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SPARSE FINITE ELEMENT APPROXIMATION OF HIGH-DIMENSIONAL
TRANSPORT-DOMINATED DIFFUSION PROBLEMS
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Abstract. We develop the analysis of stabilized sparse tensor-product finite element methods for
high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations
of the form −a : ∇∇u + b · ∇u + cu = f(x), x ∈ Ω = (0, 1)d ⊂ Rd, where a ∈ Rd×d is a symmetric
positive semidefinite matrix, using piecewise polynomials of degree p ≥ 1. Our convergence analysis is
based on new high-dimensional approximation results in sparse tensor-product spaces. We show that
the error between the analytical solution u and its stabilized sparse finite element approximation uh

on a partition of Ω of mesh size h = hL = 2−L satisfies the following bound in the streamline-diffusion
norm ||| · |||SD, provided u belongs to the space Hk+1(Ω) of functions with square-integrable mixed
(k + 1)st derivatives:

|||u − uh|||SD ≤ Cp,td
2 max{(2 − p)+, κd−1

0 , κd
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L )|u|Ht+1(Ω),

where κi = κi(p, t, L), i = 0, 1, and 1 ≤ t ≤ min(k, p). We show, under various mild conditions relating
L to p, L to d, or p to d, that in the case of elliptic transport-dominated diffusion problems κ0, κ1 ∈
(0, 1), and hence for p ≥ 2 the ‘error constant’ Cp,td

2 max{(2 − p)+, κd−1
0 , κd

1} exhibits exponential
decay as d → ∞; in the case of a general symmetric positive semidefinite matrix a, the error constant
is shown to grow no faster than O(d2). In any case, in the absence of assumptions that relate L, p

and d, the error |||u − uh|||SD is still bounded by κd−1
∗ | log2 hL|d−1O(|√a|ht
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where κ∗ ∈ (0, 1) for all L, p, d ≥ 2.
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1. Introduction

Suppose that Ω := (0, 1)d, d ≥ 2, and that a = (aij)di,j=1 is a symmetric positive semidefinite matrix with
entries aij ∈ R, i, j = 1, . . . , d. In other words,

a� = a and ξ�a ξ ≥ 0 ∀ξ ∈ Rd.

Suppose further that b ∈ Rd and c ∈ R≥0, and let f ∈ L2(Ω). We shall consider the partial differential equation

− a : ∇∇u + b · ∇u+ cu = f(x), x ∈ Ω, (1.1)

subject to suitable boundary conditions on ∂Ω that will be stated below. Here ∇∇u is the d×d Hessian matrix
of u whose (i, j) entry is ∂2u/∂xi ∂xj , i, j = 1, . . . , d. For two d × d matrices A and B, we define their scalar
product A : B :=

∑d
i,j=1 AijBij . The induced norm, called the Frobenius norm, is defined by |A| = (A : A)

1
2 .

The real-valued polynomial α ∈ P2(Rd; R) of degree ≤ 2 defined by

ξ ∈ Rd �→ α(ξ) := ξ�a ξ ∈ R

is called the characteristic polynomial or characteristic form of the differential operator

u �→ Lu := −a : ∇∇u+ b · ∇u+ cu

featuring in (1.1) and, under our hypotheses on the matrix a, the equation (1.1) is referred to as a partial
differential equation with nonnegative characteristic form (cf. Olĕınik and Radkevič [20]). In order to avoid
trivialities, we shall assume throughout that |a| + |b| > 0.

For the sake of simplicity of presentation we shall confine ourselves to differential operators L with constant
coefficients. In this case,

a : ∇∇u = ∇ · (a∇u) = ∇∇ : (au) and b · ∇u = ∇ · (bu).

Partial differential equations with nonnegative characteristic form frequently arise as mathematical models
in physics and chemistry [28] (e.g. in the kinetic theory of polymers [21]; see also [2,3,18]; and coagulation-
fragmentation problems [17]), molecular biology [10], and mathematical finance. Important special cases of
these equations include the following:

(a) when the diffusion matrix a = a� is positive definite, (1.1) is an elliptic partial differential equation;
(b) when a ≡ 0 and the transport direction b 
= 0, the partial differential equation (1.1) is a first-order

hyperbolic equation;
(c) when

a =
(
α 0
0 0

)
,

where α is a (d− 1) × (d− 1) symmetric positive definite matrix and b = (0, . . . , 0, 1)� ∈ Rd, (1.1) is a
parabolic partial differential equation, with time-like direction b.

In addition to these classical types, the family of partial differential equations with nonnegative characteristic
form encompasses a range of other linear second-order partial differential equations, such as degenerate elliptic
equations and ultra-parabolic equations. According to a result of Hörmander [13] (cf. Thm. 11.1.10 on p. 67),
second-order hypoelliptic operators have non-negative characteristic form, after possible multiplication by −1,
so they too fall into this category.

For classical types of partial differential equations, such as those listed under (a), (b) and (c) above, rich
families of reliable, stable and highly accurate numerical techniques have been developed. Yet, only isolated
attempts have been made to explore computational aspects of the class of partial differential equations with
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nonnegative characteristic form as a whole (cf. [14,15]). In particular, there has been only a limited amount of
research to date on the numerical analysis of high-dimensional partial differential equations with nonnegative
characteristic form (cf. Süli [25,26]).

The field of stochastic analysis is a particularly fertile source of equations of this kind (see, for example,
[4]): the progressive Kolmogorov equation satisfied by the probability density function ψ(x1, . . . , xd, t) of a
d-component vectorial stochastic process X(t) = (X1(t), . . . , Xd(t))�, which is the solution of a system of
stochastic differential equations including Brownian noise is a partial differential equation with nonnegative
characteristic form in the d + 1 variables (x, t) = (x1, . . . , xd, t). To be more precise, consider the stochastic
differential equation:

dX(t) = b(X(t)) dt+ σ(X(t)) dW (t), X(0) = X,

whereW = (W1, . . . ,Wp)� is a p-dimensional Wiener process adapted to a filtration {Ft , t ≥ 0}, b ∈ C1
b(R

d; Rd)
is the drift vector, and σ ∈ C2

b(R
d,Rd×p) is the diffusion matrix. Here Ckb (R

n,Rm) denotes the space of bounded
and continuous mappings from Rn into Rm, m,n ≥ 1, all of whose partial derivatives of order k or less are
bounded and continuous on Rn. When the subscript b is absent, boundedness is not enforced.

Assuming that the random variable X(t) = (X1(t), . . . , Xd(t))� has a probability density function ψ ∈
C2,1(Rd × [0,∞),R), then ψ is the solution of the initial-value problem

∂ψ

∂t
(x, t) = (Aψ)(x, t), x ∈ Rd, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where the differential operator A : C2(Rd; R) → C0(Rd; R) is defined by

Aψ := −
d∑
j=1

∂

∂xj
(bj(x)ψ) +

1
2

d∑
i,j=1

∂2

∂xi ∂xj
(aij(x)ψ) ,

with a(x) = σ(x)σ�(x) ≥ 0 (see Cor. 5.2.10 on p. 135 in [16]). Thus, ψ is the solution of the initial-value
problem

∂ψ

∂t
+

d∑
j=1

∂

∂xj
(bj(x)ψ) =

1
2

d∑
i,j=1

∂2

∂xi ∂xj
(aij(x)ψ) , x ∈ Rd, t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ Rd,

where, for each x ∈ Rd, a(x) is a d × d symmetric positive semidefinite matrix. The progressive Kolmogorov
equation ∂ψ

∂t = Aψ is a partial differential equation with nonnegative characteristic form, called a Fokker-Planck
equation.

The operator A is generally nonsymmetric (since, typically, b 
= 0) and degenerate (since, in general, a(x) =
σ(x)σ�(x) has nontrivial kernel). In addition, since the (possibly large) number d of equations in the system
of stochastic differential equations is equal to the number of components of the independent variable x of the
probability density function ψ, the Fokker-Planck equation may be high-dimensional.

The focus of the present paper is the construction and analysis of finite element approximations to high-
dimensional partial differential equations with non-negative characteristic form. Specifically, our aim is to
extend the results from [25,26], developed for the case of sparse tensor-product finite element spaces consisting
of piecewise multilinear functions, to polynomials of degree p ≥ 1. The paper is structured as follows. We shall
state in Section 2 the appropriate boundary conditions for the model equation (1.1), derive the weak formulation
of the resulting boundary value problem, and show the existence of a unique weak solution. Section 3 is
devoted to the construction of a hierarchical finite element space for univariate functions. The tensorization of
this space and the subsequent sparsification of the resulting tensor-product space are described in Section 4;
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our chief objective is to reduce the computational complexity of the discretization without adversely effecting
the approximation properties of the finite element space. In Sections 5 and 6 we build a stabilized finite element
method over the sparse tensor-product space, and we explore its stability and convergence.

The convergence analysis relies on new high-dimensional approximation results in sparsified tensor-product
spaces, based on continuous piecewise polynomials of degree p ≥ 1 on a mesh of granularity hL = 2−L, in the
L2 and H1 norms. We highlight several scenarios in which the error-constants in these approximation results
exhibit exponential decay as functions of the dimension d, for all p ≥ 1. These bounds are related to those
in the recent work of Griebel [11], where similar decay of the error constant as a function of d was proved in the
H1 seminorm in the special case of p = 1 for “energy-norm-based” sparse-grid-spaces. Using our approximation
results, under various mild assumptions that relate L to p, L to d, or p to d, we then show that in the case of
elliptic transport-diffusion problems the error constant of the stabilized sparse finite element method exhibits
exponential decay as d→ ∞ for all p ≥ 2; more generally, when the characteristic form of the partial differential
equation is non-negative, the error constant is shown to grow no faster than O(d2). In any case, the stabilized
sparse finite element method exhibits an optimal rate of convergence with respect to the mesh size hL, up to
the factor κd−1

∗ | log2 hL|d−1, where κ∗ ∈ (0, 1) for all L, p, d ≥ 2; thus, even when the polylogarithmic factor
| log2 hL|d−1 is genuinely present in the error bound, it is modulated by an exponentially small term κd−1

∗ .
Our analysis is fairly general, in the sense that only two basic structural properties of the univariate finite

element space are used in the subsequent analysis: namely, (1) that the univariate finite element space is
hierarchically stratified, viz., it can be written as a direct sum of so-called increment spaces, and (2) that there
exists a projector onto the univariate finite element space that exhibits optimal approximation properties in
the L2 and H1 norms. The specific choice of basis in the finite element space does not explicitly enter into
our error analysis, as it does not affect the asymptotic rate of convergence. Of course, the implementation
of the method will necessitate that a choice of basis is made; indeed, the specific choice of basis will strongly
influence the sparsity structure and conditioning of the matrix in the resulting linear system. These (and other)
questions (such as numerical integration in high-dimensional finite element algorithms) are important and we
shall briefly comment on them in the concluding section, although, strictly speaking, they are beyond the scope
of the present paper and will be therefore considered in detail elsewhere.

The origins of sparse tensor-product constructions and hyperbolic cross spaces can be traced back to the
works of Babenko [1] and Smolyak [24]; we refer to the papers of Temlyakov [27], DeVore et al. [8] for the
study of high-dimensional approximation problems, to the works of Wasilkowski and Woźniakowski [30] and
Novak and Ritter [19] for high-dimensional integration problems and associated complexity questions, to the
paper of Zenger [31] for an early contribution to sparse tensor-product finite element methods, to the articles by
von Petersdorff and Schwab [29] and Hoang and Schwab [12] for the analysis of sparse-grid methods for high-
dimensional parabolic and elliptic multiscale problems, respectively, and to the recent Acta Numerica article of
Bungartz and Griebel [7] for a detailed survey of the field of sparse-grid methods.

2. Boundary conditions and weak formulation

Before embarking on the construction of the numerical algorithm, we shall introduce the necessary boundary
conditions and the weak formulation of the model boundary-value problem on Ω = (0, 1)d for the equation (1.1).

Let Γ denote the union of all (d − 1)-dimensional open faces of the domain Ω = (0, 1)d. On recalling that,
by hypothesis, a = a� and α(ξ) = ξ�a ξ ≥ 0 for all ξ ∈ Rd, we define the subset Γ0 of Γ by

Γ0 := {x ∈ Γ : α(ν(x)) > 0} ;

here ν(x) denotes the unit outward normal vector to Ω at x ∈ Γ. The set Γ0 can be thought of as the elliptic
part of Γ. The complement Γ\Γ0 of Γ0 relative to Γ is referred to as the hyperbolic part of Γ. We note that, by
definition, α = 0 on Γ \ Γ0.
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On introducing the Fichera function

x ∈ Γ �→ β(x) := b · ν(x) ∈ R

defined on Γ, we partition Γ\Γ0 as follows:

Γ− := {x ∈ Γ\Γ0 : β < 0} , Γ+ := {x ∈ Γ\Γ0 : β ≥ 0} ;

the sets Γ− and Γ+ are referred to as the (hyperbolic) inflow and outflow boundary, respectively. Thereby, we
obtain the following decomposition of Γ:

Γ = Γ0 ∪ Γ− ∪ Γ+.

Lemma 2.1. Each of the sets Γ0, Γ−, Γ+ is a (possibly empty) union of (d− 1)-dimensional open faces of Ω.
Moreover, each pair of opposite (d− 1)-dimensional faces of Ω is contained either in the elliptic part Γ0 of Γ or
in its complement Γ \ Γ0 = Γ− ∪ Γ+, the hyperbolic part of Γ.

Proof. Since, by hypothesis, |a| + |b| > 0, a and b are not simultaneously zero. If a = 0, then trivially Γ0 = ∅.
Let us therefore suppose that a 
= 0. Since a is a constant matrix and ν is a face-wise constant vector, Γ0 is
a union of (disjoint) (d − 1)-dimensional open faces of Γ. Indeed, if x ∈ Γ0 and y is any point that lies on the
same (d − 1)-dimensional open face of Ω as x, then ν(y) = ν(x) and therefore α(ν(y)) = α(ν(x)) > 0; hence
y ∈ Γ0 also.

A certain (d − 1)-dimensional open face ϕ of Ω is contained in Γ0 if, and only if, the opposite face ϕ̂ is
also contained in Γ0. To prove this, let ϕ ⊂ Γ0 and let x = (x1, . . . , xi, . . . , xd) ∈ ϕ, with Oxi signifying the
(unique) co-ordinate direction such that ν(x)‖Oxi; here O = (0, . . . , 0). In other words, xi ∈ {0, 1}, and the
(d− 1)-dimensional face ϕ to which x belongs is orthogonal to the co-ordinate direction Oxi. Hence, the point
x̂ = (x1, . . . , |xi − 1|, . . . , xd) lies on the (d− 1)-dimensional open face ϕ̂ of Ω that is opposite the face ϕ (i.e.,
ϕ̂‖ϕ), and ν(x̂) = −ν(x). As α is a homogeneous function of degree 2 on Γ0, it follows that

α(ν(x̂)) = α(−ν(x)) = (−1)2 α(ν(x)) = α(ν(x)) > 0,

which implies that x̂ ∈ Γ0. By what we have shown before, we deduce that the entire face ϕ̂ is contained in Γ0.
Similarly, if b = 0, then Γ− = ∅ and Γ+ = Γ \ Γ0. Let us therefore suppose that b 
= 0. Since b is a constant

vector, each of Γ− and Γ+ is a union of (d − 1)-dimensional open faces of Γ. If a certain (d − 1)-dimensional
open face ϕ is contained in Γ−, then the opposite face ϕ̂ is contained in the set Γ+.

We note in passing, however, that if ϕ ⊂ Γ+ then the opposite face ϕ̂ need not be contained in Γ−; indeed,
if ϕ ⊂ Γ+ and β = 0 on ϕ then β = 0 on ϕ̂ also, so then both ϕ and the opposite face ϕ̂ are contained in Γ+.
Of course, if β > 0 on ϕ ⊂ Γ+, then β < 0 on the opposite face ϕ̂, and then ϕ̂ ⊂ Γ−. �

Lemma 2.1 motivates the following definition.

Definition 2.1. For i ∈ {0, . . . , d}, a co-ordinate direction Oxi that is orthogonal to a pair of faces of Ω = (0, 1)d

which belong to Γ0 will be called an elliptic co-ordinate direction. Otherwise, Oxi will be called a hyperbolic
co-ordinate direction.

