∈ (0, T ],

∫ s

0

1
2

d
dt

‖ψ̂‖2 dt =
∫ s

0

〈
∂ψ̂

∂t
, ψ̂

〉
dt =

∫ s

0

〈G, ψ̂〉dt =
∫ s

0

{
((κ≈ q∼)ψ̂,∇∼ M ψ̂) − 1

2λ
(∇∼ M ψ̂,∇∼ M ψ̂)

}
dt.

Therefore,

1
2

(
‖ψ̂(s)‖2 − ‖ψ̂0‖2

)
+

1
2λ

‖∇∼ M ψ̂‖2
L2(0,s;L2(D)) =

∫ s

0

((κ≈ q∼)ψ̂,∇∼ M ψ̂)dt

≤
√
b‖κ≈‖L∞(0,T )‖ψ̂‖L2(0,s;L2(D))‖∇∼ M ψ̂‖L2(0,s;L2(D)) for a.e. s ∈ (0, T ].

This implies that

‖ψ̂(s)‖2 +
1
2λ

‖∇∼ M ψ̂‖2
L2(0,s;L2(D))≤‖ψ̂0‖2 + 2λ b‖κ≈‖2

L∞(0,T )‖ψ̂‖2
L2(0,s;L2(D)) for a.e. s ∈ (0, T ].

Thus, by Gronwall’s lemma, any weak solution ψ̂ to (3.7) satisfies the following energy inequality

‖ψ̂(s)‖2
L∞(0,s;L2(D)) +

1
2λ

‖∇∼ M ψ̂‖2
L2(0,s;L2(D)) ≤ ‖ψ̂0‖2 exp

(
2sλ b‖κ≈‖2

L∞(0,T )

)
for a.e. s ∈ (0, T ].

Note, in particular, that if ψ̂0 = 0, then ψ̂(·, s) = 0 in L2(D) for a.e. s ∈ (0, T ], which in turn implies the
uniqueness of a weak solution. �

Next we shall show that ψ =
√
Mψ̂ has the usual properties of a probability density function: if ψ0 is

non-negative and has unit integral over D, then the same is true of ψ(·, t) for all t ∈ [0, T ].

Lemma 3.3. Let ψ0 ∈ H and ψ =
√
Mψ̂ where ψ̂ ∈ L∞(0, T ; L2(D))∩ L2(0, T ; H1

0(D;M))∩C([0, T ]; L2(D)) is
the weak solution to (3.7) subject to the initial condition ψ̂0 = ψ0/

√
M (i.e., the function ψ is the weak solution

of the initial-boundary-value problem (1.3), (1.4), (1.5)). Then,

∫
D

ψ(q
∼
, t) dq

∼
=
∫
D

ψ0(q∼) dq
∼

∀t ∈ [0, T ).

Furthermore if ψ0 ≥ 0 a.e. on D, then ψ(·, t) ≥ 0 a.e. on D for all t ∈ [0, T ].

Proof. Fix any t ∈ (0, T ), and let ε ∈ (0, T − t]. Consider the function ϕ̂ε defined by

ϕ̂ε(q∼, s) :=

⎧⎨
⎩

√
M for s ∈ [0, t],√
M(t+ ε− s)/ε for s ∈ [t, t+ ε),

0 for s ∈ [t+ ε, T ].

Clearly, ϕ̂ε ∈ H1(0, T ; H1
0(D;M)) and ϕ̂ε(·, T ) = 0. Taking ϕ̂ε as test function in (3.7) we obtain

−(ψ̂0,
√
M ) +

1
ε

∫ t+ε

t

(ψ̂(·, s),
√
M ) ds = 0.

Passing to the limit ε → 0+ yields −(ψ̂0,
√
M ) + (ψ̂(·, t),√M ) = 0, whereby (ψ(·, t), 1) = (ψ0, 1), as required,

for all t ∈ (0, T ); for t = 0 the equality holds trivially.
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Now, suppose that ψ0 ∈ H and ψ0 ≥ 0; then, ψ̂0 ∈ L2(D) and ψ̂0 ≥ 0. For Δt as in Lemma 3.1, consider
the sequence of functions (ψ̂n)NT

n=0 ⊂ H1
0(D;M) defined by (3.3). By Lemma 3.5 below (with L = 0 and

[x]± := (x± |x|)/2 for x ∈ R), we have that ([ψ̂n]−)NT
n=0 ⊂ H1

0(D;M). It follows from (3.3) that

B([ψ̂n+1]− , [ψ̂n+1]−) = B(ψ̂n+1 , [ψ̂n+1]−) = �(ψ̂n; [ψ̂n+1]−).

Suppose, for induction, that ψ̂n ≥ 0; this is certainly true for n = 0, since ψ̂0 = ψ̂0 ≥ 0. Hence,

�(ψ̂n; [ψ̂n+1]−) =
1

Δt

∫
D

ψ̂n(q
∼
)[ψ̂n+1(q

∼
)]− dq

∼
≤ 0.

Therefore, B([ψ̂n+1]− , [ψ̂n+1]−) ≤ 0; thus, (3.2) implies that ‖[ψ̂n+1]−‖H1
0(D;M) ≤ 0, whereby [ψ̂n+1]− = 0

and hence ψ̂n+1 ≥ 0. By induction, ψ̂n ≥ 0 for all n = 0, 1, . . . , NT . Therefore, each of the functions ψ̂Δt, ψ̂+

and ψ̂−, defined in the proof of Theorem 3.2, is non-negative on D × [0, T ]. Hence the limiting function ψ̂ of
the sequence(s), as Δt → 0+, is also non-negative on D × [0, T ]. �
Remark 3.4. We note in passing that if q

∼
Tκ≈(t) q

∼
≤ 0 for all t ∈ [0, T ] then, by considering the expression,

B([ψ̂n+1 − L
√
M ]+ , [ψ̂n+1 − L

√
M ]+) one can show by induction, as in the proof above, with

L = ess.supq
∼
∈D ψ̂0(q∼)/

√
M(q

∼
),

that B([ψ̂n+1 −L
√
M ]+ , [ψ̂n+1 −L

√
M ]+) = 0 for all n = 0, 1, . . . , NT − 1. Consequently, by inequality (3.2),

[ψ̂n+1 − L
√
M ]+ = 0; i.e., ψ̂n+1 ≤ L

√
M . This then implies, on passage to the limit Δt→ 0+, that

ess.sup(q
∼
,t)∈D×[0,T ] ψ̂(q

∼
, t)/
√
M(q

∼
) ≤ ess.supq

∼
∈D ψ̂0(q∼)/

√
M(q

∼
).

Hence,
ess.sup(q

∼
,t)∈D×[0,T ] ψ(q

∼
, t)/M(q

∼
) ≤ ess.supq

∼
∈D ψ0(q∼)/M(q

∼
),

which can be thought of as a maximum principle for the initial-boundary-value problem1.

Lemma 3.5. Suppose that ϕ̂ ∈ H1
0(D;M) and L ≥ 0. Then,

∇∼ M [ ϕ̂− L
√
M ]+ =

{ ∇∼ M ( ϕ̂− L
√
M ) = ∇∼ M ϕ̂ if ϕ̂ > L

√
M,

0 if ϕ̂ ≤ L
√
M ;

(3.21)

and

∇∼ M [ ϕ̂− L
√
M ]− =

{ ∇∼ M ( ϕ̂− L
√
M ) = ∇∼ M ϕ̂ if ϕ̂ < L

√
M,

0 if ϕ̂ ≥ L
√
M.

(3.22)

Furthermore, [ ϕ̂− L
√
M ]+ and [ ϕ̂− L

√
M ]− belong to H1

0(D;M).

Proof. We shall prove (3.21); the proof of (3.22) is analogous, mutatis mutandis. We begin by noting that since
L ≥ 0 and

√
M > 0 on D,

|[ ϕ̂− L
√
M ]+| ≤ |ϕ̂|. (3.23)

Following [7], for any ε > 0, we define the following regularization of [ · ]+:

p+,ε(s) :=
{

(s2 + ε2)
1
2 − ε if s > 0,

0 if s ≤ 0.

1If q
∼
Tκ≈(t) q

∼
≤ 0 for all q

∼
∈ R

d and t ∈ [0, T ], and tr(κ≈(t)) = 0 for all t ∈ [0, T ], then q
∼
Tκ≈(t)q

∼
= 0 for all q

∼
∈ R

d and t ∈ [0, T ].
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Clearly, 0 ≤ p+,ε(s) ≤ [s]+ for all s ∈ R. Observe that

∇∼ M [ ϕ̂− L
√
M ]+ = ∇∼ q[ ϕ̂− L

√
M ]+ + 1

2q∼U
′(1

2 |q∼|2)[ ϕ̂− L
√
M ]+

in the sense of d-component distributions on D. Let η
∼
∈ (C∞

0 (D))d be fixed. Thus,

〈∇∼ M [ ϕ̂− L
√
M ]+ , η∼〉 = 〈∇∼ q[ ϕ̂− L

√
M ]+ + 1

2q∼U
′(1

2 |q∼|2)[ ϕ̂− L
√
M ]+ , η∼〉

= −〈[ ϕ̂− L
√
M ]+ , ∇∼ q · η∼〉 + 〈1

2q∼U
′(1

2 |q∼|2)[ ϕ̂− L
√
M ]+ , η∼〉

= −
∫
D

[ ϕ̂− L
√
M ]+(∇∼ q · η∼) dq

∼
+
∫
D

1
2q∼U

′(1
2 |q∼|2)[ ϕ̂− L

√
M ]+ · η

∼
dq

∼
.

Let χS denote the characteristic function of a set S ⊂ D. Since η
∼

has compact support in D, by Lebesgue’s
dominated convergence theorem we deduce that

〈∇∼ M [ ϕ̂− L
√
M ]+ , η∼〉 = − lim

ε→0+

∫
D

p+,ε(ϕ̂− L
√
M )(∇∼ q · η∼) dq

∼
+ lim
ε→0+

∫
D

1
2q∼U

′(1
2 |q∼|2)p+,ε(ϕ̂− L

√
M ) · η

∼
dq

∼

= lim
ε→0+

∫
D

p′+,ε(ϕ̂− L
√
M )∇∼ q(ϕ̂− L

√
M ) · η dq

∼
+ lim
ε→0+

∫
D

1
2q∼U

′(1
2 |q∼|2)p+,ε(ϕ̂− L

√
M ) · η

∼
dq

∼

=
∫
D

χϕ̂>L
√
M (q

∼
)∇∼ q(ϕ̂− L

√
M ) · η dq

∼
+
∫
D

χϕ̂>L
√
M (q

∼
) 1

2q∼U
′(1

2 |q∼|2)(ϕ̂ − L
√
M ) · η

∼
dq

∼

=
∫
D

χϕ̂>L
√
M (q

∼
)
{
∇∼ q(ϕ̂− L

√
M ) + 1

2q∼U
′(1

2 |q∼|2)(ϕ̂− L
√
M )
}
· η

∼
dq

∼

=
∫
D

χϕ̂>L
√
M (q

∼
)∇∼ M (ϕ̂− L

√
M ) · η

∼
dq

∼
= 〈χϕ̂>L√M (q

∼
)∇∼ M (ϕ̂− L

√
M ) , η

∼
〉·

Since these equalities hold for all η
∼
∈ (C∞

0 (D))d, it follows that ∇∼ M [ ϕ̂−L√M ]+ = χϕ̂>L
√
M (q

∼
)∇∼ M (ϕ̂−L√M ).

As
√
M ∈ Ker(∇∼ M ), we deduce that χϕ̂>L√M (q

∼
)∇∼ M (ϕ̂−L

√
M ) = χϕ̂>L

√
M (q

∼
)∇∼ M ϕ̂, and that proves (3.21).

Now, since ∇∼ M [ ϕ̂ − L
√
M ]+ = χϕ̂>L

√
M (q

∼
)∇∼ M ϕ̂, and the right-hand side in this equality belongs to L2(D)

(recall that ϕ̂ ∈ H1
0(D;M) by hypothesis), it follows that ∇∼ M [ ϕ̂ − L

√
M ]+ ∈ L2(D). Hence, and by (3.23),

[ ϕ̂− L
√
M ]+ ∈ H1

0(D;M), as required. �

By the next lemma, if κ≈ ∈ (H1(0, T ))d×d and ψ̂0 ∈ H1
0(D;M), then we have stability in stronger norms.

