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A POSTERIORI ERROR ANALYSIS OF EULER-GALERKIN
APPROXIMATIONS TO COUPLED ELLIPTIC-PARABOLIC PROBLEMS ∗
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Abstract. We analyze Euler-Galerkin approximations (conforming finite elements in space and im-
plicit Euler in time) to coupled PDE systems in which one dependent variable, say u, is governed by
an elliptic equation and the other, say p, by a parabolic-like equation. The underlying application is
the poroelasticity system within the quasi-static assumption. Different polynomial orders are used for
the u- and p-components to obtain optimally convergent a priori bounds for all the terms in the error
energy norm. Then, a residual-type a posteriori error analysis is performed. Upon extending the ideas
of Verfürth for the heat equation [Calcolo 40 (2003) 195–212], an optimally convergent bound is derived
for the dominant term in the error energy norm and an equivalence result between residual and error
is proven. The error bound can be classically split into time error, space error and data oscillation
terms. Moreover, upon extending the elliptic reconstruction technique introduced by Makridakis and
Nochetto [SIAM J. Numer. Anal. 41 (2003) 1585–1594], an optimally convergent bound is derived
for the remaining terms in the error energy norm. Numerical results are presented to illustrate the
theoretical analysis.
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1. Introduction

The main motivation for this work is poroelasticity problems with hydro-mechanical couplings. We consider a
linearly elastic porous medium Ω saturated by a slightly compressible and viscous fluid within the so-called quasi-
static assumption in which inertia effects in the elastic structure are negligible. Given a simulation time T > 0,
the problem consists in finding a displacement field u : [0, T ] × Ω → R

3 and a pressure field p : [0, T ] × Ω → R

such that

−∇·σ(u) + b∇p = f, in [0, T ]× Ω, (1.1)

∂t( 1
M p + b∇·u) −∇·(κ∇p) = g, in [0, T ]× Ω. (1.2)
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Here, σ(u) = 2λ1ε(u) + λ2(∇·u)I is the so-called effective stress tensor, ε(u) = 1
2 (∇u + (∇u)t) the linearized

strain tensor, λ1 and λ2 the Lamé coefficients assumed to be positive constants, I the identity matrix in R
3, b the

Biot-Willis coefficient, M the Biot modulus, κ the permeability of the medium, while f and g are given data,
typically the volumetric body forces and their divergence, respectively. The system (1.1)–(1.2) is supplemented
with initial and boundary conditions discussed below. The poroelasticity system can be traced back to the
pioneering work of von Terzaghi [25] and Biot [4]. Equations (1.1)–(1.2) respectively express the balance of
momentum and the conservation of mass. The quasi-static assumption means that the term ρ∂ttu (where ρ
denotes the density of the elastic structure) has been neglected in the momentum balance. The Biot modulus
combines compressibility and porosity effects; it is often assumed to be very large when dealing with the so-
called Biot’s consolidation problem, but this assumption will not be made here. For the sake of simplicity, we
will assume that the coefficients b and M are given constants. A mathematical analysis of the system (1.1)–
(1.2), including existence and uniqueness of strong and weak solutions based on the theory of linear degenerate
evolution equations in Hilbert spaces, has been carried out by Showalter [19,20]. Boundary conditions can
be prescribed by considering two partitions of the boundary. The first partition is used for the displacement
field (either the displacement itself or a traction force is prescribed), while the other partition is used for the
pressure field (either the pressure itself or a flux is prescribed). For the sake of simplicity, we assume here
that any portion of the boundary is clamped or drained, i.e. at least a Dirichlet condition is enforced on the
displacement or on the pressure everywhere. Furthermore, an initial condition must be enforced on the quantity
1
M p+b∇·u. Although the evolution problem related to (1.1)–(1.2) is essentially of parabolic type under minimal
smoothness requirements on the data, we refer to it as a coupled elliptic-parabolic problem to stress the fact that
equation (1.1) is of elliptic type for the displacement and equation (1.2) is of parabolic type for the pressure.

In the present work, we assume that the data (including boundary and initial conditions) are smooth enough
for a strong solution to exist up to initial time, and we are concerned with the analysis of Euler-Galerkin
approximations using a backward Euler scheme in time and conforming finite elements in space. The a priori
analysis of Euler-Galerkin approximations for Biot’s consolidation problem is covered in the work of Murad,
Loula, and coworkers [14–16], including the semi-discrete and fully discrete cases and long-time behavior. The
problem under scrutiny here is somewhat different since we do not assume that the Biot modulus takes very
large values, i.e. we do not discard the pressure time-derivative in (1.2). As a result, we shall briefly address
below the a priori error analysis of the Euler-Galerkin approximation to the evolution problem (1.1)–(1.2). The
energy norm associated with the present problem controls the L∞(0, t; H1

x)-norm (L∞ in time and H1 in space)
of the displacement and the L∞(0, t; L2

x)- and L2(0, t; H1
x)-norms of the pressure. This implies that error bounds

with optimal convergence orders in space require the use of different polynomial degrees in the finite element
spaces for the displacement and for the pressure, namely one degree higher for the displacement than for the
pressure. The technique of Wheeler [26] originally designed to obtain optimally convergent L∞(0, t; L2

x) a priori
error bounds for the heat equation can be adapted to the present framework. The same technique has already
been used in [14–16] for Biot’s consolidation problem. Note that the use of different polynomial degrees for
the displacement and the pressure stems here solely from the derivation of optimally convergent error bounds,
and that using equal-order polynomials still yields a stable discrete problem even though the underlying Stokes
problem associated with the elimination of the displacement is not stable.

The a posteriori error analysis of evolution problems related to poroelasticity is a much less explored field.
In the present work, we derive a posteriori energy-norm error bounds of residual type. Two approaches are
undertaken. The first one uses standard energy techniques and yields an error bound which is similar to those
previously derived for the heat equation by Picasso [17], Verfürth [24], Chen and Feng [6], and Bergam et al. [3].
The error bound comprises a term associated with time errors (evaluated from the pressure differences at two
consecutive time steps), one associated with space errors (evaluated from the finite element residuals for the
displacement and for the pressure) and a data oscillation term. Furthermore, taking inspiration from the work
of Verfürth [24], an equivalence result is established between the residual measured in a suitable dual norm and
the error measured in the energy norm supplemented with some time-derivatives measured in weaker norms.
A nontrivial novelty with respect to the heat equation is the use of a L1(0, t; H−1

x )-norm for the time-derivative
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of the displacement equation. A further important difference is that owing to the use of different polynomial
orders for the displacement and for the pressure, the convergence rate with respect to mesh size of the derived
bound is not optimally convergent with respect to all of the terms in the energy norm, in particular those
concerning the displacement. To tackle this difficulty, we make use of the elliptic reconstruction technique
introduced for linear parabolic problems by Makridakis and Nochetto [12] and further analyzed by Lakkis and
Makridakis [11]. This technique, which can be regarded as the counterpart of the elliptic projection method
introduced by Wheeler for the a priori error analysis, was designed to obtain optimally convergent a posteriori
error bounds in the L∞(0, t; L2

x)-norm (and other higher-order norms) for linear parabolic problems. Another
novelty of the present work is to extend this technique to coupled elliptic-parabolic problems such as the
poroelasticity equations to derive error bounds for the displacement exhibiting optimal convergence behavior
with respect to mesh size. This extension is not straightforward since we shall see that the reconstructed fields
at the continuous level must still depend on some time-derivative of the displacement to account for the fact
that the divergence of the discrete displacement does not belong to the pressure finite element space. Other
approaches to derive L∞(0, t; L2

x)-norm a posteriori error bounds for parabolic equations can be found, among
others, in the work of Eriksson and Johnson [8,9] and of Thomée [21] based on duality techniques and in the
work of Babuška et al. [1] using a double integration in time. Finally, we observe that an alternative approach
to derive a posteriori error bounds is the use of goal-oriented, duality-weighted techniques; see, e.g., Becker and
Rannacher [2] for a thorough description and various applications.

This paper is organized as follows. Section 2 presents the setting under scrutiny in an abstract framework.
The advantage of working with an abstract setting rather than with the poroelasticity system is that it allows
more generality on the problem to be treated (easily incorporating for instance various boundary conditions)
and that it allows to identify more clearly the main arguments in the proofs. Furthermore, although the
displacement can be eliminated to yield a parabolic-type evolution equation for the sole pressure (see Sect. 2.4),
we have chosen to work with the mixed pressure-displacement formulation since the displacement is often an
important variable in poroelasticity applications. Section 3 is devoted to the a priori error analysis. The main
result is Theorem 3.1. Section 4 deals with the a posteriori error analysis. The main results are Theorems 4.1
and 4.2 for the direct approach and Theorem 4.3 for the approach using elliptic reconstruction. Section 5
contains numerical results illustrating the error analysis. Finally, Section 6 draws some conclusions.

2. The setting

2.1. The continuous problem

Let Va and Vd be two Hilbert spaces respectively equipped with symmetric, continuous and coercive bilinear
forms a and d. The norms induced by these forms are denoted by ‖·‖a and ‖·‖d respectively. Let V ′

a (resp.,
V ′

d) be the dual space of Va (resp., Vd) with duality product denoted by 〈·, ·〉a (resp., 〈·, ·〉d) and norm ‖·‖′
a

=
sup0�=v∈Va

|〈·, v〉a|/‖v‖a (resp., ‖·‖′
d

= sup0�=q∈Vd
|〈·, q〉d|/‖q‖d). Let La (resp., Ld) be a Hilbert space equipped

with a scalar product (·, ·)La (resp., (·, ·)Ld
) with dense and continuous injection Va ↪→ La (resp., Vd ↪→ Ld); in

particular, let γ̃ be such that for all q ∈ Vd, ‖q‖Ld
≤ γ̃‖q‖d. Identifying La (resp., Ld) with its dual space, it is

inferred that Va ↪→ La ≡ L′
a ↪→ V ′

a (resp., Vd ↪→ Ld ≡ L′
d ↪→ V ′

d). Moreover, let c be a symmetric, continuous
and coercive bilinear form defined over Ld × Ld inducing a norm ‖·‖c; in particular, let γ̂ be such that for all
q ∈ Ld, ‖q‖c ≤ γ̂‖q‖Ld

, so that for all q ∈ Vd, ‖q‖c ≤ γ‖q‖d with γ := γ̂γ̃. Finally, let b be a continuous bilinear
form defined over Va × Ld with continuity constant β, i.e., for all (v, q) ∈ Va × Ld, |b(v, q)| ≤ β‖v‖a‖q‖c.

