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Abstract. In this paper we develop a residual based a posteriori error analysis for an augmented
mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we
derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary condi-
tions. In addition, several numerical experiments confirming the theoretical properties of the estimator,
and illustrating the capability of the corresponding adaptive algorithm to localize the singularities and
the large stress regions of the solution, are also reported.
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1. Introduction

A new stabilized mixed finite element method for plane linear elasticity was presented and analyzed recently
in [10]. The approach there is based on the introduction of suitable Galerkin least-squares terms arising from the
constitutive and equilibrium equations, and from the relation defining the rotation in terms of the displacement.
The resulting augmented method, which is easily generalized to 3D, can be viewed as an extension to the
elasticity problem of the non-symmetric procedures utilized in [8] and [11]. It is shown in [10] that the continuous
and discrete augmented formulations are well-posed, and that the latter becomes locking-free and asymptotically
locking-free for Dirichlet and mixed boundary conditions, respectively. Moreover, the augmented variational
formulation introduced in [10], being strongly coercive in the case of Dirichlet boundary conditions, allows the
utilization of arbitrary finite element subspaces for the corresponding discrete scheme, which constitutes one
of its main advantages. In particular, Raviart-Thomas spaces of lowest order for the stress tensor, piecewise
linear elements for the displacement, and piecewise constants for the rotation can be used. In the case of
mixed boundary conditions, the essential one (Neumann) is imposed weakly, which yields the introduction of
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the trace of the displacement as a suitable Lagrange multiplier. This trace is then approximated by piecewise
linear elements on an independent partition of the Neumann boundary whose mesh size needs to satisfy a
compatibility condition with the mesh size associated with the triangulation of the domain. Further details on
the advantages of the augmented method can be found in [10] and also throughout the present paper (see, in
particular, Sect. 5 below).

According to the above, and strongly motivated by the competitive character of our augmented formulation,
we now feel the need of deriving corresponding a posteriori error estimators. More precisely, the purpose of this
work is to develop a residual based a posteriori error analysis for the augmented mixed finite element scheme
from [10] in the case of pure Dirichlet boundary conditions. A posteriori error analyses of the traditional mixed
finite element methods for the elasticity problem can be seen in [5] and the references therein. The rest of
this paper is organized as follows. In Section 2 we recall from [10] the continuous and discrete augmented
formulations of the corresponding boundary value problem, state the well-posedness of both schemes, and
provide the associated a priori error estimate. The kernel of the present work is given by Sections 3 and 4, where
we develop the residual based a posteriori error analysis. Indeed, in Section 3 we employ a suitable auxiliary
problem and apply integration by parts and the local approximation properties of the Clément interpolant
to derive a reliable a posteriori error estimator. In other words, the method that we use to prove reliability
combines a technique utilized in mixed finite element schemes with the usual procedure applied to primal finite
element methods. It is important to remark that just one of these approaches by itself would not be enough in
this case. In addition, up to our knowledge, this combined analysis seems to be applied here for the first time.
Next, in Section 4 we make use of inverse inequalities and the localization technique based on triangle-bubble
and edge-bubble functions to show that the estimator is efficient. We remark that, because of the new Galerkin
least-squares terms employed, most of the residual terms defining the error indicator are new, and hence our
proof of efficiency needs to previously establish more general versions of some technical lemmas concerning
inverse estimates and piecewise polynomials. Finally, several numerical results confirming reliability, efficiency,
and robustness of the estimator with respect to the Poisson ratio, are provided in Section 5. In addition, the
capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of
the solution is also illustrated here.

We end this section with some notations to be used below. Given any Hilbert space U , U2 and U2×2 denote,
respectively, the space of vectors and square matrices of order 2 with entries in U . In addition, I is the identity
matrix of R

2×2, and given τ := (τij), ζ := (ζij) ∈ R
2×2, we write as usual

τ t := (τji) , tr(τ ) :=
2∑

i=1

τii , τ d := τ − 1
2

tr(τ ) I , and τ : ζ :=
2∑

i,j=1

τij ζij .

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms, employ 0 to denote a
generic null vector, and use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2. The augmented formulations

First we let Ω be a simply connected domain in R
2 with polygonal boundary Γ := ∂Ω. Our goal is to

determine the displacement u and stress tensor σ of a linear elastic material occupying the region Ω. In other
words, given a volume force f ∈ [L2(Ω)]2, we seek a symmetric tensor field σ and a vector field u such that

σ = C e(u) , div(σ) = − f in Ω , and u = 0 on Γ . (1)

Hereafter, e(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations and C is the elasticity tensor
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determined by Hooke’s law, that is

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ [L2(Ω)]2×2 , (2)

where λ, µ > 0 denote the corresponding Lamé constants. It is easy to see from (2) that the inverse tensor
C−1 reduces to

C−1 ζ :=
1

2µ
ζ − λ

4µ (λ+ µ)
tr(ζ) I ∀ ζ ∈ [L2(Ω)]2×2 . (3)

We now define the spaces H = H(div ; Ω) := {τ ∈ [L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 }, H0 := {τ ∈ H :∫
Ω tr(τ ) = 0}, and note that H = H0 ⊕ R I, that is for any τ ∈ H there exist unique τ 0 ∈ H0 and
d := 1

2|Ω|
∫
Ω tr(τ ) ∈ R such that τ = τ 0 + d I. In addition, we define the space of skew-symmetric tensors

[L2(Ω)]2×2
skew := {η ∈ [L2(Ω)]2×2 : η+ηt = 0} and introduce the rotation γ := 1

2 (∇u−(∇u)t)) ∈ [L2(Ω)]2×2
skew as

an auxiliary unknown. Then, given positive parameters κ1, κ2, and κ3, independent of λ, we consider from [10]
the following augmented variational formulation for (1): Find (σ,u,γ) ∈ H0 := H0 × [H1

0 (Ω)]2 × [L2(Ω)]2×2
skew

such that
A((σ,u,γ), (τ ,v,η)) = F (τ ,v,η) ∀ (τ ,v,η) ∈ H0 , (4)

where the bilinear form A : H0 × H0 → R and the functional F : H0 → R are defined by

A((σ,u,γ), (τ ,v,η)) :=
∫

Ω

C−1σ : τ +
∫

Ω

u · div(τ ) +
∫

Ω

γ : τ −
∫

Ω

v · div(σ) −
∫

Ω

η : σ

+ κ1

∫
Ω

(
e(u) − C−1 σ

)
:
(
e(v) + C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ )

+ κ3

∫
Ω

(
γ − 1

2
(∇u − (∇u)t)

)
:
(

η +
1
2
(∇v − (∇v)t)

)
, (5)

and

F (τ ,v,η) :=
∫

Ω

f · (v − κ2 div(τ ) ) . (6)

The well-posedness of (4) was proved in [10]. More precisely, we have the following result.