We consider the following boundary-value problem: Find u such that

Lu := −a : ∇∇u+ b · ∇u+ cu = f in Ω, (2.1)
u = 0 on Γ0 ∪ Γ−. (2.2)

Before stating the variational formulation of (2.1), (2.2), we recall the following result from [14].

Lemma 2.2. Suppose that M ∈ Rd×d is a d × d symmetric positive semidefinite matrix. If ξ ∈ Rd satisfies
ξ�Mξ = 0, then Mξ = 0.
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Since ν�aν = 0 on Γ \ Γ0 and a ∈ Rd×d is a symmetric positive semidefinite matrix, we deduce from
Lemma 2.2 with M = a and ξ = ν that

aν = 0 on Γ \ Γ0. (2.3)
Let us suppose for a moment that (2.1), (2.2) has a solution u in H2(Ω). Thanks to our assumption that a is a
constant matrix, we have that

a : ∇∇u = ∇ · (a∇u).
Furthermore, a∇u ∈ [H1(Ω)]d, which implies that the normal trace γν,∂Ω(a∇u) of a∇u on ∂Ω belongs to
H

1
2 (∂Ω). By virtue of (2.3),

γν,∂Ω(a∇u)|Γ\Γ0 = 0.
Note also that measd−1(∂Ω \ Γ) = 0. Hence∫

∂Ω

γν,∂Ω(a∇u) · γ0,∂Ω(v) ds =
∫

Γ

γν,∂Ω(a∇u)|Γ · γ0,∂Ω(v)|Γ ds = 0 (2.4)

for all v ∈ V , where
V :=

{
v ∈ H1(Ω) : γ0,∂Ω(v)|Γ0 = 0

}
.

This observation will be of key importance. On multiplying the partial differential equation (2.1) by v ∈ V
and integrating by parts, we find that

(a∇u,∇v) − (u,∇ · (bv)) + (cu, v) + 〈u, v〉Γ+ = (f, v) ∀v ∈ V , (2.5)

where (·, ·) denotes the L2 inner-product over Ω and

〈w, v〉Γ± :=
∫

Γ±
|β|wv ds,

with β signifying the Fichera function b · ν, as before. We note that in the transition to (2.5) the boundary
integral term on Γ, which arises in the course of partial integration from the −∇ · (a∇u) term, vanishes by
virtue of (2.4), while the boundary integral term on Γ \ Γ+ = Γ0 ∪ Γ− resulting from the b · ∇u term on partial
integration disappears since u = 0 on this set by (2.2).

The form of (2.5) serves as motivation for the statement of the weak formulation of (2.1), (2.2) presented
below. We consider the inner product (·, ·)H defined by

(w, v)H := (a∇w,∇v) + (w, v) + 〈w, v〉Γ−∪Γ+ ,

and denote by H the closure of the space V in the norm ‖ · ‖H defined by ‖w‖H := (w,w)
1
2
H. Clearly, H is a

Hilbert space. For w ∈ H and v ∈ V , we now consider the bilinear form B(·, ·) : H× V → R defined by

B(w, v) := (a∇w,∇v) − (w,∇ · (bv)) + (cw, v) + 〈w, v〉Γ+ ,

and for v ∈ V we introduce the linear functional L : V → R by

L(v) := (f, v).

We shall say that u ∈ H is a weak solution to the boundary-value problem (2.1), (2.2) if

B(u, v) = L(v) ∀v ∈ V . (2.6)

The existence of a unique weak solution is guaranteed by the following theorem (cf. also Thm. 1.4.1 on p. 29
of [20]).
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Theorem 2.1. Suppose that c ∈ R>0. For each f ∈ L2(Ω), there exists a unique u in a Hilbert subspace Ĥ
of H such that (2.6) holds.

Proof. For v ∈ V fixed, we deduce by means of the Cauchy-Schwarz inequality that

B(w, v) ≤ K1‖w‖H‖v‖H1(Ω) ∀w ∈ H,

where we have used the trace theorem for H1(Ω). Thus B(·, v) is a bounded linear functional on the Hilbert
space H. By the Riesz representation theorem, there exists a unique element T (v) in H such that

B(w, v) = (w, T (v))H ∀w ∈ H.

Since B is bilinear, it follows that T : v → T (v) is a linear operator from V into H. Next we show that T is
injective. Note that

B(v, v) = (a∇v,∇v) − (v,∇ · (bv)) + (cv, v) + 〈v, v〉Γ+ ∀v ∈ V .

On integrating by parts in the second term on the right-hand side we deduce that

B(v, v) = (a∇v,∇v) + c‖v‖2
L2(Ω) + 1

2 〈v, v〉Γ−∪Γ+

≥ K0‖v‖2
H ∀v ∈ V ,

where K0 = min{c, 1
2} > 0. Hence

(v, T (v))H ≥ K0‖v‖2
H ∀v ∈ V . (2.7)

Consequently, T : v → T (v) is an injection from V onto the range R(T ) of T contained in H. Thus, T : V →
R(T ) is a bijection. Let S = T−1 : R(T ) → V , and let Ĥ denote the closure of R(T ) in H. Since, by (2.7),
‖S(w)‖H ≤ (1/K0)‖w‖H for all w ∈ R(T ), it follows that S : R(T ) → V is a continuous linear operator;
therefore, it can be extended, from the dense subspace R(T ) of Ĥ to the whole of Ĥ, as a continuous linear
operator Ŝ : Ĥ → H. Furthermore, since

|L(v)| ≤ ‖f‖L2(Ω)‖v‖H ∀v ∈ H,

it follows that L ◦ Ŝ : v ∈ Ĥ �→ L(Ŝ(v)) ∈ R is a continuous linear functional on Ĥ. Since Ĥ is closed
(by definition) in the norm of H, it is a Hilbert subspace of H. Hence, by the Riesz representation theorem,
there exists a unique u ∈ Ĥ such that

L(Ŝ(w)) = (u,w)H ∀w ∈ Ĥ.

Thus, by the definition of Ŝ, Ŝ(w) = S(w) for all w in R(T ); hence,

L(S(w)) = (u,w)H ∀w ∈ R(T ).

Equivalently, on writing v = S(w),
(u, T (v))H = L(v) ∀v ∈ V .

Thus we have shown the existence of a unique u ∈ Ĥ(⊂ H) such that

B(u, v) = (u, T v)H = L(v) ∀v ∈ V .

We note in passing that in the presence of additional structural assumptions on a (e.g. when a ∈ Rd×d is
positive definite) the assumption c > 0 can be relaxed to c ≥ 0. �
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The boundary condition u|Γ− = 0 on the inflow part Γ− of the hyperbolic boundary Γ \ Γ0 = Γ− ∪ Γ+ is
imposed weakly, through the definition of the bilinear form B(·, ·), while the boundary condition u|Γ0 = 0 on the
elliptic part Γ0 of Γ is imposed strongly, through the choice of the function space H. Hence, we deduce from
Lemma 2.1 that

d⊗
i=1

H1
(0)(0, 1) := H1

(0)(0, 1) ⊗ · · · ⊗ H1
(0)(0, 1) ⊂ H, (2.8)

where the ith component H1
(0)(0, 1) in the d-fold tensor-product on the left-hand side of the inclusion is taken

to be equal to H1
0(0, 1) if Oxi is an elliptic co-ordinate direction; otherwise (i.e., when Oxi is a hyperbolic

co-ordinate direction), it is chosen to be equal to H1(0, 1).
Next, we shall consider the discretization of the weak formulation (2.6). Motivated by the tensor-product

structure of the space on the left-hand side of the inclusion (2.8), we shall base our Galerkin discretization on a
finite-dimensional subspace of H that is the tensor-product of finite-dimensional subspaces of H1

(0)(0, 1). Thus,
we begin by setting up the necessary notation in the case of the univariate space H1

(0)(0, 1).

3. Univariate approximation results

Let I = (0, 1) and consider the sequence of partitions {T �}�≥0, where T 0 = {I} and where the partition
T �+1 is obtained from the previous partition

T � := {I�j : j = 0, . . . , 2� − 1}

by halving each of the intervals I�j ; I
0
0 := I. The mesh-size in the partition T � is h� := 2−�.

We consider the finite-dimensional linear subspace V�,p of H1(0, 1) consisting of all continuous piecewise
polynomials of degree p ≥ 1 on the partition T �, � ≥ 0. For � ≥ 0 we also consider the subspace V�,p0 of V�,p
defined by V�,p0 := V�,p ∩ C0[0, 1] ⊂ H1

0(0, 1) consisting of all continuous piecewise polynomial functions on T �

of degree p that vanish at both endpoints of the interval [0, 1].

Remark 3.1. When p = 1 the linear space V0,p
0 is trivial, that is V0,1

0 = {0}.

Let us note that the families of spaces {V�,p0 }�≥0 and {V�,p}�≥0 are nested, i.e.,

V0,p
0 � V1,p

0 � V2,p
0 � · · · � V�,p0 � · · · � H1

0(0, 1),

and
V0,p � V1,p � V2,p � · · · � V�,p � · · · � H1(0, 1),

each space in each of the two chains being a proper subspace of the next space in the same chain. As in the
previous section, we shall use H1

(0)(0, 1) to denote H1
0(0, 1) or H1(0, 1), as the case may be; analogously, we shall

use V�,p(0) to denote V�,p0 or V�,p. We shall adopt the following hypothesis.

Hypothesis 1(0). Suppose that p ≥ 1. For each integer � ≥ 0 there exists a projector (i.e., a linear, idempotent,
surjective mapping) P �,p(0) : H1

(0)(0, 1) → V�,p(0) .

Under this hypothesis,
V�,p(0) = P �,p(0) H1

(0)(0, 1), � ≥ 0, p ≥ 1.

Now, let

Q�,p(0) :=

⎧⎨
⎩

P �,p(0) − P �−1,p
(0) , � ≥ 1,

P 0,p
(0) , � = 0.
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Thus, for any integer L ≥ 0,

PL,p(0) =
L∑
�=0

Q�,p(0).

We define the increment spaces W�,p
(0) , � = 0, 1, . . . , as follows:

W�,p
(0) := Q�,p(0) H1

(0)(0, 1).

Hence, for any pair of integers L ≥ 0 and p ≥ 1,

VL,p(0) = PL,p(0) H1
(0)(0, 1) =

(
L∑
�=0

Q�,p(0)

)
H1

(0)(0, 1) =
L∑
�=0

(
Q�,p(0) H1

(0)(0, 1)
)

=
L∑
�=0

W�,p
(0) . (3.1)

In fact, if Q�1,p(0) ◦Q�2,p(0) = 0 for all �1, �2 ∈ {1, . . . , d}, �1 
= �2, one can make a stronger statement: for any pair

of integers L ≥ 0 and p ≥ 1, the vector space VL,p(0) is the direct sum of the increment spaces W�,p
(0) , � = 0, . . . , L:

VL,p(0) =
L⊕
�=0

W�,p
(0) . (3.2)

This is a direct consequence of the following result (see, for example, [5], Thm. 2.5), which we shall return to
at the end of Section 3.3.

Proposition 3.1. Let X be a vector space; then, there exist nontrivial subspaces X�, � = 0, . . . , L, of X such
that X =

⊕L
�=0X� if, and only if, there are nonzero linear mappings q0, . . . , qL : X → X such that

(1)
∑L
�=0 q� = IdX ;

(2) q�1 ◦ q�2 = 0X for all �1, �2 ∈ {0, . . . , L}, �1 
= �2.

Moreover, each q� is necessarily a projector and X� can be chosen to be Im(q�), � = 0, . . . , L.

So far, the choice of the projectors P �,p(0) has been fairly arbitrary: the discussion above only appealed to
their algebraic properties stated in Hypothesis 1(0). Below, we shall be interested in the convergence of tensor-
products of univariate projectors. Specifically, we shall investigate the dependence of convergence rates on the
level index �, the polynomial degree p, and the dimension d of the domain of definition Ω = (0, 1)d of the
function u to be approximated. To this end, we shall make a second assumption on the projectors.

Hypothesis 2(0). Let k ≥ 1 and p ≥ 1 be two integers, s ∈ {0, 1} and h� = 2−�, where � ≥ 0 is an integer, and
suppose that v ∈ Hk+1(0, 1) ∩ H1

(0)(0, 1). For any integer t such that 1 ≤ t ≤ min{p, k}, there exists a positive
constant cp(s, t), independent of v, such that

|v − P �,p(0) v|Hs(0,1) ≤ cp(s, t)ht+1−s
� |v|Ht+1(0,1). (3.3)

In particular, Hypothesis 2(0) implies that v = lim�→∞ P �,p(0) v for all v ∈ H2(0, 1) ∩ H1
(0)(0, 1) and all p ≥ 1,

where the limit is considered in the Hs(0, 1)-seminorm for s ∈ {0, 1}, with the convention that, for s = 0,
| · |H0(0,1) = ‖ · ‖L2(0,1).
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3.1. Examples of univariate projectors

We present projectors P �,p0 and P �,p that satisfy our two hypotheses. Consider the projector P �,p : H1(0, 1) →
V�,p defined, for x ∈ [0, 1], by

(P �,pu)(x) := u(0) +
∫ x

0

(Π�,p−1u′)(ξ) dξ, � ≥ 0, p ≥ 1,

where Π�,p−1 : L2(0, 1) → V�,p−1 is the L2(0, 1)-orthogonal projector onto V�,p−1, with the convention that
V�,0 ⊂ L2(0, 1) is the set of piecewise constant functions on T �.

Since u ∈ H1(0, 1) ⊂ C[0, 1], the projector is well-defined. Trivially, (P �,pu)(0) = 0. If p = 1, the projection
Π�,p−1u′ is a piecewise constant function on the mesh {x�j := 2−�j : j = 0, . . . , 2�}, and u(x�j) − (P �,1u)(x�j) =
(u′ − Π�,0u′,1[0,x�

j]
) = 0, j = 1, . . . , 2�. Consequently, for p = 1 we have that P �,pu is equal to u at all nodes

of T �. More generally, (P �,pu)(1) = u(1) for all � ≥ 0 and all p ≥ 1; furthermore,

P �,p|H1
0(0,1)

= P �,p0 , where (P �,p0 u)(x) :=
∫ x

0

(Π�,p−1u′)(ξ) dξ for all � ≥ 0

(cf. Thm. 3.14 on p. 73 in Schwab [23]). In particular, P 0,1
0 = 0.

In addition, the projector P �,p has the following approximation property (cf. inequalities (3.3.29) and (3.3.30)
in Schwab [23]): For any v in Hk+1(0, 1) ∩ H1

(0)(0, 1), k ≥ 1, we have that

|v − P �,p(0) v|Hs(0,1) ≤
(
h�
2

)t+1−s 1
p1−s

√
(p− t)!
(p+ t)!

|v|Ht+1(0,1), 1 ≤ t ≤ min{p, k}, (3.4)

where h� = 2−�, � ≥ 0, p ≥ 1, s ∈ {0, 1}, t ∈ N, and N denotes the set of nonnegative integers.
Thus we have shown that the family of finite element spaces {V�,p(0)}�≥0 ⊆ H1

(0)(0, 1) and the associated

projectors P �,p(0) , � ≥ 0, satisfy the approximation property

|v − P �,p(0) v|Hs(0,1) ≤ cp,s,t2−(t+1−s)(�+1)|v|Ht+1(0,1), (3.5)

for all v ∈ Hk+1(0, 1) ∩ H1
(0)(0, 1), k ≥ 1, � ≥ 0, p ≥ 1, t ∈ N, 1 ≤ t ≤ min{p, k} and s ∈ {0, 1}, where

cp,s,t :=
1

p1−s

√
(p− t)!
(p+ t)!

· (3.6)

Consequently, Hypotheses 1(0) and 2(0) hold, inequality (3.3) being satisfied with

cp(s, t) := 2−(t+1−s)cp,s,t =
1

2t+1−sp1−s

√
(p− t)!
(p+ t)!