The elements of the spaces defined above are functions of the space variable x. In the sequel, we shall deal
with functions of time and space. The time variable varies over the interval [0, T ] for a fixed T > 0. Henceforth,
Lp(0, T ; Z), p ∈ [1, +∞], denotes the vector space of functions f in space and time such that for a.e. t ∈ [0, T ],
f(t) := f(t, ·) is in Z (where Z denotes any of the spaces defined above) and

∫ T

0 ‖f(s)‖p
Zds < +∞ if p �= +∞

or sups∈[0,T ] ‖f(s)‖Z < +∞ if p = +∞. Similarly, H1(0, T ; Z) denotes the subspace of L2(0, T ; Z) consisting in
functions f with square integrable distributional time-derivative ∂tf over [0, T ]. Functions in H1(0, T ; Z) admit
pointwise values in Z for all t ∈ [0, T ]. Whenever Z ≡ Ld, the space Z is equipped with the norm ‖·‖c.
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Given data f ∈ H1(0, T ; La), g ∈ H1(0, T ; Ld), and p0 ∈ Vd, we seek for the strong solution (u, p) ∈
H1(0, T ; Va) × H1(0, T ; Vd) such that for a.e. t ∈ [0, T ],

a(u, v) − b(v, p) = 〈f, v〉a, ∀v ∈ Va, (2.1)

c(∂tp, q) + b(∂tu, q) + d(p, q) = 〈g, q〉d, ∀q ∈ Vd, (2.2)

completed with the initial condition p(0) := p0. Note that in the present setting, equation (2.1) holds up to
t = 0, thus uniquely determining the initial value of u in terms of p0 and f(0). Letting u0 := u(0) ∈ Va, the
a priori bound ‖u0‖a ≤ β‖p0‖c + ‖f(0)‖′

a
is readily inferred by taking v := u0 in (2.1).

Our first result is an a priori estimate for the strong solution. The energy norm for problem (2.1)–(2.2) is
defined for all t ∈ [0, T ] as

‖(u, p)‖2
X(0,t) = ‖u‖2

L∞(0,t;Va) + ‖p‖2
L∞(0,t;Ld) + ‖p‖2

L2(0,t;Vd). (2.3)

Proposition 2.1. The following holds for a.e. t ∈ [0, T ],

1
2‖(u, p)‖2

X(0,t) ≤ 2
(
2‖f‖L∞(0,T ;V ′

a) + ‖∂tf‖L1(0,T ;V ′
a)

)2 + ‖g‖2
L2(0,T ;V ′

d) + ‖u0‖2
a + ‖p0‖2

c . (2.4)

Proof. Since (u, p) is a strong solution, for a.e. t ∈ [0, T ], v = ∂tu is in Va and q = p is in Vd. Using these test
functions in (2.1)–(2.2) yields

1
2dt‖u‖2

a + 1
2dt‖p‖2

c + ‖p‖2
d = 〈f, ∂tu〉a + 〈g, p〉d.

Hence,
1
2dt‖u‖2

a + 1
2dt‖p‖2

c + 1
2‖p‖

2
d ≤ 〈f, ∂tu〉a + 1

2‖g‖
2′
d
.

Let t ∈ (0, T ). Integrating the above inequality over (0, t) and integrating by parts in time the term 〈f, ∂tu〉a
yields

1
2‖(u, p)‖2

X(0,t) ≤ 〈f(t), u(t)〉a − 〈f(0), u(0)〉a −
∫ t

0

〈∂tf(s), u(s)〉ads + 1
2‖g‖

2
L2(0,T ;V ′

d) + 1
2‖u0‖2

a + 1
2‖p0‖2

c.

As a result, it is inferred that for a.e. t ∈ [0, T ],

1
2‖(u, p)‖2

X(0,t) ≤ C1‖u‖L∞(0,T ;Va) + C2,

with C1 = 2‖f‖L∞(0,T ;V ′
a) + ‖∂tf‖L1(0,T ;V ′

a) and C2 = 1
2‖g‖2

L2(0,T ;V ′
d) + 1

2‖u0‖2
a + 1

2‖p0‖2
c. Hence,

1
2‖u‖

2
L∞(0,T ;Va) ≤ C1‖u‖L∞(0,T ;Va) + C2,

so that ‖u‖2
L∞(0,T ;Va) ≤ 4(C2

1 + C2). This yields 1
2‖(u, p)‖2

X(0,t) ≤ 2(C2
1 + C2), i.e., (2.4). �

An important consequence of Proposition 2.1 is the uniqueness of the strong solution of (2.1)–(2.2). In the
sequel, we assume the existence of the strong solution.

Remark 2.1. Proposition 2.1 holds in the slightly more general setting where f ∈ H1(0, T ; V ′
a), g ∈ L2(0, T ; V ′

d),
p0 ∈ Ld, and p ∈ L2(0, T ; Vd) ∩ H1(0, T ; Ld).

Application to poroelasticity. The evolution problem (1.1)–(1.2) fits the present setting. For the sake of
simplicity, we consider homogeneous Dirichlet boundary conditions both for the displacement and the pressure.
Then, letting

Va = [H1
0 (Ω)]3, La = [L2(Ω)]3, Vd = H1

0 (Ω), Ld = L2(Ω), (2.5)
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we define the bilinear forms

a(u, v) =
∫

Ω

σ(u):ε(v), b(v, p) =
∫

Ω

bp∇·v, (2.6)

c(p, q) =
∫

Ω

1
M pq, d(p, q) =

∫
Ω

κ∇p·∇q. (2.7)

The coercivity of a on Va × Va (resp., d on Vd × Vd) results from Korn’s First Inequality (resp., Poincaré’s
Inequality). The bilinear form b is clearly continuous on Va × Ld with β = b(M/λ2)1/2. Proposition 2.1
means that the displacement is controlled in the L∞(0, t; H1

x)-norm and that the pressure is controlled in the
L∞(0, t; L2

x)- and L2(0, t; H1
x)-norms.

2.2. The discrete problem

Problem (2.1)–(2.2) is approximated by an Euler-Galerkin scheme, namely conforming finite elements in
space and an implicit Euler scheme in time. Let {Vah}h>0 and {Vdh}h>0 be two families of finite-dimensional
subspaces of Va and Vd respectively. The parameter h refers to the size of an underlying mesh family denoted
by {Th}h>0. Let 0 = t0 < t1 < . . . < tN = T be a sequence of discrete times and for all n ∈ {1, . . . , N}, set
τn = tn − tn−1 and In = (tn−1, tn). Henceforth, a superscript n indicates the value taken by any function of
space and time at the discrete time tn. For instance, un := u(tn) ∈ Va. For the sake of simplicity, we have
chosen to restrict ourselves to fixed meshes and to postpone the study of discretizations with time-dependent
meshes to future work.

The discrete problem consists in seeking {un
h}N

n=1 ∈ [Vah]N and {pn
h}N

n=1 ∈ [Vdh]N such that for all n ∈
{1, . . . , N},

a(un
h, vh) − b(vh, pn

h) = (fn
h , vh)La , ∀vh ∈ Vah, (2.8)

c(δtp
n
h, qh) + b(δtu

n
h, qh) + d(pn

h , qh) = (gn
h , qh)Ld

, ∀qh ∈ Vdh, (2.9)

where δtp
n
h = τ−1

n (pn
h − pn−1

h ) and δtu
n
h = τ−1

n (un
h − un−1

h ). Given a pair (u0h, p0h) ∈ Vah × Vdh, the initial
condition is (u0

h, p0
h) := (u0h, p0h). The data {fn

h }N
n=1 ∈ [La]N and {gn

h}N
n=1 ∈ [Ld]N are approximations of

{fn}N
n=1 and {gn}N

n=1 respectively.

Lemma 2.1. The discrete problem is well-posed.

Proof. For all n ∈ {1, . . . , N}, equations (2.8)–(2.9) yield a square linear system for the components of (un
h, pn

h)
once bases of Vah and Vdh are chosen, so it suffices to prove the uniqueness of the discrete solution. Testing
with vh = un

h − un−1
h and qh = τnpn

h and using the fact that a(x, x− y) = 1
2a(x, x) + 1

2a(x− y, x− y)− 1
2a(y, y)

owing to the symmetry of the bilinear form a (along with a similar property for the bilinear form c) yields

1
2‖u

n
h‖2

a + 1
2‖u

n
h − un−1

h ‖2
a + 1

2‖p
n
h‖2

c + 1
2‖p

n
h − pn−1

h ‖2
c + τn‖pn

h‖2
d = 1

2‖u
n−1
h ‖2

a + (fn
h , un

h − un−1
h )La

+ 1
2‖p

n−1
h ‖2

c + τn(gn
h , pn

h)Ld
.

Hence,
1
2‖u

n
h‖2

a + 1
2‖p

n
h‖2

c + 1
2τn‖pn

h‖2
d ≤ 1

2‖u
n−1
h ‖2

a + 1
2‖f

n
h ‖2

′
a

+ 1
2‖p

n−1
h ‖2

c + 1
2 τn‖gn

h‖2′
d
.

This shows the uniqueness of the solution of the square linear system. �

The proof of Lemma 2.1 hints at how the discrete scheme (2.8)–(2.9) could be modified if time-dependent
meshes were used. In this case, we work with two families {V n

ah}N
n=0 and {V n

dh}N
n=0 of finite-dimensional subspaces

such that for all n ∈ {0, . . . , N}, V n
ah ⊂ Va and V n

dh ⊂ Vd. The discrete scheme takes the general form (2.8)–(2.9)
with test functions vh ∈ V n

ah and qh ∈ V n
dh. However, if the expression for the time-derivative of the displacement

is kept unchanged, the argument deployed in the above proof breaks down because it is no longer possible to use
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vh = un
h − un−1

h as a test function since in general vh �∈ V n
ah (unless the restrictive assumption V n−1

ah ⊂ V n
ah is

made for all n ∈ {1, . . . , N}). To circumvent this difficulty, let Rn∗
ah : Va → V n

ah be the Riesz projection operator
defined such that for all v ∈ Va,

a(v − Rn∗
ah(v), vh) = 0, ∀vh ∈ V n

ah, (2.10)

and use δtu
n
h = τ−1

n (un
h − Rn∗

ah(un−1
h )) in (2.9). Then, proceeding as in the proof of Lemma 2.1 with the test

functions vh = un
h − Rn∗

ah(un−1
h ) ∈ V n

ah and qh = τnpn
h ∈ V n

dh and observing that a(un
h, vh) = a(un

h, un
h − un−1

h )
since un

h ∈ V n
ah, the same stability result is recovered, and thus well-posedness.