Theorem 2.1. Assume that (κ1, κ2, κ3) is independent of λ and such that 0 < κ1 < 2µ, 0 < κ2, and
0 < κ3 < κ1. Then, there exist positive constants M, α, independent of λ, such that

|A((σ,u,γ), (τ ,v,η)) | ≤ M ‖(σ,u,γ)‖H0 ‖(τ ,v,η)‖H0 (7)

and
A((τ ,v,η), (τ ,v,η)) ≥ α ‖(τ ,v,η)‖2

H0
(8)

for all (σ,u,γ), (τ ,v,η) ∈ H0. In particular, taking

κ1 = C̃1 µ , κ2 =
1
µ

(
1 − κ1

2µ

)
, and κ3 = C̃3 κ1 , (9)

with any C̃1 ∈ ]0, 2[ and any C̃3 ∈ ]0, 1[, this yields M and α depending only on µ, 1
µ , and Ω. Therefore,

the augmented variational formulation (4) has a unique solution (σ,u,γ) ∈ H0, and there exists a positive
constant C, independent of λ, such that

‖(σ,u,γ)‖H0 ≤ C ‖F‖ ≤ C ‖f‖[L2(Ω)]2 .

Proof. See Theorems 3.1 and 3.2 in [10]. �
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Now, given a finite element subspace H0,h ⊆ H0, the Galerkin scheme associated with (4) reads: Find
(σh,uh,γh) ∈ H0,h such that

A((σh,uh,γh), (τ h,vh,ηh)) = F (τh,vh,ηh) ∀ (τh,vh,ηh) ∈ H0,h , (10)

where κ1, κ2, and κ3, being the same parameters employed in the formulation (4), satisfy the assumptions of
Theorem 2.1. Since A becomes bounded and strongly coercive on the whole space H0, we remark that the well
posedness of (10) is guaranteed for any arbitrary choice of the subspace H0,h. In fact, the following result is
also established in [10].

Theorem 2.2. Assume that the parameters κ1, κ2, and κ3 satisfy the assumptions of Theorem 2.1 and let H0,h

be any finite element subspace of H0. Then, the Galerkin scheme (10) has a unique solution (σh,uh,γh) ∈ H0,h,
and there exist positive constants C, C̃, independent of h and λ, such that

‖(σh,uh,γh)‖H0 ≤ C sup
(τ h,vh,ηh)∈H0,h

(τ h,vh,η
h
) �=0

|F (τ h,vh,ηh) |
‖(τh,vh,ηh)‖H0

≤ C ‖f‖[L2(Ω)]2 ,

and

‖(σ,u,γ) − (σh,uh,γh)‖H0 ≤ C̃ inf
(τ h,vh,ηh)∈H0,h

‖(σ,u,γ) − (τh,vh,ηh)‖H0 . (11)

Proof. It follows from Theorem 2.1, Lax-Milgram’s Lemma, and Céa’s estimate. �

It is important to emphasize here that the main advantage of the augmented approach (10), as compared
with the traditional mixed finite element schemes for the linear elasticity problem (see e.g. [3]), is the possibility
of choosing any finite element subspace H0,h of H0.

On the other hand, an inmediate consequence of the definition of the continuous and discrete augmented
formulations is the Galerkin orthogonality

A((σ − σh,u − uh,γ − γh), (τ h,vh,ηh)) = 0 ∀ (τh,vh,ηh) ∈ H0,h . (12)

Next, we recall the specific space H0,h introduced in [10], which is the simplest finite element subspace of H0.
To this end, we first let {Th}h>0 be a regular family of triangulations of the polygonal region Ω̄ by triangles T
of diameter hT with mesh size h := max{ hT : T ∈ Th }, and such that there holds Ω̄ = ∪{T : T ∈ Th }.
In addition, given an integer � ≥ 0 and a subset S of R

2, we denote by P�(S) the space of polynomials in two
variables defined in S of total degree at most �, and for each T ∈ Th we introduce the local Raviart-Thomas
space of order zero (cf. [3, 12]),

RT0(T ) := span

{(
1
0

)
,

(
0
1

)
,

(
x1

x2

)}
⊆ [P1(T )]2 ,

where (x1
x2

) is a generic vector of R
2. Then, defining

Hσ
h :=

{
τ h ∈ H(div ; Ω) : τh|T ∈ [RT0(T )t]2 ∀T ∈ Th

}
, (13)

Xh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}
, (14)
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and

Hu
h := Xh ×Xh , (15)

we take

H0,h := Hσ
0,h ×Hu

0,h ×H
γ
h , (16)

where

Hσ
0,h : =

{
τ h ∈ Hσ

h :
∫

Ω

tr(τ h) = 0
}
, (17)

Hu
0,h : = {vh ∈ Hu

h : vh = 0 on Γ } , (18)

and

H
γ
h :=

{
ηh ∈ [L2(Ω)]2×2

skew : ηh|T ∈ [P0(T )]2×2 ∀T ∈ Th

}
. (19)

The following theorem provides the rate of convergence of (10) when the specific finite element subspace (16)
is utilized.

Theorem 2.3. Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h := Hσ
0,h ×Hu

0,h×H
γ
h be the unique solutions of the

continuous and discrete augmented mixed formulations (4) and (10), respectively. Assume that σ ∈ [Hr(Ω)]2×2,
div(σ) ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, and γ ∈ [Hr(Ω)]2×2, for some r ∈ (0, 1]. Then there exists C > 0,
independent of h and λ, such that

‖(σ,u,γ) − (σh,uh,γh)‖H0 ≤ C hr
{
‖σ‖[Hr(Ω)]2×2 + ‖div(σ)‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}
.

Proof. It is a consequence of Céa’s estimate, the approximation properties of the subspaces defining H0,h, and
suitable interpolation theorems in the corresponding function spaces. See Section 4.1 in [10] for more details. �

3. A residual based A POSTERIORI error estimator

In this section we derive a residual based a posteriori error estimator for (10). First we introduce several
notations. Given T ∈ Th, we let E(T ) be the set of its edges, and let Eh be the set of all edges of the triangulation
Th. Then we write Eh = Eh(Ω)∪Eh(Γ), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}.
In what follows, he stands for the length of edge e ∈ Eh. Further, given τ ∈ [L2(Ω)]2×2 (such that τ |T ∈ C(T )
on each T ∈ Th), an edge e ∈ E(T ) ∩ Eh(Ω), and the unit tangential vector tT along e, we let J [τ tT ] be the
corresponding jump across e, that is, J [τ tT ] := (τ |T −τ |T ′)|etT , where T ′ is the other triangle of Th having e as
an edge. Abusing notation, when e ∈ Eh(Γ), we also write J [τ tT ] := τ |etT . We recall here that tT := (−ν2, ν1)t
where νT := (ν1, ν2)t is the unit outward normal to ∂T . Analogously, we define the normal jumps J [τνT ]. In
addition, given scalar, vector, and tensor valued fields v, ϕ := (ϕ1, ϕ2), and τ := (τij), respectively, we let

curl(v) :=

(
− ∂v

∂x2
∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t

curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)
.
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Then, for (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h being the solutions of the continuous and discrete formulations
(4) and (10), respectively, we define an error indicator θT as follows:

θ2T := ‖f + div (σh)‖2
[L2(T )]2 + ‖σh − σt

h‖2
[L2(T )]2×2 + ‖γh − 1

2
(∇uh − (∇uh)t)‖2

[L2(T )]2×2

+ h2
T

{
‖ curl(C−1σh + γh)‖2

[L2(T )]2 + ‖ curl(C−1(e(uh) − C−1σh))‖2
[L2(T )]2

}

+
∑

e∈E(T )

he

{
‖J [(C−1σh −∇uh + γh)tT ]‖2

[L2(e)]2 + ‖J [(C−1(e(uh) − C−1σh))tT ]‖2
[L2(e)]2

}

+ h2
T ‖div (e(uh) − 1

2
(C−1σh + (C−1σh)t))‖2

[L2(T )]2

+ h2
T ‖div (γh − 1

2
(∇uh − (∇uh)t))‖2

[L2(T )]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖2

[L2(e)]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖2

[L2(e)]2 . (20)

The residual character of each term on the right-hand side of (20) is quite clear. In addition, we observe that
some of these terms are known from residual estimators for the non-augmented mixed finite element method
in linear elasticity (see e.g. [5]), but most of them are new since, as we show below, they arise from the new
Galerkin least-squares terms introduced in the augmented formulation. We also mention that, as usual, the
expression θ :=

{∑
T∈Th

θ2T
}1/2 is employed as the global residual error estimator.

The following theorem is the main result of this paper.

Theorem 3.1. Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h be the unique solutions of (4) and (10), respectively.
Then there exist Ceff, Crel > 0, independent of h and λ, such that

Ceff θ ≤ ‖(σ − σh,u− uh,γ − γh)‖H0 ≤ Crel θ . (21)

The so-called efficiency (lower bound in (21)) is proved below in Section 4 and the reliability estimate (upper
bound in (21)) is derived throughout the rest of the present section. The method that we use to prove reliability
combines a procedure employed in mixed finite element schemes (see e.g. [4, 5]), where an auxiliary problem
needs to be defined, with the integration by parts and Clément interpolant technique usually applied to primal
finite element methods (see [13]). We emphasize that just one of these approaches by itself would not suffice.

We begin with the following preliminary estimate.

Lemma 3.1. There exists C > 0, independent of h and λ, such that

C ‖(σ − σh,u− uh,γ − γh)‖H0

≤ sup
0 �=(τ ,v,η)∈H0

div (τ )=0

A((σ − σh,u − uh,γ − γh), (τ ,v,η))
‖(τ ,v,η)‖H0

+ ‖f + div (σh)‖[L2(Ω)]2 . (22)

Proof. Let us define σ∗ = e(z), where z ∈ [H1
0 (Ω)]2 is the unique solution of the boundary value problem:

−div (e(z)) = f +div (σh) in Ω , z = 0 on Γ. It follows that σ∗ ∈ H0, and the corresponding continuous
dependence result establishes the existence of c > 0 such that

‖σ∗‖H(div ;Ω) ≤ c ‖f + div (σh)‖[L2(Ω)]2 . (23)
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In addition, it is easy to see that div (σ−σh −σ∗) = 0 in Ω. Then, using the coercivity of A (cf. (8)), we find
that

α ‖(σ − σh − σ∗,u − uh,γ − γh)‖2
H0

≤ A((σ − σh − σ∗,u − uh,γ − γh), (σ − σh − σ∗,u − uh,γ − γh))

= A((σ − σh,u − uh,γ − γh), (σ − σh − σ∗,u − uh,γ − γh))

−A((σ∗,0,0), (σ − σh − σ∗,u− uh,γ − γh)) ,

which, employing the boundedness of A (cf. (7)), yields

α ‖(σ − σh − σ∗,u− uh,γ − γh)‖H0

≤ sup
0 �=(τ ,v,η)∈H0

div (τ )=0

A((σ − σh,u− uh,γ − γh), (τ ,v,η))
‖(τ ,v,η)‖H0

+ M ‖σ∗‖H(div ;Ω) . (24)

Hence, (22) follows straightforwardly from the triangle inequality, (23), and (24). �

It remains to bound the first term on the right-hand side of (22). To this end, we will make use of the
well known Clément interpolation operator Ih : H1(Ω) → Xh (cf. [7]), with Xh given by (14), which satisfies
the standard local approximation properties stated below in Lemma 3.2. It is important to remark that Ih is
defined in [7] so that Ih(v) ∈ Xh ∩H1

0 (Ω) for all v ∈ H1
0 (Ω).

Lemma 3.2. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there holds

‖v − Ih(v)‖L2(T ) ≤ c1 hT ‖v‖H1(∆(T )) ∀T ∈ Th ,

and
‖v − Ih(v)‖L2(e) ≤ c2 h

1/2
e ‖v‖H1(∆(e)) ∀ e ∈ Eh ,

where ∆(T ) := ∪{T ′ ∈ Th : T ′ ∩ T �= ∅}, and ∆(e) := ∪{T ′ ∈ Th : T ′ ∩ e �= ∅}.

Proof. See [7]. �

We now let (τ ,v,η) ∈ H0, (τ ,v,η) �= 0, be such that div (τ ) = 0 in Ω. Since Ω is connected, there exists

a stream function ϕ := (ϕ1, ϕ2) ∈ [H1(Ω)]2 such that
∫

Ω

ϕ1 =
∫

Ω

ϕ2 = 0 and τ = curl(ϕ). Then, denoting

ϕh := (ϕ1,h, ϕ2,h), with ϕi,h := Ih(ϕi), i ∈ {1, 2}, the Clément interpolant of ϕi, we define τ h := curl(ϕh).
Note that there holds the decomposition τh = τh,0 + dh I, where τh,0 ∈ Hσ

0,h and dh =
∫
Ω tr(τ h)

2|Ω| ∈ R. From the
orthogonality relation (12) it follows that

A((σ − σh,u − uh,γ − γh), (τ ,v,η)) = A((σ − σh,u− uh,γ − γh), (τ − τh,0,v − vh,η)) , (25)

where vh := (Ih(v1), Ih(v2)) ∈ Hu
0,h is the vector Clément interpolant of v := (v1, v2) ∈ [H1

0 (Ω)]2. Since∫
Ω

tr(σ − σh) = 0 and u − uh = 0 on Γ, we deduce, using the orthogonality between symmetric and skew-
symmetric tensors, that