· (3.7)

In fact, when p = t = 1 and � = 0, using Poincaré’s inequality, (3.5) can be shown to hold with c1,s,1 = (2/π)2−s,
yielding (3.3) with c1(s, 1) = 1/π2−s, with s ∈ {0, 1}.
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3.2. Bounds on the incremental projectors for p ≥ 1

Let us define, as above, the projection Q�,p(0) onto the increment of the hierarchical family {V�,p(0)}�≥0 by

Q�,p(0) :=

⎧⎨
⎩

P �,p(0) − P �−1,p
(0) , � ≥ 1,

P 0,p
(0) , � = 0,

(3.8)

where now P �,p(0) signifies the projector introduced in Section 3.1.
Suppose that v ∈ Hk+1(0, 1) ∩ H1

(0)(0, 1), k ≥ 1, � ≥ 0, p ≥ 1, t ∈ N, 1 ≤ t ≤ min{p, k} and s ∈ {0, 1}.
(a) For � ≥ 1, the triangle inequality and the approximation property (3.5) ensure that

|Q�,p(0)v|Hs(0,1) ≤ c̃p,s,t2−(t+1−s)�|v|Ht+1(0,1), � ≥ 1, (3.9)

with

c̃p,s,t =
(

1 +
1

2t+1−s

)
cp,s,t. (3.10)

(b) For � = 0 and s = 0, by Poincaré’s inequality,

‖Q0,p
(0)u‖L2(0,1) ≤ ‖u‖L2(0,1) + ‖u− P 0,p

(0) u‖L2(0,1)

≤ ‖u‖L2(0,1) +
1
π
|u− P 0,p

(0) u|H1(0,1)

= ‖u‖L2(0,1) +
1
π

√
|u|2H1(0,1) − |Q0,p

(0)u|2H1(0,1) ,

and therefore since, for a ≥ b ≥ 0, 1
π

√
a2 − b2 ≤ a− b

√
1 − 1

π2 , we deduce that

‖Q0,p
(0)u‖L2(0,1) +

√
1 − 1

π2
|Q0,p

(0)u|H1(0,1) ≤ ‖u‖L2(0,1) + |u|H1(0,1) =: ‖u‖H1∗(0,1). (3.11)

(c) For � = 0 and s = 1 on the other hand, we have that

|Q0,p
(0)u|H1(0,1) = |P 0,p

(0) u|H1(0,1) ≤ |u|H1(0,1). (3.12)

Also, (3.11) implies that

‖Q0,p
(0)u‖H1∗(0,1) ≤ π√

π2 − 1
‖u‖H1∗(0,1). (3.13)

(d) We note that when � = 0, s ∈ {0, 1}, p = 1 and u ∈ H1
0(0, 1), then P 0,1

(0) u = P 0,1
0 u = 0 and Q0,1

(0)u =

Q0,1
0 u = 0, and inequalities (3.11) and (3.12) are thereby trivially satisfied.

For � = 0 we set
ĉp,0,(0) := ‖Q0,p

(0)‖B(H1
(0)(0,1),L

2(0,1)),

ĉp,1,(0) := ‖Q0,p
(0)‖B(H1

(0)(0,1),H
1
(0)(0,1))

,
(3.14)

with the convention that the norm in H1
0(0, 1) is the seminorm | · |H1(0,1) while the norm in H1(0, 1) is ‖ ·‖H1∗(0,1).

It will be clear from the context whether we use zero or nonzero boundary conditions in the spaces.
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Example 3.1. If p ≥ 2 and � = 0, then Q0,p
0 is, for u ∈ H1

0(0, 1), given by

(Q0,p
0 u)(x) =

∫ x

0

(Π0,p−1u′)(ξ) dξ

where Π0,p−1 denotes the L2(0, 1)-projection onto V0,p−1. Now, Q0,p
0 ∈ B(H1

0(0, 1),H1
0(0, 1)) with ĉp,1,0 = 1 and,

as the embedding of H1
0(0, 1) into L2(0, 1) has norm 1/π by the Poincaré inequality, ĉp,0,0 ≤ 1/π. On the other

hand, (3.11) still implies that ĉp,0,(0) ≤ 1, with H1(0, 1) equipped by the norm ‖ · ‖H1∗(0,1), while (3.13) implies
that ĉp,1,(0) ≤ π/

√
π2 − 1.

3.3. Refined bounds on the incremental projectors for p = 1

We shall now take a closer look at estimating |Q�,p(0)v|Hs(0,1) in the case of p = 1 and � ≥ 1. As in Section 3.2,

Q�,p(0) is defined by (3.8) where P �,p(0) is the projector introduced in Section 3.1. Our objective is to sharpen our
earlier expression (3.10) for the constant c̃p,s,t appearing in the detail-size estimate (3.9) in the special case of
p = 1 and s ∈ {0, 1} (note that we necessarily have t = 1).

We use the following two simple auxiliary results, the first of which is a discrete version of the Poincaré
inequality.

Lemma 3.1. Suppose that v ∈ H1
0(0, 1) is piecewise linear on T 1 := {[0, 1

2 ], [12 , 1]}; then

‖v‖L2(0,1) ≤
1√
12

‖v′‖L2(0,1). (3.15)

Proof. The result follows from a straightforward calculation with v taken to be the standard hat function
ϕ : x �→ 1

2 (1 − 2|x− 1
2 |)+ defined on [0, 1]. �

Lemma 3.2. Suppose that v ∈ H1(0, 1); then∣∣∣∣∣
∫ 1

2

0

v(t) dt−
∫ 1

1/2

v(t) dt

∣∣∣∣∣ ≤ 1√
12

‖v′‖L2(0,1). (3.16)

Proof. Denoting by ϕ, as in the proof Lemma 3.1, the hat function on [0, 1] with ϕ(1
2 ) = 1

2 , we note that
1[0, 12 ] − 1[ 12 ,1]

= ϕ′ on [0, 1] \ { 1
2}. Partial integration and the Cauchy-Schwarz inequality yield

∣∣∣∣∣
∫ 1

2

0

v(t) dt−
∫ 1

1/2

v(t) dt

∣∣∣∣∣ =
∣∣∣∣
∫ 1

0

ϕ′(t)v(t) dt
∣∣∣∣ =
∣∣∣∣
∫ 1

0

ϕ(t)v′(t) dt
∣∣∣∣

≤ ‖ϕ‖L2(0,1)‖v′‖L2(0,1) =
1√
12

‖v′‖L2(0,1). (3.17)

That completes the proof. �
Remark 3.2. Rescaling Lemmas 3.1 and 3.2 above from [0, 1] to [0, h] with h > 0 we obtain the following
inequalities:

‖v‖L2(0,h) ≤
h√
12

‖v′‖L2(0,h) ∀v ∈ H1
0(0, h), piecewise linear on [0, h/2] ∪ [h/2, h]; (3.18)

and ∣∣∣∣∣
∫ h/2

0

v(t) dt−
∫ h

h/2

v(t) dt

∣∣∣∣∣ ≤ h
3
2

√
12

‖v′‖L2(0,h) ∀v ∈ H1(0, h). (3.19)
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Proposition 3.2. Suppose that the projectors P �,1(0) , � = 0, 1, . . . , are defined by

(P �,1(0) v)(x) = v(0) +
∫ x

0

(Π�,0v′)(ξ) dξ ∀v ∈ H1
(0)(0, 1), � ≥ 0; (3.20)

then, for any v ∈ H2(0, 1) ∩ H1
(0)(0, 1), we have

‖Q�,1(0)v‖L2(0,1) ≤
1
3
2−2�‖v′′‖L2(0,1) and |Q�,1(0)v|H1(0,1) ≤

1√
3
2−�‖v′′‖L2(0,1) ∀� ≥ 1. (3.21)

Hence, for the constants c̃1,0,1 and c̃1,1,1 appearing in (3.9), we obtain the upper bounds

c̃1,0,1 ≤ 1
3

and c̃1,1,1 ≤ 1√
3
· (3.22)

Proof. Denote by I�k, for 1 ≤ k ≤ 2�, the subintervals of T �, of length h� = 2−�. The nodal exactness of P �,1(0)

(cf. the beginning of Sect. 3.1) ensures that Q�,1(0)v |I�−1
k

∈ H1
0(I

�−1
k ) is a multiple of the standard hat function,

rescaled to I�−1
k , for all � ≥ 1 and 1 ≤ k ≤ 2�−1. Applying Lemma 3.1 (after rescaling to I�−1

k ), we obtain

‖Q�,1(0)v |I�−1
k

‖2
L2(I�−1

k
)
≤ 1

12
(h�−1)2‖(Q�,1(0)v)

′ |I�−1
k

‖2
L2(I�−1

k
)

∀v ∈ H2(0, 1), � ≥ 1. (3.23)

The definition (3.20) ensures that

(Q�,1(0)v)
′ = Π�,0v′ − Π�−1,0v′, � ≥ 1,

so that, since I�−1
k = I�2k−1 ∪ I�2k,

(Q�,1(0)v)
′ |I�−1

k
=

(
1
h�

∫
I�
2k−1

v′(t) dt

)
1I�

2k−1
+

(
1
h�

∫
I�
2k

v′(t) dt

)
1I�

2k
−
(

1
h�−1

∫
I�−1

k

v′(t) dt

)
1I�−1

k
.

Using h� = 2−� we obtain

‖(Q�,1(0)v)
′ |I�−1

k
‖2
L2(I�−1

k )
=

1
4

(
1
h�

∫
I�
2k−1

v′(t) dt− 1
h�

∫
I�
2k

v′(t) dt

)2

‖1I�−1
k

‖2
L2(I�−1

k )

=
1

h�−1

(∫
I�
2k−1

v′(t) dt−
∫
I�
2k

v′(t) dt

)2

, (3.24)

from which we deduce using Lemma 3.2, rescaled to I�−1
k , that

‖(Q�,1(0)v)
′ |I�−1

k
‖2
L2(I�−1

k )
≤ 1

12
(h�−1)2‖v′′‖2

L2(I�−1
k )

. (3.25)

The estimates (3.21) now follow from (3.23) and (3.25), upon summing over k from 1 to 2�−1. Finally, (3.22)
follows by comparing (3.9) and (3.21). �

We complete this section by showing that the equality (3.2) holds in the case of p = 1. To do so, we apply
Proposition 3.1 with X = VL,1, X� = W�,1 and q� = Q�,1, � = 0, . . . , L, and note that PL,1 =

∑L
�=0Q

�,1 is the
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identity-map in VL,1 and Q�1,1 ◦ Q�2,1 is the zero-map in VL,1 for all �1, �2 ∈ {0, . . . , L}, �1 
= �2; thus, (3.2)
follows from (3.1).

When p = 1 andX = VL,10 a small modification is required since then W0,1
0 = V0,1

0 = {0} and Q0,1
0 = P 0,1

0 = 0,
so Proposition 3.1 does not directly apply with � = 0, . . . , L. Instead, we use Proposition 3.1 with X = VL,10 ,
X� = W�,1

0 and q� = Q�,10 , � = 1, . . . , L, and note that PL,10 =
∑L

�=1Q
�,1
0 is the identity-map in VL,10 and

Q�1,10 ◦Q�2,10 is the zero-map in VL,10 for all �1, �2 ∈ {1, . . . , L}, �1 
= �2, to deduce that VL,10 =
⊕L

�=1 W
�,1
0 . On

taking the direct sum of each side in the last equality with W0,1
0 , (3.2) follows since W0,1

0 ⊕ VL,10 = VL,10 .
Thus we have shown that, for p = 1,

VL,p(0) =
L⊕
�=0

W�,p
(0) = W0,p

(0) ⊕ · · · ⊕WL,p
(0) , L ≥ 0; (3.26)

in other words,
V�,p(0) = V�−1,p

(0) ⊕W�,p
(0) , � ≥ 1.

For p ≥ 2, we still have that Q�1,p(0) ◦ Q�2,p(0) is the zero-map in VL,p(0) for all �1, �2 ∈ {1, . . . , L} such that
�1 > �2, but not for �1 < �2, and therefore (3.26) does not follow. This, however, will not affect our subsequent
arguments.

4. Sparse finite element discretization

We shall now use the finite-dimensional spaces VL,p and VL,p0 of univariate functions to construct a tensor-
product space of multivariate functions. We shall then sparsify the resulting tensor-product space with the
aim to reduce its dimension without significantly compromising the approximation properties of the original
tensor-product space.

4.1. Sparse tensor-product space

Let L and p be positive integers, and consider on Ω = (0, 1)d the finite-dimensional subspace V L,p(0) of⊗d
i=1 H1

(0)(0, 1) defined by

V L,p(0) :=
d⊗
i=1

VL,p(0) = VL,p(0) ⊗ · · · ⊗ VL,p(0) , (4.1)

where the ith component VL,p(0) in this tensor-product is chosen to be VL,p0 if Oxi is an elliptic co-ordinate

direction, and VL,p(0) is chosen as VL,p otherwise.

In particular, if a ≡ 0 and therefore Γ0 = ∅, then VL,p(0) = VL,p for each component in the tensor-product.

Conversely, if a is positive definite, then Γ0 = Γ and therefore VL,p(0) = VL,p0 for each component of the tensor-

product. In general, for a ≥ 0 that is neither identically zero nor positive definite, VL,p(0) = VL,p0 for a certain

number i of components in the tensor-product, where 0 < i < d, and VL,p(0) = VL,p for the rest.
For a multi-index � = (�1, . . . , �d) ∈ Nd0 we denote its �∞ and �1 norms, respectively, by

|�|∞ := max{�i : 1 ≤ i ≤ d} and |�|1 := �1 + . . .+ �d.

Using the hierarchical decomposition (3.1) we have that

V L,p(0) =
∑

|�|∞≤L
W�1,p

(0) ⊗ · · · ⊗W�d,p
(0) , � = (�1, . . . , �d), (4.2)
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with the convention that W�,p
(0) = W�,p

0 whenever Oxi is an elliptic co-ordinate direction, and W�,p
(0) = W�,p

otherwise.
The space V L,p(0) has O(2Ldpd) degrees of freedom, a number that grows exponentially as a function of d. In

order to reduce the number of degrees of freedom, we shall replace V L,p(0) with a lower-dimensional subspace V̂ L,p(0)

defined as follows:

V̂ L,p(0) :=
∑

|�|1≤L
W�1,p

(0) ⊗ · · · ⊗W�d,p
(0) , � = (�1, . . . , �d). (4.3)

The space V̂ L,p(0) is called a sparse tensor-product space.

The space V̂ L,p(0) has O(2LLd−1pd) degrees of freedom, which is a considerable reduction compared to the

O(2Ldpd) degrees of freedom for the space V L,p(0) . Replacement of V L,p by V̂ L,p is an h-version sparsification
(i.e., sparsification with respect to the mesh parameter L = | log2 hL|). One could further reduce the size of the
space V̂ L,p by performing p-version sparsification (i.e., sparsification with respect to the parameter p); here we
shall refrain from doing so as we are concerned with h-version sparse finite element methods, with p ≥ 1 fixed.

Consider the d-dimensional projector

PL,p(0) ⊗ · · · ⊗ PL,p(0) :
d⊗
i=1

H1
(0)(0, 1) →

d⊗
i=1

VL,p(0) = V L,p(0) ,

where the ith component PL,p(0) is equal to PL,p0 if Oxi is an elliptic co-ordinate direction, and equal to PL,p

otherwise. Let us now recall that

Q�,p(0) =

⎧⎨
⎩

P �,p(0) − P �−1,p
(0) , � ≥ 1,

P 0,p
(0) , � = 0.

Thus,

PL,p(0) =
L∑
�=0

Q�,p(0),

where Q�,p(0) = Q�,p0 when P �,p(0) = P �,p0 and Q�,p(0) = Q�,p when P �,p(0) = P �,p. Hence,

PL,p(0) ⊗ · · · ⊗ PL,p(0) =
∑

|�|∞≤L
Q�1,p(0) ⊗ · · · ⊗Q�d,p(0) , � = (�1, . . . , �d),

where Q�i,p(0) is equal to Q�i,p0 when Oxi is an elliptic co-ordinate direction, and equal to Q�i,p otherwise.