Lemma 3.6 (the second stability inequality). Let Δt = T/NT , NT ≥ 1, κ≈ ∈ (H1(0, T ))d×d, ψ̂0 ∈ H1
0(D;M),

and define c0 := 1 + 4λb‖κ≈‖2
L∞(0,T ). If Δt is such that 0 < c0Δt ≤ 1/2, then, for all m such that 1 ≤ m ≤ NT ,

Δt
m−1∑
n=0

∥∥∥∥∥ ψ̂
n+1 − ψ̂n

Δt

∥∥∥∥∥
2

+
1
4λ

‖∇∼ M ψ̂
m‖2 +

1
2λ

m−1∑
n=0

Δt

∥∥∥∥∥∇∼ M
ψ̂n+1 − ψ̂n√

Δt

∥∥∥∥∥
2

≤

e2c1mΔt

{
2Δt

m−1∑
n=0

‖μn+1‖2 + 12λ max
1≤n≤m

‖ν∼n‖2 + Δt
m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼
n

Δt

∥∥∥∥
2

+
1
λ
‖∇∼ M ψ̂

0‖2 +
(
b ‖κ≈t‖2

L2(0,T ) + 12λb ‖κ≈‖2
L∞(0,T )

)
S(ψ̂0, μ, ν∼,mΔt)

}
,

where S(ψ̂0, μ, ν∼,m,Δt) is the right-hand side of the inequality from Lemma 3.1 and c1 = 4λ(1 + b ‖κ≈‖2
L∞(0,T )).
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Proof. The proof is similar to that of Lemma 3.1, except one uses the test function ϕ̂ = (ψ̂n+1 − ψ̂n)/Δt. �

It follows from Lemma 3.6, by an identical argument as in the proof of Theorem 3.2, that the weak solution ψ̂
of (3.7) belongs to H1(0, T ; L2(D))∩L∞(0, T ; H1

0(D;M)), provided that κ≈ ∈ (H1(0, T ))d×d and ψ̂0 ∈ H1
0(D;M).

The stability result in Lemma 3.1 will be useful in Section 4, but for now we note that setting μ = 0 and ν∼ = 0∼
in Lemmas 3.1 and 3.6 demonstrates the unconditional stability of the time semidiscretization in various norms.
We also note that, evidently, any fully-discrete method based on the semidiscrete scheme (3.1) and conforming
Galerkin discretization in q

∼
using a finite-dimensional subspace PN of H1

0(D;M) will be unconditionally stable
in the norms appearing on the left-hand sides of the bounds in Lemmas 3.1 and 3.6.

3.2. Well-posedness of a Chauvière-Lozinski type transformed FENE model

In this section we show that, in the case of the FENE model, the weak formulation resulting from the
substitution ψ̂ := ψ/M2s/b with b ≥ 4s2/(2s− 1) and s > 1/2 also leads to a well-posed problem and a stable
semidiscretization in any number of space dimensions. The minimum value of the function s ∈ (0,∞) �→
4s2/(2s − 1) is attained at s = 1, yielding the maximum range of b values, b ≥ 4. This transformation was
proposed by Chauvière and Lozinski [17,18,27] in the special cases s = 2 and s = 2.5, where these values
were chosen on the basis of numerical experiments in two and three space dimensions, respectively. For the
sake of brevity, we shall confine ourselves to establishing an energy estimate analogous to our first stability
inequality in Lemma 3.1. A weak compactness argument identical to the one above then shows the existence
of a unique (corresponding) weak solution. The discussion in this section is restricted to the FENE model;
however our arguments can be extended to more general models by adopting additional structural hypotheses
on the potential U (see, for example, Sect. 2.3 in [7]).

Inserting ψ(q
∼
) = [M(q

∼
)]2s/bψ̂(q

∼
) into our model problem (1.3), where now M is the FENE Maxwellian,

yields, on noting that tr(κ≈)(t) = 0 for all t ∈ [0, T ],

∂ψ̂

∂t
− 1

2λ
Δqψ̂ =

1
2λ

⎡
⎣(1 − 4s

b

)(
1 −

|q
∼
|2
b

)−1

q
∼
− 2λ(κ≈ q∼)

⎤
⎦ · ∇∼ qψ̂

+
1
2λ

(
1 −

|q
∼
|2
b

)−2 [
d

(
1 − 2s

b

)(
1 −

|q
∼
|2
b

)
+

2(s− 1)(2s− b)
b2

|q
∼
|2 +

4sλ
b

(q
∼
Tκ≈ q∼)

(
1 −

|q
∼
|2
b

)]
ψ̂. (3.24)

Denoting by A∼ (q
∼
, t) the expression in the first square bracket on the right-hand side of (3.24) and by B(q

∼
, t)

the expression in the second square bracket, multiplying (3.24) by any ϕ̂ ∈ H1
0(D), integrating the resulting

expression over D, and integrating by parts in the second term on the left-hand side, yields the following weak
formulation.

Given ψ̂0 = ψ0/M
2s/b ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D)) such that

d
dt

∫
D

ψ̂ ϕ̂dq
∼

+
1
2λ

∫
D

∇∼ qψ̂ · ∇∼ qϕ̂ dq
∼

=
1
2λ

∫
D

(A∼ (q
∼
, t) · ∇∼ qψ̂) ϕ̂dq

∼
+

1
2λ

∫
D

(
1 −

|q
∼
|2
b

)−2

B(q
∼
, t) ψ̂ ϕ̂dq

∼
, (3.25)

for all ϕ̂ ∈ H1
0(D), in the sense of distributions on (0, T ), and with ψ̂(·, 0) = ψ̂0.
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The backward Euler semidiscretization of this weak formulation is as follows.
Given ψ̂0 := ψ̂0 = ψ0/M

2s/b ∈ L2(D), find ψ̂n+1 ∈ H1
0(D), n = 0, 1, . . . , NT − 1, such that

∫
D

ψ̂n+1 − ψ̂n

Δt
ϕ̂dq

∼
+

1
2λ

∫
D

∇∼ qψ̂
n+1 · ∇∼ qϕ̂ dq

∼
=

1
2λ

∫
D

(A∼ (q
∼
, tn+1) · ∇∼ qψ̂

n+1) ϕ̂ dq
∼

+
1
2λ

∫
D

(
1 −

|q
∼
|2
b

)−2

B(q
∼
, tn+1) ψ̂n+1 ϕ̂ dq

∼
∀ϕ̂ ∈ H1

0(D). (3.26)

We begin by showing that, for Δt sufficiently small and all b ≥ 4s2/(2s − 1) and s > 1/2, this problem has a
unique solution. To this end, for t ∈ [0, T ] fixed, we consider the bilinear form defined on H1

0(D) × H1
0(D) by

C(ψ̂, ϕ̂) :=
1

Δt

∫
D

ψ̂ ϕ̂ dq
∼
+

1
2λ

∫
D

∇∼ qψ̂ ·∇∼ qϕ̂dq
∼
− 1

2λ

∫
D

(A∼ (q
∼
, t) ·∇∼ qψ̂) ϕ̂dq

∼
− 1

2λ

∫
D

(
1 −

|q
∼
|2
b

)−2

B(q
∼
, t)ψ̂ ϕ̂ dq

∼
.

Now, taking ϕ̂ = ψ̂ ∈ C∞
0 (D), integration by parts in the third integral in the definition of C, and then merging

the resulting integral with the fourth integral in the definition of C, yields

C(ψ̂, ψ̂) =
1

Δt
‖ψ̂‖2 +

1
2λ

‖∇∼ qψ̂‖2 +
1
2λ

(
2s− 1 − 4s2

b

)∫
D

|q
∼
|2
b

(
1 −

|q
∼
|2
b

)−2

|ψ̂|2 dq

− 1
4λ

∫
D

[
d+

8sλ
b

(q
∼
Tκ≈ q∼)

](
1 −

|q
∼
|2
b

)−1

|ψ̂|2 dq
∼
.

Assuming that b ≥ 4s2/(2s− 1) with s > 1/2, and recalling that |q
∼
| < √

b for q
∼
∈ D, we then have that

C(ψ̂, ψ̂) ≥ 1
Δt

‖ψ̂‖2 +
1
2λ

‖∇∼ qψ̂‖2 − 1
4λ

(d+ 8sλ‖κ≈‖L∞(0,T ))
∫
D

(
1 −

|q
∼
|2
b

)−1

|ψ̂|2 dq
∼
.

Let us note that for, any β > 0,

∫
D

(
1 −

|q
∼
|2
b

)−1

|ψ̂|2 dq
∼
≤ 1

4β

∫
D

|ψ̂|2 dq
∼

+ β

∫
D

(
1 −

|q
∼
|2
b

)−2

|ψ̂|2 dq
∼
. (3.27)

Hence, by (2.4) and fixing β as the unique solution of the equation 4b
(
d+ 8sλ‖κ≈‖L∞(0,T )

)
β = 1, we have that

C(ψ̂, ψ̂) ≥ 1
Δt

(
1 − bΔt

4λ
(d+ 8sλ‖κ≈‖L∞(0,T ))2

)
‖ψ‖2 +

1
4λ

‖∇∼ qψ̂‖2 ∀ψ̂ ∈ C∞
0 (D).

Recalling that C∞
0 (D) is dense in H1

0(D) and, by [10,11], also in the (1−|q
∼
|2/b)−2-weighted L2 space, L2

M−4/b(D),
we thus deduce that, for any Δt < 4λ/(b(d+8sλ‖κ≈‖L∞(0,T ))2), the bilinear form C is coercive on H1

0(D)×H1
0(D).

The existence of a unique solution {ψ̂n}NT
n=0 to the semidiscretization (3.26) then follows from the Lax-Milgram

theorem, as in the previous section. Using the above coercivity argument, the proof of stability of (3.26), stated
in Lemma 3.7 below, is completely analogous to the proof of Lemma 3.1 and is therefore omitted.

Lemma 3.7 (stability inequality). Let Δt = T/NT , NT ≥ 1, κ≈ ∈ (C[0, T ])d×d, ψ̂0 ∈ L2(D), b ≥ 4s2/(2s− 1)
with s > 1/2, and define c0 := b(d + 8sλ‖κ≈‖L∞(0,T ))2/(2λ). If Δt is such that 0 < c0Δt ≤ 1/2, then we have,



464 D.J. KNEZEVIC AND E. SÜLI

for all m such that 1 ≤ m ≤ NT ,

‖ψ̂m‖2 +
m−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1 − ψ̂n√

Δt

∥∥∥∥∥
2

+
m−1∑
n=0

Δt
2λ

‖∇∼ qψ̂
n+1‖2 ≤ e2c0mΔt‖ψ̂0‖2.

The existence of a unique weak solution to (3.25) now follows from Lemma 3.7 by a weak compactness
argument, in the same way as in the previous section in the case of a general Maxwellian. In particular (3.11)
and (3.13) still hold with ψ̂Δt,(±) defined by (3.8) and (3.9), but now using the sequence {ψ̂n : n = 0, . . . , NT }
generated by (3.26); (3.12) also holds, with H1

0(D;M) replaced by H1
0(D). The rest of the argument is then

identical to that in the proof of Theorem 3.2, using (3.27), Hardy’s inequality (2.4) and the fact that H1
0(D) ⊂

L2(D) = L2(D)′ ⊂ H1
0(D)′, where each space is dense in the next one in the chain, with continuous and injective

embedding.

4. The fully-discrete method

We now return to the semidiscrete method (3.1) based on the symmetrized version of the Fokker-Planck equa-
tion and describe the construction of a fully-discrete numerical method that stems from this semidiscretization.
At the end of the section we shall comment on the extension of our results to a fully-discrete method based
on the semidiscretization (3.26) of the Chauvière-Lozinski-transformed Fokker-Planck equation (3.24) for the
FENE model.

Let PN(D) be a finite-dimensional subspace of H1
0(D;M), to be chosen below, and let ψ̂nN ∈ PN(D) be the

solution at time level n of our fully-discrete Galerkin method:

∫
D

ψ̂n+1
N − ψ̂nN

Δt
ϕ̂dq

∼
−
∫
D

(κ≈
n+1 q

∼
ψ̂n+1
N ) · ∇∼ M ϕ̂dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂
n+1
N · ∇∼ M ϕ̂dq

∼
= 0

∀ϕ̂ ∈ PN (D), n = 0, . . . , NT − 1, (4.1)

ψ̂0
N (·) := the L2(D) orthogonal projection of ψ̂0(·) = ψ̂(·, 0) onto PN(D). (4.2)

Remark 4.1. If the linear space PN (D) is selected so that
√
M ∈ PN (D), then, since

√
M ∈ Ker(∇∼ M ), it

follows on taking ϕ̂ =
√
M in (4.1) that∫
D

√
M(q

∼
) ψ̂nN (q

∼
) dq

∼
=
∫
D

√
M(q

∼
) ψ̂0

N (q
∼
) dq

∼
, n = 1, . . . , NT ,

whereby, on letting ψnN :=
√
Mψ̂nN , we have that∫

D

ψnN (q
∼
) dq

∼
=
∫
D

ψ0
N (q

∼
) dq

∼
, n = 1, . . . , NT .

The function ψnN represents an approximation to the probability density function ψ =
√
Mψ̂ at t = tn. Since, by

Lemma 3.3,
∫
D ψ(q

∼
, t) dq

∼
=
∫
D ψ0(q∼) dq

∼
= 1 for all t ≥ 0, we deduce, by choosing PN (D) so that

√
M ∈ PN (D),

that this integral identity is preserved under discretization. The integral
∫
D
ψ(q

∼
, t) dq

∼
will sometimes be referred

to as the volume of ψ.