A((σ − σh,u − uh,γ − γh), (dhI,0,0)) = 0 .
Hence, (25) and (4) give

A((σ − σh,u − uh,γ − γh), (τ ,v,η)) = A((σ − σh,u − uh,γ − γh), (τ − τ h,v − vh,η))
= F (τ − τh,v − vh,η) − A((σh,uh,γh), (τ − τ h,v − vh,η)) .
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According to the definitions of the forms A and F (cf. (5), (6)), noting that div (τ−τh) = div curl(ϕ−ϕh) =
0, and using again the above mentioned orthogonality, we find, after some algebraic manipulations, that

A((σ − σh,u − uh,γ − γh), (τ ,v,η)) =
∫

Ω

(f + div (σh)) · (v − vh)

+
∫

Ω

{
1
2
(σh − σt

h) − κ3

(
γh − 1

2
(∇uh − (∇uh)t)

)}
: η

−
∫

Ω

{
(C−1σh −∇uh + γh) + κ1 C−1(e(uh) − C−1σh)

}
: (τ − τ h)

−
∫

Ω

{
κ1

(
e(uh) − 1

2
(C−1σh + (C−1σh)t)

)
+ κ3

(
γh − 1

2
(∇uh − (∇uh)t)

)}
: ∇(v − vh) .

(26)

The rest of the proof of reliability consists in deriving suitable upper bounds for each of the terms appearing
on the right-hand side of (26). We begin by noticing that direct applications of the Cauchy-Schwarz inequality
give

∣∣∣∣
∫

Ω

1
2
(σh − σt

h) : η

∣∣∣∣ ≤ ‖σh − σt
h‖[L2(Ω)]2×2 ‖η‖[L2(Ω)]2×2 , (27)

and

∣∣∣∣
∫

Ω

(γh − 1
2
(∇uh − (∇uh)t)) : η

∣∣∣∣ ≤ ∥∥γh − 1
2
(∇uh − (∇uh)t)

∥∥
[L2(Ω)]2×2 ‖η‖[L2(Ω)]2×2 . (28)

The decomposition Ω = ∪T∈Th
T and the integration by parts formula on each element are employed next to

handle the terms from the third and fourth rows of (26). We first replace (τ − τh) by curl(ϕ − ϕh) and use
that curl(∇uh) = 0 in each triangle T ∈ Th, to obtain

∫
Ω

(C−1σh −∇uh + γh) : (τ − τh) =
∑

T∈Th

∫
T

(C−1σh −∇uh + γh) : curl(ϕ − ϕh)

=
∑

T∈Th

∫
T

curl(C−1σh + γh) · (ϕ − ϕh)

−
∑

e∈Eh

〈J [(C−1σh −∇uh + γh)tT ],ϕ − ϕh〉[L2(e)]2 , (29)

and

∫
Ω

C−1(e(uh) − C−1σh) : (τ − τ h) =
∑

T∈Th

∫
T

C−1(e(uh) − C−1σh) : curl(ϕ − ϕh)

=
∑

T∈Th

∫
T

curl(C−1(e(uh) − C−1σh)) · (ϕ − ϕh)

−
∑

e∈Eh

〈J [(C−1(e(uh) − C−1σh))tT ],ϕ − ϕh〉[L2(e)]2 . (30)
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On the other hand, using that v − vh = 0 on Γ, we easily get

∫
Ω

(e(uh) − 1
2
(C−1σh + (C−1σh)t)) : ∇(v − vh)

= −
∑

T∈Th

∫
T

div (e(uh) − 1
2
(C−1σh + (C−1σh)t)) · (v − vh)

+
∑

e∈Eh(Ω)

〈J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ],v − vh〉[L2(e)]2 , (31)

and

∫
Ω

(γh − 1
2
(∇uh − (∇uh)t)) : ∇(v − vh)

= −
∑

T∈Th

∫
T

div (γh − 1
2
(∇uh − (∇uh)t)) · (v − vh)

+
∑

e∈Eh(Ω)

〈J [(γh − 1
2
(∇uh − (∇uh)t))νT ],v − vh〉[L2(e)]2 . (32)

In what follows, we apply again the Cauchy-Schwarz inequality, Lemma 3.2, and the fact that the numbers
of triangles in ∆(T ) and ∆(e) are bounded, independently of h, to derive the estimates for the expression∫

Ω

(f + div σh) · (v − vh) in (26) and the right-hand sides of (29), (30), (31), and (32), with constants C

independent of h and λ. Indeed, we easily have

∣∣∣∣
∫

Ω

(f + div σh) · (v − vh)
∣∣∣∣ ≤ ∑

T∈Th

‖f + div σh‖[L2(T )]2 ‖v − vh‖[L2(T )]2

≤ c1
∑

T∈Th

‖f + div σh‖[L2(T )]2 hT ‖v‖[H1(∆(T )]2

≤ C

{∑
T∈Th

h2
T ‖f + div σh‖2

[L2(T )]2

}1/2

‖v‖[H1(Ω)]2 . (33)

In addition, for the terms containing the stream function ϕ (cf. (29), (30)), we get

∣∣∣∣∣
∑

T∈Th

∫
T

curl(C−1σh + γh) · (ϕ − ϕh)

∣∣∣∣∣ ≤
∑

T∈Th

‖ curl(C−1σh + γh)‖[L2(T )]2 ‖ϕ − ϕh‖[L2(T )]2

≤ c1
∑

T∈Th

‖ curl(C−1σh + γh)‖[L2(T )]2 hT ‖ϕ‖[H1(∆(T )]2

≤ C

{∑
T∈Th

h2
T ‖ curl(C−1σh + γh)‖2

[L2(T )]2

}1/2

‖ϕ‖[H1(Ω)]2 , (34)
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∑

T∈Th

∫
T

curl(C−1(e(uh) − C−1σh)) · (ϕ − ϕh)

∣∣∣∣∣
≤

∑
T∈Th

‖ curl(C−1(e(uh) − C−1σh))‖[L2(T )]2 ‖ϕ − ϕh‖[L2(T )]2

≤ c1
∑

T∈Th

‖ curl(C−1(e(uh) − C−1σh))‖[L2(T )]2 hT ‖ϕ‖[H1(∆(T )]2

≤ C

{∑
T∈Th

h2
T ‖ curl(C−1(e(uh) − C−1σh))‖2

[L2(T )]2

}1/2

‖ϕ‖[H1(Ω)]2 , (35)