The sparse counterpart P̂L,p(0) of the tensor-product projector PL,p(0) ⊗ · · · ⊗ PL,p(0) is defined by truncating the
index set {� : |�|∞ ≤ L} of the sum to {� : |�|1 ≤ L}:

P̂L,p(0) :=
∑

|�|1≤L
Q�1,p(0) ⊗ · · · ⊗Q�d,p(0) :

d⊗
i=1

H1
(0)(0, 1) → V̂ L,p(0) , � = (�1, . . . , �d),

where Q�i,p(0) is equal to Q�i,p0 when Oxi is an elliptic co-ordinate direction Oxi, and equal to Q�i,p otherwise.
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4.2. Sparse stabilized finite element method

Having defined, for L, p ≥ 1, the finite-dimensional space V̂ L,p(0) in which the approximate solution will be
sought, we now introduce a stabilized Galerkin finite element method over this finite-dimensional space. The
main ingredients of the method are a bilinear form bδ(·, ·) that approximates the bilinear form B(·, ·) from
the weak formulation of the boundary value problem and a linear functional lδ(·) that approximates the linear
functional L(·).

Let us consider the bilinear form

bδ(w, v) := B(w, v) + δL
∑
κ∈T L

(Lw, b · ∇v)κ.

Here, in the light of the fact that in the transport-dominated case |a| � |b|, the second term in the bilinear
form bδ(·, ·) can be thought of as least-square stabilization in the direction of subcharacteristics (‘streamlines’).
We shall suppose for ease of presentation that c ≥ 0.

We also define the linear functional

lδ(v) := L(v) + δL
∑
κ∈T L

(f, b · ∇v)κ (= L(v) + δL(f, b · ∇v)) .

Here δL ∈ R≥0 is a (‘streamline-diffusion’) parameter to be chosen below, and κ ∈ T L are d-dimensional
axiparallel cubic elements of edge-length hL in the partition of the computational domain Ω = (0, 1)d. As there
are 2Ld such elements κ in T L, the computation of the stabilization term δL

∑
κ∈T L(Lw, b·∇v)κ in the definition

of bδ(w, v) may seem intractable for d� 1; however, it turns out that this is not so: the sum over the 2Ld terms
in the stabilization term can be rewritten as a sum over 2Ld+ 1

2d(d− 1) + 1 terms only; see Remark 6.2(c).
We consider the finite-dimensional problem: Find uh ∈ V̂ L,p(0) such that

bδ(uh, vh) = lδ(vh) ∀vh ∈ V̂ L,p(0) . (4.4)

The idea behind the method (4.4) is to introduce mesh-dependent numerical diffusion into the standard
Galerkin finite element method along subcharacteristic directions, with the aim to suppress maximum-principle-
violating oscillations on the scale of the mesh, and let δL → 0 with hL → 0. For an analysis of the method in the
case of standard finite element spaces and (low-dimensional) elliptic transport-dominated diffusion equations
we refer to the monograph [22].

It would have been more accurate to write uhL and vhL instead of uh and vh in (4.4). However, to avoid
notational clutter, we shall refrain from doing so. Instead, we adopt the convention that the dependence of
h = hL on the index L will be implied, even when not explicitly indicated.

We begin with the stability-analysis of the method. First, we shall show that, with an appropriate choice
of the streamline-diffusion parameter δL, the bilinear form bδ(·, ·) is coercive on V L,p(0) × V L,p(0) . To this end,
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we begin by noting that

bδ(vh, vh) = (a∇vh,∇vh) − (vh,∇ · (bvh)) + (cvh, vh) + 〈vh, vh〉Γ+ + δL
∑
κ∈T L

(Lvh, b · ∇vh)κ

= (a∇vh,∇vh) + c‖vh‖2
L2(Ω) + δL‖b · ∇vh‖2

L2(Ω)

+
1
2

∫
Γ−∪Γ+

|β| |vh|2 ds+
1
2
cδL

∫
Γ−∪Γ+

β|vh|2 ds

+ δL
∑
κ

(−a : ∇∇vh, b · ∇vh)κ

≥ ‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β||vh|2 ds+
1
2
(1 − cδL)

∫
Γ−

|β||vh|2 ds

− 1
2
δL
∑
κ

‖a : ∇∇vh‖2
L2(κ) ∀vh ∈ V L,p(0) , (4.5)

where we have made use of the facts that β = −|β| on Γ− and vh|Γ0 = 0.
When p = 1 and a ≥ 0 is diagonal, the last term in (4.5) is equal to zero, and the coercivity of bδ(·, ·) in the

streamline-diffusion norm ||| · |||SD (cf. [22]), defined by

|||v|||2SD := ‖
√
a∇v‖2

L2(Ω) + c‖v‖2
L2(Ω) + δL‖b · ∇v‖2

L2(Ω) +
1
2
(1 + cδL)

∫
Γ+

|β||v|2 ds,

then follows immediately, provided that δL is chosen so that 0 ≤ cδL ≤ 1. If, however, p > 1 or if a ∈ Rd×d is
a general symmetric semidefinite matrix, the final term in (4.5) is generally nonzero. Still, we shall show that,
with a somewhat more restrictive choice of δL, the final term in (4.5) can be absorbed into the first term on the
right-hand side of (4.5), yielding coercivity in the norm ||| · |||SD. We shall therefore assume that a ∈ Rd×d is
a general positive semidefinite matrix and p ≥ 1, and will only distinguish between the cases p = 1 and p ≥ 2
when the choice of p = 1 necessitates special treatment.

We shall require the following inverse inequality for a univariate polynomial (cf. Schwab [23], p. 148,
Thm. 3.91).

Lemma 4.1. Let J ⊂ R be a bounded open interval with h := meas1(J), and let p ≥ 1; then,

‖v′‖L2(J) ≤
√

12
p2

h
‖v‖L2(J) ∀v ∈ Pp(J),

where Pp(J) denotes the set of all polynomials of degree p or less defined on J̄ .
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Now, letting wi := (a∇vh)i we have, for any κ ∈ T L, that

‖a : ∇∇vh‖2
L2(κ) = ‖∇ · (a∇vh)‖2

L2(κ) =

∥∥∥∥∥
d∑
i=1

∂

∂xi
wi

∥∥∥∥∥
2

L2(κ)

≤
(

d∑
i=1

∥∥∥∥∂wi∂xi

∥∥∥∥
L2(κ)

)2

≤ d
d∑
i=1

∥∥∥∥∂wi∂xi

∥∥∥∥
2

L2(κ)

≤ 12dp4

h2
L

d∑
i=1

‖wi‖2
L2(κ)

=
12dp4

h2
L

∫
κ

d∑
i=1

|wi|2 dx =
12dp4

h2
L

∫
κ

|w|2 dx =
12dp4

h2
L

∫
κ

|a∇vh|2 dx

=
12dp4

h2
L

∫
κ

|
√
a
√
a∇vh|2 dx ≤ 12dp4

h2
L

∫
κ

|
√
a |2 |

√
a∇vh|2 dx

= |
√
a |2 12dp4

h2
L

‖
√
a∇vh‖2

L2(κ),

where |w| denotes the �2 norm of w ∈ Rd and |
√
a | again denotes the Frobenius norm of the symmetric positive

semidefinite matrix
√
a ∈ Rd×d. Hence, after summation over all κ ∈ T L,

∑
κ∈T L

‖a : ∇∇vh‖2
L2(κ) ≤ |

√
a |2 12dp4

h2
L

‖
√
a∇vh‖2

L2(Ω).

Using this bound in (4.5) we deduce that

bδ(vh, vh) ≥
(

1 − δL|
√
a |2 6dp4

h2
L

)
‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β| |vh|2 ds+
1
2
(1 − cδL)

∫
Γ−

|β| |vh|2 ds.

Let us suppose, with the convention 1/0 = ∞, that δL ∈ R≥0 satisfies

0 ≤ δL ≤ min
(

h2
L

12dp4|
√
a |2 ,

1
c

)
·

Then,

bδ(vh, vh) ≥ 1
2
‖
√
a∇vh‖2

L2(Ω) + c‖vh‖2
L2(Ω) +

1
2
δL‖b · ∇vh‖2

L2(Ω)

+
1
2
(1 + cδL)

∫
Γ+

|β| |vh|2 ds+
1
2
(1 − cδL)

∫
Γ−

|β| |vh|2 ds

≥ 1
2
|||vh|||2SD ∀vh ∈ V̂ L,p(0) . (4.6)

Since (4.4) is a linear problem in a finite-dimensional linear space, the coercivity (4.6) of the bilinear form bδ(·, ·)
implies the existence and uniqueness of a solution uh to (4.4) in V̂ L,p(0) . Furthermore, if c > 0 then

1
2
|||uh|||2SD ≤

(
1
c

+ δL

) 1
2

‖f‖L2(Ω) |||uh|||SD,
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which, in turn, implies that

|||uh|||SD ≤ (8/c)
1
2 ‖f‖L2(Ω), (4.7)

and hence the stability of the method for all δL ∈ R≥0 such that

0 ≤ δL ≤ min
(

h2
L

12dp4|
√
a |2 ,

1
c

)
·

We note here that in the case of p = 1 and a ≥ 0 diagonal, the constant 1
2 in the coercivity result bδ(vh, vh) ≥

1
2 |||vh|||2SD stated in (4.6) can be replaced by 1, under the simpler condition 0 ≤ cδL ≤ 1, which does not involve
the matrix norm |

√
a | or the dimension d. Consequently, when c > 0 the constant (8/c)

1
2 in the stability

inequality (4.7) can then be improved to (2/c)
1
2 , under this same condition on δL.

In Section 6 we shall consider the convergence analysis of the method (4.4); we shall require the following
multiplicative trace inequality, with explicit dependence on the dimension d.

Lemma 4.2 (multiplicative trace inequality). Let Ω = (0, 1)d where d ≥ 2 and suppose that Γ+ is the
hyperbolic outflow part of Γ. Then,

∫
Γ+

|v|2 ds ≤ 4d‖v‖L2(Ω) ‖v‖H1(Ω) ∀v ∈ H1(Ω).

Proof. We shall prove the inequality for v ∈ C1(Ω̄). For v ∈ H1(Ω) the result follows from the density of C1(Ω̄)
in H1(Ω). As we have noted before, Γ+ is a union of (d−1)-dimensional open faces of Ω. Let us suppose without
loss of generality that the face x1 = 0 of Ω belongs to Γ+. Then,

v2(0, x′) = v2(x1, x
′) +

∫ 0

x1

∂

∂x1
v2(ξ, x′) dξ, x′ = (x2, . . . , xn).

Hence, on integrating this over x = (x1, x
′) ∈ (0, 1)× (0, 1)d−1 = Ω,

∫
x′∈(0,1)d−1

v2(0, x′) dx′ =
∫ 1

0

∫
x′∈(0,1)d−1

v2(x1, x
′) dx′ dx1

+ 2
∫ 1

0

∫
x′∈(0,1)d−1

∫ 0

x1

v(ξ, x′)
∂

∂x1
v(ξ, x′) dξ dx′ dx1

≤ ‖v‖2
L2(Ω) + 2‖v‖L2(Ω) ‖vx1‖L2(Ω).

In the generic case when β > 0 on the whole of Γ+, the set Γ+ will contain at most d of the 2d faces of Ω – at
most one complete face of Ω orthogonal to the ith co-ordinate direction, i = 1, . . . , d. Otherwise, if β = 0 on
certain faces that belong to Γ+, the set Γ+ may contain as many as 2d− 1 of the 2d faces of Ω. Thus, in the
worst case, ∫

Γ+

|v|2 ds ≤ (2d− 1)‖v‖2
L2(Ω) + 4‖v‖L2(Ω)

d∑
i=1

‖vxi‖L2(Ω). (4.8)

Therefore, ∫
Γ+

|v|2 ds ≤ 2d
√

2max
(

1,
2
d

1
2

)
‖v‖L2(Ω) ‖v‖H1(Ω) ≤ 4d‖v‖L2(Ω) ‖v‖H1(Ω).

Hence the required result. �
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Remark 4.1. It follows from (4.8) that by altering the definition of the H1(Ω) norm in a similar manner as in
(3.11), the constant in Lemma 4.2 can be slightly improved:

∫
Γ+

|v|2 ds ≤ 2d‖v‖L2(Ω) ‖v‖H1∗(Ω), where ‖v‖H1∗(Ω) := ‖v‖L2(Ω) +
d∑
i=1

‖vxi‖L2(Ω).

5. Approximation rates of sparse finite element spaces

In Section 6 we develop the convergence analysis of the stabilized sparse finite element method. Our error
bounds will include constants whose precise dependence on the dimension d will be explicitly tracked. For this
purpose, we require optimal approximation results from the sparse finite element space, with explicit dependence
of the error constants on d. To this end we first prove, in Section 5.1, some combinatorial bounds. A second
key ingredient in our argument is a result, established in Section 5.2, concerning linear operators, which are
bounded in semi-norms, on tensor-products of separable Hilbert spaces. As before, N will denote the set of all
non-negative integers and N>0 will signify the set of all positive integers.

5.1. Some combinatorial bounds

Lemma 5.1. For d ∈ N>0 and x > 1 we have that

sup
m∈N

∑
�∈Nd

|�|1=m

x|�|∞−m = d

(
1 +

1
x− 1

)d−1

· (5.1)

Proof. The case d = 1 being trivial, we assume without loss of generality that d ≥ 2. Let us denote by Σ(m,x, d)
the sum in (5.1) and rewrite it as

Σ(m,x, d) :=
∞∑
k=0

∑
�∈Nd

|�|1=m, |�|∞=k

xk−m =
∞∑
k=0

|S(m, k, d)|xk−m, (5.2)

where, for m, k ∈ N, the set S(m, k, d) is defined by

S(m, k, d) := {� ∈ Nd : |�|1 = m, |�|∞ = k}. (5.3)

We deduce from (5.9) in Lemma 5.2 below that

d
∑

m/2<k≤m

(
m− k + d− 2

d− 2

)
xk−m ≤ Σ(m,x, d) ≤ d

m∑
k=0

(
m− k + d− 2

d− 2

)
xk−m. (5.4)

The statement of the theorem will follow once we have shown that the suprema over m ∈ N of both the lower
and the upper bound in (5.4) are equal to the right-hand side of (5.1).

We begin by considering the upper bound in (5.4), which can be written, after substituting m− k by k, as

d
m∑
k=0

(
k + d− 2
d− 2

)(
1
x

)k
·

The supremum over m ∈ N is thus attained for m→ ∞ and equals

d

(
1

1 − 1/x

)d−1

· (5.5)
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Note that here we have used the identity

1
(1 − q)n+1

=
∞∑
k=0

(
k + n

n

)
qk ∀n ∈ N, ∀q ∈ (−1, 1),

which follows by differentiating n times with respect to q the identity (1 − q)−1 = 1 + q + q2 + . . . .
Now we use a similar argument to compute the supremum over m ∈ N of the lower bound in (5.4), which

can be written, again after substituting m− k by k, as

d
∑

0≤k<m/2

(
k + d− 2
d− 2

)(
1
x

)k
, x > 1.

The supremum over m ∈ N is attained again for m→ ∞ and equals (5.5). �

In particular, it is a simple consequence of this theorem that, for any d,m ∈ N>0 and x > 1, we have that

d · xm ≤
∑
�∈Nd

|�|1=m

x|�|∞ ≤ d

(
1 +

1
x− 1

)d−1

· xm, (5.6)

the lower bound being trivial. It remains to prove the following lemma that was used in (5.4).

Lemma 5.2. Consider the sets S(m, k, d) defined, for d ∈ N>0 and m, k ∈ N in (5.3). Then,

S(m, k, d) = ∅ ∀k > m, (5.7)

∞∑
k=0

|S(m, k, d)| =
(
m+ d− 1
d− 1

)
, (5.8)

|S(m, k, d)| ≤ d

(
m− k + d− 2

d− 2

)
∀d ≥ 2, (5.9)

with equality for k > m/2.

Proof. We note that (5.7) is obvious, whereas (5.8) follows from the fact that for fixed m, d, the sets
(S(m, k, d))0≤k≤m are disjoint and

m⋃
k=0

S(m, k, d) = {� ∈ Nd : |�|1 = m}.