Our objective is to derive a bound on the global error enN := ψ̂(·, tn) − ψ̂nN . Clearly,

enN = (ψ̂(·, tn) − Π̂N ψ̂(·, tn)) + (Π̂N ψ̂(·, tn) − ψ̂nN ) =: ηn + ξn,

where Π̂N ψ̂(·, tn) ∈ PN (D) is a certain projection of ψ̂(·, tn) onto PN (D) that will be defined below. For the
moment, the specific choices of PN ⊂ H1

0(D;M) and Π̂N are irrelevant.
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We begin by bounding norms of ξ in terms of suitable norms of η. Substituting ξ into (4.1), setting ϕ̂ = ξn+1,
and noting that ξn = ψ̂(·, tn) − ψ̂nN − ηn, we have

∫
D

ξn+1 − ξn

Δt
ξn+1 dq

∼
−
∫
D

(κ≈
n+1 q

∼
ξn+1) · ∇∼ Mξ

n+1 dq
∼

+
1
2λ

∫
D

∇∼ Mξ
n+1 · ∇∼ Mξ

n+1 dq
∼

=∫
D

μn+1 ξn+1 dq
∼

+
∫
D

ν∼
n+1 · ∇∼ Mξ

n+1 dq
∼
, (4.3)

for n = 0, . . . , NT − 1, where

μn+1 :=

(
ψ̂(·, tn+1) − ψ̂(·, tn)

Δt
− ∂ψ̂

∂t
(·, tn+1)

)
− ηn+1 − ηn

Δt
, (4.4)

ν∼
n+1 := κ≈

n+1q
∼
ηn+1 − 1

2λ
∇∼ Mη

n+1. (4.5)

Since PN (D) ⊂ H1
0(D;M), (4.3) is in the form of (3.4); hence, applying Lemma 3.1, we obtain

‖ξm‖2 +
1
2λ

m−1∑
n=0

Δt‖∇∼ Mξ
n+1‖2 ≤ e2c0mΔt

{
‖ξ0‖2 +

m−1∑
n=0

2Δt
(‖μn+1‖2 + 4λ‖ν∼n+1‖2

)}
, (4.6)

for m = 1, . . . , NT . Let us first consider the term ‖ξ0‖ on the right-hand side of (4.6). Since ψ̂0
N is the L2(D)

orthogonal projection of ψ̂(·, 0) = ψ̂0 onto PN(D), we have (ξ0, ϕ̂N ) = −(η0, ϕ̂N ) for all ϕ̂N ∈ PN (D). Setting
ϕ̂N = ξ0 here and applying the Cauchy-Schwarz inequality on the right-hand side yields ‖ξ0‖ ≤ ‖η0‖.

By the triangle inequality we have the following bound on ‖ν∼n+1‖:

‖ν∼n+1‖ ≤
√
b |κ≈n+1| ‖ηn+1‖ +

1
2λ

‖∇∼ Mη
n+1‖, n = 0, . . . , NT − 1.

Hence for the third term on the right-hand-side of (4.6), we have

m−1∑
n=0

8λΔt‖ν∼n+1‖2 ≤
m−1∑
n=0

Δt
(

16λb|κ≈n+1|2‖ηn+1‖2 +
4
λ
‖∇∼ Mη

n+1‖2

)

≤ 4c2
m−1∑
n=0

Δt‖ηn+1‖2
H1

0(D;M) = 4c2‖η‖2
�2(0,tm;H1

0(D;M)),

for m = 1, . . . , NT , where c2 := max
(
1/λ , 4λb‖κ≈‖2

L∞(0,T )

)
.

It remains to bound ‖μm+1‖. We begin by observing that

‖μm+1‖ ≤
∥∥∥∥∥ ψ̂(·, tn+1) − ψ̂(·, tn)

Δt
− ∂ψ̂

∂t
(·, tn+1)

∥∥∥∥∥+
∥∥∥∥ηn+1 − ηn

Δt

∥∥∥∥ =: I + II.

Bounding both I and II by Taylor’s theorem with integral remainder yields

I2 ≤ Δt
∫ tn+1

tn

∥∥∥∥∥∂
2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt and II2 ≤
∫
D

1
Δt

∫ tn+1

tn

∣∣∣∣∂η∂t (q∼, t)
∣∣∣∣
2

dt dq
∼

=
1

Δt

∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥

2

dt.
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Therefore, we now have that

m−1∑
n=0

2Δt‖μn+1‖2 ≤ 4
m−1∑
n=0

Δt2
∫ tn+1

tn

∥∥∥∥∥∂
2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt+ 4
m−1∑
n=0

∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥

2

dt

= 4Δt2
∥∥∥∥∥∂

2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

+ 4
∥∥∥∥∂η∂t

∥∥∥∥
2

L2(0,tm;L2(D))

.

Combining the bounds on the three terms on the right-hand side of (4.6) we deduce that

‖ξm‖2 +
1
2λ

m−1∑
n=0

Δt‖∇∼ Mξ
n+1‖2 ≤

e2c0mΔt

⎛
⎝‖η0‖2 + 4c2‖η‖2

�2(0,tm;H1
0(D;M)) + 4

∥∥∥∥∂η∂t
∥∥∥∥

2

L2(0,tm;L2(D))

+ 4Δt2
∥∥∥∥∥∂

2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

⎞
⎠ . (4.7)

It remains to bound the first three terms in the bracket on the right-hand side of (4.7). To do so we need to
make a specific choice of the finite-dimensional space PN(D) from which approximations to ψ̂ ∈ H1

0(D;M) are
sought, and we also need to specify the projector Π̂N . These issues will be discussed in the next section. We
shall then return, in Section 6, to (4.7) and complete the convergence analysis of the numerical method.

Remark 4.2. In the case of the FENE model with b ≥ 4s2/(2s− 1) and s > 1/2 a bound analogous to (4.7)
can be shown to hold for the fully-discrete version of the semidiscretization (3.26) based on a Chauvière and
Lozinski type transformation, with suitable fixed positive constants c0 and c2, except that PN (D) is then taken
to be a finite-dimensional subspace of H1

0(D), ∇∼ Mξ
n+1 on the left-hand side of the bound (4.7) is replaced by

∇∼ qξ
n+1, and the norm ‖ · ‖�2(0,tm;H1

0(D;M)) on the right-hand side of (4.7) is replaced by ‖ · ‖�2(0,tm;H1
0(D)). The

main steps of the proof are identical to those above: the Cauchy-Schwarz inequality and inequalities (2.4) and
(3.27) are used in the course of bounding the terms on the right-hand side of an error identity analogous to
(4.3) relating the sequence {ξm}NT

m=0 to the sequence {ηm}NT
m=0, while the terms on the left-hand side of the

error identity are bounded below as in the proof the stability inequality stated in Lemma 3.7.
We note in particular that the fully-discrete version of the semidiscretization (3.26) based on a Chauvière

and Lozinski type transformation ψ̂ = ψ/M2s/b and the finite-dimensional Galerkin subspace PN (D) ⊂ H1
0(D)

is unconditionally stable in the sense that the sequence of numerical solutions {ψ̂nN}NT
n=0 generated by the

fully-discrete scheme satisfies the stability inequality stated in Lemma 3.7, with Δt = T/NT , NT ≥ 1, κ≈ ∈
(C[0, T ])d×d, ψ̂0

N ∈ PN (D), b ≥ 4s2/(2s− 1), s > 1/2, c0 := b(d+ 8sλ‖κ≈‖L∞(0,T ))2/(2λ), 0 < c0Δt ≤ 1/2, and
ψm, ψm−1 and ψ0 replaced by ψmN , ψm−1

N and ψ0
N , respectively, without any conditions relating Δt to N . The

proof of this is identical to that of Lemma 3.7, mutatis mutandis. We thus deduce that for b � 1 a time-step
limitation of the form Δt = O(b−1) is needed in order to ensure that 0 < c0Δt ≤ 1/2, and thereby the stability
of the method. In this respect the scheme behaves identically to the fully-discrete numerical method (4.1), (4.2),
based on the symmetrized form of the Fokker-Planck equation (cf. the conditions of Lem. 3.1, for example).

5. Approximation results

We showed in Section 2.2(b) that, under Hypotheses A and B stated in the Introduction, H1
0(D) ⊂ H1(D;M) =

H1
0(D;M). Therefore, any finite-dimensional space PN (D) ⊂ H1

0(D) is, trivially, also contained in H1
0(D;M).

Our aim now is to make a specific choice of PN(D) and to explore the approximation properties of our chosen
space.
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Remark 5.1. We noted in Remark 4.1 that if, in addition,
√
M ∈ PN (D), then∫

D

ψnN (q
∼
) dq

∼
=
∫
D

ψ0
N (q

∼
) dq

∼
.

Since, by Hypothesis B,
√
M ∈ H1

0(D), one can ensure that this integral identity holds by including
√
M in the

finite-dimensional space PN (D).

Our definition of PN (D) and the choice of the projector Π̂N : H1
0(D;M) → PN (D) depend on the number d

of space dimensions. Since the case of d = 2 is sufficiently representative, for the sake of brevity and ease of
presentation we shall confine ourselves to two space dimensions, that is, when D is a disc of radius

√
b in R

2.
Let D0 denote the slit disc D0 := D \ {(q1, 0) : 0 ≤ q1 <

√
b }. It is natural to transform D0 into the

rectangle (r, θ) ∈ R := (0, 1) × (0, 2π) in a polar co-ordinate system, using the (bijective) change of variables
q
∼

= (q1, q2) = (
√
b r cos θ,

√
b r sin θ) ∈ D0 where (r, θ) ∈ R. Given f ∈ H1(D), we define f̃ on R by

f̃(r, θ) = f(q1, q2), q
∼

= (q1, q2) ∈ D0, (r, θ) ∈ R, q1 =
√
b r cos θ, q2 =

√
b r sin θ. (5.1)

Thus,

‖f‖2
H1(D) = ‖f‖2

H1(D0) =
∫ 1

0

r

∫ 2π

0

⎛
⎝b|f̃ |2 + |Dr f̃ |2 +

∣∣∣∣∣Dθ f̃

r

∣∣∣∣∣
2
⎞
⎠ dθ dr.

Motivated by this identity and writing, here and henceforth, w̃(r) := r for our weight-function on the inter-
val (0, 1), we define the space

H̃1
w̃(R) := {f̃ ∈ L2

loc(0, 1; H1
p(0, 2π)) : f̃ ∈ L2

w̃(R), Dr f̃ ∈ L2
w̃(R) and

1
r
Dθ f̃ ∈ L2

w̃(R)}, (5.2)

equipped with the norm ‖ · ‖H̃1
w̃(R) defined by

‖f̃‖2
H̃1

w̃(R)
:=
∫ 1

0

w̃(r)
∫ 2π

0

⎛
⎝|f̃ |2 + |Dr f̃ |2 +

∣∣∣∣∣Dθ f̃

r

∣∣∣∣∣
2
⎞
⎠ dθ dr, (5.3)

where L2
w̃(R) is the w̃-weighted space of square-integrable functions on R, with norm ‖ · ‖L2

w̃(R) defined by

‖f̃‖2
L2

w̃(R) :=
∫ 1

0

w̃(r)
∫ 2π

0

|f̃(r, θ)|2 dθ dr =
∫
R

|f̃(r, θ)|2 r dr dθ,

and, for a non-negative integer t, the periodic Sobolev space Ht
p(0, 2π) is given by

Ht
p(0, 2π) := {f̃ ∈ Ht

loc(R) : f̃(θ + 2π) = f̃(θ) ∀θ ∈ R}·

Let H̃1
w̃,0(R) denote the subspace of H̃1

w̃(R) consisting of all functions f̃ such that the trace f̃(1, ·) = 0.
For non-negative integers s, t we define the weighted space Hs,t

w̃ (R) := Hs
w̃(0, 1; Ht

p(0, 2π)), equipped with the
norm ‖ · ‖Hs,t

w̃ (R) given by:

‖f̃‖2
Hs,t

w̃ (R)
:=

∑
0≤i≤s, 0≤j≤t

∫ 1

0

w̃(r)
∫ 2π

0

|Di
rD

j
θ f̃(r, θ)|2 dθ dr.
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Similarly, for integers s ≥ 1 and t ≥ 0, we define Hs,t
w̃,0(R) := Hs

w̃,0(0, 1; Ht
p(0, 2π)), where Hs

w̃,0(0, 1) := Hs
w̃(0, 1)∩

H1
w̃,0(0, 1). Here, H1

w̃,0(0, 1) denotes the set of all ũ ∈ H1
w̃(0, 1) such that ũ(1) = 0, endowed with the following

inner product and norm:

(ũ, ṽ)H1
w̃,0(0,1) :=

∫ 1

0

w̃(r)Dr ũDr ṽ dr and ‖ũ‖H1
w̃,0(0,1) := {(ũ, ũ)H1

w̃,0(0,1)}
1
2 .

Note that w̃ is a Jacobi weight function (i.e., of the form (1 − s)α(1 + s)β , s ∈ (−1, 1) with α, β > −1) when
transformed to (−1, 1).