∣∣∣∣∣
∑

e∈Eh

〈J [(C−1σh −∇uh + γh)tT ],ϕ − ϕh〉[L2(e)]2

∣∣∣∣∣
≤

∑
e∈Eh

‖J [(C−1σh −∇uh + γh)tT ]‖[L2(e)]2 ‖ϕ − ϕh‖[L2(e)]2

≤ c2
∑

e∈Eh

‖J [(C−1σh −∇uh + γh)tT ]‖[L2(e)]2 h
1/2
e ‖ϕ‖[H1(∆(e))]2

≤ C

{∑
e∈Eh

he ‖J [(C−1σh −∇uh + γh)tT ]‖2
[L2(e)]2

}1/2

‖ϕ‖[H1(Ω)]2 , (36)

and

∣∣∣∣∣
∑

e∈Eh

〈J [(C−1(e(uh) − C−1σh))tT ],ϕ − ϕh〉[L2(e)]2

∣∣∣∣∣
≤

∑
e∈Eh

‖J [(C−1(e(uh) − C−1σh))tT ]‖[L2(e)]2 ‖ϕ − ϕh‖[L2(e)]2

≤ c2
∑

e∈Eh

‖J [(C−1(e(uh) − C−1σh))tT ]‖[L2(e)]2 h
1/2
e ‖ϕ‖[H1(∆(e))]2

≤ C

{∑
e∈Eh

he ‖J [(C−1(e(uh) − C−1σh))tT ]‖2
[L2(e)]2

}1/2

‖ϕ‖[H1(Ω)]2 . (37)

We observe here, thanks to the equivalence between ‖ϕ‖[H1(Ω)]2 and |ϕ|[H1(Ω)]2 , that

‖ϕ‖[H1(Ω)]2 ≤ C |ϕ|[H1(Ω)]2 = C ‖curl(ϕ)‖[L2(Ω)]2 = C ‖τ‖H(div ;Ω) , (38)

which allows to replace ‖ϕ‖[H1(Ω)]2 by ‖τ‖H(div ;Ω) in the above estimates (34)–(37).
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Similarly, for the terms on the right-hand side of (31) and (32), we find that

∣∣∣∣∣
∑

T∈Th

∫
T

div (e(uh) − 1
2
(C−1σh + (C−1σh)t)) · (v − vh)

∣∣∣∣∣
≤

∑
T∈Th

‖div (e(uh) − 1
2
(C−1σh + (C−1σh)t))‖[L2(T )]2 ‖v − vh‖[L2(T )]2

≤ c1
∑

T∈Th

‖div (e(uh) − 1
2
(C−1σh + (C−1σh)t))‖[L2(T )]2 hT ‖v‖[H1(∆(T )]2

≤ C

{∑
T∈Th

h2
T ‖div (e(uh) − 1

2
(C−1σh + (C−1σh)t))‖2

[L2(T )]2

}1/2

‖v‖[H1(Ω)]2 , (39)

∣∣∣∣∣
∑

T∈Th

∫
T

div (γh − 1
2
(∇uh − (∇uh)t)) · (v − vh)

∣∣∣∣∣
≤

∑
T∈Th

‖div (γh − 1
2
(∇uh − (∇uh)t))‖[L2(T )]2 ‖v − vh‖[L2(T )]2

≤ c1
∑

T∈Th

‖div (γh − 1
2
(∇uh − (∇uh)t))‖[L2(T )]2 hT ‖v‖[H1(∆(T )]2

≤ C

{∑
T∈Th

h2
T ‖div (γh − 1

2
(∇uh − (∇uh)t))‖2

[L2(T )]2

}1/2

‖v‖[H1(Ω)]2 , (40)

∣∣∣∣∣∣
∑

e∈Eh(Ω)

〈J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ],v − vh〉[L2(e)]2

∣∣∣∣∣∣
≤

∑
e∈Eh(Ω)

‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖[L2(e)]2 ‖v − vh‖[L2(e)]2

≤ c2
∑

e∈Eh(Ω)

‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖[L2(e)]2 h

1/2
e ‖v‖[H1(∆(e))]2

≤ C

⎧⎨
⎩

∑
e∈Eh(Ω)

he ‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖2

[L2(e)]2

⎫⎬
⎭

1/2

‖v‖[H1(Ω)]2 , (41)
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and ∣∣∣∣∣∣
∑

e∈Eh(Ω)

〈J [(γh − 1
2
(∇uh − (∇uh)t))νT ],v − vh〉[L2(e)]2

∣∣∣∣∣∣
≤

∑
e∈Eh(Ω)

‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖[L2(e)]2 ‖v − vh‖[L2(e)]2

≤ c2
∑

e∈Eh(Ω)

‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖[L2(e)]2 h

1/2
e ‖v‖[H1(∆(e))]2

≤ C

⎧⎨
⎩

∑
e∈Eh(Ω)

he ‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖2

[L2(e)]2

⎫⎬
⎭

1/2

‖v‖[H1(Ω)]2 . (42)

Therefore, placing (34)–(37) (resp. (39)–(42)) back into (29) and (30) (resp. (31) and (32)), employing the
estimates (27), (28), and (33), and using the identities

∑
e∈Eh(Ω)

∫
e

=
1
2

∑
T∈Th

∑
e∈E(T )∩Eh(Ω)

∫
e

and ∑
e∈Eh

∫
e

=
∑

e∈Eh(Ω)

∫
e

+
∑

T∈Th

∑
e∈E(T )∩Eh(Γ)

∫
e

,

we conclude from (26) that

sup
0 �=(τ ,v,η)∈H0

div (τ )=0

A((σ − σh,u− uh,γ − γh), (τ ,v,η))
‖(τ ,v,η)‖H0

≤ C θ .

This inequality and Lemma 3.1 complete the proof of reliability of θ.
We end this section by remarking that when the finite element subspace H0,h is given by (16), that is when

σh|T ∈ [RT0(T )t]2, uh|T ∈ [P1(T )]2 and γh|T ∈ [P0(T )]2×2, then the expression (20) for θ2T simplifies to

θ2T := ‖f + div (σh)‖2
[L2(T )]2 + ‖σh − σt

h‖2
[L2(T )]2×2 + ‖γh − 1

2
(∇uh − (∇uh)t)‖2

[L2(T )]2×2

+ h2
T

{
‖ curl(C−1σh)‖2

[L2(T )]2 + ‖ curl(C−1(C−1σh))‖2
[L2(T )]2

}

+
∑

e∈E(T )

he

{
‖J [(C−1σh −∇uh + γh)tT ]‖2

[L2(e)]2 + ‖J [(C−1(e(uh) − C−1σh))tT ]‖2
[L2(e)]2

}

+ h2
T ‖div (

1
2
(C−1σh + (C−1σh)t))‖2

[L2(T )]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖2

[L2(e)]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖2

[L2(e)]2 . (43)
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4. Efficiency of the A POSTERIORI error estimator

In this section we proceed as in [4] and [5] (see also [9]) and apply inverse inequalities (see [6]) and the
localization technique introduced in [14], which is based on triangle-bubble and edge-bubble functions, to prove
the efficiency of our a posteriori error estimator θ (lower bound of the estimate (21)).