To prove (5.9) we consider, for fixed k,m with 0 ≤ k ≤ m, the mapping

{1, 2, . . . , d} ×
k⋃
j=0

S(m− k, j, d− 1)
ϕ−→ S(m, k, d)

given by

ϕ(q, (l1, l2, . . . , ld−1)) = (l1, l2, . . . , lq−1, k, lq, . . . , ld−1).
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Obviously, ϕ is surjective, so that we obtain, using (5.8),

|S(m, k, d)| ≤ |{1, 2, . . . , d}| ·
k∑
j=0

|S(m − k, j, d− 1)| (5.10)

≤ d

(
m− k + d− 2

d− 2

)
. (5.11)

For k > m/2 the mapping ϕ is also injective, which ensures equality in (5.10). Also (5.11) holds with equality
for k > m/2 due to (5.7) and (5.8). �
Remark 5.1. Of particular interest in the H1-seminorm bounds below is the case x = 2, for which (5.1)
becomes ∑

�∈Nd

|�|1=m

2|�|∞ ≤ d · 2d−1+m ∀m ∈ N, ∀d ∈ N>0. (5.12)

Before stating our next set of combinatorial bounds on lattice sums, we define, for L ∈ N, d ∈ N>0, x > 1
and α, β > 0, the following expressions:

A(L, d, x) :=
∑
�∈Nd

|�|1>L

x−|�|1 , (5.13)

B(L, d, x, α, β) :=
d∑
k=1

(
d

k

)
αkβd−kA(L, k, x). (5.14)

In our analysis of these quantities, we will often use that

A(L, k, x) =
∞∑

m=L+1

(
m+ k − 1
k − 1

)
x−m, (5.15)

which follows on noting that, by (5.3) and (5.8), we have

A(L, d, x) =
∞∑

m=L+1

∑
�∈Nd

|�|1=m

x−|�|1 =
∞∑

m=L+1

∞∑
k=0

∑
�∈Nd

|�|1=m, |�|∞=k

x−|�|1

=
∞∑

m=L+1

∞∑
k=0

|S(m, k, d)|x−m =
∞∑

m=L+1

(
m+ d− 1
d− 1

)
x−m.

The roles of α and β in (5.14) above will be played by the estimated error constants in the approximation
properties of the univariate FE projectors appearing in (3.9), (3.10) and (3.14). The following lemma will be
used in order to establish a sharp upper bound on

A(L, d, 2t) =
∑
�∈Nd

|�|1>L

2−t|�|1 . (5.16)

Lemma 5.3. For L, n ∈ N and x > 1 we have

A(L, n+ 1, x) ≤ 1 + θ−1

1 − x−1
·
(

1 +
x− 1
1 + θ

)L+1(
1 +

1 + θ

x− 1

)n
· x−(L+1), (5.17)
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where
θ := (x− 1)

L+ 1
n

, (5.18)

with the convention that if n = 0, then θ = ∞ in (5.18); in this case the right-hand side of (5.17) is to be
understood as the limiting value x−(L+1)/(1 − x−1) when n→ 0.

Proof. Using (5.15) and the summation formula

∞∑
m=L+1

(
m+ n

n

)
x−m =

1
n!

· dn

dzn

(
zL+n+1

1 − z

)∣∣∣∣
z=x−1

,

and the Cauchy inequality for holomorphic functions

|f (n)(z0)| ≤ n! ·
max{z: |z−z0|=r} |f(z)|

rn

with z0 = x−1, f(z) = zL+n+1/(1 − z) and r ∈ (0, 1 − x−1) arbitrary, we deduce that

∞∑
m=L+1

(
m+ n

n

)
x−m ≤ (r + x−1)L+n+1

(1 − r − x−1)rn
=

(1 + rx)L+n+1

(rx)n(1 − x−1(1 + rx))
· x−(L+1)

=
1

1 − x−1(1 + rx)
· (1 + rx)L+1

(
1 +

1
rx

)n
· x−(L+1). (5.19)

The optimal value of r to be used in the right-hand side of (5.19) can be obtained by minimizing (y := rx)

y ∈ (0, x− 1) �→ (1 + y)L+n+1

yn(1 − x−1(1 + y))
∈ (0,∞).

Elementary arguments show that the minimum of (5.19) is attained for y equal to the smallest solution of

Ly2 − (n(1 + θ) + 1)y + n2θ/(L+ 1) = 0,

with θ as in (5.18). More precisely, we have

y =
2n2θ/(L+ 1)

n(1 + θ) + 1 +
√

(n(1 + θ) + 1)2 − 4Ln2θ/(L+ 1)

∈
[
n2θ/(L+ 1)
n(1 + θ) + 1

, 2
n2θ/(L+ 1)
n(1 + θ) + 1

]
· (5.20)

From (5.20) we deduce that y ∼ nθ/(L+ 1)(1 + θ), so for simplicity we choose in (5.19)

r = x−1 nθ

(L+ 1)(1 + θ)
=

1 − x−1

1 + θ
∈ (0, 1 − x−1).

Simple algebraic manipulations of (5.19) then lead to the desired estimate (5.17). �
To derive bounds for B(L, d, x, α, β) in (5.14), we will use Lemma 5.3.

Lemma 5.4. For L ∈ N, d ∈ N>0, α, β > 0, and x ≥ 2,

B(L, d, x, α, β) ≤ deαx
x− 1

· (α(L + 1)e1/(L+1) + β)d−1 · x−(L+1). (5.21)
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Proof. Noting (5.15) and using Lemma 5.3, with n := k − 1 and θ := (x− 1)(L+ 1)/(k − 1), we obtain

B(L, d, x, α, β) ≤
d∑

k=1

(
d

k

)
αkβd−k · 1 + θ−1

1 − x−1

(
1 +

x− 1
1 + θ

)L+1(
1 +

1 + θ

x− 1

)k−1

· x−(L+1).

In (5.18), for n = k − 1 with k = 1, we formally take θ = ∞, so the entry in the sum on the right-hand side
corresponding to k = 1 should be understood as the limiting value

(
d
1

)
αβd−1 · x

x−1 · x−(L+1), as k → 1.
Introducing the notations y := 1/(x− 1) and m := (L+ 1)/(k − 1) we write

(
1 +

x− 1
1 + θ

)L+1(
1 +

1 + θ

x− 1

)k−1

=
(

1 +
k − 1
L+ 1

· θ

1 + θ

)L+1(
1 +

1
x− 1

+
L+ 1
k − 1

)k−1

≤ eθ(k−1)/(1+θ)(1 + y +m)k−1

≤ ek−1

(1 + 1/(1 + θ))k−1
(1 + y +m)k−1

= ek−1

(
1 + y +m

1 + y/(y +m)

)k−1

x≥2

≤ ek−1(1 +m)k−1, (5.22)

with equalities in the special case of k = 1. Additionally,

1 + θ−1

1 − x−1
≤ (k − 1)x/(x− 1)2 + x/(x− 1)

x≥2

≤ kx/(x− 1),

again with equalities in the special case of k = 1, so that

B(L, d, x, α, β) ≤ x

x− 1

d∑
k=1

k

(
d

k

)
αkβd−kek−1

(
L+ k

k − 1

)k−1

· x−(L+1)

=
dαx

x− 1

d∑
k=1

(
d− 1
k − 1

)
(αe)k−1βd−1−(k−1)

(
L+ k

k − 1

)k−1

· x−(L+1)

=
dαx

x− 1

d∑
k=1

(
d− 1
k − 1

)
(αγe)k−1βd−1−(k−1)

(
L+ k

γ(k − 1)

)k−1

· x−(L+1)

for γ > 0 to be chosen later. Using the elementary inequality (a/x)x ≤ ea/e, a, x > 0, we obtain (with the same
convention as above in the case k = 1) that

B(L, d, x, α, β) ≤ dαx

x− 1

d∑
k=1

(
d− 1
k − 1

)
(αγe)k−1βd−1−(k−1)e(L+k)/γe · x−(L+1)

=
dαx

x− 1
e(L+1)/γe(αγe1+1/γe + β)d−1 · x−(L+1).

The proof is now concluded by choosing γ = (L+ 1)/e. �

The next result shows the existence of a preasymptotic domain [0, L0(α, β, d)] of the mesh refinement level L
where B := B(L, d, x, α, β) is free of powers of L, i.e.,

B ≤ C0 x
−(L+1)
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with a constant C0 = C0(d) decaying exponentially in d, uniformly with respect to L ∈ [0, L0(α, β, d)] where L0

increases linearly with d.

Lemma 5.5. Let L ∈ N, d ∈ N>0, α, β > 0, and x ≥ 2. If

γ := αx/(x− 1) + β < 1, (5.23)

then there exist constants c1,x,γ > 0, c2,x,γ ∈ (0, 1) such that for all

d ≥ 2 and L+ 1 ≤ c1,x,γ(d− 1) (5.24)

we have

B(L, d, x, α, β) ≤ dαx

x− 1
· cd−1

2,x,γ · x−(L+1). (5.25)

Proof. As in the proof of Lemma 5.4 and with the same convention as above in the case of k = 1, we write

B(L, d, x, α, β) ≤
d∑
k=1

(
d

k

)
αkβd−k · 1 + θ−1

1 − x−1

(
1 +

x− 1
1 + θ

)L+1(
1 +

1 + θ

x− 1

)k−1

· x−(L+1), (5.26)

where
1 + θ−1

1 − x−1
≤ (k − 1)x/(x− 1)2 + x/(x− 1)

x≥2
≤ kx/(x− 1).

With the notations B := B(L, d, x, α, β), y := 1/(x − 1), m := (L + 1)/(k − 1), we rewrite the right-hand side
of (5.26) as

B ≤ x

x− 1

d∑
k=1

k

(
d

k

)
αkβd−k

(
1 +

1
m+ y

)L+1

(1 +m+ y)k−1 · x−(L+1)

=
dαx

x− 1

d∑
k=1

(
d− 1
k − 1

)
αk−1βd−1−(k−1)

(
1 +

1
m+ y

)L+1

(1 +m+ y)k−1 · x−(L+1).

(5.27)

For k = 1 we have m = ∞ and the corresponding entries in the sums above are again to be understood as the
limiting values for k → 1. Now, fixing m0 > 0 to be chosen later, we split the summation over k as follows

B ≤ dαx

x− 1

⎛
⎜⎝ d∑

k=1
m<m0

. . .+
d∑

k=1
m≥m0

. . .

⎞
⎟⎠ =:

dαx

x− 1
(S1 + S2) .

For the first sum, S1, the inequality m < m0 ensures that L+ 1 < m0(k − 1), so that

S1 ≤
d∑
k=1

(
d− 1
k − 1

)
αk−1βd−1−(k−1)

(
1 +

1
m0 + y

)m0(k−1)

(1 +m0 + y)k−1 · x−(L+1)

≤
[
α(1 +m0 + y)

(
1 +

1
m0 + y

)m0

+ β

]d−1

· x−(L+1). (5.28)

Due to (5.23) we can now choose m0 > 0 small enough depending on x, α and β to ensure that the expression
in square brackets on the right-hand side of (5.28) does not exceed 1.
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To estimate the second sum, S2, note that m ≥ m0 implies, with the same convention as above for the case
of k = 1, that

S2 ≤
d∑

k=1
m≥m0

(
d− 1
k − 1

)
αk−1βd−1−(k−1)

(
1 +

1
m0 + y

)L+1

(1 + y)k−1 (1 +m/(1 + y))k−1 · x−(L+1)

≤ (α(1 + y) + β)d−1

(
1 +

1
1 + y

L+ 1
d− 1

)d−1(
1 +

1
m0 + y

)L+1

· x−(L+1)

≤
[
(α(1 + y) + β)

(
1 +

c1,x,γ
1 + y

)(
1 +

1
m0 + y

)c1,x,γ
]d−1

· x−(L+1). (5.29)

To obtain the second inequality above we have also used the monotonicity of

t ∈ (0,∞) �→ (1 + a/t)t ∈ (1,∞), a > 0.

The proof is then concluded by noting that if c1,x,γ is small enough depending on m0 and y (that is, on x,
α and β), then, under our assumption that γ < 1, the expression in square brackets on the right-hand side of
(5.29) is also less than 1. �

Remark 5.2. In the case of d = 1 the conclusion (5.25) of Lemma 5.5 holds with equality for any L ∈ N, and
without the additional assumptions (5.23) and (5.24), since

A(L, 1, x) =
x

x− 1
· x−(L+1) and B(L, 1, x, α, β) =

αx

x− 1
· x−(L+1), x > 1.

5.2. Tensorization of seminorms

Next we develop some auxiliary results concerning tensorization of seminorms. These will then be used in
the derivation of the approximation properties of the d-dimensional sparse tensor-product space, built from the
univariate finite element space scale {V�,p(0)}�≥0.

Let (H, 〈·, ·〉H) and (K, 〈·, ·〉K) be two Hilbert spaces and T ∈ B(H,K) a bounded linear operator. Clearly,

|u|T := ‖Tu‖K, u ∈ H, (5.30)

defines a seminorm on H.
Now, considering four Hilbert spaces (Hi, 〈·, ·〉Hi), (Ki, 〈·, ·〉Ki), i = 1, 2, as well as two bounded linear

operators Ti ∈ B(Hi,Ki), i = 1, 2, it is natural to define via

|u|T1⊗T2 := ‖(T1 ⊗ T2)u‖K1⊗K2 , u ∈ H1 ⊗ H2,

a seminorm on the tensor-product H1 ⊗ H2 of the spaces H1 and H2.
Next we define bounded linear operators with respect to seminorms of the type (5.30) and investigate their

tensor-products.

Definition 5.1. Let (H, 〈·, ·〉H), (K, 〈·, ·〉K), (H̃, 〈·, ·〉H̃), (K̃, 〈·, ·〉K̃) be four Hilbert spaces and consider the
bounded linear operators T ∈ B(H,K), T̃ ∈ B(H̃, K̃) and Q ∈ B(H, H̃). We say that Q is (T, T̃ )-bounded if there
exists c ≥ 0 such that

|Qu|T̃ ≤ c|u|T ∀u ∈ H. (5.31)
We further denote by |Q|T,T̃ the infimum over all constants c ≥ 0 satisfying (5.31).

Example 5.1. We give some examples based on the bounds in Section 3.2.



SPARSE FEM FOR HIGH-DIMENSIONAL TRANSPORT PROBLEMS 803

(a) We use the terminology from Definition 5.1, with H := Ht+1(0, 1) ∩ H1
(0)(0, 1), and let H̃ := Hs(0, 1),

K = K̃ := L2(0, 1), T := ∂t+1, T̃ := ∂s, with t ≥ 1 and s ∈ {0, 1}. The approximation property (3.5)
shows that the linear operator IdH − P �,p(0) is (∂t+1, ∂s)-bounded. Thus, by (3.9), the projector Q�,p(0) is
also (∂t+1, ∂s)-bounded for all � ≥ 1 and p ≥ 1 (with ∂0 := IdL2(0,1)).

(b) Trivially, on taking H = H̃ := H1
(0)(0, 1) and K = K̃ := L2(0, 1), the projector Q�,p(0) is (∂1, ∂1)-bounded

for all � ≥ 0 and p ≥ 1.
(c) Finally, on taking H = K := H1

(0)(0, 1) (equipped with the norm ‖ · ‖H1∗(0,1)) and H̃ = K̃ := L2(0, 1),

we see that Q0,p
(0) is (IdH1

(0)(0,1)
, IdL2(0,1))-bounded for all p ≥ 1. In particular, on taking H := H1

0(0, 1),

H̃ := L2(0, 1) and K = K̃ := L2(0, 1) we see that Q0,p
0 is (∂1, IdL2(0,1))-bounded for all p ≥ 1.

Proposition 5.1. Let (Hi, 〈·, ·〉Hi), (Ki, 〈·, ·〉Ki), (H̃i, 〈·, ·〉H̃i
), (K̃i, 〈·, ·〉K̃i

) for i = 1, 2 be separable Hilbert
spaces. Let Ti ∈ B(Hi,Ki), T̃i ∈ B(H̃i, K̃i) and Qi ∈ B(Hi, H̃i) be bounded linear operators, and assume that Qi
is (Ti, T̃i)-bounded for i = 1, 2. Then Q1 ⊗Q2 is (T1 ⊗ T2, T̃1 ⊗ T̃2)-bounded, and

|Q1 ⊗Q2|T1⊗T2,T̃1⊗T̃2
≤ |Q1|T1,T̃1

|Q2|T2,T̃2
.