We now introduce the projection operators that we will use. Due to the Cartesian product structure of the
set R it is natural to define distinct projection operators in the r and θ co-ordinate directions. In the θ-direction
we use the orthogonal projection in the L2(0, 2π) inner product (i.e., truncation of the Fourier series) denoted,
for N ≥ 1, by PFN : L2(0, 2π) → SN (0, 2π) where SN (0, 2π) is the space of all trigonometric polynomials in
θ ∈ [0, 2π] of degree N or less. We denote by SNθ,0(0, 2π) the orthogonal complement in SNθ

(0, 2π), with
respect to the L2(0, 2π) inner product, of the one-dimensional subspace spanned by constant functions.

The appropriate choice of projector in the r-direction is less immediate. We define, for N ≥ 1, the operator
P JN : H1

w̃,0(0, 1) → PN,0(0, 1) as the orthogonal projection in the H1
w̃,0(0, 1) inner product, where PN,0(0, 1) is

the space of all algebraic polynomials in r ∈ [0, 1], of degree N or less, that vanish at r = 1.
It is tempting to define a two-dimensional projector onto SN (0, 2π) ⊗ PN,0(0, 1) as the tensor product of

the projectors PFN and P JN . Unfortunately, this choice is inadequate due to the presence of the singular factor
1/r in the weighted Sobolev norm ‖ · ‖H̃1

w̃(R), and a different definition is required. In order to motivate our
choice of the two-dimensional projector below, we state the following result that can be seen as a variant of the
Malgrange preparation theorem [22].

Lemma 5.2 (decomposition lemma). Let g̃ ∈ H̃1
w̃(R) and, for ε ∈ (0, 1), define Rε := (ε, 1) × (0, 2π). There

exist g̃1 ∈ H1
w̃(0, 1) and g̃2 ∈ H0,1

w̃ (R), with g̃2 ∈ H1(Rε) for each ε ∈ (0, 1) and rg̃2 ∈ H̃1
w̃(R), such that

g̃(r, θ) = g̃1(r) + rg̃2(r, θ) for a.e. (r, θ) ∈ R and g̃1(r) :=
1
2π

(g(r, ·), 1)L2(0,2π).

This is the unique such decomposition of g̃. If g̃ ∈ H̃1
w̃,0(R), then g̃1 ∈ H1

w̃,0(0, 1) and rg̃2 ∈ H̃1
w̃,0(R), with

g̃2(1, ·) = 0 in the sense of the trace theorem on H1(Rε), ε ∈ (0, 1).

Proof. Let g̃ ∈ H̃1
w̃(R); then, by virtue of Fubini’s theorem, g̃(r, ·) ∈ H1

p(0, 2π) for a.e. r ∈ (0, 1). Let us define,
for r ∈ (0, 1), the Fourier coefficients of g̃(r, ·) by

γ̃n(r) :=
1√
2π

∫ 2π

0

g̃(r, θ) exp(−inθ) dθ, n = 0, 1, . . .

According to Parseval’s identity,

‖g̃‖2
H̃1

w̃(R)
=
∑
n∈Z

∫ 1

0

(
|γ̃n(r)|2 + |γ̃′n(r)|2 + n2

∣∣∣∣ γ̃n(r)r

∣∣∣∣
2
)
r dr <∞,

whereby, in particular, γ̃0 ∈ H1
w̃(0, 1) and

γ̃n ∈ H1(0, 1; r−1, r) :=
{
f̃ ∈ H1

loc(0, 1) :
∫ 1

0

(
r−1|f̃(r)|2 + r|f̃ ′(r)|2

)
dr <∞

}
∀n ∈ Z \ {0}·
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For any ε ∈ (0, 1) and n ∈ Z \ {0}, γ̃n ∈ H1(ε, 1), and hence γ̃n ∈ C(0, 1]. Also, for 0 < r1 < r2 < 1,

γ̃n(r2)2 − γ̃n(r1)2 =
∫ r2

r1

d
ds

(γ̃n(s)2) ds = 2
∫ r2

r1

γ̃n(s)√
s

√
s γ̃′n(s) ds

≤ 2
(∫ r2

r1

s−1|γ̃n(s)|2 ds
) 1

2
(∫ r2

r1

s|γ̃′n(s)|2 ds
) 1

2

,

which is finite by the definition of H1(0, 1; r−1, r), and hence the left-most integral above is finite also. Since the
integral is a continuous function of its limits, it follows that γ̃2

n ∈ C[0, 1], and hence that |γ̃n| =
√
γ̃2
n ∈ C[0, 1].

Therefore, we have that (for n ∈ Z \ {0}) |γ̃n| ∈ C[0, 1] and γ̃n ∈ C(0, 1], and it follows straightforwardly that
γ̃n ∈ C[0, 1], n ∈ Z \ {0}. However, Parseval’s identity above then implies that, necessarily, γ̃n(0) = 0 for all
n ∈ Z \ {0}.

Now, let us define G̃n(r) := γ̃n(r)/r for n ∈ Z \ {0}, r ∈ (0, 1] and Ẽn(θ) := (exp(inθ))/
√

2π, n ∈ Z,
θ ∈ [0, 2π]. By Parseval’s identity, again,

√
r2 + n2 G̃n ∈ L2

w̃(0, 1), n ∈ Z \ {0}. With these definitions, we have
the following Fourier series expansion of g̃:

g̃ =
1√
2π

γ̃0 + r
∑

n∈Z\{0}
G̃nẼn,

with equality in the sense of H̃1
w̃(R). We define g̃1 := γ̃0/

√
2π and g̃2 =

∑
n∈Z\{0} G̃nẼn to deduce the stated

decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ), and we note that g̃1 = 1
2π (g̃, 1)L2(0,2π) ∈ H1

w̃(0, 1) and g̃2 ∈ H0,1
w̃ (R);

moreover, trivially, rg̃2 = g̃ − g̃1 ∈ H̃1
w̃(R). Also, since g̃ ∈ H̃1

w̃(R) it follows that g̃ ∈ H1(Rε) and g̃1 ∈ H1(ε, 1)
for any ε ∈ (0, 1). Hence, g̃2 = (g̃ − g̃1)/r ∈ H1(Rε) for any ε ∈ (0, 1).

For g̃1 = γ̃0/
√

2π fixed, as in the statement of the lemma, the uniqueness of g̃2 follows easily by reductio
ad absurdum: suppose that h̃2 is another function, with the same regularity properties as g̃2, and such that
g̃ = g̃1 + rh̃2. Then, r(h̃2 − g̃2) = 0 a.e. on R, and therefore h̃2 = g̃2 a.e. on R.

The final statement of the lemma follows directly from the definitions of γ̃n, n ∈ Z and the definitions of g̃1
and g̃2 via the γ̃n, n ∈ Z. �

Suppose that g̃ ∈ H̃1
w̃,0(R). On applying Lemma 5.2 we deduce that g̃ has the (unique) decomposition

g̃(r, θ) = g̃1(r) + rg̃2(r, θ), (5.4)

where g̃1 := 1
2π (g̃, 1)L2(0,2π) ∈ H1

w̃,0(0, 1), g̃2 ∈ H0,1
w̃ (R) and g̃2(1, ·) = 0. Note also that (g2(r, ·), 1)L2(0,2π) = 0

for a.e. r ∈ (0, 1). We shall assume in addition that g̃2(·, θ) ∈ H1
w̃,0(0, 1) for a.e. θ ∈ (0, 2π); by virtue of Fubini’s

theorem, a convenient sufficient condition for this is that g̃2 ∈ H1,0
w̃,0(R), for example. We then define

P̃ JN g̃(·, θ) := P JN g̃1(·) + rP JN g̃2(·, θ), θ ∈ (0, 2π),

where P JN : H1
w̃,0(0, 1) → PN,0(0, 1) is the orthogonal projector defined above.

There are a number of approximation results available in the literature related to projectors in Jacobi-
weighted inner products (see for example [9] or [15]). Since the setting here is specific, we shall establish the
required approximation properties of the univariate projector P JN from first principles. The approximation
properties of P̃ JN and of our two-dimensional projector PFN P̃

J
N will then follow. The relevant results are stated

in the next two lemmas.

Lemma 5.3. Suppose that g̃ ∈ Hk
w̃,0(0, 1) with k ≥ 1; then,

‖g̃ − P JN g̃‖H1
w̃(0,1) ≤ cN1−k‖g̃‖Hk

w̃(0,1) (5.5)
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and
‖g̃ − P JN g̃‖L2

w̃(0,1) ≤ cN−k‖g̃‖Hk
w̃(0,1). (5.6)

Proof. Let us first prove (5.5). Note that by Pythagoras’ theorem,

‖g̃ − P JN g̃‖H1
w̃,0(0,1)

=
(
‖g̃‖2

H1
w̃,0(0,1)

− ‖P JN g̃‖2
H1

w̃,0(0,1)

) 1
2 ≤ ‖g̃‖H1

w̃,0(0,1) ≤ ‖g̃‖Hk
w̃(0,1).

If k = 1, the right-most term in this chain is equal to 1 · N1−k‖g̃‖Hk
w̃(0,1), while if k ≥ 2 and 1 ≤ N < k − 1,

then it is bounded by (k − 1)k−1N1−k‖g̃‖Hk
w̃(0,1).

Finally, if k ≥ 2 and N ≥ max(2, k − 1), then we recall that, by the definition of P JN ,

‖g̃ − P JN g̃‖H1
w̃,0(0,1) ≤ ‖g̃ − ṽ‖H1

w̃,0(0,1)
∀ṽ ∈ PN,0(0, 1).

Select, in particular,

ṽ(r) = −
∫ 1

r

QJN−1Dsg̃(s) ds, r ∈ [0, 1],

where QJN−1 is the orthogonal projector in L2
w̃(0, 1) onto PN−1(0, 1), the set of all algebraic polynomials of

degree N − 1 or less on the interval [0, 1]. Thus,

‖g̃ − P JN g̃‖H1
w̃,0(0,1)

≤ ‖Drg̃ − Dr ṽ‖L2
w̃(0,1) = ‖Dr g̃ −QJN−1(Dr g̃)‖L2

w̃(0,1) ≤ c (N − 1)1−k‖g̃‖Hk
w̃(0,1),

where the last bound (scaled from the standard interval (−1, 1) to (0, 1)) comes from Section 5.7.1 of Canuto
et al. [15], and is valid for N ≥ max(2, k − 1), k ≥ 2. Hence, after bounding (N − 1)1−k by 2k−1N1−k (recall
that N ≥ 2 by hypothesis), we deduce that

‖g̃ − P JN g̃‖H1
w̃,0(0,1)

≤ c 2k−1N1−k‖g̃‖Hk
w̃(0,1).

Now choosing ĉ = max{(k − 1)k−1, c 2k−1} for k ≥ 1, with the convention that 00 := 1, we have that

‖g̃ − P JN ṽ‖H1
w̃,0(0,1) ≤ ĉN1−k‖g̃‖Hk

w̃(0,1)

for all N ≥ 1 (regardless of whether or not N ≥ k − 1). Since by the Friedrichs inequality

‖ṽ‖L2
w̃(0,1) ≤

1
2
‖Drṽ‖L2

w̃(0,1) ∀ṽ ∈ H1
w̃,0(0, 1) (5.7)

‖ · ‖H1
w̃,0(0,1)

and ‖ · ‖H1
w̃(0,1) are equivalent norms on H1

w̃,0(0, 1), we deduce (5.5) for any N ≥ 1.
The proof of (5.6) is based on a duality argument. Let e := g̃−P JN g̃ and note that, by the hypotheses of the

lemma on g̃, we have e ∈ L2
w̃(0, 1). Consider the mixed Neumann-Dirichlet boundary-value problem:

− Dr(rDr ze(r)) = r e(r), r ∈ (0, 1), lim
r→0+

rDrze(r) = 0, ze(1) = 0. (5.8)

By (5.7) and the Lax-Milgram theorem, this has a unique weak solution ze ∈ H1
w̃,0(0, 1) satisfying

(ze, v)H1
w̃,0(0,1) = (e, v)L2

w̃(0,1) ∀v ∈ H1
w̃,0(0, 1), and, by (5.7), ‖ze‖2

H1
w̃(0,1) ≤

5
16

‖e‖2
L2

w̃(0,1). (5.9)

We shall show that in fact D2
rze ∈ L2

w̃(0, 1), and thereby ze ∈ H2
w̃,0(0, 1). To this end, note that

Drze(r) = −1
r

∫ r

0

s e(s) ds, r ∈ (0, 1].
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Hence, Drze ∈ C(0, 1] and, on recalling that e ∈ L2
w̃(0, 1), the Cauchy-Schwarz inequality yields

|Drze(r)|2 ≤ 1
2

∫ r

0

s|e(s)|2 ds, r ∈ (0, 1]. (5.10)

This inequality implies that limr→0+ Drze(r) = 0 and that, for any ε ∈ (0, 1),

∫ 1

ε

1
r
|Drze(r)|2 dr ≤ 1

2ε

∫ 1

0

s|e(s)|2 ds.