4.1. Preliminaries

We begin with some notations and preliminary results. Given T ∈ Th and e ∈ E(T ), we let ψT and ψe be
the usual triangle-bubble and edge-bubble functions, respectively (see (1.5) and (1.6) in [14]). In particular,
ψT satisfies ψT ∈ P3(T ), supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T . Similarly, ψe|T ∈ P2(T ),
supp(ψe) ⊆ we := ∪{T ′ ∈ Th : e ∈ E(T ′)}, ψe = 0 on ∂T \e, and 0 ≤ ψe ≤ 1 in we. We also recall from [13]
that, given k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(T ) that satisfies L(p) ∈ Pk(T ) and
L(p)|e = p ∀p ∈ Pk(e). Additional properties of ψT , ψe, and L are collected in the following lemma.

Lemma 4.1. For any triangle T there exist positive constants c1, c2, c3 and c4, depending only on k and the
shape of T , such that for all q ∈ Pk(T ) and p ∈ Pk(e), there hold

‖ψT q‖2
L2(T ) ≤ ‖q‖2

L2(T ) ≤ c1 ‖ψ1/2
T q‖2

L2(T ) , (44)

‖ψe p‖2
L2(e) ≤ ‖p‖2

L2(e) ≤ c2 ‖ψ1/2
e p‖2

L2(e) , (45)

c4 he ‖p‖2
L2(e) ≤ ‖ψ1/2

e L(p)‖2
L2(T ) ≤ c3 he ‖p‖2

L2(e) . (46)

Proof. See Lemma 1.3 in [13]. �
The following inverse estimate will also be used.

Lemma 4.2. Let l,m ∈ N ∪ {0} such that l ≤ m. Then, for any triangle T , there exists c > 0, depending only
on k, l,m and the shape of T , such that

|q|Hm(T ) ≤ c hl−m
T |q|Hl(T ) ∀ q ∈ Pk(T ) . (47)

Proof. See Theorem 3.2.6 in [6]. �
Our goal is to estimate the 11 terms defining the error indicator θ2T (cf. (20)). Using f = − div σ, the

symmetry of σ, and γ = 1
2 (∇u − (∇u)t), we first observe that there hold

‖f + div (σh)‖2
[L2(T )]2 = ‖div (σ − σh)‖2

[L2(T )]2 , (48)

‖σh − σt
h‖2

[L2(T )]2×2 ≤ 4 ‖σ − σh‖2
[L2(T )]2×2 , (49)

and

‖γh − 1
2
(∇uh − (∇uh)t)‖2

[L2(T )]2×2 ≤ 2
{
‖γ − γh‖2

[L2(T )]2×2 + |u− uh|2[H1(T )]2

}
. (50)

The upper bounds of the remaining 8 residual terms, which depend on the mesh parameters hT and he, will
be derived in Section 4.2 below. To this end we prove four lemmas establishing, in a sufficiently general way,
some results concerning inverse inequalities and piecewise polynomials. They will be used to estimate the terms
involving curl and div operators, and the normal and tangential jumps.

The result required for the curl operator is given first.

Lemma 4.3. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition, let
ρ ∈ [L2(Ω)]2×2 be such that curl(ρ) = 0 on each T ∈ Th. Then, there exists c > 0, independent of h, such that
for any T ∈ Th

‖ curl(ρh)‖[L2(T )]2 ≤ c h−1
T ‖ρ − ρh‖[L2(T )]2×2 . (51)
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Proof. We proceed as in the proof of Lemma 6.3 in [5]. Applying (44), integrating by parts, observing that
ψT = 0 on ∂T , and using the Cauchy-Schwarz inequality, we obtain

c−1
1 ‖ curl(ρh)‖2

[L2(T )]2 ≤ ‖ψ1/2
T curl(ρh)‖2

[L2(T )]2 =
∫

T

ψT curl(ρh) · curl(ρh − ρ)

=
∫

T

(ρ − ρh) : curl(ψT curl(ρh)) ≤ ‖ρ − ρh‖[L2(T )]2×2 ‖curl(ψT curl(ρh))‖[L2(T )]2×2 .

(52)

Next, the inverse inequality (47) and the fact that 0 ≤ ψT ≤ 1 give

‖curl(ψT curl(ρh))‖[L2(T )]2×2 ≤ c h−1
T ‖ψT curl(ρh)‖[L2(T )]2 ≤ c h−1

T ‖ curl(ρh)‖[L2(T )]2 ,

which, together with (52), yields (51). �

The tangential jumps across the edges of the triangulation will be handled by employing the following
estimate.

Lemma 4.4. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. Then, there exists
c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhtT ]‖[L2(e)]2 ≤ c h−1/2
e ‖ρh‖[L2(we)]2×2 . (53)

Proof. Given an edge e ∈ Eh, we denote by wh := J [ρhtT ] the corresponding tangential jump of ρh. Then,
employing (45) and integrating by parts on each triangle of we, we obtain

c−1
2 ‖wh‖2

[L2(e)]2 ≤ ‖ψ1/2
e wh‖2

[L2(e)]2 = ‖ψ1/2
e L(wh)‖2

[L2(e)]2

=
∫

e

ψe L(wh) · J [ρhtT ] =
∫

we

curl(ρh) · ψe L(wh) +
∫

we

ρh : curl(ψeL(wh)) , (54)

which, using the Cauchy-Schwarz inequality, yields

c−1
2 ‖wh‖2

[L2(e)]2 ≤ ‖ curl(ρh)‖[L2(we)]2 ‖ψe L(wh)‖[L2(we)]2

+ ‖ρh‖[L2(we)]2×2 ‖curl(ψe L(wh))‖[L2(we)]2×2 . (55)

Now, applying Lemma 4.3 with ρ = 0 and using that h−1
T ≤ h−1

e , we find that

‖ curl(ρh)‖[L2(we)]2 ≤ C h−1
e ‖ρh‖[L2(we)]2×2 . (56)

On the other hand, employing (46) and the fact that 0 ≤ ψe ≤ 1, we deduce that

‖ψeL(wh)‖[L2(we)]2 ≤ C h1/2
e ‖wh‖[L2(e)]2 , (57)

whereas the inverse estimate (47) and (46) yield

‖curl(ψeL(wh))‖[L2(we)]2×2 ≤ C h−1/2
e ‖wh‖[L2(e)]2 . (58)

Finally, (53) follows easily from (55)–(58), which completes the proof. �

The estimate required for the terms involving the div operator is provided next.
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Lemma 4.5. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. Then, there exists
c > 0, independent of h, such that for any T ∈ Th

‖div (ρh)‖[L2(T )]2 ≤ c h−1
T ‖ρh‖[L2(T )]2×2 . (59)

Proof. Applying (44), integrating by parts, and then employing the Cauchy-Schwarz inequality, we find that

c−1
1 ‖div (ρh)‖2

[L2(T )]2 ≤ ‖ψ1/2
T div (ρh)‖2

[L2(T )]2 =
∫

T

ψT div (ρh) · div (ρh)

= −
∫

T

ρh : ∇(ψT div (ρh)) ≤ ‖ρh‖[L2(T )]2×2 ‖∇(ψT div (ρh))‖[L2(T )]2×2 .