2.3. Continuous and discrete differential operators

To formulate the a posteriori error bounds in the usual form, it is convenient to associate differential operators
(in space) with the bilinear forms a, b, c, and d. To this purpose, we define the following continuous operators:
A ∈ L(Va; V ′

a) s.t. 〈Av, w〉a = −a(v, w), B ∈ L(Va; Ld) s.t. (Bv, q)Ld
= b(v, q) with (formal) adjoint B∗ ∈

L(Vd; La) s.t. (B∗q, v)La = b(v, q), C ∈ L(Ld; Ld) s.t. (Cq, r)Ld
= c(q, r), and D ∈ L(Vd; V ′

d) s.t. 〈Dq, r〉d =
−d(q, r). We use the same notation for the extension B∗ ∈ L(Ld; V ′

a) s.t. 〈B∗q, v〉a = b(v, q). Problem (2.1)–(2.2)
can be rewritten in the form

−Au − B∗p = f, (2.11)

C∂tp + B∂tu − Dp = g, (2.12)

these equalities holding for a.e. t ∈ [0, T ] in V ′
a and V ′

d respectively. For the poroelasticity system, Av = ∇·σ(v),
Bv = b∇·v, B∗q = −b∇q, Cq = 1

M q, and Dq = ∇·(κ∇p). In the simplified setting where all the physical
parameters are equal to unity, we obtain

A = Δ, B = ∇·, B∗ = −∇, C = IL2(Ω), D = Δ. (2.13)

In the sequel, we shall also consider the operators Aloc and Dloc which are localized versions to mesh cells of
the corresponding global differential operators, that is, those operators act locally on each mesh cell as their
global counterpart without taking into account possible discontinuities across mesh interfaces.

At the discrete level, we also consider the operators Ah ∈ L(Vah; Vah) s.t. (Ahvh, wh)La = −a(vh, wh),
Bh ∈ L(Vah; Vdh) s.t. (Bhvh, qh)Ld

= b(vh, qh) with adjoint B∗
h ∈ L(Vdh; Vah) s.t. (B∗

hqh, vh)La = b(vh, qh), and
Dh ∈ L(Vdh; Vdh) s.t. (Dhqh, rh)Ld

= −d(qh, rh). Observe that duality products have been replaced by La- and
Ld-scalar products. The discrete problem (2.8)–(2.9) can be rewritten in the form

−Ahun
h − B∗

hpn
h = fn

h , (2.14)

Cδtp
n
h + Bhδtu

n
h − Dhpn

h = gn
h , (2.15)

these equalities holding for all n ∈ {1, . . . , N} in Vah and Vdh respectively. For later use, we let f0
h := −Ahu0h−

B∗
hp0h, so that (2.14) also holds for n = 0.

2.4. Elimination of the displacement

An alternative viewpoint to the PDE system (2.11)–(2.12) consists in eliminating the displacement to infer
the following parabolic-like evolution equation for the pressure

∂t(Cp + Lp) − Dp = g̃, (2.16)

where L = −BA−1B∗ ∈ L(Ld; Ld) is self-adjoint and monotone ((Lq, q)Ld
≥ 0 for all q ∈ Ld) and where

g̃ = g + BA−1∂tf ∈ L2(0, T ; Ld). In addition, the operator L is coercive provided the operator B is surjective;
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this assumption actually holds for the poroelasticity system. The same elimination can be performed at the
discrete level yielding

δt(Cpn
h + Lhpn

h) − Dhpn
h = g̃n

h , (2.17)

where Lh = −BhA−1
h B∗

h is again self-adjoint and monotone and gn
h is defined accordingly. The monotonicity

property of Lh is key to the stability of the discrete system since it ensures that the pressure-displacement cou-
pling only introduces additional dissipation into the pressure evolution equation. Interestingly, the operator Lh

needs not be coercive for the discrete problem (2.17) to be stable; this is actually not the case for the poroe-
lasticity problem if equal-order polynomials are used for the displacement and the pressure. In the following
section, we will see that the use of different polynomial orders is solely geared to obtain optimal convergence
rates for all the terms in the energy norm. The situation is different in the singular limit where C → 0 (that
is, when the Biot modulus M goes to infinity) since in this case, the coercivity of the operator Lh is needed to
control the Ld-norm of the pressure.

2.5. The steady problem

Both the a priori and a posteriori error analysis of the approximation of the steady version of (2.1)–(2.2)
using the subspaces {Vah}h>0 and {Vdh}h>0 will play a role in the error analysis for the time-dependent case.
The steady version of (2.1)–(2.2) consists in seeking u ∈ Va and p ∈ Vd such that

a(u, v) − b(v, p) = 〈f, v〉a, ∀v ∈ Va, (2.18)

d(p, q) = 〈g, q〉d, ∀q ∈ Vd, (2.19)

with data f ∈ V ′
a and g ∈ V ′

d . It is straightforward to verify that the problem (2.18)–(2.19) is well-posed owing
to its upper triangular structure and the coercivity of the bilinear forms a and d.

The discrete problem consists in seeking uh ∈ Vah and ph ∈ Vdh such that

a(uh, vh) − b(vh, ph) = 〈f, vh〉a, ∀vh ∈ Vah, (2.20)

d(ph, qh) = 〈g, qh〉d, ∀qh ∈ Vdh. (2.21)

Here, we do not consider an approximation to the data f and g. The discrete problem is conveniently re-
formulated using a Riesz projection operator Rh : Va × Vd → Vah × Vdh such that for all (v, q) ∈ Va × Vd,
Rh(v, q) := (Rah(v, q), Rdh(q)) is defined by

a(v − Rah(v, q), vh) − b(vh, q − Rdh(q)) = 0, ∀vh ∈ Vah, (2.22)

d(q − Rdh(q), qh) = 0, ∀qh ∈ Vdh. (2.23)

It is clear that (uh, ph) solves (2.20)–(2.21) if and only if uh = Rah(u, p) and ph = Rdh(p). The approximation
properties of the operator Rh can be found in [14]. The result is restated here for completeness.

Lemma 2.2. The following holds for all (v, q) ∈ Va × Vd,

‖v − Rah(v, q)‖a ≤ inf
vh∈Vah

‖v − vh‖a + β‖q − Rdh(q)‖c, (2.24)

‖q − Rdh(q)‖d = inf
qh∈Vdh

‖q − qh‖d. (2.25)

Proof. Property (2.25) is classical. To establish (2.24), consider the operator R∗
ah defined by (2.10) (the upper

index n is dropped since meshes are kept fixed in time). Then, observe that since both R∗
ah(v) and Rah(v, q)
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are in Vah,

‖Rah(v, q) − R∗
ah(v)‖2

a = a(Rah(v, q) − R∗
ah(v), Rah(v, q) − R∗

ah(v))

= a(Rah(v, q) − v, Rah(v, q) − R∗
ah(v)) + a(v − R∗

ah(v), Rah(v, q) − R∗
ah(v))

= −b(Rah(v, q) − R∗
ah(v), q − Rdh(q))

≤ β‖Rah(v, q) − R∗
ah(v)‖a‖q − Rdh(q)‖c.

Hence, ‖Rah(v, q) − R∗
ah(v)‖a ≤ β‖q − Rdh(q)‖c whence it follows by the triangle inequality that

‖v − Rah(v, q)‖a ≤ ‖v − R∗
ah(v)‖a + ‖Rah(v, q) − R∗

ah(v)‖a ≤ ‖v − R∗
ah(v)‖a + β‖q − Rdh(q)‖c,

readily yielding (2.24). �

To deduce from Lemma 2.2 asymptotic rates of convergence for the approximation error in terms of the mesh
size when the exact solution is smooth enough, we introduce the following assumptions.

Hypothesis 2.1. There exist constants c1 and c2, positive real numbers sa and sd, and subspaces Wa ⊂ Va and
Wd ⊂ Vd respectively equipped with norms ‖·‖Wa and ‖·‖Wd

, such that independently of h,

∀v ∈ Wa, inf
vh∈Vah

‖v − vh‖a ≤ c1h
sa‖v‖Wa , (2.26)

∀q ∈ Wd, inf
qh∈Vdh

‖q − qh‖d ≤ c2h
sd‖q‖Wd

. (2.27)

Hypothesis 2.2. There exist a constant c3 and a positive real number δ such that for all r ∈ Ld, the unique
solution φ ∈ Vd of the dual problem d(q, φ) = c(r, q) for all q ∈ Vd, is such that there is φh ∈ Vdh satisfying

‖φ − φh‖d ≤ c3h
δ‖r‖c. (2.28)

Hypothesis 2.1 is classical in the context of finite element approximations. It will be used in the a priori
error analysis. To keep technicalities at a minimum, a version of Hypothesis 2.1 localized to mesh cells is not
considered. Hypothesis 2.2 is an elliptic regularity property associated with the bilinear form d on Vd. It is stated
here in compact form, the usual statement consisting in assuming that the dual solution φ is in a subspace Yd

of Vd where the interpolation property (2.28) holds in the form ‖φ − φh‖d ≤ c3h
δ‖φ‖Yd

. Hypothesis 2.2 will
serve both in the a priori and the a posteriori error analysis. In the latter case, a sharper statement localized
to mesh cells will be introduced in Section 4.2. For the time being, we will only use the following important
consequence of Hypothesis 2.2:

‖q − Rdh(q)‖c ≤ c3h
δ‖q − Rdh(q)‖d. (2.29)

Indeed, letting φ be the dual solution associated with r := q − Rdh(q) and observing that d(r, φh) = 0 for
φh ∈ Vdh yields

‖q − Rdh(q)‖2
c = c(r, r) = d(r, φ) = d(r, φ − φh) ≤ ‖r‖d‖φ − φh‖d, (2.30)

whence (2.29) readily follows. An important consequence of (2.24), (2.26), and (2.29) is that for all (v, q) ∈
Wa × Wd,

‖v − Rah(v, q)‖a ≤ c1h
sa‖v‖Wa + βc2c3h

sd+δ‖q‖Wd
. (2.31)

For the purpose of computational efficiency, it is reasonable to balance both sources of error in ‖v−Rah(v, q)‖a.
This motivates the following hypothesis.
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Hypothesis 2.3. sa = sd + δ =: s.