In other words, if ‖T̃iQivi‖K̃i
≤ ci‖Tivi‖Ki for all vi ∈ Hi, i = 1, 2, then

‖(T̃1 ⊗ T̃2)(Q1 ⊗Q2)u‖K̃1⊗K̃2
≤ c1c2‖(T1 ⊗ T2)u‖K1⊗K2 ∀u ∈ H1 ⊗ H2.

Proof. For any u ∈ H1 ⊗ H2 we have

|(Q1 ⊗Q2)u|T̃1⊗T̃2
= ‖(T̃1 ⊗ T̃2)(Q1 ⊗Q2)u‖K̃1⊗K̃2

= ‖(T̃1Q1 ⊗ IdK̃2
)(IdH1 ⊗ T̃2Q2)u‖K̃1⊗K̃2

. (5.32)

Denoting v := (IdH1 ⊗ T̃2Q2)u ∈ H1 ⊗ K̃2 and considering an orthonormal basis (ei)i∈I in K̃2, where I ⊂ N is a
countable index set, we expand v =

∑
i∈I vi ⊗ ei, so that

‖(T̃1Q1 ⊗ IdK̃2
)v‖2

K̃1⊗K̃2
=

∑
i∈I

‖T̃1Q1vi‖2
K̃1

(5.31)

≤ c21
∑
i∈I

‖T1vi‖2
K1

= c21‖(T1 ⊗ IdK̃2
)v‖2

K1⊗K̃2
, (5.33)

where c1 = |Q1|T1,T̃1
. We now note that

(T1 ⊗ IdK̃2
)v = (T1 ⊗ IdK̃2

)(IdH1 ⊗ T̃2Q2)u = (IdK1 ⊗ T̃2Q2)(T1 ⊗ IdH2)u,

so that defining w := (T1 ⊗ IdH2)u ∈ K1 ⊗H2 and arguing as in (5.33) to estimate the norm of (IdK1 ⊗ T̃2Q2)w,
we obtain

‖(IdK1 ⊗ T̃2Q2)w‖K1⊗K̃2
≤ c2‖(IdK1 ⊗ T2)w‖K1⊗K2 = c2‖(T1 ⊗ T2)u‖K1⊗K2 , (5.34)

where c2 = |Q2|T2,T̃2
. From (5.32), (5.33), (5.34) we obtain

|(Q1 ⊗Q2)u|T̃1⊗T̃2
≤ c1c2‖(T1 ⊗ T2)u‖K1⊗K2 = c1c2|u|T1⊗T2 ,

and the desired result follows by recalling the definitions of the constants c1, c2. �
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5.3. Approximation from sparse tensor-product spaces

We are now ready to embark on the study of the approximation properties of the sparse tensor-product
spaces. In order to track the dependence of the constants in the error bounds on the polynomial degree p, the
Sobolev regularity t and the dimension d, we consider

Ω := (0, 1)d.

This domain has, for any d, d-dimensional Lebesgue measure 1.
To characterize the regularity of the function u to be approximated, we introduce, for I ⊂ {1, 2, . . . , d} with

|I| = k ≥ 1, I = {i1, i2, . . . , ik}, the notation Hα,β,I(Ω) for the tensor-product space consisting of d factors, each
of them being either Hα(0)(0, 1) (in the jth co-ordinate, if j ∈ I), or Hβ

(0)(0, 1) (in the jth co-ordinate, if j /∈ I).
Given I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , d}, let Ic = {j1, j2, . . . , jd−k} denote the (possibly empty) complement

of I with respect to {1, 2, . . . , d}; for non-negative integers α and β we then denote by |u|Hα,β,I(Ω) the seminorm

∑
(α)1≤α1≤α

. . .
∑

(α)k≤αk≤α

∑
(β)1≤β1≤β

. . .
∑

(β)d−k≤βd−k≤β

∥∥∥∥∥
(
∂α1

∂xα1
i1

· · · ∂
αk

∂xαk
ik

)(
∂β1

∂xβ1
j1

· · · ∂
βd−k

∂x
βd−k

jd−k

)
u

∥∥∥∥∥
L2(Ω)

,

where, for i = 1, . . . , k,

(α)i :=
{
α if Oxi is an elliptic co-ordinate direction,
0 if Oxi is a hyperbolic co-ordinate direction,

with analogous definition of (β)j , j = 1, . . . , d− k.
Let C∞

(0)(Ω̄) denote the set of all functions in C∞(Ω̄) that vanish on Γ̄0, and let Ht+1(Ω) denote the closure
of C∞

(0)(Ω̄) in the seminorm | · |Ht+1(Ω) defined by

|u|Ht+1(Ω) := max
s∈{0,1}

max
1≤k≤d

(
max

I⊆{1,2,...,d}
|I|=k

|u|Ht+1,s,I(Ω)

)
.

Theorem 5.1. Let Ω = (0, 1)d, s ∈ {0, 1}, k ∈ N>0, and let a polynomial degree p ≥ 1 be given. Then,
for 1 ≤ t ≤ min{p, k}, there exist constants cp,t, κ(0)(p, t, s, L) > 0, independent of d, such that, for any
u ∈ Hk+1(Ω) and for any L ≥ 1 and any d ≥ 2, we have

|u− P̂L,p(0) u|Hs(Ω) ≤ d1+ s
2 cp,t(κ(0)(p, t, s, L))d−1+s 2−(t+1−s)L |u|Ht+1(Ω), (5.35)

where, for s = 0, the seminorm | · |Hs(Ω) is understood to coincide with the L2(Ω)-norm while for s = 1 the
seminorm | · |Hs(Ω) is the H1(Ω)-seminorm, and

κ(0)(p, t, s, L) :=
{
c̃p,0,t(L + 1)e1/(L+1) + ĉp,0,(0), s = 0,
2c̃p,0,t + ĉp,0,(0), s = 1.

(5.36)

Moreover, in the case of s = 0, if

γ(0)(t, p) := c̃p,0,t2t+1/(2t+1 − 1) + ĉp,0,(0) < 1,

then there exists a positive constant ct,p, independent of L and d, such that κ(0)(p, t, 0, L) < 1 in (5.35) for all
L ≥ 1 and d ≥ 2 satisfying L+ 1 ≤ ct,p(d− 1).
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Proof. Let us define

C∞
(0)(Ω̄) :=

d⊗
i=1

C∞
(0)(0, 1) = C∞

(0)(0, 1) ⊗ · · · ⊗ C∞
(0)(0, 1),

where the ith component C∞
(0)(0, 1) in the d-fold tensor-product is taken to be equal to C∞

0 (0, 1) if Oxi is an
elliptic co-ordinate direction; otherwise (i.e., when Oxi is a hyperbolic co-ordinate direction), it is chosen to be
equal to C∞[0, 1].

For u ∈ C∞
(0)(Ω̄) ⊂ H1

(0)(Ω), the following identity holds in H1(Ω):

u =
∑
�∈Nd

(
Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u.

We estimate, for s ∈ {0, 1}, the approximation error as a sum of details, i.e.,

∣∣∣u− P̂L,p(0) u
∣∣∣
Hs(Ω)

≤
∑

�∈Nd, |�|1>L

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
Hs(Ω)

(5.37)

provided that the right-hand side is finite. We discuss the two cases, s = 0 and s = 1, separately.
For s = 1 and any � = (�1, �2, . . . , �d) ∈ Nd with supp(�) = I (that is, �j 
= 0 iff j ∈ I) and |I| = k,

I ⊆ {1, . . . , d}, we have to estimate the solution details

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1(Ω)

=
d∑
j=1

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{j}(Ω)

=: (�)

for � ∈ Nd.
Using Proposition 5.1 and the notation ∂ for the differentiation operator in dimension 1, we obtain the

following chain of inequalities:

(�) ≤
∑
j∈I

∏
j′∈I

j′ �=j

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))
· |Q�j ,p(0) |2(∂t+1,∂1)|Q

0,p
(0)|

2(d−k)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I (Ω)

+
∑
j /∈I

∏
j′∈I

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))
· |Q0,p

(0)|
2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−1)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω)

≤
∑
j∈I

c̃
2(k−1)
p,0,t c̃2p,1,t4

−(t+1)|�|1+�j ĉ
2(d−k)
p,0,(0) |u|

2
Ht+1,1,I (Ω)

+
∑
j /∈I

c̃2kp,0,t4
−(t+1)|�|1 ĉ2p,1,(0)ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω).

≤ c̃
2(k−1)
p,0,t 4−(t+1)|�|1 ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω)

⎛
⎝c̃2p,1,tĉ2p,0,(0)∑

j∈I
4�j + (d− k)c̃2p,0,tĉ

2
p,1,(0)

⎞
⎠

≤ dc̄p,tc̃
2(k−1)
p,0,t 4|�|∞−(t+1)|�|1 ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω), (5.38)

where

c̄p,t := max
(
c̃2p,1,tĉ

2
p,0,(0), c̃

2
p,0,tĉ

2
p,1,(0)

)
, (5.39)

with c̃p,s,t defined in (3.6), (3.10) and ĉp,s,(0) defined in (3.14).
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We note in passing that in the (important) special case when Γ = Γ0, and thereby H1
(0)(0, 1) = H1

0(0, 1) in

each of the d co-ordinate directions, the factor |Q0,p
(0)|(IdH1

(0)(0,1),IdL2(0,1))
in the first two lines of (5.38) above can

be replaced by |Q0,p
(0)|(∂1,IdL2(0,1))

.
We thus have,

∑
�∈Nd, |�|1>L

supp(�)=I

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1(Ω)

≤
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0)

∑
�∈Nd, |�|1>L

supp(�)=I

2|�|∞−(t+1)|�|1 |u|Ht+1,1,I(Ω)

≤
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0)

∑
�∈Nk, |�|1>L

2|�|∞−(t+1)|�|1 |u|Ht+1,1,I (Ω) .

In passing from the second to the third line in the estimate above we have dropped all d− k trivial entries from
the indexing of �.

We now use, with arbitrary l > L, the estimate (5.12), i.e.,
∑

�∈Nk, |�|1=l 2
|�|∞ ≤ k · 2k−1+l, and obtain

∑
�∈Nd,|�|1>L

supp(�)=I

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1(Ω)

≤ k
√
dc̄p,tc̃

k−1
p,0,tĉ

d−k−1
p,0,(0) 2k−1

(∑
l>L

2−tl
)
|u|Ht+1,1,I (Ω)

= k
√
dc̄p,t(1 − 2−t)−1c̃k−1

p,0,tĉ
d−k−1
p,0,(0) 2k−12−t(L+1)|u|Ht+1,1,I (Ω)

= d
1
2 cp,tk(2c̃p,0,t)

k ĉd−kp,0,(0)2
−tL|u|Ht+1,1,I (Ω), (5.40)

where
cp,t :=

1
2
√
c̄p,t((2t − 1)c̃p,0,tĉp,0,(0))−1. (5.41)

Now, summing (5.40) over I ⊆ {1, 2, . . . , d} we deduce that

d∑
k=1

∑
I⊆{1,2,...,d}

|I|=k

∑
�∈Nd,|�|1>L

supp(�)=I

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1(Ω)

≤ d
1
2 cp,t2

−tL
d∑
k=1

(
d

k

)
(2c̃p,0,t)k ĉd−kp,0,(0) · k max

I⊆{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

≤ d
3
2 cp,t(κ(0)(p, t, 1, L))d2−tL · max

1≤k≤d

(
max

I⊆{1,2,...,d}
|I|=k

|u|Ht+1,1,I (Ω)

)
, (5.42)

where
κ(0)(p, t, 1, L) := 2c̃p,0,t + ĉp,0,(0), p ≥ 1, 1 ≤ t ≤ p, L ≥ 1.

This completes the proof in the case of s = 1.
For s = 0, we bound (5.37) as a sum of details as follows:

‖u− P̂L,p(0) u‖L2(Ω) ≤
∑

�∈Nd, |�|1>L

∥∥∥(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∥∥∥

L2(Ω)

=
d∑
k=1

∑
I⊂{1,2,...,d}

|I|=k

∑
�∈Nd, |�|1>L

supp(�)=I

∥∥∥(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∥∥∥

L2(Ω)
.
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Next, we estimate the size of the entry with multi-index � ∈ Nd in the above sum. To this end, we define

(∗) :=
∥∥∥(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∥∥∥2

L2(Ω)
.

Using I = supp(�) and that |I| = k, we get

(∗) ≤

⎧⎨
⎩
∏
j∈I

|Q�j,p(0) |
2
(∂t+1,IdL2(0,1))

⎫⎬
⎭ |Q0,p

(0)|
2(d−k)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,0,I(Ω)

= c̃2kp,0,tĉ
2(d−k)
p,0,(0) 2−2(t+1)|�|1|u|2Ht+1,0,I (Ω).

Summing this bound over all I ⊆ {1, 2, . . . , d} with |I| = k implies

‖u− P̂L,p0 u‖L2(Ω) ≤
d∑

k=1

(
d

k

)
c̃kp,0,tĉ

d−k
p,0,(0)

⎧⎪⎨
⎪⎩
∑
�∈Nk

|�|1>L

2−(t+1)|�|1

⎫⎪⎬
⎪⎭ max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,0,I (Ω)

)
.

From Lemmas 5.4 and 5.5 with x := 2t+1 ≥ 2 for t ≥ 0, α := c̃p,0,t, and β := ĉp,0,(0) we obtain

‖u− P̂L,p(0) u‖L2(Ω) ≤ 2d e c̃p,0,t · κ(0)(p, t, 0, L)d−1 · 2−(t+1)(L+1)|u|Ht+1(Ω) (5.43)

where
κ(0)(p, t, 0, L) := c̃p,0,t(L+ 1)e1/(L+1) + ĉp,0,(0), p ≥ 1, 1 ≤ t ≤ p, L ≥ 1.

Hence the required bound for s = 0, with cp,t = 2−te c̃p,0,t.
Moreover, by Lemma 5.5, (5.23)–(5.25), if

γ(0)(t, p) := c̃p,0,t2t+1/(2t+1 − 1) + ĉp,0,(0) < 1, (5.44)

then there exists a constant ct,p > 0, independent of L and d, such that κ(0)(p, t, 0, L) < 1 for all L ≥ 1 and
d ≥ 2 satisfying L+ 1 ≤ ct,p(d− 1). �

Setting s = 0 and t = p in (5.35), corresponding to the error bound in the L2(Ω) norm, we obtain the
optimal convergence rate O(hp+1

L ) up to the polylogarithmic term Ld−1 = | log2 hL|d−1, in the asymptotic limit
of hL → 0. It is by now well accepted by sparse-grid practitioners that in low dimensions such polylogarithmic
terms are indeed present and they dominate the convergence behaviour. However, as we shall now show, in
high dimensions, where necessarily L < d, the situation is much more favourable in this respect. This somewhat
surprising phenomenon is discussed in Remarks 5.3–5.5 below. We shall develop conditions under which, in the
practically relevant preasymptotic regime, the positive constants κ(0)(p, t, s, L), s ∈ {0, 1}, on the right-hand
side of (5.35) are strictly less than 1. In such instances, the error constant in (5.35) will exhibit exponential
decay as a function of the dimension d, and the case of p ≥ 2 will be shown to be more favourable in terms of
the rate of decay than p = 1.