Thus,
√
r(r−1Drze) ∈ L2(ε, 1); hence, by (5.8),

√
rD2

rze = −√
r (e + r−1Drze) ∈ L2(ε, 1). Multiplying this

equality by
√
rD2

rze and integrating over the interval (ε, 1) gives

∫ 1

ε

r |D2
rze(r)|2 dr +

∫ 1

ε

Drze(r)D2
rze(r) dr = −

∫ 1

ε

r e(r)D2
rze(r) dr.

Hence, by computing explicitly the second integral on the left-hand side and applying Cauchy’s inequality
|αβ| ≤ 1

2 (α2 + β2) on the right-hand side, we obtain

∫ 1

ε

r |D2
rze(r)|2 dr + |Drze(1)|2 ≤

∫ 1

ε

r |e(r)|2 dr + |Drze(ε)|2.

Passing to the limit ε→ 0+ and omitting the second term on the left-hand side gives that D2
rze ∈ L2

w̃(0, 1) and

∫ 1

0

r |D2
rze(r)|2 dr ≤

∫ 1

0

r |e(r)|2 dr.

Combining this with our earlier bound from (5.9), we have that ‖ze‖2
H2

w̃(0,1)
≤ 21

16‖e‖2
L2

w̃(0,1)
.

We are now ready to embark on the analysis of the projection error in the L2
w̃(0, 1) norm. Recalling that e =

g̃−P JN g̃ ∈ H1
w̃,0(0, 1), we deduce from the weak formulation (5.9), the definition of the orthogonal projector P JN ,

the Cauchy-Schwarz inequality, (5.5) and the H2
w̃(0, 1) norm bound just derived that

‖g̃ − P JN g̃‖2
L2

w̃(0,1) = (e, g̃ − P JN g̃)L2
w̃(0,1) = (ze, g̃ − P JN g̃)H1

w̃,0(0,1)
= (g̃ − P JN g̃, ze − P JNze)H1

w̃,0(0,1)

≤ ‖g̃ − P JN g̃‖H1
w̃,0(0,1)

‖ze − P JNze‖H1
w̃,0(0,1)

≤ cN1−k‖g̃‖Hk
w̃(0,1) ·N−1‖ze‖H2

w̃(0,1)

≤ cN−k‖g̃‖Hk
w̃(0,1)‖g̃ − P JN g̃‖L2

w̃(0,1), k ≥ 1.

Dividing the left-most and the right-most term in this chain by ‖g̃ − P JN g̃‖L2
w̃(0,1) gives (5.6). �

Next, for g̃ ∈ H̃1
w̃,0(R), with decomposition given in (5.4), we define the projection operator Π̃N : H̃1

w̃,0(R) →
PN (R) as:

(Π̃N g̃)(r, θ) := (PFNθ
P̃ JNr

g̃)(r, θ) = (P̃ JNr
PFNθ

g̃)(r, θ),

where the finite-dimensional space PN (R) is defined as

PN (R) := PNr,0(0, 1) ⊕ (rPNr ,0(0, 1) ⊗ SNθ,0(0, 2π)).

The structure of this space reflects the decomposition (5.4). Note that the constant functions have been
factored out of the space SNθ

(0, 2π) in the definition of PN(R); this is appropriate because, as observed above,
(g2(r, ·), 1)L2(0,2π) = 0. The lemma below establishes optimal order approximation results for this projector.
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Lemma 5.4. Let g̃ ∈ H̃1
w̃,0(R), with decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ), where g̃1 = 1

2π (g̃, 1)L2(0,2π) ∈
H1
w̃,0(0, 1), g̃2 ∈ H0,1

w̃ (R), g̃2(1, ·) = 0, and assume, in addition, that g̃2(·, θ) ∈ H1
w̃,0(0, 1) for a.e. θ ∈ (0, 2π). If

g̃1 ∈ Hk+1
w̃ (0, 1) and g̃2 ∈ Hk+1,0

w̃ (R) ∩ Hk,1
w̃ (R) ∩ H0,l+1

w̃ (R) ∩ H1,l
w̃ (R) for some k, l ≥ 1, then

‖g̃ − Π̃N g̃‖H̃1
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2‖2
Hk+1,0

w̃ (R)
+ ‖g̃2‖2

Hk,1
w̃ (R)

) 1
2

+ C2N
−l
θ

(
‖g̃2‖2

H0,l+1
w̃ (R)

+ ‖g̃2‖2
H1,l

w̃ (R)

) 1
2
. (5.11)

If g̃1 ∈ Hk
w̃(0, 1) and g̃2 ∈ Hk,0

w̃ (R) ∩ H0,l
w̃ (R) for some k, l ≥ 1, then

‖g̃ − Π̃N g̃‖L2
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2

Hk
w̃(0,1) + ‖g̃2‖2

Hk,0
w̃ (R)

) 1
2

+ C2N
−l
θ ‖g̃2‖H0,l

w̃ (R). (5.12)

Proof. The left-hand side in (5.11) is given by:

‖g̃ − Π̃N g̃‖2
H̃1

w̃(R)
=

∫ 1

0

w̃(r)
∫ 2π

0

{
(g̃ − Π̃N g̃)2 + (Dr g̃ − Dr(Π̃N g̃))2

}
dθ dr

+
∫ 1

0

r−1

∫ 2π

0

(Dθ g̃ − Dθ(Π̃N g̃))2 dθ dr =: I + II.

Let us first consider term I; we treat the two terms in the, inner, θ-integral in I separately. First, using the
L2-error bound for Fourier projection, as well as the fact that ‖PFNθ

‖L(L2
p(0,2π),L2

p(0,2π)) ≤ 1, we obtain

‖g̃(r, ·) − Π̃N g̃(r, ·)‖2
L2(0,2π) ≤

(
‖g̃(r, ·) − PFNθ

g̃(r, ·)‖L2(0,2π) + ‖PFNθ
(g̃(r, ·) − P̃ JNr

g̃(r, ·))‖L2(0,2π)

)2

≤
(
C3N

−l
θ ‖Dl

θg̃(r, ·)‖L2(0,2π) + ‖g̃(r, ·) − P̃ JNr
g̃(r, ·)‖L2(0,2π)

)2

≤ 2C2
3N

−2l
θ ‖Dl

θg̃2(r, ·)‖2
L2(0,2π) + 2‖g̃(r, ·) − P̃ JNr

g̃(r, ·)‖2
L2(0,2π),

where Dl
θ g̃ = rDl

θ g̃2 and 0 ≤ r ≤ 1 have been used in the last line. Similarly,

‖Drg̃(r, ·) − Dr(Π̃N g̃(r, ·))‖2
L2(0,2π) ≤ 4C2

3N
−2l
θ

(
‖Dl

θ g̃2(r, ·)‖2
L2(0,2π) + ‖DrDl

θ g̃2(r, ·)‖2
L2(0,2π)

)
+ 2‖Drg̃(r, ·) − Dr(P̃ JNr

g̃(r, ·))‖2
L2(0,2π).

Therefore,

I≤ 6C2
3N

−2l
θ

∫ 2π

0

(
‖Dl

θg̃2(·, θ)‖2
L2

w̃(0,1)+ ‖DrDl
θ g̃2(·, θ)‖2

L2
w̃(0,1)

)
dθ + 2

∫ 2π

0

‖g̃(·, θ) − P̃ JNr
g̃(·, θ)‖2

H1
w̃(0,1)dθ.

Now we bound the final term on the right-hand side of the last inequality using the univariate bound (5.5):

‖g̃(·, θ) − P̃ JNr
g̃(·, θ)‖2

H1
w̃(0,1) ≤ 2‖g̃1 − P JNr

g̃1‖2
H1

w̃(0,1) + 2‖r(g̃2(·, θ) − P JNr
g̃2(·, θ))‖2

H1
w̃(0,1)

≤ C2N−2k
r ‖g̃1‖2

Hk+1
w̃ (0,1)

+ 2
∫ 1

0

w̃(r)
{
(2 + r2)(g̃2(r, θ) − P JNr

g̃2(r, θ))2 + 2r2(Dr(g̃2(r, θ) − P JNr
g̃2(r, θ)))2

}
dr

≤ C2N−2k
r ‖g̃1‖2

Hk+1
w̃ (0,1)

+ 6‖g̃2(·, θ) − P JNr
g̃2(·, θ)‖2

H1
w̃(0,1)

≤ C2
4N

−2k
r

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2(·, θ)‖2
Hk+1

w̃ (0,1)

)
.
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Therefore,

I ≤ 6C2
3N

−2l
θ

∫ 2π

0

(
‖Dl

θg̃2(·, θ)‖2
L2

w̃(0,1) + ‖DrDl
θ g̃2(·, θ)‖2

L2
w̃(0,1)

)
dθ

+ 2C2
4N

−2k
r

∫ 2π

0

(
‖g̃1‖2

Hk+1
w̃ (0,1)

+ ‖g̃2(·, θ)‖2
Hk+1

w̃ (0,1)

)
dθ, (5.13)

which is an optimal-order bound on I.
Next we consider II. Since θ-differentiation commutes with the projectors P JNr

and PFNθ
, we have

II ≤ 2
∫ 1

0

r−1

∫ 2π

0

|Dθ g̃(r, θ) − PFNθ
Dθ g̃(r, θ)|2dθ dr

+ 2
∫ 1

0

r−1

∫ 2π

0

|PFNθ
Dθ g̃(r, θ) − P̃ JNr

(PFNθ
Dθ g̃(r, θ))|2dθ dr.

Therefore,

II ≤ 2
∫ 1

0

r−1

∫ 2π

0

∣∣rDθ g̃2(r, θ) − rPFNθ
Dθ g̃2(r, θ)

∣∣2 dθ dr

+ 2
∫ 2π

0

∫ 1

0

r−1|rPFNθ
Dθ g̃2(r, θ) − P̃ JNr

(rPFNθ
Dθ g̃2(r, θ))|2 dr dθ

≤ C2
5N

−2l
θ

∫ 1

0

w̃(r)
∫ 2π

0

|Dl+1
θ g̃2(r, θ)|2 dθ dr

+ 2
∫ 2π

0

∫ 1

0

w̃(r)|PFNθ
Dθ g̃2(r, θ) − P JNr

(PFNθ
Dθ g̃2(r, θ))|2 dr dθ

≤ C2
5N

−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2

L2
w̃(0,1) dθ + C2

6N
−2k
r

∫ 2π

0

‖PFNθ
Dθ g̃2(r, θ)‖2

Hk
w̃(0,1) dθ.

We have used the fact that P̃ JNr
(rg̃2) = rP JNr

(g̃2) as well as the L2
w(0, 1) norm error bound for P JNr

stated
in (5.6). For the second integral in the last line in the bound on II we have

k∑
j=0

∫ 1

0

w̃(r)‖PFNθ
Dj
rDθ g̃2(·, r)‖2

L2(0,2π)dr ≤
k∑
j=0

∫ 1

0

w̃(r)‖Dj
rDθ g̃2(·, r)‖2

L2(0,2π)dr.

Therefore,

II ≤ C2
5N

−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2

L2
w̃(0,1) dθ + C2

6N
−2k
r

∫ 2π

0

‖Dθg̃2(·, θ)‖2
Hk

w̃(0,1)dθ.

Combining the bounds for I and II with suitable constants C1 and C2, we obtain

‖g̃ − PFNθ
P̃ JNr

g̃‖H̃1
w̃(R) ≤ C1N

−k
r

{∫ 2π

0

(‖g̃1‖2
Hk+1

w̃ (0,1)
+ ‖g̃2‖2

Hk+1
w̃ (0,1)

+ ‖Dθ g̃2‖2
Hk

w̃(0,1)) dθ
} 1

2

+ C2N
−l
θ

{∫ 2π

0

(‖Dl+1
θ g̃2‖2

L2
w̃(0,1) + ‖Dl

θg̃2‖2
H1

w̃(0,1)) dθ
} 1

2

, (5.14)

which is (5.11). The proof of the L2
w̃(R) norm bound (5.12) is very similar: its main ingredients are, in fact,

contained in the argument above. For the sake of brevity we omit the details. �
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The bounds (5.11) and (5.12) can now be straightforwardly mapped from R to D0. We define PN (D)
as PN (R) mapped from R to D0 using the polar coordinate transformation (5.1), and we suppose that ψ̂ ∈
Hk+1,l+1(D), with k, l ≥ 1, where

Hk,l(D) := {g ∈ H1
0(D) : g̃ ∈ H̃1

w̃,0(R) has a decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ),

with g̃1 = 1
2π (g̃, 1)L2(0,2π) ∈ Hk

w̃,0(0, 1) and g̃2 ∈ Hk,0
w̃,0(R) ∩ Hk−1,1

w̃ (R) ∩ H0,l
w̃ (R) ∩ H1,l−1

w̃ (R)},

equipped with the norm ‖g‖Hk,l(D) :=
(
‖g‖2

Hk
r(D) + ‖g‖2

Hl
θ(D)

) 1
2

where, for g̃ = g̃1 + rg̃2 ∈ Hk,l(D),

‖g‖Hk
r(D) :=

(
‖g̃1‖2

Hk
w̃(0,1) + ‖g̃2‖2

Hk,0
w̃ (R)

+ ‖g̃2‖2
Hk−1,1

w̃ (R)

) 1
2

and ‖g‖Hl
θ(D) :=

(
‖g̃2‖2

H0,l
w̃ (R)

+ ‖g̃2‖2
H1,l−1

w̃ (R)

) 1
2
.