In the framework of Hypotheses 2.1–2.3, Lemma 2.2 yields for all (v, q) ∈ Wa × Wd,

‖v − Rah(v, q)‖a ≤ hs(c1‖v‖Wa + βc2c3‖q‖Wd
), (2.32)

‖q − Rdh(q)‖c ≤ hsc2c3‖q‖Wd
, (2.33)

‖q − Rdh(q)‖d ≤ hs−δc2‖q‖Wd
. (2.34)

As a result, whenever the exact solution of the steady problem (2.18)–(2.19) is smooth enough, namely (u, p) ∈
Wa ×Wd, the error ‖p− ph‖d converges asymptotically as hs−δ while the error ‖u−uh‖a + ‖p− ph‖c converges
asymptotically as hs. Since δ is positive, this means that the error ‖u− uh‖a + ‖p− ph‖c converges at a faster
rate than ‖p− ph‖d. This difference in the convergence rates will be accounted for in the subsequent analysis of
the time-dependent problem, the goal being to derive a priori and a posteriori error bounds that are optimally
convergent for ‖pn − pn

h‖d on the one hand and for ‖un − un
h‖a + ‖pn − pn

h‖c on the other hand.

Application to poroelasticity. Consider the model problem (1.1)–(1.2) with the displacement (resp., the
pressure) approximated in space by continuous Lagrange finite elements of degree k ≥ 1 (resp., l ≥ 1). Then,
Hypothesis 2.1 holds with sa := k, Wa := [H1

0 (Ω) ∩ Hk+1(Th)]3, sd := l and Wd := H1
0 (Ω) ∩ H l+1(Th), where

for m ≥ 0, Hm(Th) denotes the usual broken Sobolev space of order m. Hypothesis 2.2 means that the steady-
state version of the pressure equation yields elliptic regularity, namely for all r ∈ L2(Ω), the unique solution
φ ∈ H1

0 (Ω) to the dual problem
∫
Ω κ∇φ·∇q =

∫
Ω rq for all q ∈ H1

0 (Ω) is in H2(Ω). Then, (2.28) holds with
δ := 1. As a result, Hypothesis 2.3 implies

k = l + 1, (2.35)

i.e. the polynomial interpolation for the displacement is one degree higher than that for the pressure. The most
common choice in practice is k = 2 and l = 1, i.e. continuous piecewise quadratics are used to approximate the
displacement and continuous piecewise linears are used to approximate the pressure.

3. A PRIORI error analysis

The a priori error analysis is performed under the assumption that the exact solution is smooth, namely

u ∈ C1
t (Wa) ∩ C2

t (Va), p ∈ C1
t (Wd) ∩ C2

t (Ld). (3.1)

For all n ∈ {1, . . . , N}, define

Cn
1 (u, p) = 2γ2c2

2c
2
3‖∂tp(s)‖2

L∞(In;Wd) + 2β2γ2(c1‖∂tu(s)‖L∞(In;Wa) + βc2c3‖∂tp(s)‖L∞(In;Wd))2, (3.2)

Cn
2 (u, p) = 1

2γ2γ̂2‖∂2
ttp(s)‖2

L∞(In;Ld) + 1
2β2γ2‖∂2

ttu(s)‖2
L∞(In;Va), (3.3)

Cn(f, g) = 1
2‖f

n − fn
h ‖2

′
a

+ τn‖gn − gn
h‖2′

d
. (3.4)

Moreover, it is assumed that the initial data u0h and p0h are chosen such that

‖u0 − u0h‖a ≤ c4h
s‖u0‖Wa and ‖p0 − p0h‖c ≤ c5h

s‖p0‖Wd
, (3.5)

and we define

C(u0, p0) = (c1 + c4)2‖u0‖2
Wa

+ (β2c2
2c

2
3 + 1

2 (c2c3 + c5)2)‖p0‖2
Wd

. (3.6)

One possible choice is u0h = Rah(u0, p0) and p0h = Rdh(p0), in which case we can take C(u0, p0) = 0.
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Theorem 3.1. In the above framework, the following holds for all n ∈ {1, . . . , N},

1
4‖u

n − un
h‖2

a + 1
4‖p

n − pn
h‖2

c ≤ h2sC(u0, p0) +
n∑

m=1

Cm(f, g) +
n∑

m=1

[τmh2sCm
1 (u, p) + τ3

mCm
2 (u, p)]

+ h2s(c2
1‖un‖2

Wa
+ (β2 + 1

2 )c2
2c

2
3‖pn‖2

Wd
),

(3.7)

and
n∑

m=1

1
8τm‖pm − pm

h ‖2
d ≤ h2sC(u0, p0) +

n∑
m=1

Cm(f, g) +
n∑

m=1

[τmh2sCm
1 (u, p) + τ3

mCm
2 (u, p)]

+
n∑

m=1

1
4τmh2(s−δ)c2

2‖pm‖2
Wd

.

(3.8)

Proof. (i) For all n ∈ {1, . . . , N}, let us first bound the quantities

ηn
ah = Rah(un, pn) − un

h and ηn
dh = Rdh(pn) − pn

h.

Observe that

a(ηn
ah, vh) − b(vh, ηn

dh) = 〈fn − fn
h , vh〉a, ∀vh ∈ Vah,

c(ηn
dh − ηn−1

dh , qh) + b(ηn
ah − ηn−1

ah , qh) + τnd(ηn
dh, qh) = τn〈gn − gn

h , qh〉d + c(θn
dh, qh) + b(θn

ah, qh), ∀qh ∈ Vdh,

where θn
dh = Rdh(pn) − Rdh(pn−1) − τn∂tp

n and θn
ah = Rah(un, pn) − Rah(un−1, pn−1) − τn∂tu

n. Testing with
vh := ηn

ah − ηn−1
ah ∈ Vah and qh := ηn

dh ∈ Vdh yields after some straightforward algebra

1
2‖η

n
ah‖2

a + 1
2‖η

n
ah − ηn−1

ah ‖2
a + 1

2‖η
n
dh‖2

c + 1
2‖η

n
dh − ηn−1

dh ‖2
c + τn‖ηn

dh‖2
d = 1

2‖η
n−1
ah ‖2

a + 1
2‖η

n−1
dh ‖2

c

+ 〈fn − fn
h , ηn

ah − ηn−1
ah 〉a + τn〈gn − gn

h , ηn
dh〉d + c(θn

dh, ηn
dh) + b(θn

ah, ηn
dh).

Hence,

1
2‖η

n
ah‖2

a + 1
2‖η

n
dh‖2

c + 1
4τn‖ηn

dh‖2
d ≤ 1

2‖η
n−1
ah ‖2

a + 1
2‖η

n−1
dh ‖2

c + Cn(f, g) + τ−1
n γ2‖θn

dh‖2
c + τ−1

n β2γ2‖θn
ah‖2

a.

(ii) Let us now bound the quantities θn
dh and θn

ah. Observe that

θn
dh = −

∫
In

[∂tp(s) − Rdh(∂tp(s))]ds −
∫

In

(s − tn−1)∂2
ttp(s)ds.

Hence, owing to the regularity assumptions on the exact solution and equation (2.33),

‖θn
dh‖c ≤ τnhsc2c3‖∂tp(s)‖L∞(In;Wd) + 1

2τ2
nγ̂‖∂2

ttp(s)‖L∞(In;Ld).

Similarly, using (2.32),

‖θn
ah‖a ≤ τnhs(c1‖∂tu(s)‖L∞(In;Wa) + βc2c3‖∂tp(s)‖L∞(In;Wd)) + 1

2τ2
n‖∂2

ttu(s)‖L∞(In;Va).

Therefore,
τ−1
n γ2‖θn

dh‖2
c + τ−1

n β2γ2‖θn
ah‖2

a ≤ τnh2sCn
1 (u, p) + τ3

nCn
2 (u, p).
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Summing up the above inequalities leads to

1
2‖η

n
ah‖2

a + 1
2‖η

n
dh‖2

c +
n∑

m=1

1
4τm‖ηm

dh‖2
d ≤ 1

2‖η
0
ah‖2

a + 1
2‖η

0
dh‖2

c +
n∑

m=1

[Cm(f, g)+ τmh2sCm
1 (u, p)+ τ3

mCm
2 (u, p)].

(iii) We now bound the initial errors η0
ah and η0

dh. In the case where u0h = Rah(u0, p0) and p0h = Rdh(p0), it
is clear that η0

ah = 0 and η0
dh = 0. In the general case, use the triangle inequality to infer

‖η0
dh‖c = ‖Rdh(p0) − p0h‖c ≤ ‖Rdh(p0) − p0‖c + ‖p0 − p0h‖c ≤ hs(c2c3 + c5)‖p0‖Wd

.

Similarly,

‖η0
ah‖a ≤ ‖Rah(u0, p0) − u0‖a + ‖u0 − u0h‖a ≤ hs((c1 + c4)‖u0‖Wa + βc2c3‖p0‖Wd

).

Hence,

1
2‖η

n
ah‖2

a + 1
2‖η

n
dh‖2

c +
n∑

m=1

1
4τm‖ηm

dh‖2
d ≤ h2sC(u0, p0) +

n∑
m=1

[Cm(f, g) + τmh2sCm
1 (u, p) + τ3

mCm
2 (u, p)].

(iv) The conclusion readily results from the triangle inequality and equations (2.32)–(2.33)–(2.34). �

Theorem 3.1 shows that whenever the exact solution is smooth enough and up to data approximation errors
that can be made small enough, ‖un − un

h‖a + ‖pn − pn
h‖c converges to order s in space and first-order in time,

while (
∑n

m=1 τm‖pm − pm
h ‖2

d)
1/2 converges to order (s − δ) in space and first-order in time.

Application to poroelasticity. When continuous piecewise quadratics (resp., linears) are used to approximate
the displacement (resp., the pressure), ‖un − un

h‖H1 + ‖pn − pn
h‖L2 converges to second-order in space and first-

order in time, while (
∑n

m=1 τm‖pm − pm
h ‖2

H1)1/2 converges to first-order in space and in time.

4. A POSTERIORI error analysis

This section is devoted to the a posteriori error analysis for the discrete scheme (2.8)–(2.9). The main results
are Theorems 4.1 and 4.2 for the direct approach and Theorem 4.3 for the approach using elliptic reconstruction.