Remark 5.3. Note that the factor κ(0)(p, t, s, L)d−1+s appearing in the bound (5.35), with κ(0)(p, t, s, L) defined
in (5.36) for s = 0 and s = 1, decreases exponentially as d→ ∞, if

ĉp,0,(0) < 1

and

c̃p,0,t <

{
(1 − ĉp,0,(0))/((L + 1) exp(1/(L+ 1))) when s = 0,
(1 − ĉp,0,(0))/2 when s = 1. (5.45)
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For the projector considered in Example 3.1, we showed in Section 3.1 that

c̃p,0,t =
(

1 +
1

2t+1−s

)
1
p

√
(p− t)!
(p+ t)!

for all p ≥ 1, t ∈ N, 1 ≤ t ≤ p, s ∈ {0, 1}, and we also showed in Section 3.2 that in the case of p = 1 the
following refined bound holds:

c̃1,0,1 ≤ 1
3
·

In the case of homogeneous Dirichlet boundary condition on the whole of Γ (viz. Γ = Γ0 by virtue of
a = (aij)di,j=1 being positive definite), when H1

(0)(Ω) = H1
0(Ω) and writing κ0 instead of κ(0), by Example 3.1 we

have that ĉp,0,(0) = ĉp,0,0 ≤ 1/π (< 1) for p ≥ 2, while for p = 1, ĉp,0,(0) = ĉ1,0,0 = 0 (since V0,1
(0) = V0,1

0 = {0}).
By scanning the range of validity of (5.45), we then deduce that, for s = 1,

κ0(p, p, 1, L) < 1 ∀p ≥ 1, L ≥ 1,

thus ensuring exponential decay of the term κ0(p, p, 1, L)d in (5.35) as d→ ∞, for all p ≥ 1, s = 1 and L ≥ 1.
When s = 0, we still have κ0(p, p, 0, L) < 1, provided that p = 2 and L ≤ 3 (corresponding to hL ≥ 2−3),

or p = 3 and L ≤ 49 (corresponding to hL ≥ 2−49), or p = 4 and L ≤ 528 (corresponding to hL ≥ 2−528),
or p = 5 and L ≤ 6390 (corresponding to hL ≥ 2−6390), and so on. For the sake of comparison, recall that
machine epsilon in IEEE double precision is 2−52. Thus, once p ≥ 3, the potentially harmful polylogarithmic
factor Ld−1 = | log2 hL|d−1, hidden in (κ0(p, p, 0, L))d−1, has no detrimental effect on the approximation error
from the sparse tensor product space on any mesh that might conceivably arise in practice.

The final part of the proof of the above theorem also indicates that κ0(p, p, 0, L) < 1 provided γ0(p, p) < 1 and
there exists a positive constant cp,p such that L+ 1 ≤ cp,p(d− 1); if so, then, again, the polylogarithmic factor
Ld−1 = | log2 hL|d−1, hidden in (κ0(p, p, 0, L))d−1, has no effect on the approximation error. As it happens,
the first of these inequalities holds for all p ≥ 1. Concerning the second inequality, simple computations reveal
the existence of cp,p for all p ≥ 1; for example, c1,1 = 0.6 corresponding to p = 1 (and m0 = 0.6 in the proof
of Lem. 5.5), c2,2 = 0.71 corresponding to p = 2 (and m0 = 1.69), c3,3 = 1.846 corresponding to p = 3 (and
m0 = 18.5), c4,4 = 2.161 corresponding to p = 4 (and m0 = 194.8), c5,5 = 2.169 corresponding to p = 5 (and
m0 = 2351), and so on.

Remark 5.4. A result analogous to that contained in (5.35), in the special case of s = 1 and p = 1, and with
κ0(1, 1, 1, L) < 1 (in our notation) was stated in Theorem 2 in [11]. There, however, an “energy-norm-based”
sparse-grid-space was used that is strictly included in V̂ L0 . The result contained in [11] is restricted to the case
of s = 1 and p = 1 and does not cover either s = 0 or p ≥ 2.

Remark 5.5. If Γ0 � Γ (i.e., the hyperbolic part Γ− ∪ Γ+ of the boundary Γ is nonempty), and therefore
H1

0(Ω) � H1
(0)(Ω), then we still have ĉp,0,(0) ≤ 1 by (3.11).

Concerning the case of s = 1, if (
1 +

1
2p

)
1

p
√

(2p)!
≤ c∗

d
, (5.46)

which is a very mild condition on the minimum size of p in terms of d, then we have that

(κ(0)(p, p, 1, L))d ≤
(

1 +
2c∗
d

)d
≤ e2c∗ ,

which, in turn, ensures that (κ(0)(p, p, 1, L))d remains uniformly bounded for d� 1. For example, taking c∗ = 1,
for d ≤ 7 the condition (5.46) requires p = 2, for 8 ≤ d ≤ 71 taking p = 3 will suffice, while for for 71 ≤ d ≤ 755
taking p = 4 will be sufficient.
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The discussion in the previous paragraph presupposed that the number of hyperbolic co-ordinate directions
is equal to, or is very close to, d. If, however, the number of such directions is small relative to d, and can be
regarded as being bounded as d→ ∞, then we expect that the factor (κ(0)(p, p, 1, L))d will exhibit exponential
decay as d→ ∞ without the extra hypothesis (5.46), just as in the case when Γ = Γ0. The proof of this would
require a selective treatment of the constant ĉp,0,(0) in the proof of Theorem 5.1 when s = 1, to monitor whether
a particular factor of ĉp,0,(0) in lines 3 and 4 of (5.38) arises from a univariate bound on Q0,p

(0) in an elliptic or
in a hyperbolic co-ordinate direction. An altogether different approach to removing the condition (5.46) in the
case of Γ0 � Γ and s = 1 would be to show that ĉp,0,(0) < 1, uniformly in p. These lines of investigation are,
however, beyond the scope of the present paper.

Similar comments apply in the case of s = 0, assuming, instead, the existence of a constant c∗ such that

(L+ 1)
(

1 +
1

2p+1

)
1

p
√

(2p)!
≤ c∗

d
·

If no assumption relating L, p and d is made, then there still exists κ∗ ∈ (0, 1) such that

κ(0)(p, p, 0, L)d−1 < (L + 1)d−1

(
1

L+ 1
+

2
p
√

(2p)!

)d−1

≤ (L+ 1)d−1κd−1
∗

for all L ≥ 1, p ≥ 2 and d ≥ 2; as a matter of fact, the larger L and p are the smaller the value of κ∗. Thus, the
growth of (L+ 1)d is compensated by the exponential decay of κd−1

∗ .

Remark 5.6. When Γ0 = Γ, the function u to be approximated enters into the right-hand side of the estimate
(5.35) in a nonstandard, yet favourable manner: through the L2 norm of exactly one mixed derivative – rather
than through a sum of L2 norms of mixed derivatives as would have been the case had we used a more
conventional seminorm on the space of functions with square-integrable mixed highest derivatives.

6. Convergence of the sparse stabilized method

Our goal in this section is to estimate the size of the error between the analytical solution u ∈ H and
its approximation uh ∈ V̂ L,p(0) . We shall assume throughout that f ∈ L2(Ω) and the corresponding solution

u ∈ Hk+1(Ω) ∩ H2(Ω) ∩
⊗d

i=1 H1
(0)(0, 1) ⊂ H, k ≥ 1 and 1 ≤ t ≤ min{p, k}. Clearly,

bδ(u− uh, vh) = B(u, vh) − L(vh) + δL
∑
κ∈T L

(Lu − f, b · ∇vh)κ

for all vh ∈ V̂ L,p(0) ⊂ V . Hence we deduce from (2.6) the following Galerkin orthogonality property:

bδ(u − uh, vh) = 0 ∀vh ∈ V̂ L,p(0) . (6.1)

Let us decompose the error u− uh as follows:

u− uh = (u − P̂L,p(0) u) + (P̂L,p(0) u− uh) = η + ξ,

where η := u− P̂L,p(0) u and ξ := P̂L,p(0) u− uh. By the triangle inequality,

|||u − uh|||SD ≤ |||η|||SD + |||ξ|||SD. (6.2)
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We begin by bounding |||ξ|||SD. By (4.6) and (6.1), we have that

|||ξ|||2SD ≤ bδ(ξ, ξ) = bδ(u− uh, ξ) − bδ(η, ξ) = −bδ(η, ξ).

Therefore,

|||ξ|||2SD ≤ |bδ(η, ξ)|. (6.3)

Now,

bδ(η, ξ) = (a∇η,∇ξ) − (η, b · ∇ξ) + (cη, ξ) +
∫

Γ+

|β|η ξ ds

+ δL
∑
κ∈T L

(−a : ∇∇η + b · ∇η + cη, b · ∇ξ)κ

= I + II + III + IV + (V + VI + VII) .

For the terms I to III and V to VII we have:

I ≤
(
|
√
a | ‖∇η‖L2(Ω)

)
|||ξ|||SD,

II ≤
(
δ
− 1

2
L ‖η‖L2(Ω)

)
|||ξ|||SD,

III ≤
(
c

1
2 ‖η‖L2(Ω)

)
|||ξ|||SD,

V ≤

⎛
⎝δ 1

2
L |a|

( ∑
κ∈T L

|η|2H2(κ)

) 1
2
⎞
⎠ |||ξ|||SD,

VI ≤
(
δ

1
2
L |b| ‖∇η‖L2(Ω)

)
|||ξ|||SD,

VII ≤
(
cδ

1
2
L‖η‖L2(Ω)

)
|||ξ|||SD.

Here |a| is the Frobenius norm of the matrix a and |b| is the Euclidean norm of the vector b. It remains to
estimate IV:

IV ≤
(

2|b|
1 + cδL

) 1
2
(∫

Γ+

|η|2 ds

) 1
2

|||ξ|||SD

≤ (2|b|)
1
2 (4d)

1
2 ‖η‖

1
2
L2(Ω)‖η‖

1
2
H1(Ω)|||ξ|||SD,

where in the transition to the last line we used the multiplicative trace inequality from Lemma 4.2. Hence,
by (6.3),

|||ξ|||SD ≤ |
√
a | ‖∇η‖L2(Ω)+δ

− 1
2

L ‖η‖L2(Ω)+c
1
2 ‖η‖L2(Ω)+(8d|b|) 1

2 ‖η‖
1
2
L2(Ω) ‖η‖

1
2
H1(Ω)

+ δ
1
2
L |
√
a |2
( ∑
κ∈T L

|η|2H2(κ)

) 1
2

+ δ
1
2
L |b| ‖∇η‖L2(Ω) + cδ

1
2
L‖η‖L2(Ω). (6.4)
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The bounds on ‖η‖L2(Ω) and ‖∇η‖L2(Ω) will follow from Theorem 5.1. However, the fifth term in the sum on
the right-hand side of (6.4) is nonstandard and needs to be dealt with separately (except when p = 1 and a is
diagonal; then term V is bounded by δ

1
2
L |a||u|H2(Ω) and requires no further estimation). Let us note that

∑
κ∈T L

|η|2H2(κ) =
d∑

i,j=1

∑
κ∈T L

∫
κ

∣∣∣∣ ∂2η

∂xi∂xj

∣∣∣∣
2

dx

=
d∑
i=1

∑
κ∈T L

∫
κ

∣∣∣∣∂2η

∂x2
i

∣∣∣∣
2

dx +
d∑

i,j=1
i�=j

∑
κ∈T L

∫
κ

∣∣∣∣ ∂2η

∂xi∂xj

∣∣∣∣
2

dx

=
d∑
i=1

∑
κ∈T L

|η|2H2,0,{i}(κ) +
d∑

i,j=1
i�=j

|η|2H1,0,{i,j}(Ω)

=: A2 + B2.

Here, we made use of the fact that

∂2η

∂xi∂xj
∈ L2(Ω) ∀i, j ∈ {1, 2, . . . , d}, i 
= j.

Let us first estimate

A2 =
d∑
i=1

∑
κ∈T L

|η|2H2,0,{i}(κ) =
d∑
i=1

∑
κ∈T L

∫
κ

∣∣∣∣∂2η

∂x2
i

∣∣∣∣
2

dx =
d∑
i=1

2L∑
j=1

|η|2H2,0,{i}(Ki
j)
,

where Ki
j denotes the d-dimensional slab

Ki
j = (0, 1) × · · · × (0, 1) × (ξj−1, ξj) × (0, 1) × · · · × (0, 1) (6.5)

with the interval (ξj−1, ξj) = (xLj−1, x
L
j ) entering at position i. The reason for agglomerating the elements

κ ∈ T L into the slabs Ki
j, j = 1, . . . , 2L, in this way is that the function ∂2η/∂x2

i involves no derivatives
in the co-ordinate directions Oxk for k 
= i. In other words, it only needs to be considered piecewise in the
ith co-ordinate direction; in the other d− 1 co-ordinate directions it is defined on the whole of (0, 1)d−1 as an
H1 function.

Let us define the seminorms ||| · |||2,i, i = 1, . . . , d, and ||| · |||2,∗, by

|||v|||22,i :=
2L∑
j=1

|v|2H2,0,{i}(Ki
j)

and |||v|||22,∗ :=
d∑
i=1

|||v|||22,i.

With this notation, we have that

A2 = |||η|||22,∗ =
d∑
i=1

|||η|||22,i.

When p = 1, term A is dealt with easily on recalling that η = u− P̂L,1(0) u:

A =

(
d∑
i=1

∥∥∥∥∂2u

∂x2
i

∥∥∥∥
2

L2(Ω)

) 1
2

≤ d
1
2 max

1≤k≤d

∥∥∥∥∂2u

∂x2
k

∥∥∥∥
L2(Ω)

≤ d
1
2 |u|H2(Ω).
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In order to bound A in the case of p ≥ 2, we first observe that, as a consequence of Lemma 4.1,

|v|H2(J) ≤
√

12 (p2/hL)|v|H1(J) ∀v ∈ Pp(J), (6.6)

where J ∈ {(x�ij−1, x
�i
j ) : i = 1, . . . , d, j = 1, . . . , 2L}. Hence, on recalling that

η = u− P̂L,p(0) u =
∑

�∈Nd : |�|1>L

(
Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u, (6.7)

for a fixed i ∈ {1, 2, . . . , d} we deduce from (6.6) with hL = 2−L that∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H2,0,{i}(κ)

≤
√

12 p2 2L
∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1,0,{i}(κ)

.

Now, we square the last bound, and sum over all elements κ ∈ T L that are contained in the d-dimensional
slab Ki

j defined in (6.5) to deduce that

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H2,0,{i}(Ki

j)
≤ 12 p4 22L

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ki

j)
.

Hence,

2L∑
j=1

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H2,0,{i}(Ki

j)
≤ 12 p4 22L

2L∑
j=1

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ki

j)

= 12 p4 22L
∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

.

This implies that∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣2

2,i
≤ 12 p4 22L

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

,

and, on summing over i = 1, . . . , d, and taking square-roots of both sides, we get

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗
≤

√
12 p2 2L

(
d∑
i=1

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i}(Ω)

) 1
2

=
√

12 p2 2L
∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1(Ω)

.

Hence, by (6.7) and the proof of (5.35) in the case of s = 1 (cf. (5.37)–(5.42)),

A = |||η|||2,∗ ≤
∑

�∈Nd, |�|1>L

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗

≤
√

12 p2 2L
∑

�∈Nd, |�|1>L

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣
H1(Ω)

≤
√

12 p2 2Ld
3
2 cp,t (κ(0)(p, t, 1, L))d 2−tL · |u|Ht+1(Ω).

Thus we have shown that

A ≤
√

12 p2 d
3
2 cp,t (κ(0)(p, t, 1, L))d 2−(t−1)L · |u|Ht+1(Ω) (6.8)
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for 1 ≤ t ≤ min{p, k}, p ≥ 2; and

A ≤ d
1
2 · |u|H2(Ω)

when p = t = 1.
Now, let us bound term B2 =

∑d
i,j=1
i�=j

|η|2
H1,0,{i,j}(Ω)

. We define the seminorm ||| · |||2,∗∗ by

|||v|||22,∗∗ :=
d∑

i,j=1
i�=j

|v|2H1,0,{i,j}(Ω);

then, B2 = |||η|||22,∗∗. Now, since

η = u− P̂L,p0 u =
∑

�∈Nd, |�|1>L

(
Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u,

it follows that

|||η|||2,∗∗ ≤
∑

�∈Nd, |�|1>L

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗
.

Given � = (�1, �2, . . . , �d) ∈ Nd with supp(�) = I (that is, �j 
= 0 iff j ∈ I) and |I| = k, we have to estimate

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣2

2,∗∗
=

d∑
i,j=1
i�=j

∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣2
H1,0,{i,j}(Ω)

=: (��).