We define

Π̂N : H1,1(D) → PN (D) by (Π̂Ng)(q1, q2) = (Π̃N g̃)(r, θ), g ∈ H1,1(D).

Thus, recalling (2.5) and noting that Hk,l(D) ⊂ H1
0(D) ⊂ H1

0(D;M), k, l ≥ 1, we deduce from (5.11) that

‖ψ̂ − Π̂N ψ̂‖H1
0(D;M) ≤ C1N

−k
r ‖ψ̂‖Hk+1

r (D) + C2N
−l
θ ‖ψ̂‖Hl+1

θ (D) (5.15)

for all ψ̂ ∈ Hk+1,l+1(D), with k, l ≥ 1. Similarly, we obtain from (5.12) that

‖ψ̂ − Π̂N ψ̂‖L2(D) ≤ C1N
−k
r ‖ψ̂‖Hk

r(D) + C2N
−l
θ ‖ψ̂‖Hl

θ(D) (5.16)

for all ψ̂ ∈ Hk,l(D), with k, l ≥ 1.

6. Convergence analysis of the numerical method

In this section we complete the convergence analysis of the fully-discrete numerical method (4.1), (4.2), based
on the symmetrized form of the Fokker-Planck equation. At the end of the section we shall comment on the
extension of our results to a fully-discrete method that stems from the alternative semidiscretization (3.26) in
the case of the FENE model.

We see from (4.7) that in order to obtain bounds on the norms of ξ appearing on the left-hand side of (4.7)
we need to bound the following terms:

‖η0‖, ‖η‖�2(0,T ;H1
0(D;M)) and

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

.

It follows from (5.15), (5.16) and the definition of η := ψ̂ − Π̂N ψ̂ that

‖η0‖ ≤ ‖ψ̂0 − Π̂N ψ̂0‖ ≤ C1N
−k
r ‖ψ̂0‖Hk

r (D) + C2N
−l
θ ‖ψ̂0‖Hl

θ(D),

‖η‖�2(0,T ;H1
0(D;M)) ≤ C1N

−k
r ‖ψ̂‖�2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖�2(0,T ;Hl+1

θ (D)),∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

≤ C1N
−k
r

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))

+ C2N
−l
θ

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))

,
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with k, l ≥ 1, provided that ψ̂ is such that the right-hand sides of these inequalities are finite. Substituting
these three bounds into the right-hand side of (4.7) we deduce, with mΔt ≤ T , m = 0, 1, . . . , NT , that

‖ξ‖�∞(0,T ;L2(D)) + ‖∇∼ Mξ‖�2(0,T ;L2(D)) ≤ C1N
−k
r

⎛
⎝‖ψ̂0‖Hk

r (D) + ‖ψ̂‖�2(0,T ;Hk+1
r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))

⎞
⎠

+ C2N
−l
θ

⎛
⎝‖ψ̂0‖Hl

θ(D) + ‖ψ̂‖�2(0,T ;Hl+1
θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))

⎞
⎠+ C3Δt

∥∥∥∥∥∂
2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

. (6.1)

Note, also, that

‖η‖�∞(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖�∞(0,T ;Hk

r (D)) + C2N
−l
θ ‖ψ̂‖�∞(0,T ;Hl

θ(D)), (6.2)

‖∇∼ Mη‖�2(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖�2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖�2(0,T ;Hl+1

θ (D)). (6.3)

Now, by the triangle inequality,

‖ψ̂ − ψ̂N‖�∞(0,T ;L2(D)) + ‖∇∼ M (ψ̂ − ψ̂N )‖�2(0,T ;L2(D)) ≤
‖ξ‖�∞(0,T ;L2(D)) + ‖∇∼ Mξ‖�2(0,T ;L2(D)) + ‖η‖�∞(0,T ;L2(D)) + ‖∇∼ Mη‖�2(0,T ;L2(D)),

whereby (6.1), (6.2) and (6.3) give

‖ψ̂ − ψ̂N‖�∞(0,T ;L2(D)) + ‖∇∼ M (ψ̂ − ψ̂N )‖�2(0,T ;L2(D)) ≤

C1N
−k
r

⎛
⎝‖ψ̂‖�∞(0,T ;Hk

r (D)) + ‖ψ̂‖�2(0,T ;Hk+1
r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))

⎞
⎠

+ C2N
−l
θ

⎛
⎝‖ψ̂‖�∞(0,T ;Hl

θ(D)) + ‖ψ̂‖�2(0,T ;Hl+1
θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))

⎞
⎠+ C3Δt

∥∥∥∥∥∂
2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

.

We recall that ψ =
√
Mψ̂, and we define ψnN :=

√
Mψ̂nN . Consequently,

‖ψ − ψN‖�∞(0,T ;H) + ‖ψ − ψN‖�2(0,T ;K) ≤

C1N
−k
r

(∥∥∥∥ ψ√
M

∥∥∥∥
�∞(0,T ;Hk

r (D))

+
∥∥∥∥ ψ√

M

∥∥∥∥
�2(0,T ;Hk+1

r (D))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hk

r (D))

)

+ C2N
−l
θ

(∥∥∥∥ ψ√
M

∥∥∥∥
�∞(0,T ;Hl

θ(D))

+
∥∥∥∥ ψ√

M

∥∥∥∥
�2(0,T ;Hl+1

θ (D))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hl

θ(D))

)

+ C3Δt
∥∥∥∥ 1√

M

∂2ψ

∂t2

∥∥∥∥
L2(0,T ;L2(D))

, (6.4)

with k, l ≥ 1, provided that ψ is such that right-hand side is finite.
That completes the convergence analysis of the method in the case of d = 2. For d = 3 the argument is

identical, and rests on a three-dimensional analogue of Lemma 5.2. We omit the details.
Starting from the second stability inequality stated in Lemma 3.6 and proceeding in an identical manner as

above, one can derive analogous error bounds in the h1(0, T ; H) and �∞(0, T ; K) norms.
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Remark 6.1. In the case of the FENE Maxwellian,
√
M ∈ PN(D) if, and only if, there exists a positive

integer m such that b = 4m and Nr ≥ 2m. In order to ensure that, more generally,
√
M ∈ PN (D) regardless

of the specific choice of b and the value of Nr, one can simply enrich PN (D) by adding
√
M as an extra basis

function. However, in general the polynomials in PN (D) approximate
√
M very closely, so this leads to a

highly ill-conditioned basis. A better solution is to add the component of
√
M orthogonal to PN (D) (in the

L2(D) inner product, for example) to the basis, rather than
√
M itself. This is implemented in Section 7 for a

numerical example in which b is not divisible by 4 and is shown to work well in that case.

Remark 6.2. We make a second comment regarding the FENE model. Starting from the variant of the
inequality (4.7) alluded to in Remark 3.7 in connection with the fully-discrete spectral method based on the
semidiscretization (3.26) with b ≥ 4s2/(2s − 1) and s > 1/2, one can derive an optimal-order error bound
analogous to (6.4). The core of the argument is identical to the one above, and is therefore omitted.

7. Implementation of the numerical method

Numerical methods for solving the Fokker-Planck equation arising from the FENE dumbbell model for dilute
polymeric fluids have been the focus of some attention recently; Du et al. [20] developed a finite difference scheme
that preserved the unit integral property and the positivity of ψ, Chauvière and Lozinski [17,18,27] developed
a spectral method for this problem and Ammar et al. [1,2] proposed a reduced-basis method for solving the
Fokker-Planck equation for FENE dumbbell chains. For a survey of, alternative, stochastic techniques for the
numerical simulation of polymeric liquids we refer to the monograph of Öttinger [30] and the article of Jourdain
et al. [23], for example.

In this section we discuss the implementation of two spectral Galerkin methods based on the formulation (4.1),
(4.2). We also present computational results, both to verify the convergence results derived in previous sections
and to demonstrate the effectiveness of these numerical methods in practice. Finally, we compare the two spectral
Galerkin methods based on the formulation (4.1), (4.2) with the method of Chauvière and Lozinski based on the
“original” form (1.6) of the Fokker-Planck equation (or, more precisely, its transformed version (3.24) resulting
from the substitution (7.9), with s = 2).

Following Section 5 we restrict our attention to the case d = 2 and suppose that ψ̂ ∈ H1
0(D). Hence,

ψ̃ ∈ H̃1
w̃,0(R), where ψ̃(r, θ) := ψ̂(q1, q2) with q1 =

√
b r cos θ, q2 =

√
b r sin θ. Using the decomposition (5.4), ψ̃

can be written in polar co-ordinates as follows:

ψ̃(r, θ) = ψ̃1(r) + rψ̃2(r, θ), (r, θ) ∈ R = (0, 1) × (0, 2π), (7.1)

where, as in Section 5, r has been scaled from (0,
√
b) to (0, 1), and ψ̃1 := 1

2π (ψ̃, 1)L2(0,2π). In the context of
spectral methods in polar co-ordinates, (7.1) is referred to by Shen as the essential pole condition [31]. This
condition is a “first-order” form of the following full pole-condition [21]: in order that a function

ψ̃(r, θ) =
∑
n∈Z

γ̃n(r)Ẽn(θ), where Ẽn(θ) :=
1√
2π

exp(inθ),

is infinitely differentiable when transformed from polar to Cartesian co-ordinates, it is necessary that, for each
n ∈ Z \ {0},

γ̃n(r) = O(r|n|) as r → 0+. (7.2)
That (7.1) is a “first-order” form of the full pole condition is easily seen by writing γ̃n(r) = r|n|G̃n(r), with
G̃n(r) = O(1) as r → 0+; hence,

ψ̃(r, θ) =
1√
2π

γ̃0(r) + r

∞∑
n∈Z\{0}

r|n|−1G̃n(r)Ẽn(θ) =: ψ̃1(r) + rψ̃2(r, θ),

with ψ̃1(r) = γ̃0(r)/
√

2π = 1
2π (ψ̃, 1)L2(0,2π), as required.
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The full pole condition (7.2) is consistent with the result established in the proof of Lemma 5.2 stating that
the expansion coefficients γ̃n, n ∈ Z \ {0}, of a function in H̃1

w̃,0(R) satisfy γ̃n(r) = o(1) as r → 0+, although
the conditions (7.2) are clearly much more restrictive.

In order to fit into the framework of the numerical analysis in Sections 5 and 6, each element of PN(R) should
satisfy (7.1) to ensure that PN (D) is contained in H1

0(D). The discrete space PN (R), introduced in Section 5,
satisfies this property. In this section we define a spectral Galerkin method for the Fokker-Planck equation
based on a particular basis (denoted A) for PN (R) that satisfies the same decomposition.

For the purpose of comparison, we also introduce a second basis, B, in which each function satisfies the full
pole condition, (7.2). Thus, on mapping B from R to D we obtain a basis for a finite-dimensional subspace of
C∞(D) ∩ C0(D) ⊂ H1

0(D). The reason for considering this second basis is that typical solutions of the FENE
Fokker-Planck equation are smooth on D, and therefore it is likely that in practice a Galerkin method based
on B will be more accurate than a method based on A: mapping the basis A from R to D yields a finite-
dimensional subspace of H1

0(D) only, which contains functions that are not smooth at the origin in D. We note,
however, that the span of B does not coincide with PN (R), and therefore the approximation properties of B are
not covered by the results in Section 5 that led to the error bounds in Section 6. Hence, the numerical results
for basis A are intended to verify the analysis developed in the previous sections, while basis B is introduced
to indicate the gain in performance that can be obtained by satisfying (7.2). By requiring more regularity from
the basis than it being a finite-dimensional subspace of H1

0(D) one could modify the arguments in Section 5
to derive convergence estimates based on a pole condition of higher order than (5.4), but this would make the
derivation of the approximation results more laborious (e.g., the projector P̃ JN would have to obey (7.2) rather
than (7.1)). Before introducing bases A and B, we make the following observation.