4.1. The direct approach

The a posteriori error analysis relies on the stability of the continuous problem. Therefore, it is convenient
to rewrite the discrete scheme as equations holding a.e. in (0, T ) rather than at the discrete times {tn}N

n=1.
To this purpose, let uhτ (resp., phτ ) be the continuous and piecewise affine function in time such that for all
n ∈ {0, . . . , N}, uhτ (tn) = un

h (resp., phτ (tn) = pn
h). Observe that ∂tuhτ and ∂tphτ are defined a.e. in (0, T ).

Similarly, let fhτ be the continuous and piecewise affine function in time such that for all n ∈ {0, . . . , N},
fhτ (tn) = fn

h . We will also need to consider piecewise constant functions in time, namely π0phτ (resp., π0ghτ )
equal to pn

h (resp., gn
h) on In for all n ∈ {1, . . . , N}. With the above notation, the discrete scheme (2.8)–(2.9)

yields a.e. in (0, T ),

a(uhτ , vh) − b(vh, phτ ) = (fhτ , vh)La , ∀vh ∈ Vah, (4.1)

c(∂tphτ , qh) + b(∂tuhτ , qh) + d(π0phτ , qh) = (π0ghτ , qh)Ld
, ∀qh ∈ Vdh. (4.2)

For the a posteriori error analysis, it is convenient to introduce the Galerkin residual Ga (resp., Gd) which is
a continuous and piecewise affine function in time with values in V ′

a (resp., piecewise constant function in time
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with values in V ′
d) such that a.e. in (0, T ),

〈Ga, v〉a = (fhτ , v)La − a(uhτ , v) + b(v, phτ ), ∀v ∈ Va, (4.3)

〈Gd, q〉d = (π0ghτ , q)Ld
− c(∂tphτ , q) − b(∂tuhτ , q) − d(π0phτ , q), ∀q ∈ Vd. (4.4)

Note that Ga ∈ H1(0, T ; V ′
a) ∩ L∞(0, T ; V ′

a) and Gd ∈ L2(0, T ; V ′
d). Let

E(f, g) = ‖g − π0ghτ‖2
L2(0,T ;V ′

d) +
(
2‖f − fhτ‖L∞(0,T ;V ′

a) + ‖∂t(f − fhτ )‖L1(0,T ;V ′
a)

)2
, (4.5)

Edat = ‖u0 − u0h‖2
a + ‖p0 − p0h‖2

c + 4E(f, g), (4.6)

Espc = 4‖Gd‖2
L2(0,T ;V ′

d
) + 4

(
2‖Ga‖L∞(0,T ;V ′

a) + ‖∂tGa‖L1(0,T ;V ′
a)

)2
, (4.7)

Etim = ‖phτ − π0phτ‖2
L2(0,T ;Vd). (4.8)

Edat is referred to as a data oscillation term.

Theorem 4.1. For all n ∈ {1, . . . , N},

1
4‖(u − uhτ , p − phτ )‖2

X(0,tn) + 1
2‖p − π0phτ‖2

L2(0,tn;Vd) ≤ Edat + Espc + Etim. (4.9)

Proof. Let ξ = u − uhτ , ζ = p − phτ , and ζ∗ = p − π0phτ . Observe that a.e. in (0, T ),

a(ξ, v) − b(v, ζ) = 〈f − fhτ + Ga, v〉a, ∀v ∈ Va,

c(∂tζ, q) + b(∂tξ, q) + d(ζ∗, q) = 〈g − π0ghτ + Gd, q〉d, ∀q ∈ Vd.

Testing for a.e. t ∈ (0, T ) with v := ∂tξ and q := ζ yields

1
2dt‖ξ‖2

a + 1
2dt‖ζ‖2

c + 1
2‖ζ‖

2
d + 1

2‖ζ
∗‖2

d = 〈f − fhτ + Ga, ∂tξ〉a + 〈g − π0ghτ + Gd, ζ〉d + 1
2‖phτ − π0phτ‖2

d,

where we have used the fact that owing to the symmetry of d,

d(ζ, ζ∗) = 1
2d(ζ, ζ) + 1

2d(ζ∗, ζ∗) − 1
2d(ζ − ζ∗, ζ − ζ∗).

Since f − fhτ + Ga ∈ H1(0, T ; V ′
a) and g − π0ghτ + Gd ∈ L2(0, T ; V ′

d), we can conclude by proceeding as in the
proof of Proposition 2.1. �

Since for all m ∈ {1, . . . , N} and for all s ∈ Im, (phτ−π0phτ )(s) = τ−1
m (s−tm)(pm

h −pm−1
h ), it is straightforward

to formulate Etim in terms of so-called time error indicators as follows:

Etim =
N∑

m=1

Em
tim with Em

tim = 1
3τm‖pm

h − pm−1
h ‖2

d. (4.10)

We now proceed to bound more explicitly Espc. We assume that the various bilinear forms in the model
problem (2.1)–(2.2) can be localized as follows: for all (v, q) ∈ Va × Vd and for all (ξ, ζ) ∈ Va × Vd such that
Alocξ ∈ La and Dlocζ ∈ Ld,

a(ξ, v) =
∑

T∈Th

[−(Alocξ, v)La(T ) + (Jaξ, v)La(∂T )], (4.11)

d(ζ, q) =
∑

T∈Th

[−(Dlocζ, q)Ld(T ) + (Jdζ, q)Ld(∂T )]. (4.12)
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Here, for a mesh cell T ∈ Th, La(T ) and Ld(T ) are local versions of La and Ld respectively, (·, ·)La(∂T ) and
(·, ·)Ld(∂T ) are scalar products for functions defined on the boundary ∂T of T and Ja and Jd are suitable (jump)
operators such that Jaξ = 0 if Aξ ∈ La and Jdζ = 0 if Dζ ∈ Ld. In addition, for all (v, ζ) ∈ Va × Vd and for all
(q, r) ∈ Ld × Ld,

b(v, ζ) =
∑

T∈Th

(v, B∗ζ)La(T ) =
∑

T∈Th

(Bv, ζ)Ld(T ), and c(q, r) =
∑

T∈Th

(Cq, r)Ld(T ). (4.13)

Finally, following [10,23], we assume that there exist two (Clément-type) interpolation operators iah : Va → Vah

and idh : Vd → Vdh such that for all (v, q) ∈ Va × Vd,

∑
T∈Th

[h−2
T ‖v − iah(v)‖2

La(T ) + h−1
T ‖v − iah(v)‖2

La(∂T )] ≤ c6‖v‖2
a, (4.14)

∑
T∈Th

[h−2
T ‖q − idh(q)‖2

Ld(T ) + h−1
T ‖q − idh(q)‖2

Ld(∂T )] ≤ c7‖q‖2
d, (4.15)

where for all T ∈ Th, hT denotes the diameter of T . In the context of poroelasticity where Va = [H1
0 (Ω)]3

and Vd = H1
0 (Ω), the usual Clément [7] interpolation operator (modified to account for homogeneous Dirichlet

boundary conditions) or the Scott-Zhang [18] interpolation operator can be used.
We define the following elementwise and jump residuals for all m ∈ {1, . . . , N},

Rm
uh = fm

h + Alocu
m
h + B∗pm

h , Jm
uh = Jaum

h , (4.16)

Rm
ph = gm

h − Cδtp
m
h − Bδtu

m
h + Dlocp

m
h , Jm

ph = Jdp
m
h . (4.17)

For m = 0, R0
uh, J0

uh, and J0
ph are defined similarly, while we set R0

ph = (Dloc−Dh)p0h for later use in Section 4.2.
We also define for all m ∈ {0, . . . , N}, the so-called space error indicators

Êm
u =

∑
T∈Th

Êm
u,T , Êm

u,T = h2
T ‖Rm

uh‖2
La(T ) + hT ‖Jm

uh‖2
La(∂T ), (4.18)

Êm
p,r =

∑
T∈Th

Êm
p,r,T , Êm

p,r,T = h2r
T [h2

T ‖Rm
ph‖2

Ld(T ) + hT ‖Jm
ph‖2

Ld(∂T )], (4.19)

for a real parameter r ≥ 0. Here and in the sequel, integrals over element boundaries are restricted to those
faces of the element that do not lie on the boundary of Ω where homogeneous Dirichlet boundary conditions
are enforced. We will also use the transient version of the above quantities, namely for m ∈ {1, . . . , N},

Êm
u (δt) =

∑
T∈Th

Êm
u,T (δt), Êm

u,T (δt) = h2
T ‖δtR

m
uh‖2

La(T ) + hT ‖δtJ
m
uh‖2

La(∂T ), (4.20)

Êm
p,r(δt) =

∑
T∈Th

Êm
p,r,T (δt), Êm

p,r,T (δt) = h2r
T [h2

T ‖δtR
m
ph‖2

Ld(T ) + hT ‖δtJ
m
ph‖2

Ld(∂T )], (4.21)

where δtR
m
uh = τ−1

m (Rm
uh − Rm−1

uh ), δtJ
m
uh = τ−1

m (Jm
uh − Jm−1

uh ), and so on.
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Proposition 4.1. In the above framework,

‖Ga‖2
L∞(0,T ;V ′

a) ≤ c6 sup
0≤m≤N

Êm
u , (4.22)

‖∂tGa‖2
L1(0,T ;V ′

a) ≤ c6

(
N∑

m=1

τm(Êm
u (δt))

1
2

)2

, (4.23)

‖Gd‖2
L2(0,T ;V ′

d) ≤ c7

N∑
m=1

τmÊm
p,0. (4.24)

Hence,

Espc ≤ E†
spc := 4c7

N∑
m=1

τmÊm
p,0 + 32c6 sup

0≤m≤N
Êm

u + 8c6

(
N∑

m=1

τm(Êm
u (δt))

1
2

)2

. (4.25)

Proof. The proof is only sketched since it uses classical techniques of a posteriori error analysis. Observe that

‖Gm
a ‖′

a
= sup

0�=v∈Va

〈Gm
a , v〉a
‖v‖a

= sup
0�=v∈Va

〈Gm
a , v − iah(v)〉a

‖v‖a
,

since (4.1) and (4.3) imply that 〈Gm
a , vh〉a = 0 for all vh ∈ Vah. Then, use definitions (4.11) and (4.13),

assumption (4.14) and a Cauchy-Schwarz inequality to infer (4.22). The proof of (4.23) and (4.24) is similar. �

To establish an equivalence result between the residuals and the error, we extend the approach derived by
Verfürth [24] for the heat equation. For all t ∈ [0, T ], we introduce the norm

‖(v, q)‖2
Y (0,t) = ‖(v, q)‖2

X(0,t) + ‖A∂tv + B∗∂tq‖2
L1(0,t;V ′

a) + ‖C∂tq + B∂tv‖2
L2(0,t;V ′

d
), (4.26)

which corresponds to the energy norm ‖·‖X(0,t) supplemented with some time-derivatives measured in weaker
norms. We observe that a nontrivial novelty with respect to the heat equation is the use of a L1(0, t; V ′

a)-norm
for the time-derivative of the displacement equation.