Using Proposition 5.1 and the notation ∂ for the univariate differentiation operator, we obtain the following
inequality:

(��) ≤
∑
i,j∈I

i�=j

∏
j′∈I

j′ /∈{i,j}

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))

·|Q�i,p(0) |
2
(∂t+1,∂1)|Q

�j,p

(0) |2(∂t+1,∂1)|Q
0,p
(0)|

2(d−k)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω)

+
∑
i∈I

∑
j /∈I

∏
j′∈I

j′ �=i

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))

·|Q�i,p(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−1)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω)

+
∑
i/∈I

∑
j∈I

∏
j′∈I

j′ �=j

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))

·|Q0,p
(0)|

2
(∂1,∂1)|Q

�j,p

(0) |
2
(∂t+1,∂1)|Q

0,p
(0)|

2(d−k−1)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I (Ω)

+
∑
i,j /∈I
i�=j

∏
j′∈I

|Q�j′ ,p(0) |2(∂t+1,IdL2(0,1))

·|Q0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2
(∂1,∂1)|Q

0,p
(0)|

2(d−k−2)
(IdH1

(0)(0,1),IdL2(0,1))
|u|2Ht+1,1,I(Ω). (6.9)
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Hence,

(��) ≤
∑
i,j∈I
i�=j

c̃
2(k−2)
p,0,t 4�i+�j−(t+1)|�|1 c̃2p,1,tc̃

2
p,1,tĉ

2(d−k)
p,0,(0) |u|

2
Ht+1,1,I (Ω)

+
∑
i∈I

∑
j /∈I

c̃
2(k−1)
p,0,t 4�i−(t+1)|�|1 c̃2p,1,tĉ

2
p,1,(0)ĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I (Ω)

+
∑
i/∈I

∑
j∈I

c̃
2(k−1)
p,0,t 4�j−(t+1)|�|1 ĉ2p,1,(0)c̃

2
p,1,tĉ

2(d−k−1)
p,0,(0) |u|2Ht+1,1,I(Ω)

+
∑
i,j /∈I
i�=j

c̃2kp,0,t4
−(t+1)|�|1 ĉ2p,1,(0)ĉ

2
p,1,(0)ĉ

2(d−k−2)
p,0,(0) |u|2Ht+1,1,I(Ω). (6.10)

Thus we deduce that

(��) ≤ c̃
2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−(t+1)|�|1|u|2Ht+1,1,I (Ω)

×

⎛
⎜⎝c̃4p,1,tĉ4p,0,(0) ∑

i,j∈I
i�=j

4�i+�j + 2c̃2p,1,tĉ
2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0)

∑
i∈I,j /∈I

4�i + c̃4p,0,tĉ
4
p,1,(0)

∑
i,j /∈I
i�=j

1

⎞
⎟⎠

≤ c̃
2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−(t+1)|�|1|u|2Ht+1,1,I (Ω)

×
(
c̃4p,1,tĉ

4
p,0,(0)k

24|�|1 + 2c̃2p,1,tĉ
2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0)k(d− k)4|�|1

+ c̃4p,0,tĉ
4
p,1,(0)[(d− k)2 − (d− k)]

)
≤ d2¯̄cp,tc̃

2(k−2)
p,0,t ĉ

2(d−k−2)
p,0,(0) · 4−t|�|1 |u|2Ht+1,1,I(Ω),

where

¯̄cp,t := max
(
c̃4p,1,tĉ

4
p,0,(0), c̃

2
p,1,tĉ

2
p,0,(0)c̃

2
p,0,tĉ

2
p,1,(0), c̃

4
p,0,tĉ

4
p,1,(0)

)
.

Therefore, we have that

∑
�∈Nd : |�|1>L

supp(�)=I

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗

≤ d
√

¯̄cp,t c̃k−2
p,0,t ĉ

d−k−2
p,0,(0) ·

∑
�∈Nd : |�|1>L

supp(�)=I

2−t|�|1|u|Ht+1,1,I (Ω)

≤ d
√

¯̄cp,t c̃k−2
p,0,t ĉ

d−k−2
p,0,(0) ·

⎛
⎝ ∑
�∈Nk : |�|1>L

2−t|�|1

⎞
⎠ |u|Ht+1,1,I (Ω).

Once again, we note in passing that in the (important) special case when Γ = Γ0, and thereby H1
(0)(0, 1) =

H1
0(0, 1) in each of the d co-ordinate directions, the factor |Q0,p

(0)|(IdH1
(0)(0,1),IdL2(0,1))

in the lines above can be

replaced by |Q0,p
(0)|(∂1,IdL2(0,1))

.
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Hence, upon summation and using Lemma 5.4,

d∑
k=1

∑
I⊂{1,2,...,d}

|I|=k

∑
�∈Nd : |�|1>L

supp(�)=I

∣∣∣∣∣∣∣∣∣(Q�1,p(0) ⊗ · · · ⊗Q�d,p(0)

)
u
∣∣∣∣∣∣∣∣∣

2,∗∗

≤ d
√

¯̄cp,t
d∑
k=1

(
d
k

)
c̃k−2
p,0,t ĉ

d−k−2
p,0,(0)

⎛
⎝ ∑
�∈Nk : |�|1>L

2−t|�|1

⎞
⎠ max

1≤k≤d

(
max

I⊂{1,2,...,d}
|I|=k

|u|Ht+1,1,I(Ω)

)

≤
d2e
√

¯̄cp,t
c̃p,0,t ĉ2p,0,(0)

2t

2t − 1
(κ(0)(p, t, 0, L))d−12−t(L+1)|u|Ht+1(Ω).

We deduce that

B ≤ d2c
p,t

(κ(0)(p, t, 0, L))d−12−tL|u|Ht+1(Ω), (6.11)

where

c
p,t

:=
e
√

¯̄cp,t
c̃p,0,t ĉ2p,0,(0)(2

t − 1)
·

Combining the bound (6.8) on A with the bound (6.11) on B yields

( ∑
κ∈T L

|η|2H2(κ)

) 1
2

≤
(√

12 p2 d
3
2 cp,t(κ(0)(p, t, 1, L))d + d2c

p,t
(κ(0)(p, t, 0, L))d−1hL

)

× ht−1
L |u|Ht+1(Ω), (6.12)

for 1 ≤ t ≤ min{p, k}, p ≥ 2, k ≥ 2. For p = 1, we have

( ∑
κ∈T L

|η|2H2(κ)

)1
2

≤
(
d

1
2 + d2c

p,t
(κ(0)(1, 1, 0, L))d−1hL

)
|u|H2(Ω). (6.13)

We also know from Theorem 5.1 that, for 1 ≤ t ≤ min{p, k}, p ≥ 1, k ≥ 1,

‖η‖L2(Ω) ≤ dcp,t(κ(0)(p, t, 0, L))d−1 ht+1
L |u|Ht+1(Ω), (6.14)

|η|H1(Ω) ≤ d
3
2 cp,t(κ(0)(p, t, 1, L))d htL |u|Ht+1(Ω). (6.15)

Let us introduce, for ease of writing, the notation

κ0 := κ(0)(p, t, 0, L) and κ1 := κ(0)(p, t, 1, L), (6.16)

and absorb all constants that depend on p and t only into a generic constant Cp,t. In particular, Cp,t is
independent of d and L and the coefficients a, b, c and the right-hand side f of the partial differential equation.

Remark 6.1. Since (6.12), (6.14), (6.15) and all of our earlier bounds are completely explicit in p and t (as
well as in d and L), one could track the actual value of Cp,t in our argument below. For clarity of presentation
we shall however refrain from doing so, particularly since the emphasis here is on h-version rather than p- or
hp-version finite element methods.
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With these notational conventions (6.12)–(6.15) become, for p ≥ 1 and d ≥ 2:

‖η‖L2(Ω) ≤ Cp,t d κ
d−1
0 ht+1

L |u|Ht+1(Ω), (6.17)

|η|H1(Ω) ≤ Cp,t d
3
2 κd1 h

t
L|u|Ht+1(Ω), (6.18)( ∑

κ∈T L

|η|2H2(κ)

) 1
2

≤
{
Cp,t(d

3
2κd1 + d2κd−1

0 hL)ht−1
L |u|Ht+1(Ω), p ≥ 2,

Cp,t(d
1
2 + d2κd−1

0 hL)|u|H2(Ω), p = 1.
(6.19)

Using (6.17), (6.18) and (6.19) in the definition of ||| · |||SD and selecting

δL := Kδ min
(

h2
L

12dp4|
√
a|2 ,

hL
|b| ,

1
c

)
, (6.20)

with Kδ ∈ R>0 a constant, independent of hL and d, we then deduce that

|||η|||SD ≤ Cp,td
2 max{κd−1

0 , κd1}
(
|
√
a|htL + |b| 12 ht+

1
2

L + c
1
2 ht+1

L

)
|u|Ht+1(Ω),

with 1 ≤ t ≤ min{p, k}, p ≥ 2, k ≥ 2. An identical bound holds for p = 1, k ≥ 1, with max{κd−1
0 , κd1} replaced

by max{1, κd−1
0 , κd1}.

Similarly, using (6.17), (6.18) and (6.19) in (6.4) with δL as above,

|||ξ|||SD ≤ Cp,td
2 max{κd−1

0 , κd1}
(
|
√
a|htL + |b| 12 ht+

1
2

L + c
1
2 ht+1

L

)
|u|Ht+1(Ω),

with 1 ≤ t ≤ min{p, k}, p ≥ 2, k ≥ 2. An identical bound holds for p = 1, k ≥ 1, with max{κd−1
0 , κd1} replaced

by max{1, κd−1
0 , κd1}.

Inserting the bounds on |||ξ|||SD and |||η|||SD in the right-hand side of the triangle inequality (6.2), we deduce
the following theorem.

Theorem 6.1. Suppose that f ∈ L2(Ω) in Ω = (0, 1)d, that c > 0 and assume the regularity u ∈ Hk+1(Ω) ∩
H2(Ω) ∩

⊗d
i=1 H1

(0)(0, 1), k ∈ N>0.
Then, for p ≥ 1 and 1 ≤ t ≤ min{p, k}, the following bound holds for the error u− uh between the analytical

solution u of (2.6) and its stabilized sparse finite element approximation uh ∈ V̂ L,p(0) defined by (4.4), with L ≥ 1
and h = hL = 2−L:

|||u− uh|||SD ≤ Cp,td
2 max{(2 − p)+, κd−1

0 , κd1}
(
|
√
a|htL + |b| 12ht+

1
2

L + c
1
2ht+1

L

)
|u|Ht+1(Ω) (6.21)

where κ0 and κ1 are defined in (6.16) and the stabilization parameter δL is given by (6.20).

Remark 6.2. We close with some remarks on Theorem 6.1 and on possible extensions of the results presented
here. We begin by noting that, save for the potential presence of a polylogarithmic factor on the right-hand
side of (6.21), the definition of δL and the structure of the error bound in the ||| · |||SD norm are exactly the
same as if we used the full tensor-product finite element space V L,p(0) instead of the sparse tensor-product space

V̂ L,p(0) (cf. Houston and Süli [14]). On the other hand, as we have commented earlier, through the use of the

sparse space V̂ L,p(0) (discounting the effect of p ≥ 1 on the computational cost, since we are interested in h-version
methods here with p fixed at a relatively low value), computational complexity has been reduced from O(2Ld) to
O(2L(log2 2L)d−1). Hence, in comparison with a streamline-diffusion method based on the full tensor-product
space, a substantial computational saving can been achieved at the cost of only marginal loss in accuracy.
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(a) In the transport-dominated case, i.e., when |a| ≈ 0 and |b| ≈ 1, we take δL = KδhL/|b|, so the error in
the streamline-diffusion norm is max{(2 − p)+, κd−1

0 , κd1}O(hp+
1
2

L ).
In the diffusion-dominated case, that is when ξ�aξ ≥ ca|ξ|2, with ca ≈ 1 and |b| ≈ 0, we see from

Theorem 6.1 that the error in the streamline-diffusion norm ||| · |||SD is max{(2−p)+, κd−1
0 , κd1}O(hpL) as

hL tends to zero, provided that the streamline-diffusion parameter is chosen as δL = Kδh
2
L/(12dp4|

√
a|2).

When the matrix a = (aij)di,j=1 is positive definite, we have that Γ0 = Γ and therefore u ∈ H1
(0)(Ω) =

H1
0(Ω). Thus, under the conditions stated in Remark 5.3, the constant max{(2−p)+, κd−1

0 , κd1} appearing
in (6.21) for t = p decays to zero exponentially as d→ ∞, for all p ≥ 2.

When a ≥ 0 and Γ0 � Γ, the constant max{(2 − p)+, κd−1
0 , κd1} remains uniformly bounded under

the conditions of Remark 5.5.
In the absence of assumptions relating L, p and d, the error |||u − uh|||SD is still bounded by

κd−1
∗ | log2 hL|d−1O(|√a|htL + |b| 12 ht+

1
2

L + c
1
2 ht+1

L ), where κ∗ ∈ (0, 1) for all L, p, d ≥ 2.
As long as the basis of the univariate space from which the sparse finite element space is constructed

is a hierarchical basis on a uniform mesh, its specific choice (viz. whether it is a wavelet basis as in [29],
or a standard hierarchical finite element basis) does not affect our final result. Thus we believe that
the presence of the exponentially decreasing error constant is generic, and will be observed for error
bounds in various norms. Note that the smallness of κ(0)(p, p, 0, L) and κ(0)(p, p, 1, L) does not require
particularly high regularity of u as expressed by the parameter t = p.

If b = 0, streamline-diffusion stabilization is absent from the method. If, in addition, a is symmetric
positive definite and c = 0 it follows from Céa’s lemma and (5.35) with s = 1 that

|u− uh|H1(Ω) ≤ d
3
2 cp,t(κ0(p, t, 1, L))d htL |u|Ht+1(Ω), 1 ≤ t ≤ min{p, k}. (6.22)

As has been noted in Remark 5.3, κ0(p, p, 1, L) < 1 for all p ≥ 1 and all L > 1 (unconditionally).
Therefore, the error constant in (6.22) exhibits exponential decay for all p ≥ 1 and all L ≥ 1 as d→ ∞,
as long as u ∈ Hp+1(Ω)∩H1

0(Ω). Under the mild conditions from Remark 5.3, relating L to p or L to d,
a similar statement can be made when c > 0.

(b) For the sake of simplicity, we have restricted ourselves to uniform tensor-product partitions of [0, 1]d.
Numerical experiments indicate that, in the presence of boundary-layers, the accuracy of the proposed
sparse streamline-diffusion method can be improved by using high-dimensional versions of Shishkin-type
boundary-layer-fitted tensor-product nonuniform partitions.

(c) It is important to note that the stabilization term δL
∑

κ∈T L(Lw, b ·∇v)κ in the definition of the bilinear
form bδ(w, v) can be rewritten as

δL

d∑
i=1

2L∑
j=1

(
aii
∂2w

∂x2
i

, b · ∇v
)
Ki

j

+ δL

d∑
i=1,j=1

i�=j

(
aij

∂2w

∂xi∂xj
, b · ∇v

)
+ δL(b · ∇w + cw, b · ∇v).

Here Ki
j , i = 1, . . . , d, j = 1, . . . , 2L, are the d-dimensional slabs defined in (6.5). Thus, instead of

summing over |T L| = 2Ld entries we can realize the computation of the stabilization term by summing
over 2Ld+ 1

2d(d− 1)+ 1 terms only. The evaluation of the inner products will involve high-dimensional
numerical quadrature (cf. [9,19,30], and the survey paper [7] for pointers to the relevant literature).

(d) For technical details concerning the efficient implementation of sparse-grid finite element methods, we
refer to Zumbusch [32] and Bungartz and Griebel [7]. The work of Bungartz [6] is specifically devoted
to the implementation and computational assessment of high-order sparse grid methods.

Acknowledgements. We wish to express our sincere gratitude to Adri Olde Daalhuis (University of Edinburgh), Christoph
Ortner (University of Oxford) and the anonymous referees for numerous helpful suggestions.



818 C. SCHWAB ET AL.

References

[1] K. Babenko, Approximation by trigonometric polynomials is a certain class of periodic functions of several variables. Soviet
Math. Dokl. 1 (1960) 672–675. Russian original in Dokl. Akad. Nauk SSSR 132 (1960) 982–985.
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[16] B. Lapeyre, É. Pardoux and R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford
Texts in Applied and Engineering Mathematics. Oxford University Press, Oxford (2003).
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