Remark 7.1. Let ψ̂ be the weak solution of (1.8) corresponding to a given initial condition ψ̂0, define ψ̂∗(q
∼
, t) :=

ψ̂(−q
∼
, t) and suppose that ψ̂0 is invariant under the change of independent variable q

∼
�→ −q

∼
, i.e., ψ̂0(q∼) = ψ̂0(−q∼)

for a.e. q
∼
∈ D. On noting thatM(q

∼
) = M(−q

∼
), q

∼
∈ D, it follows that the weak formulation (1.8) is also invariant

under this change of variable; hence ψ̂ and ψ̂∗ are weak solutions to the same initial boundary-value problem. It
follows by uniqueness of the weak solution established in Section 3 that ψ̂(q

∼
, t) ≡ ψ̂∗(q

∼
, t), i.e., ψ̂(q

∼
, t) = ψ̂(−q

∼
, t)

for a.e. q
∼

∈ D and a.e. t ∈ [0, T ]. This evenness of ψ̂ in the D domain with respect to q
∼

translates into
π-periodicity of ψ̃ in the R domain with respect to θ. An identical statement applies to the numerical solution
(ψ̂nN )NT

n=0 defined by (4.1), (4.2), provided PN (D) ⊂ H1
0(D) is such that whenever a function q

∼
�→ v(q

∼
) belongs

to PN (D) its even reflection q
∼
�→ v(−q

∼
) also belongs to PN(D): if ψ̂0(q∼) = ψ̂0(−q∼) for a.e. q

∼
∈ D, uniqueness

of the L2(D) projection of ψ̂0 onto PN(D) implies that ψ̂0
N (q

∼
) = ψ̂0

N (−q) for a.e. q
∼
∈ D. Uniqueness of the

numerical solution then yields ψ̂nN (q
∼
) = ψ̂nN (−q

∼
) for a.e. q

∼
∈ D and all n = 0, . . . , NT .

The above remark demonstrates that (1.8) captures an important symmetry property of the dumbbell model
for polymeric fluids: the configuration probability density function ψ is required to be symmetric about the
origin in D because the beads of a dumbbell are indistinguishable. As long as ψ̂0 and PN(D) are invariant
under the change of independent variable q

∼
�→ −q

∼
described in Remark 7.1, the numerical solution will inherit

the symmetry of the analytical solution implied by the symmetry of the initial condition. A consequence of this
observation is that we should require the basis functions in A and B to obey the same symmetry condition;
following [18], this is achieved in the definitions below by only including even trigonometric modes in θ. Strictly
speaking therefore A is chosen to be a basis for the linear subspace of PN (R) consisting of all π-periodic functions.
Note, however, that if the solution were 2π-periodic, then one could simply include odd trigonometric modes as
well. We are now ready to define the bases A and B.

Basis A. Let A := A1 ∪ A2 where:

A1 := {(1 − r)Pk(r) : k = 0, . . . , Nr − 1},
A2 := {r(1 − r)Pk(r)Φil(θ) : k = 0, . . . , Nr − 1; i = 0, 1; l = 1, . . . , Nθ}·
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Pk is a polynomial of degree k in r ∈ [0, 1] and Φil(θ) = (1 − i) cos(2lθ) + i sin(2lθ), θ ∈ [0, π]. We denote
by Pk the kth Chebyshev polynomial scaled from [−1, 1] to [0, 1]. The numerical method is not particularly
sensitive to this choice of polynomial, however, and other choices work well also. Notice that the polynomials
in A1 and A2 both contain the factor (1− r) in order to impose the homogeneous Dirichlet boundary condition
on ∂D, and functions in A2 contain an extra factor of r to enforce the essential pole condition. Basis A is
chosen so as to mimic the decomposition (7.1) of the analytical solution ψ̃ ∈ H̃1

w̃,0(R) in polar co-ordinates: the
role of span(A1) is to approximate ψ̃1 while span(A2) is meant to approximate rψ̃2.

Basis B. This is, effectively, the basis proposed by Matsushima and Marcus [29] and Verkley [34], except that,
as above, we ensure that the functions are zero at r = 1 and that they are π-periodic in θ:

B = {Wlk(r)Φil(θ) : k = 0, . . . , Nr − 1; i = 0, 1; l = i, . . . , Nθ}, (7.3)

where Wlk(r) = r2l(1 − r2)J (0,2l)
k (2r2 − 1) and J

(α,β)
k (x) is the Jacobi polynomial on [−1, 1] of degree k with

respect to the weight (1 − x)α(1 + x)β (Φil is the same as in A). Each element of B satisfies (7.2).
A and B both have cardinality N := Nr (2Nθ + 1). Expressing trial and test functions in terms of either A

or B, it is now straightforward to determine the discretization matrices corresponding to the integrals∫
D

ψ̂n+1
N ϕ̂dq

∼
,

∫
D

∇∼ M ψ̂
n+1
N · ∇∼ M ϕ̂dq

∼
,

∫
D

(κ≈
n+1 q

∼
ψ̂n+1
N ) · ∇∼ M ϕ̂dq

∼
(7.4)

from (4.1). These matrices are labeled M, S and Cn+1 for mass, stiffness and convection respectively.
Using the ansatz ψ̃n+1

N (r, θ) =
∑N

v=1 Ψ̃n+1
v Xv(r, θ) for trial functions, where Xv is a basis function (from

either A or B) for 1 ≤ v ≤ N , denoting test functions as Xu for 1 ≤ u ≤ N and mapping (7.4) from D to R
yields:

Muv =
∫ 1

0

∫ π

0

b rXv(r, θ)Xu(r, θ) dr dθ, (7.5)

Suv =
∫ 1

0

∫ π

0

{
r
∂Xv

∂r

∂Xu

∂r
+

1
r

∂Xv

∂θ

∂Xu

∂θ
+
b

2
r2

1 − r2
∂

∂r
(XuXv) +

b2

4
r3

(1 − r2)2
XvXu

}
dr dθ, (7.6)

Cn+1
uv =

∫ 1

0

∫ π

0

brXv
∂Xu

∂θ
(−κn+1

11 sin 2θ − κn+1
12 sin2 θ + κ21 cos2 θ) dr dθ (7.7)

+
∫ 1

0

∫ π

0

(
b r2Xv

∂Xu

∂r
+
b2

2
r3

1 − r2
XvXu

)(
κn+1

11 cos 2θ +
1
2
(κn+1

12 + κn+1
21 ) sin 2θ

)
dr dθ.

Note that if the Xu, Xv do not satisfy (7.1), then the entries of S may be undefined.
With these discretization matrices in hand, the numerical solution is computed by solving the following linear

system for the coefficient vector Ψ̃n+1 := (Ψ̃n+1
1 , . . . , Ψ̃n+1

N )T ∈ R
N , n = 0, 1, . . . , NT − 1:

(
M + Δt

(
1
2λ

S − Cn+1

))
Ψ̃n+1 = MΨ̃n, (7.8)

with Ψ̃0 defined by the initial datum. Then, the numerical approximation to the probability density function
itself is obtained as ψn+1

N (q
∼
) =
√
M(q

∼
) ψ̃n+1

N (r, θ), where r = |q
∼
|/√b and ψ̃n+1

N (r, θ) =
∑N

v=1 Ψ̃n+1
v Xv(r, θ).

For ease of evaluation, the integrals in (7.5), (7.6) and (7.7) can be factorized into products of 1-dimensional
integrals over r and θ. We evaluate the θ-integrals exactly using trigonometric identities, and, noting that the
r-integrands are all polynomials, we use Gauss quadrature to evaluate the r-integrals to machine precision.
M and S are constant matrices, which can be pre-computed and reused, but if κ≈ is time-varying, we must
reassemble Cn+1 at every time-step. However, it is straightforward to factor out the dependence of Cn+1 on κ≈
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so that the integrals that determine Cn+1 need not be evaluated more than once. We use LU-decomposition to
solve (7.8), which is appropriate because the spectral discretization matrices are generally of moderate size.

We now present some numerical results. For simplicity, in the computations considered below we always
use the normalized Maxwellian (which satisfies the symmetry property required in Remark 7.1 and also has
unit volume) as the initial condition, so that ψ̂0(q∼) =

√
M(q

∼
). Also, most of the results presented in this

section are for computations in which b was chosen to be divisible by 4 so that the spaces span(A) and span(B)
naturally contain

√
M , as in Remark 6.1. However, the basis enrichment technique described in Remark 6.1

was implemented to obtain the results in Table 3 (in which b = 10) and, as discussed below, it worked well for
that problem.

Henceforth, the two numerical methods that use basis A and basis B, respectively, will be referred to as
method A and method B.

First of all we present results from solving the Fokker-Planck equation with parameters b = 16, λ = 1.2
and κ11 = −κ22 = 1.1, κ12 = 0.9, κ21 = −0.6 and with Δt = 0.05. These parameters were chosen somewhat
arbitrarily, but the intention here is to visualize a typical evolution of ψN towards steady state, and to provide
an initial qualitative comparison of methods A and B (quantitative convergence results will be presented below).
By taking (Nr, Nθ) = (26, 20) with basis A and (Nr, Nθ) = (21, 15) with basis B, the solutions from the two
methods were indistinguishable to the eye and appear to be fully resolved. As foreshadowed above, A required
more degrees-of-freedom than B to resolve the solution to comparable accuracy in this case because, as can be
seen in Figure 1, ψN is smooth at the origin in Cartesian co-ordinates whereas the basis functions in A are not
necessarily smooth there. Nevertheless, a clear advantage of basis A over basis B is that it is built by relying
on the essential pole condition only, as manifested by the decomposition in Lemma 5.2, which only requires
the most basic smoothness hypothesis, that ψ̃ ∈ H̃1

w̃,0(R) (implied by the assumption that the weak solution
ψ̂ ∈ H1

0(D;M) belongs to H1
0(D)). A related important observation is that, as long as ψ̂ ∈ H1

0(D), the error
bound (6.4), the definition of Hk,l(D) and the convergence rate delivered by basis A depend on the smoothness
of ψ̃ on R, not on the smoothness of ψ̂ on D (see also [31], p. 1585); this feature can be advantageous: for
example, the error bound (6.4), resulting from the Cartesian product structure of R, indicates how potential
anisotropic smoothness of ψ̂ in the radial and azimuthal directions can be exploited by admitting different,
unrelated, polynomial degrees Nr and Nθ in the radial and azimuthal directions, respectively.

Figure 1 shows snapshots of ψN at t = 0, t = 1, t = 2 and t = 3, and ψN is close to steady state at t = 3.
To provide a quantitative study of the spatial accuracy of the numerical methods defined in this section, we

use the fact that when κ≈ is a symmetric tensor the exact steady-state solution of the Fokker-Planck equation is
given by ψexact(q∼) := CM(q

∼
) exp(λq

∼
Tκ≈q∼) where C is a normalization constant chosen so that

∫
D
ψexact(q∼)dq

∼
= 1;

see [13]. We now consider a particular case, referred to as extensional flow, in which κ≈ = diag(δ,−δ). This
generally provides a good test case for numerical methods for the Fokker-Planck equation because it yields
particularly sharp solution profiles that are challenging to resolve, and also the exact steady-state solution is
available for comparison. In order to compare the convergence rates of methods A and B, we solved two distinct
extensional flow problems for: (i) (b, λ, δ) = (12, 1, 1) and (ii) (b, λ, δ) = (20, 1, 2), with a range of choices
of (Nr, Nθ). In order to compare to the known exact steady-state solution, we took 2000 time-steps (with
Δt = 0.05 and T = 100) in each case so that the final numerical solution is a very close approximation to the
steady-state solution. This allows us to compare the spatial convergence rates of the two numerical methods
without worrying about temporal discretization error. Tables 1 and 2 show the relative errors (in the L2(D)
and H1(D;M) norms) between the exact and the computed steady-state solutions for extensional flows (i) and
(ii), respectively.

We can see from the data in the tables that methods A and B converge rapidly for both problem (i) and
problem (ii) and that for each choice of (Nr, Nθ), basis B outperforms basis A – again this is because the solution
profiles are smooth at the origin in Cartesian co-ordinates, see Figure 2. Nevertheless, the rapid convergence
of method A is consistent with the spectral error estimates established in Section 6 (recall that these error
estimates do not apply to method B because span(B) is not the same as PN (R) analyzed in Sect. 5). It is also
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t = 0 t = 1

t = 2 t = 3

Figure 1. Snapshots of ψN at t = 0, t = 1, t = 2 and t = 3 illustrating evolution towards
steady state. In this case, we have Δt = 0.05, b = 16, λ = 1.2 and κ11 = −κ22 = 1.1, κ12 =
0.9, κ21 = −0.6. This computation was performed using basis A and basis B with (Nr, Nθ) =
(26, 20) and (Nr, Nθ) = (21, 15), respectively. The solutions were fully resolved in each of these
two cases.

clear that problem (ii) is more challenging to resolve than problem (i); with both A and B, more basis functions
are required to attain a given accuracy for problem (ii) than for problem (i). Note that the greater difficulty of
resolving extensional flow (ii) is encoded in the convergence estimates in Section 6 because the constants in these
estimates depend exponentially on b, δ (via ‖κ≈‖L∞(0,T )) and T . Moreover, the factor e2c0mΔt on the right-hand
side in Lemma 3.1 permits exponential growth in time of the norm of ψ̂N , and this is reflected in the first row of
Table 2 in which the solutions computed with (Nr, Nθ) = (10, 10) for extensional flow (ii) resulted in numerical
overflow2. Note that this overflow behaviour was only observed in the case of under-resolved computations
that led to numerical solutions containing numerical oscillations i.e. it was not observed in rows 2, 3 and 4 of
Table 2; note also that Chauvière and Lozinski’s method behaves in the same way for under-resolved solutions,
as shown in Table 3.