Theorem 4.2. For all n ∈ {1, . . . , N},

1
4‖(u − uhτ , p − phτ )‖2

Y (0,tn) + 1
2‖p − π0phτ‖2

L2(0,tn;Vd) ≤ 3Edat + 3E†
spc + 5

2Etim. (4.27)

Furthermore,
Etim ≤ 2‖(u − uhτ , p − phτ )‖2

X(0,tn) + 2‖p − π0phτ‖2
L2(0,tn;Vd), (4.28)

and
E†
spc ≤ c††(‖(u − uhτ , p − phτ )‖2

Y (0,T ) + ‖p − π0phτ‖2
L2(0,T ;Vd)) + E ′

dat, (4.29)

where c†† = 12 max(8β̃c6, c7)c2
†, β̃ = max(1, β2), the constant c† only depends on the shape-regularity of the

mesh family and on the maximum polynomial degrees used in the finite element spaces Vah and Vdh, and where

E ′
dat = 16c6c

2
†(6‖f − fhτ‖2

L∞(0,T ;V ′
a) + ‖∂t(f − fhτ )‖2

L1(0,T ;V ′
a)) + 12c7c

2
†‖g − π0ghτ‖2

L2(0,T ;V ′
d). (4.30)

Proof. (i) Proof of (4.27). Let ξ = u − uhτ , ζ = p − phτ , and ζ∗ = p − π0phτ . Observe that a.e. in (0, T ),

−Aξ − B∗ζ = f − fhτ + Ga, in V ′
a,

C∂tζ + B∂tξ − Dζ∗ = g − π0ghτ + Gd, in V ′
d .
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Furthermore, taking the time-derivative of the first equation yields a.e. in (0, T ),

−A∂tξ − B∗∂tζ = ∂t(f − fhτ ) + ∂tGa, in V ′
a.

Hence, integrating over (0, tn), using the triangle inequality and taking the square,

‖A∂tξ + B∗∂tζ‖2
L1(0,tn;V ′

a) ≤ 2‖∂t(f − fhτ )‖2
L1(0,tn;V ′

a) + 2‖∂tGa‖2
L1(0,tn;V ′

a)

≤ 1
2Edat + 1

4E
†
spc.

Similarly,

‖C∂tζ + B∂tξ‖2
L2(0,tn;V ′

d) ≤ 3‖g − π0ghτ‖2
L2(0,tn;V ′

d) + 3‖Gd‖2
L2(0,tn;V ′

d) + 3‖Dζ∗‖2
L2(0,tn;V ′

d)

≤ 7Edat + 7E†
spc + 6Etim,

where we have used Theorem 4.1 and Proposition 4.1 to infer ‖Dζ∗‖2
L2(0,tn;V ′

d) = ‖ζ∗‖2
L2(0,tn;Vd) ≤ 2(Edat+E†

spc+
Etim) and the fact that 3

4 ≤ 1 to simplify the expression. Finally, still owing to Theorem 4.1 and Proposition 4.1,

1
4‖(ξ, ζ)‖2

X(0,tn) + 1
2‖p − π0phτ‖2

L2(0,tn;Vd) ≤ Edat + E†
spc + Etim.

Summing up all the above contributions yields (4.27) since 23
8 ≤ 3.

(ii) Proof of (4.28). Use a triangle inequality.
(iii) Proof of (4.29). We bound the three terms in (4.25) starting from the second one. Using the technique of
bubble functions introduced by Verfürth [22–24], for all m ∈ {0, . . . , N}, there is νm

a ∈ Va such that

Êm
u ≤ 〈Gm

a , νm
a 〉a, with ‖νm

a ‖a ≤ c†(Êm
u )1/2,

where the constant c† depends on the shape-regularity of the mesh family and on the maximum polynomial
degrees used in the finite element spaces Vah and Vdh. Hence,

Êm
u ≤ −〈fm − fm

h + Aξm + B∗ζm, νm
a 〉a ≤ c†(‖fm − fm

h ‖′
a

+ ‖ξm‖a + β‖ζm‖c)(Êm
u )1/2.

Hence, letting β̃ = max(1, β2),

sup
0≤m≤N

Êm
u ≤ 3c2

†(‖f − fhτ‖2
L∞(0,T ;V ′

a) + β̃‖(ξ, ζ)‖2
X(0,T )).

Consider now the third term in (4.25). Using again bubble functions, for all m ∈ {1, . . . , N}, there is μm
a ∈ Va

such that
τ2
mÊm

u (δt) ≤ 〈Gm
a − Gm−1

a , μm
a 〉a, with ‖μm

a ‖a ≤ c†τm(Êm
u (δt))1/2.

Therefore,

τ2
mÊm

u (δt) ≤
∫

Im

〈∂tGa, μm
a 〉ads

= −
∫

Im

〈∂t(f − fhτ )(s), μm
a 〉ads −

∫
Im

〈A∂tξ(s) + B∗∂tζ(s), μm
a 〉ads

≤ c†
(
‖∂t(f − fhτ )‖L1(Im;V ′

a) + ‖A∂tξ + B∗∂tζ‖L1(Im;V ′
a)

)
τm(Êm

u (δt))1/2,

yielding (
N∑

m=1

τm(Êm
u (δt))

1
2

)2

≤ 2c2
†

(
‖∂t(f − fhτ )‖2

L1(0,T ;V ′
a) + ‖A∂tξ + B∗∂tζ‖2

L1(0,T ;V ′
a)

)
.
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Finally, consider the first term in (4.25). Still using bubble functions, for all m ∈ {1, . . . , N}, there is νm
d ∈ Vd

such that
Êm

p,0 ≤ 〈Gm
d , νm

d 〉d with ‖νm
d ‖d ≤ c†(Êm

p,0)
1/2.

Thus,

τmÊm
p,0 ≤ −

∫
Im

〈(g − π0ghτ )(s), νm
d 〉d ds +

∫
Im

〈C∂tζ(s) + B∂tξ(s), νm
d 〉d ds −

∫
Im

〈Dζ∗, νm
d 〉d ds

≤ c†
(
3‖g − π0ghτ‖2

L2(Im;V ′
d) + 3‖C∂tζ + B∂tξ‖2

L2(Im;V ′
d) + 3‖ζ∗‖2

L2(Im;Vd)

)1/2

τ1/2
m (Êm

p,0)
1/2,

using this time a Cauchy-Schwarz inequality. Hence,

N∑
m=1

τmÊm
p,0 ≤ 3c2

†

(
‖g − π0ghτ‖2

L2(0,T ;V ′
d) + ‖C∂tζ + B∂tξ‖2

L2(0,T ;V ′
d) + ‖ζ∗‖2

L2(0,T ;Vd)

)
.

Collecting the above inequalities yields the desired result. �

4.2. Elliptic reconstruction

Because of the use of different polynomial degrees for the displacement and for the pressure, the three terms
in the energy norm ‖·‖X(0,T ) do not have the same convergence rate in space. Indeed, the L2(0, T ; Vd)-norm
for the pressure is dominant and converges at the same rate as the bound derived in the previous section. The
purpose of this section is to derive a sharper bound for the L∞(0, T ; Va)-norm of the displacement and the
L∞(0, T ; Ld)-norm of the pressure which converges at the optimal rate.

For all n ∈ {0, . . . , N}, we define the elliptic reconstruction of (un
h, pn

h) ∈ Vah×Vdh as the functions (Un, Pn) ∈
Va × Vd such that

a(Un, v) − b(v, Pn) = a(un
h, Pahv) − b(Pahv, pn

h), ∀v ∈ Va, (4.31)

d(Pn, q) = d(pn
h, Pdhq) − b(δtu

n
h, q − Pdhq), ∀q ∈ Vd, (4.32)

where Pah (resp., Pdh) denotes the La-orthogonal projection from Va onto Vah (resp., the Ld-orthogonal pro-
jection from Vd onto Vdh). Henceforth, we use the convention that δtu

0
h = 0 and δtp

0
h = 0. Observe that

AUn + B∗Pn = Ahun
h + B∗

hpn
h, (4.33)

DPn = Dhpn
h + (B − Bh)δtu

n
h. (4.34)

Indeed, for all q ∈ Vd,

〈DPn, q〉d = −d(Pn, q) = −d(pn
h, Pdhq) + b(δtu

n
h, q − Pdhq)

= (Dhpn
h, Pdhq)Ld

+ ((B − Bh)δtu
n
h, q)Ld

=(Dhpn
h + (B − Bh)δtu

n
h, q)Ld

, (4.35)

since Dhpn
h ∈ Vdh. Equation (4.33) is proved similarly. It is worthwhile to point out at this stage a nontrivial

difference with the elliptic reconstruction technique for the heat equation, namely that the pressure reconstruc-
tion must also account for the fact that the divergence of the displacement is not in the pressure finite element
space, thus the presence of the time-derivative in the right-hand side of (4.32) and (4.34).

The key idea to bound the errors ‖un − un
h‖a and ‖pn − pn

h‖c is to consider the decompositions

un − un
h = ωn

u − ρn
u, ωn

u = Un − un
h, ρn

u = Un − un, (4.36)

pn − pn
h = ωn

p − ρn
p , ωn

p = Pn − pn
h, ρn

p = Pn − pn. (4.37)
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The quantities ωn
u and ωn

p can be handled following the a posteriori error analysis for the steady problem, while
the quantities ρn

u and ρn
p can be bounded in terms of ωn

u and ωn
p and other computable quantities. The analysis

requires a refinement of Hypothesis 2.2 by localizing the approximation property to mesh cells. In the context
of poroelasticity, this assumption means that the steady-state version of the pressure equation yields elliptic
regularity and that the finite element space Vdh satisfies the usual approximation properties.