(60)

Next, the inverse estimate (47) and the fact that 0 ≤ ψT ≤ 1 in T imply that

‖∇(ψT div (ρh))‖[L2(T )]2×2 ≤ c h−1
T ‖ψT div (ρh)‖[L2(T )]2 ≤ c h−1

T ‖div (ρh)‖[L2(T )]2 ,

which, together with (60), yields (59). �
Finally, the estimate required for the normal jumps across the edges of the triangulation is established as

follows.

Lemma 4.6. Let ρh ∈ [L2(Ω)]2×2 be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. Then, there exists
c > 0, independent of h, such that for any e ∈ Eh

‖J [ρhνT ]‖[L2(e)]2 ≤ c h−1/2
e ‖ρh‖[L2(we)]2×2 . (61)

Proof. We proceed similarly as in the proof of Lemma 4.4. Given an edge e ∈ Eh, we now denote by wh :=
J [ρhνT ] the corresponding normal jump of ρh. Then, employing (45) and integrating by parts on each triangle
of we, we obtain

c−1
2 ‖wh‖2

[L2(e)]2 ≤ ‖ψ1/2
e wh‖2

[L2(e)]2 = ‖ψ1/2
e L(wh)‖2

[L2(e)]2

=
∫

e

ψe L(wh) · J [ρhνT ] =
∫

we

div (ρh) · ψe L(wh) +
∫

we

ρh : ∇(ψeL(wh)) ,
(62)

which, using the Cauchy-Schwarz inequality, yields

c−1
2 ‖wh‖2

[L2(e)]2 ≤ ‖div (ρh)‖[L2(we)]2 ‖ψe L(wh)‖[L2(we)]2

+ ‖ρh‖[L2(we)]2×2 ‖∇(ψe L(wh))‖[L2(we)]2×2 . (63)

Now, applying Lemma 4.5 and using that h−1
T ≤ h−1

e , we deduce that

‖div (ρh)‖[L2(we)]2 ≤ C h−1
e ‖ρh‖[L2(we)]2×2 . (64)

On the other hand, employing (46) and the fact that 0 ≤ ψe ≤ 1, we deduce that

‖ψeL(wh)‖[L2(we)]2 ≤ C h1/2
e ‖wh‖[L2(e)]2 , (65)

whereas the inverse estimate (47) and (46) yield

‖∇(ψeL(wh))‖[L2(we)]2×2 ≤ C h−1/2
e ‖wh‖[L2(e)]2 . (66)

Finally, (61) follows easily from (63)–(66), which completes the proof. �
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We note that the generality of Lemmas 4.3–4.6 allows to apply them not only in the present context, but
also in the a posteriori error analysis of other primal and mixed finite element methods.

4.2. The main efficiency estimates

As already announced, we now complete the proof of efficiency of θ by conveniently applying Lemmas 4.3–4.6
to the corresponding terms defining θ2T .

Lemma 4.7. There exist C1, C2 > 0, independent of h and λ, such that for any T ∈ Th

h2
T ‖ curl(C−1σh + γh)‖2

[L2(T )]2 ≤ C1

{
‖σ − σh‖2

[L2(T )]2×2 + ‖γ − γh‖2
[L2(T )]2×2

}
(67)

and

h2
T ‖ curl(C−1(e(uh) − C−1σh))‖2

[L2(T )]2 ≤ C2

{
|u − uh|2[H1(T )]2 + ‖σ − σh‖2

[L2(T )]2×2

}
. (68)

Proof. Applying Lemma 4.3 with ρh := C−1σh + γh and ρ := ∇u = C−1σ + γ, and then using the triangle
inequality and the continuity of C−1, we obtain

‖ curl(C−1σh + γh)‖[L2(T )]2 ≤ c h−1
T ‖(C−1σ + γ) − (C−1σh + γh)‖[L2(T )]2×2

= c h−1
T ‖C−1(σ − σh) + (γ − γh)‖[L2(T )]2×2

≤ C h−1
T

{
‖σ − σh‖[L2(T )]2×2 + ‖γ − γh‖[L2(T )]2×2

}
,

which yields (67). Similarly, (68) follows from Lemma 4.3 with ρh := C−1(e(uh)−C−1σh) and ρ := C−1(e(u)−
C−1σ) = 0. �

Lemma 4.8. There exist C3, C4 > 0, independent of h and λ, such that for any e ∈ Eh

he J [(C−1σh −∇uh + γh)tT ]‖2
[L2(e)]2

≤ C3

{
‖σ − σh‖2

[L2(we)]2×2 + |u − uh|2[H1(we)]2 + ‖γ − γh‖2
[L2(we)]2×2

}
(69)

and

he ‖J [(C−1(e(uh) − C−1σh))tT ]‖2
[L2(e)]2 ≤ C4

{
|u − uh|2[H1(we)]2 + ‖σ − σh‖2

[L2(we)]2×2

}
. (70)

Proof. Applying Lemma 4.4 with ρh := C−1σh −∇uh + γh, introducing 0 = C−1σ −∇u + γ in the resulting
estimate, and then using the triangle inequality and the continuity of C−1, we get

‖J [(C−1σh −∇uh + γh)tT ]‖[L2(e)]2 ≤ c h
−1/2
e ‖C−1σh −∇uh + γh‖[L2(we)]2×2

= c h−1/2
e ‖C−1(σh − σ) + (∇u −∇uh) + (γh − γ)‖[L2(we)]2×2

≤ C h−1/2
e

{
‖σ − σh‖[L2(we)]2×2 + |u− uh|[H1(we)]2 + ‖γ − γh‖[L2(we)]2×2

}
,

which implies (69). Analogously, the estimate (70) is obtained from Lemma 4.4 defining ρh := C−1(e(uh) −
C−1σh) and then introducing 0 = C−1(e(u) − C−1σ). �

Lemma 4.9. There exist C5, C6 > 0, independent of h and λ, such that for any T ∈ Th

h2
T ‖div (e(uh) − 1

2
(C−1σh + (C−1σh)t))‖2

[L2(T )]2 ≤ C5

{
|u− uh|2[H1(T )]2 + ‖σ − σh‖2

[L2(T )]2×2

}
(71)
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and

h2
T ‖div (γh − 1

2
(∇uh − (∇uh)t))‖2

[L2(T )]2 ≤ C6

{
‖γ − γh‖2

[L2(T )]2×2 + |u− uh|2[H1(T )]2

}
. (72)