The (fully resolved) solutions corresponding to extensional flow problems (i) and (ii) are shown in Figure 2,
and in each case both ψN and ψ̃N are plotted. It is clear that the solution profiles corresponding to (ii) are
much more severe, and therefore it is not surprising that more modes were required in this case. The quantity
of interest in these computations is ψN , but ψ̃N is also plotted to emphasize the numerical difficulties that are

2When q
∼
Tκ≈(t)q

∼
= 0 for all t ∈ [0, T ], Lemma 3.1, with μ = 0 and ν∼ = 0∼, can be sharpened. The inequality holds with c0 = 0,

showing that the expression on the left-hand side of the inequality is bounded by ‖ψ̂0‖2, uniformly in T , b and ‖κ≈‖L∞(0,T ).
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Table 1. Relative errors in the L2(D) and H1(D;M) norms (i.e. ‖ψ̂N − ψ̂exact‖/‖ψ̂exact‖ and
‖ψ̂N − ψ̂exact‖H1(D;M)/‖ψ̂exact‖H1(D;M), respectively) for extensional flow (i) at steady-state,
i.e. b = 12, λ = 1 and δ = 1. ψ̂N is an approximation to the steady-state solution obtained by
taking 2000 time-steps with Δt = 0.05, and ψ̂exact is the exact steady-state solution which is
known in this case because κ≈ is symmetric.

Relative L2(D) error Relative H1(D;M) error
(Nr, Nθ) Basis A Basis B Basis A Basis B
(10,10) 3.63 × 10−2 4.61 × 10−3 7.90 × 10−2 8.82 × 10−3

(15,15) 3.36 × 10−3 9.19 × 10−6 8.58 × 10−3 2.33 × 10−5

(20,20) 5.13 × 10−5 4.63 × 10−9 1.64 × 10−4 1.52 × 10−8

(25,25) 2.94 × 10−7 1.74 × 10−12 1.13 × 10−6 6.94 × 10−12

(30,30) 8.31 × 10−10 1.70 × 10−13 3.77 × 10−9 1.70 × 10−13

Table 2. Relative errors in the L2(D) and H1(D;M) norms for extensional flow (ii) at steady-
state, i.e. (b, λ, δ) = (20, 1, 2). The time-stepping strategy to compute the approximate steady-
state solution was the same as in Table 1. The hyphens in the first row indicate that we
obtained numerical overflow in those computations.

Relative L2(D) error Relative H1(D;M) error
(Nr, Nθ) Basis A Basis B Basis A Basis B
(10,10) – – – –
(20,20) 3.91 × 10−2 1.72 × 10−3 4.88 × 10−2 2.54 × 10−3

(30,30) 1.50 × 10−3 2.97 × 10−6 2.61 × 10−3 4.49 × 10−6

(40,40) 2.54 × 10−5 5.97 × 10−9 4.55 × 10−5 5.94 × 10−9

encountered as b and δ are increased. In the plots corresponding to (i), the peaks in ψ̃N are higher than in ψN ,
but only by a factor of about 20. For (ii) on the other hand, the peaks in ψ̃N are higher by a factor of roughly
5000. The causes of this behaviour are two-fold: with δ = 2 the flow has stronger extensional character and
therefore the solution peaks are expected to be more concentrated and also, the larger value of b means that√
M is more strongly degenerate near ∂D so that ψ̂N = ψN/

√
M takes larger values near the boundary. This

second point can be seen as a drawback, for b � 1, of the fully-discrete numerical method (4.1), (4.2), based
on the symmetrized form of the Fokker-Planck equation. Presumably Chauvière and Lozinski [18] fixed their
value of s (s = 2 for d = 2 and s = 2.5 for d = 3) in the transformation

ψ̂(q
∼
) := ψ(q

∼
)/[M(q

∼
)]2s/b = ψ(q

∼
)/(1 − |q

∼
|2/b)s (7.9)

so as to avoid a similar effect; indeed, they presented some numerical results for b = 200. Values of b this large do
not appear to be feasible with the fully-discrete method (4.1), (4.2), based on the substitution ψ̂N = ψN/

√
M .

As has been noted in Remark 4.2, there is in fact no difference between the stability properties of the method
based on (4.1), (4.2) and of a Chauvière and Lozinski type method. However, if b� 1, for a typical ψ we have
that ‖ψ/√M‖L∞(D) = ‖ψ/(1 − |q

∼
|2/b)b/4‖L∞(D) � ‖ψ/(1 − |q

∼
|2/b)2‖L∞(D). Hence, compared to a Chauvière

and Lozinski type method with the recommended choice of s = 2 for d = 2, the maximum value of the numerical
approximation ψ̂N to the function ψ̂ defined by the scheme (4.1), (4.2) can be much larger when b � 1, and
can thereby require greater computational effort to resolve to a given accuracy. The computational results that
we consider in this section are therefore restricted to moderate values of b.

With these precursors, we now compare the accuracy of methods A and B to that of the spectral method of
Chauvière and Lozinski discussed in [18]. In Table 2 of that paper, the authors presented convergence data for
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(a) (b)

(c) (d)

Figure 2. Numerical approximations to the steady state solution for extensional flow prob-
lems (i) and (ii) using (Nr, Nθ) = (30, 30) and (Nr, Nθ) = (40, 40), respectively. Plots (a)
and (b) show ψN and ψ̃N respectively, at steady state for problem (i) and (c), (d) show ψN
and ψ̃N for (ii). The purpose of plots (b) and (d) is to demonstrate that ψ̃N usually has a
much steeper solution profile than ψN and this effect is amplified if either δ or b (or both) are
increased.

the (1, 1)-component of the polymeric extra-stress tensor, τ≈ = (τij)3, computed for an extensional flow at steady
state for the parameters (b, λ, δ) = (10, 1, 5). The tensor τ≈ is defined as follows:

τ≈(t) =
∫
D

F∼ (q
∼
) ⊗ q

∼
ψ(q

∼
, t) dq

∼
, (7.10)

where F∼ is the FENE spring force. Table 3 reproduces Chauvière and Lozinski’s results and compares them to
the corresponding results for methods A and B. Note that in this problem b is not divisible by 4. Therefore, in
order to ensure that the volume of ψN is conserved with methods A and B, we added the component of

√
M

orthogonal to span(A) (resp. span(B)) to the bases to obtain an enriched discrete space that contains
√
M

(cf. Rem. 6.1)4. This ensured that the volume of ψN was conserved to machine precision (except in the cases
that rounding error polluted the results, these are indicated by hyphens in the table).

The data in Table 3 show that for this problem method B converges at a comparable rate to the method of
Chauvière and Lozinski, whereas A appears to converge more slowly. Note that the reason why method B and

3In the context of polymeric fluids, τ≈ represents the contribution of the polymer molecules to the macroscopic stress field.
4Orthogonalization was performed in the L2(D) inner product.
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Table 3. Comparison of the relative errors in τ11 for extensional flow with (b, λ, δ) = (10, 1, 5).
The three schemes compared are methods A and B and the spectral method of Chauvière and
Lozinski. The data for the method of Chauvière and Lozinski is taken from Table 2 in [18].

Relative error of τ11
(Nr, Nθ) Basis A Basis B Chauvière and Lozinski
(11,5) – – –
(13,6) – 4.8 × 10−2 0.35
(21,10) 1.8 × 10−3 2.0 × 10−2 2.0 × 10−2

(31,15) 2.1 × 10−4 1.4 × 10−4 1.4 × 10−4

(41,20) 1.3 × 10−5 8.7 × 10−7 2.1 × 10−7

(a) (b)

Figure 3. Cross-sections of the solution of the extensional flow problem with b = 12, λ = 1
and δ = 5 at steady state, obtained using method B. The fully-resolved solution in (a) was
obtained using (Nr, Nθ) = (41, 20), and the under-resolved solution in (b) was obtained with
(Nr, Nθ) = (26, 20).

Chauvière and Lozinski’s method converge at a similar rate (at least in this case where b is relatively low) is
that both methods involve ansatzes that impose extra regularity at the origin in Cartesian co-ordinates; basis B
satisfies the pole condition (7.2), and Chauvière and Lozinski use a transformation that enforces ∂ψ

∂r

∣∣∣
r=0

= 0,
which, when combined with π-periodicity in θ, has a similar effect.

Remark 7.2. It was proved in Lemma 3.3 that the weak solution of the initial-boundary-value problem (1.3),
(1.4), (1.5) is non-negative a.e. on D. This property is not guaranteed to hold for the numerical solution. How-
ever, our numerical experiments consistently show that if there are sufficiently many modes in the approximation
space to accurately resolve the solution then this non-negativity property is preserved under discretization. This
is illustrated in Figure 3 in which two cross-sections of the numerical solution for the (b, λ, δ) = (12, 1, 5) ex-
tensional flow are shown: the numerical solution on the left is fully resolved, while the one on the right is
under-resolved. In the under-resolved case there are oscillations and clearly ψN ≥ 0 is not satisfied through-
out D, whereas the non-negativity property is accurately captured in the fully resolved case.

8. Conclusions

The Fokker-Planck equation (1.1) has been the subject of active research recently, as a component of bead-
spring type Navier-Stokes-Fokker-Planck models for dilute polymeric fluids. We focused our attention on Fokker-
Planck equations with unbounded drift, such as those that arise from modelling polymer molecules as FENE
dumbbells, where the spring potential q

∼
∈ D �→ U(q

∼
) ∈ R≥0 appearing in the Fokker-Planck equation tends
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to +∞ as q
∼

approaches ∂D, where D is a ball in R
d. The purpose of this paper has been to develop a

rigorous foundation for the numerical approximation of such Fokker-Planck equations. We symmetrized the
principal part of the differential operator by introducing the Maxwellian M associated with U , and applied the
transformation ψ̂ = ψ/

√
M . The resulting weak formulation (1.8) facilitated the development of a number of

analytical results in Sections 3 and 4, including existence and uniqueness of weak solutions of the semidiscretized
equation (3.1) and, on passing to the limit Δt → 0+, of (1.8) also. Using the approximation results derived in
Section 5, optimal-order convergence of the fully-discrete spectral Galerkin method (4.1), (4.2) was established
for the case of d = 2; an analogous procedure could be carried out for d = 3. This analysis was performed for
spring potentials that satisfy Hypotheses A and B; see Example 1.1. The FENE potential is a special case of
this family and also satisfies a third structural hypothesis, Hypothesis C; for such potentials further results can
be deduced via the Brascamp-Lieb inequality (cf. Sect. 2). For example, by virtue of (2.3), not only does the
method converge in the L2(D) norm but also in the norm of the weighted factor space L2

M−2/b(D)/Ker(∇∼ M ).
In the case of the FENE model we indicated the extension of our analysis to a class of numerical methods

based on another change of variable, proposed by Chauvière and Lozinski; here, instead of a Kolmogorov-type
symmetrization, a different transformation, (7.9), is applied to the Fokker-Planck equation. We showed that,
at the analytical level at least, the two approaches lead to methods with very similar stability and accuracy
properties. Section 7 addressed issues related to the implementation of numerical methods for the FENE Fokker-
Planck equation. Numerical results were presented for two distinct implementations, methods A and B, and
these methods were also compared to the spectral method discussed in the paper of Chauvière and Lozinski [18]
on the basis of numerical results reported therein. We showed that methods A and B work well for values of b
up to about 20, and are comparable to the method formulated in [18] in terms of computational efficiency in
this parameter range, with method B being more accurate than method A, and of a very similar accuracy as
the method in [18].

A spectral method is natural in the context of this problem because the boundary of the domain D is smooth
and D can be easily transformed into a rectangular domain R. One could, however, also conceive of a finite-
element method directly in Cartesian co-ordinates, without mapping D to R, and in this case much of the
analysis of this paper would carry over. By choosing a finite-element space PN (D) ⊂ H1

0(D)(⊂ H1
0(D;M)) and

recalling (2.5) and the approximation results of Bernardi on d-dimensional exact triangulations ofD (cf. Thm. 5.1
in [8]), one could easily deduce optimal error bounds from (4.7) (as well as its analogue based on a Chauvière
and Lozinski type transformation). We note, however, that in order to guarantee the unit-volume property by
selecting PN(D) so that

√
M ∈ PN (D) (cf. Rem. 4.1), in addition to choosing b to be a multiple of 4 as in the

spectral methods above, one would now need to work with piecewise polynomials of degree b/2 at least.
The goal of our future work is to extend the numerical methods and analytical results herein to the coupled

Navier-Stokes-Fokker-Planck model, building on the recent paper [6] where convergence to weak solutions of
coupled Navier-Stokes-Fokker-Planck systems has been shown for a general class of Galerkin schemes (without
convergence rates) in the special case when the velocity field u∼ is corotational (i.e., q

∼
Tκ≈q∼ = 0, with κ≈ = ∇≈ x u∼).
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[5] J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off.
Math. Mod. Meth. Appl. Sci. 18 (2008) 935–971.



SPECTRAL GALERKIN APPROXIMATION OF FOKKER-PLANCK EQUATIONS WITH UNBOUNDED DRIFT 485
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[23] B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple

case. Math. Mod. Meth. Appl. Sci. 12 (2002) 1205–1243.
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