Hypothesis 4.1. There exist a constant c8 and a positive real number δ such that for all r ∈ Ld, the unique
solution φ ∈ Vd of the dual problem d(q, φ) = c(r, q) for all q ∈ Vd, is such that there is φh ∈ Vdh satisfying∑

T∈Th

h−2δ
T [h−2

T ‖φ − φh‖2
Ld(T ) + h−1

T ‖φ − φh‖2
Ld(∂T )] ≤ c8‖r‖2

c . (4.38)

We first consider the quantities ωn
u and ωn

p .

Lemma 4.1. In the above framework, the following holds for all n ∈ {0, . . . , N},

‖ωn
u‖2

a ≤ 2c6Ên
u + 2β2c8Ên

p,δ, (4.39)

‖ωn
p ‖2

c ≤ c8Ên
p,δ. (4.40)

Proof. (i) Bound on ‖ωn
p ‖c. Let φ be the dual solution associated with the data r := ωn

p in Hypothesis 4.1.
Then,

‖ωn
p ‖2

c = c(r, r) = d(r, φ) = d(r, φ − φh),

since owing to (4.32), d(r, φh) = d(Pn − pn
h, φh) = 0 for φh ∈ Vdh. Using (4.12) and (4.38) leads to

‖ωn
p ‖2

c ≤ c8

∑
T∈Th

h2δ
T [h2

T ‖Dlocω
n
p ‖2

Ld(T ) + hT ‖Jdω
n
p ‖2

Ld(∂T )].

Using (2.15) and (4.34) yields for n ≥ 1,

Dlocω
n
p = DPn − Dlocp

n
h = Dhpn

h + (B − Bh)δtu
n
h − Dlocp

n
h = −Rn

ph,

and this relation also holds for n = 0 by definition of R0
ph. In addition, for all n ≥ 0, JdP

n = 0 since
DPn ∈ Vdh ⊂ Ld. As a result,

‖ωn
p ‖2

c ≤ c8Ên
p,δ.

(ii) Bound on ‖ωn
u‖a. Observe that

‖ωn
u‖a = sup

0�=v∈Va

a(ωn
u , v)

‖v‖a
≤ sup

0�=v∈Va

(
a(ωn

u , v) − b(v, ωn
p )

‖v‖a

)
+ β‖ωn

p ‖c

= sup
0�=v∈Va

(
a(ωn

u , v − iah(v)) − b(v − iah(v), ωn
p )

‖v‖a

)
+ β‖ωn

p ‖c,

owing to (4.31) since iah(v) ∈ Vah. Using (4.11), (4.13), and (4.14) leads to

‖ωn
u‖2

a ≤ 2c6

∑
T∈Th

[h2
T ‖Alocω

n
u + B∗ωn

p ‖2
La(T ) + hT ‖Jaωn

u‖2
La(∂T )] + 2β2‖ωn

p ‖2
c.

Owing to (2.14) and (4.33), AUn + B∗Pn = Ahun
h + B∗

hpn
h = −fn

h so that Alocω
n
u + B∗ωn

p = AUn + B∗Pn −
Alocu

n
h − B∗pn

h = −Rn
uh. Moreover, Jaωn

u = −Jn
uh since AUn ∈ La. This yields (4.39). �
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We now turn our attention to the quantities ρn
u and ρn

p . Let

Êdat = ‖U0 − u0‖2
a + ‖P 0 − p0‖2

c + 2E(f, g), (4.41)

Êspc =
N∑

m=1

τm[2γ2c8(1 + 2β4)Êm
p,δ(δt) + 4β2γ2c6Êm

u (δt)], (4.42)

Êtim = 2
3 γ̃2τ1‖Cδtp

1
h + Bδtu

1
h − Dhp0h − g1

h‖2
Ld

+
N∑

m=2

2
3 γ̃2τ3

m‖δt(Cδtp
m
h + Bδtu

m
h − gm

h )‖2
Ld

. (4.43)

Lemma 4.2. The following holds for all n ∈ {1, . . . , N},

1
2‖ρ

n
u‖2

a + 1
2‖ρ

n
p‖2

c ≤ Êdat + Êspc + Êtim. (4.44)

Proof. The bounds on ρn
u and ρn

p rely on the stability properties of the continuous problem. Thus, it is again
convenient to handle equations holding a.e. in [0, T ] rather than at the discrete times {tn}N

n=0. Let Uτ (resp.,
Pτ ) be the continuous and piecewise affine function in time such that for all n ∈ {0, . . . , N}, Un

τ = Un (resp.,
Pn

τ = Pn). Let ωuτ and ωpτ be constructed in a similar way from {ωn
u}N

n=0 and {ωn
p }N

n=0. Define ρuτ = Uτ − u
and ρpτ = Pτ − p. Observe that for a.e. t ∈ [0, T ] and for all v ∈ Va,

a(ρuτ , v) − b(v, ρpτ ) = a(Uτ , v) − b(v, Pτ ) − (f, v)La

= a(uhτ , Pahv) − b(Pahv, phτ ) − (f, v)La

= (fhτ , Pahv)La − (f, v)La = (fhτ − f, v)La ,

while for all q ∈ Vd,

c(∂tρpτ , q) + b(∂tρuτ , q) + d(ρpτ , q) = c(∂tPτ , q) + b(∂tUτ , q) + d(Pτ , q) − (g, q)Ld

= c(∂tωpτ , q) + b(∂tωuτ , q) + (Dπ0Pτ , q)Ld
+ d(Pτ , q) + (π0ghτ − g, q)Ld

= c(∂tωpτ , q) + b(∂tωuτ , q) + (D(π0Pτ − Pτ ), q)Ld
+ (π0ghτ − g, q)Ld

,

where π0Pτ is the piecewise constant function in time equal to Pn on In for all n ∈ {1, . . . , N}. Indeed, on each
time interval In,

c(∂tphτ , q) + b(∂tuhτ , q) = (Cδtp
n
h + Bδtu

n
h, q)Ld

= (gn
h + Dhpn

h − Bhδtu
n
h + Bδtu

n
h, q)Ld

= (gn
h + DPn, q)Ld

.

Testing the above equations with v := ∂tρuτ and q := ρpτ yields

1
2dt‖ρuτ‖2

a + 1
2dt‖ρpτ‖2

c + ‖ρpτ‖2
d = (fhτ − f, ∂tρuτ )La + c(∂tωpτ , ρpτ ) + b(∂tωuτ , ρpτ )

+ (D(π0Pτ − Pτ ), ρpτ )Ld
+ (π0ghτ − g, ρpτ )Ld

,

so that

1
2dt‖ρuτ‖2

a + 1
2dt‖ρpτ‖2

c ≤ (fhτ − f, ∂tρuτ )La + γ2‖∂tωpτ‖2
c + β2γ2‖∂tωuτ‖2

a

+ γ̃2‖D(π0Pτ − Pτ )‖2
Ld

+ ‖π0ghτ − g‖2′
d
.

Proceeding as usual (details are skipped for brevity) yields for all n ∈ {1, . . . , N},

1
2‖ρ

n
u‖2

a+ 1
2‖ρ

n
p‖2

c ≤ Êdat+
∫ T

0

2γ2‖∂tωpτ (s)‖2
cds+

∫ T

0

2β2γ2‖∂tωuτ (s)‖2
ads+

∫ T

0

2γ̃2‖D(π0Pτ − Pτ )(s)‖2
Ld

ds.
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The second and third terms in the above right-hand side lead to the term Êspc in (4.44) owing to the fact that
ωpτ and ωuτ are piecewise affine in time so that for instance,

∫ T

0

‖∂tωpτ (s)‖2
cds =

N∑
m=1

τ−1
m ‖ωm

p − ωm−1
p ‖2

c .

By linearity and proceeding as in the proof of Lemma 4.1 yields

τ−2
m ‖ωm

u − ωm−1
u ‖2

a ≤ 2c6Êm
u (δt) + 2β2c8Êm

p,δ(δt) and τ−2
m ‖ωm

p − ωm−1
p ‖2

c ≤ c8Êm
p,δ(δt).

Finally, the last term in the above bound on ρn
u and ρn

p leads to the term Êtim in (4.44) since

∫ T

0

‖D(π0Pτ − Pτ )(s)‖2
Ld

ds =
N∑

m=1

1
3τm‖D(Pm − Pm−1)‖2

Ld
,

and for all m ≥ 0, DPm = Dloc pm
h − Rm

ph. �

Theorem 4.3. For all n ∈ {1, . . . , N},

1
4‖u

n − un
h‖2

a + 1
4‖p

n − pn
h‖2

c ≤ Êdat + Êspc + Êtim + c6Ên
u + c8(1

2 + β2)Ên
p,δ. (4.45)

Proof. Use Lemmas 4.1 and 4.2, and the triangle inequality. �

We will not attempt here to prove lower error bounds; this goes beyond the present scope. We will verify
numerically in the following section that Êspc and Êtim yield the expected, optimal, order of convergence with
respect to mesh size.

5. Numerical results

Two test cases are presented in this section. In the first one, an analytic solution is available; the aim of
the test case is to verify the convergence rate of the derived error bounds and to evaluate the corresponding
effectivity indices. The second test case is drawn from an excavation damage benchmark problem; its aim is to
illustrate the generation of adaptive meshes in this context.

5.1. Test case with analytical solution

We consider the following analytical solution of (1.1)–(1.2) on the domain Ω = (0, 1) × (0, 1),

u(t, x, y) = −exp(−At)
2π

[
cos(πx) sin(πy)
sin(πx) cos(πy)

]
, p(t, x, y) = exp(−At) sin(πx) sin(πy),

with A = 2π2κ
b+ 1

M

, κ = 0.05, b = 0.75, 1
M = 3

28 . The Lamé coefficients are λ1 = 1
2 and λ2 = 1

8 , yielding a Poisson

ratio ν = 0.4 and a Young modulus E = 7
20 . Convergence rates in space are evaluated on a series of uniformly

refined structured triangulations based on a boundary mesh step h0. Finite elements are based on quadratics
for the displacement and linears for the pressure.

Tables 1 and 2 present the convergence results (under space and time refinement respectively) for the ap-
proximation errors measured in various norms. All the convergence rates match those predicted by the a priori
error analysis. In both cases, the total error is dominated by the L2(0, t; H1

x)-error on the p-component.
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Table 1. Errors at final time and convergence rates under space refinement; T = 0.1,
τ = 2.50 e–4.

h−1
0 ‖u − uhτ‖a ‖p − phτ‖c ‖p − phτ‖L2(0,T ;Vd) ‖p− π0phτ‖L2(0,T ;Vd)

4 8.12 e–3 – 5.66 e–3 – 2.75 e–2 – 2.75 e–2 –
8 2.15 e–3 1.92 1.49 e–3 1.92 1.45 e–2 0.92 1.45 e–2 0.92
16 5.34 e–4 2.01 3.73 e–4 2.00 7.33 e–3 0.98 7.33 e–3 0.98
32 1.32 e–4 2.02 9.21 e–5 2.01 3.68 e–3 0.99 3.68 e–3 0.99

Table 2. Errors at final time and convergence rates under time refinement; T = 1, h0 = 1/128.

τ ‖u − uhτ‖a ‖p− phτ‖c ‖p− phτ‖L2(0,T ;Vd) ‖p − π0phτ‖L2(0,T ;Vd)

0.25 5.10 e–3 – 5.64 e–3 – 1.68 e–2 – 1.81 e–2 –
0.2 4.13 e–3 0.94 4.55 e–3 0.96 1.39 e–2 0.84 1.48 e–2 0.93
0.1 2.12 e–3 0.96 2.31 e–3 0.98 7.58 e–3 0.87 7.74 e–3 0.93
0.05 1.07 e–3 0.99 1.16 e–3 0.99 4.24 e–3 0.83 4.26 e–3 0.86

Table 3. A posteriori error bounds using the direct approach and convergence rates under
space refinement; T = 0.1, τ = 2.50 e–4.

h−1
0 η1 η2 η3 η4 Ieff I∗

eff

4 6.34 e–2 – 9.53 e–2 – 8.17 e–3 – 1.45 e–3 – 3.13 11.43
8 3.33 e–2 0.93 2.57 e–2 1.89 2.75 e–3 1.57 7.67 e–4 0.92 2.18 15.33
16 1.71 e–2 0.96 6.63 e–3 1.96 7.13 e–4 1.94 3.89 e–4 0.98 1.70 23.81
32 8.62 e–3 0.98 1.68 e–3 1.98 1.80 e–4 1.99 1.96 e–4 0.99 1.45 41.19

To assess the a posteriori error bounds obtained with the direct approach, we evaluate the quantities

η1 =

(
N∑

m=1

τmÊm
p,0

) 1
2

, η2 = sup
0≤m≤N

(Êm
u )

1
2 , η3 =

N∑
m=1

τm(Êm
u (δt))

1
2 , η4 =

(
N∑

m=1

τm‖pm
h − pm−1

h ‖2
d

) 1
2

,

(5.1)
as well as the effectivity indices

Ieff =
η1 + η2 + η3 + η4

(‖p − phτ‖2
L2(0,T ;Vd) + ‖p − π0phτ‖2

L2(0,T ;Vd))
1/2

, I∗
eff =

η1 + η2 + η3 + η4

‖uN − uN
h ‖a + ‖pN − pN

h ‖c
· (5.2)

Recall that η1, η2, and η3 are associated with the space error indicators, see (4.25), and that η4 is associated with
the time error indicators, see (4.10). For brevity, we concentrate here on these quantities. Tables 3 and 4 present
the results obtained under space and time refinement, respectively. All the observed convergence rates match
the theoretical predictions. Moreover, the effectivity index Ieff takes values between 2 and 3, indicating that
the present a posteriori error bounds behave quite satisfactorily to control the pressure error in the L2(0, t; H1

x)-
norm. As expected, the situation is quite different if one attempts to control the displacement error in the
L∞(0, t; H1

x)-norm. As reflected by the effectivity index I∗
eff which increases as the mesh is refined, this latter

error converges faster to zero than the bound derived with the direct approach.
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Table 4. A posteriori error bounds using the direct approach and convergence rates under
time refinement; T = 1, h0 = 1/128.

τ η1 η2 η3 η4 Ieff I∗
eff

0.25 4.33 e–3 1.07 e–4 1.15 e–4 4.70 e–2 – 1.48 4.80
0.2 4.37 e–3 1.02 e–4 1.04 e–4 3.85 e–2 0.90 1.51 4.95
0.1 4.45 e–3 9.93 e–5 8.25 e–5 2.01 e–2 0.93 1.62 5.58
0.05 4.49 e–3 1.02 e–4 7.38 e–5 1.03 e–2 0.96 1.77 6.69

Table 5. A posteriori error bounds using elliptic reconstruction and convergence rates under
space refinement; T = 1, τ = 0.1.

h−1
0 η5 η6 η7 η8 Jeff

4 1.34 e–0 – 1.14 e–2 1.55 e–2 – 2.18 e–2 – 169.43
8 2.01 e–1 2.74 7.82 e–3 5.70 e–3 1.44 5.83 e–3 1.90 120.26
16 4.36 e–2 2.21 7.58 e–3 1.79 e–3 1.67 1.50 e–3 1.96 97.49
32 1.04 e–2 2.07 7.55 e–3 4.93 e–4 1.86 3.77 e–4 1.98 19.59

To assess the a posteriori error bound using elliptic reconstruction, we evaluate the quantities

η5 =

(
N∑

m=1

τm(Êm
p,1(δt) + Êm

u (δt))

) 1
2

, η7 = (ÊN
u )

1
2 , η8 = (ÊN

p,1)
1/2, (5.3)

η6 =

(
τ1‖Cδtp

1
h + Bδtu

1
h − Dhp0h − g1

h‖2
c +

N∑
m=2

τ3
m‖δt(Cδtp

m
h + Bδtu

m
h − gm

h )‖2
c

) 1
2

, (5.4)

as well as the effectivity index

Jeff =
η5 + η6 + η7 + η8

‖uN − uN
h ‖a + ‖pN − pN

h ‖c
· (5.5)

Recall that η5 is associated with the space error indicators, see (4.42), and that η6 is associated with the time
error indicators, see (4.43). Moreover, η7 and η8 stem from the difference between the discrete solution and
its elliptic reconstruction, see Lemma 4.1. Table 5 presents the results obtained under space refinement. The
observed orders of convergence match theoretical predictions, with a slight super-convergence for η5 and a slight
sub-convergence for η7 on the (very) coarse meshes. The quantity η6, which is related to the time error, remains
at a fairly constant value under space refinement. Additional tests (not reported here for brevity; see [13])
indicate that η6 converges with order close to 1 under time refinement. Finally, we observe that the effectivity
index with elliptic reconstruction is much larger than that with the direct approach, especially on coarse meshes.
This can be expected since the elliptic reconstruction technique uses the stability constant of an adjoint problem,
and this latter constant is usually large.

5.2. Excavation damage test case

This test case is drawn from [5]. A two-dimensional setting is considered. The computational domain is
a square of length 60 m minus a circular sector centered at the lower left corner with angle π

2 representing
the excavated part. The model parameters are a Young modulus E = 5800 MPa, a Poisson ratio ν = 0.3,
an hydraulic conductivity κ = 1.02 × 10−16 m2·Pa−1·s−1, a Biot modulus 1

M = 2.69 × 10−11 Pa−1, and a
Biot-Willis coefficient b = 0.8. Body forces result from gravity with a density ρ = 103 kg·m−3. The simulation
time is 1.5×106 s (roughly 17 days). Mixed Dirichlet-Neumann boundary conditions are enforced. The order of
magnitude for the pressure is about 5 MPa and that for the displacement is about 5 cm. The problem is solved
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Figure 1. Initial mesh (left) and adaptive meshes generated after two (center) and four (right)
steps of the refinement procedure.

Table 6. A posteriori error bounds for the excavation damage test case on adaptive meshes;
the second column reports the number of mesh cells on each adaptive mesh.

Step # mesh cells η1 η2 η3 η4

1 196 1.25 e–1 4.24 e–1 4.24 e–1 9.19 e–7
2 278 2.65 e–2 7.63 e–2 7.64 e–2 1.24 e–6
3 392 1.76 e–2 3.46 e–2 3.46 e–2 1.31 e–6
4 564 1.50 e–2 2.00 e–2 2.00 e–2 1.32 e–6
5 890 1.13 e–2 1.18 e–2 1.18 e–2 1.34 e–6
6 1368 9.09 e–3 7.72 e–3 7.72 e–3 1.34 e–6
7 2268 7.04 e–3 4.69 e–3 4.69 e–3 1.36 e–6

in non-dimensional form using quadratics for the displacement and linears for the pressure. The time step is
kept fixed at τ = 105 s; this value is small enough to keep time discretization errors negligible (see Tab. 6).

Adaptive meshes are constructed using the space error indicators derived using the direct approach. On a
given mesh, the approximate solution is constructed until final time, then mesh cells are marked (the 5% mesh
cells yielding the largest contributions to the global error bound are marked), and a new mesh is generated.
This algorithm is considered here solely for illustration purposes, being understood that further work is needed
to optimize the computation using dynamically adapted meshes. The initial mesh and those generated after two
and four steps of the above procedure are presented in Figure 1. The values taken by η1, η2, η3 and η4, see (5.1),
are reported in Table 6. The quantities η1, η2 and η3, which are associated with spatial errors, decrease faster
than the number of adaptive mesh cells, while η4, which is associated with time errors, remains negligible. The
quantities η2 and η3 take similar values since for the present problem, both are dominated by the error at initial
time. Further results can be found in [13].

6. Conclusions

We have analyzed Euler-Galerkin approximations to coupled elliptic-parabolic problems with application to
poroelasticity. The a priori error analysis shows that equal-order polynomial interpolation can be used for
the displacement and for the pressure, but that using polynomials of one degree higher for the displacement
than for the pressure is preferable since this equilibrates the convergence rate of all the terms in the energy
norm. Furthermore, we have obtained residual-type, energy-norm a posteriori error bounds for the displacement
and for the pressure. Elaborating on the ideas of Verfürth, we have established an equivalence result between
the residual measured in a dual norm and the error measured in the energy norm plus some time-derivatives
measured in weaker norms. The a posteriori error bound converges optimally with respect to mesh size when
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compared with the dominant term in the error energy norm, namely that related to the L2(0, t; H1
x)-norm for the

pressure. To obtain an optimally convergent bound for the two other terms in the error energy norm, namely
those related to the L∞(0, t; H1

x)-norm for the displacement and the L∞(0, t; L2
x)-norm for the pressure, we

have extended the elliptic reconstruction technique introduced by Makridakis and Nochetto for linear parabolic
problems. One important difference with the heat equation is that the pressure reconstruction must also account
for the fact that the divergence of the displacement is not in the pressure finite element space.
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