Proof. We apply Lemma 4.5 with ρh := e(uh) − 1
2 (C−1σh + (C−1σh)t), introduce the expression 0 = e(u) −

1
2 (C−1σ + (C−1σ)t) in the resulting estimate, and then use the triangle inequality and the continuity of the
operators e and C−1, to obtain

‖div (e(uh) − 1
2
(C−1σh + (C−1σh)t))‖[L2(T )]2

≤ c h−1
T ‖e(uh) − 1

2
(C−1σh + (C−1σh)t)‖[L2(T )]2×2

= c h−1
T ‖(e(uh) − e(u)) +

1
2
(C−1(σ − σh) + (C−1(σ − σh))t)‖[L2(T )]2×2

≤ C h−1
T

{
|u − uh|[H1(T )]2 + ‖σ − σh‖[L2(T )]2×2

}
,

which gives (71). Similarly, applying Lemma 4.5 with ρh := γh − 1
2 (∇uh − (∇uh)t) and introducing 0 =

γ − 1
2 (∇u − (∇u)t), we obtain (72). �

Lemma 4.10. There exist C7, C8 > 0, independent of h and λ, such that for any e ∈ Eh

he ‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖2

[L2(e)]2 ≤ C7

{
|u− uh|2[H1(we)]2 + ‖σ − σh‖2

[L2(we)]2×2

}
(73)

and

he ‖J [(γh − 1
2
(∇uh − (∇uh)t))νT ]‖2

[L2(e)]2 ≤ C8

{
‖γ − γh‖2

[L2(we)]2×2 + |u− uh|2[H1(we)]2

}
. (74)

Proof. We apply Lemma 4.6 with ρh := e(uh) − 1
2 (C−1σh + (C−1σh)t), introduce the expression 0 := e(u) −

1
2 (C−1σ + (C−1σ)t), and then employ again the triangle inequality and the continuity of the operators e and
C−1, to find that

‖J [(e(uh) − 1
2
(C−1σh + (C−1σh)t))νT ]‖[L2(e)]2

≤ c h−1/2
e ‖e(uh) − 1

2
(C−1σh + (C−1σh)t)‖[L2(we)]2×2

= c h−1/2
e ‖(e(uh) − e(u)) +

1
2
(C−1(σ − σh) + (C−1(σ − σh))t)‖[L2(we)]2×2

≤ C h−1/2
e

{
|u− uh|[H1(we)]2 + ‖σ − σh‖[L2(we)]2×2

}
,

which yields (73). Analogously, the estimate (74) follows also from Lemma 4.6 defining ρh := γh − 1
2 (∇uh +

(∇uh)t) and then introducing 0 = γ − 1
2 (∇u + (∇u)t). �

Finally, the efficiency of θ (lower bound of (21)) follows straightforwardly from the estimates (48)–(50), (67), (68)
(cf. Lem. 4.7), (69), (70) (cf. Lem. 4.8), (71), (72) (cf. Lem. 4.9), and (73), (74) (cf. Lem. 4.10), after summing
over all T ∈ Th and using that the number of triangles in each domain we is bounded by two.

5. Numerical results

In this section we provide several numerical results illustrating the performance of the augmented mixed
finite element scheme (10) and of the a posteriori error estimator θ analyzed in this paper, using the specific
finite element subspace Hσ

h ×Hu
0,h ×H

γ
h , defined at the end of Section 2 (see (13)–(19)). We recall that in this

case the local indicator θ2T reduces to (43).
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Now, before presenting the examples, we would like to remark in advance that, as compared with more
traditional mixed methods, and besides the fact, already emphasized, of being able to choose any finite element
subspace, our augmented approach presents other important advantages, as well. Indeed, let us first observe
that in the case of uniform refinements each interior edge (resp. interior node) belongs to 2 (resp. 6) triangles,
which yields corresponding correction factors of 1

2 and 1
6 when counting the global number of degrees of freedom,

say N , in terms of the number of triangles, say M . Then, it is not difficult to see that the number of unknowns
N of (10) behaves asymptotically as 5M , whereas this behaviour is given by 7.5M when the well-known PEERS
from [1] is used in the Galerkin scheme of the non-augmented formulation. In other words, the discrete system
using PEERS introduces about 50% more degrees of freedom than our approach at each mesh, and therefore
the augmented method becomes a much cheaper alternative. Furthermore, it is important to note that the
polynomial degrees involved in the definition of Hσ

h ×Hu
0,h ×H

γ
h , being 1, 1 and 0, yield simpler computations

than for the PEERS subspace, whose polynomial degrees are 2, 0, and 1, respectively. Similarly, as compared
with BDM (see e.g. [2, 3]), the augmented scheme also becomes more economical. In fact, as detailed for
instance in [2], just the unknowns associated with the displacements and rotations of BDM are given by 6M .
To this amount, one still needs to add the degrees of freedom for the stresses which are given locally by a
15-dimensional space. Only after a static condensation process, BDM reduces to 6 unknowns per each edge,
which yields N behaving as 9M . Naturally, the competitive character of our augmented method has strongly
motivated the need of deriving corresponding a posteriori error estimators in this paper. To this respect, and
because of the introduction of the Galerkin-least squares terms needed to define the augmented formulation,
we must recognize that θ is certainly more expensive than, for instance, the error indicator introduced in [2].
However, it is also clear that the reliability and efficiency of θ become more advantageous features than the
sole reliability of the estimator in [2]. Finally, in connection with the residual-based a posteriori error estimator
developed in [5] for PEERS and BDM, which is also reliable and efficient, we point out that the advantage of θ,
though a bit more expensive, is still the freedom to choose the finite element subspaces defining the augmented
scheme.

On the other hand, in order to implement the integral mean zero condition for functions of the space Hσ
0,h ={

τ h ∈ Hσ
h :

∫
Ω
tr(τ h) = 0

}
we introduce, as described in [10], a Lagrange multiplier (ϕh ∈ R below). That

is, instead of (10), we consider the equivalent problem: Find (σh,uh,γh, ϕh) ∈ Hσ
h ×Hu

0,h ×H
γ
h ×R such that

A((σh,uh,γh), (τ h,vh,ηh)) + ϕh

∫
Ω

tr(τ h) = F (τ h,vh,ηh) ,

ψh

∫
Ω

tr(σh) = 0 ,
(75)

for all (τ h,vh,ηh, ψh) ∈ Hσ
h ×Hu

0,h ×H
γ
h × R. In fact, we recall from [10] the following theorem establishing

the equivalence between (10) and (75).

Theorem 5.1.

a) Let (σh,uh,γh) ∈ H0,h be the solution of (10). Then (σh,uh,γh, 0) is a solution of (75).
b) Let (σh,uh,γh, ϕh) ∈ Hσ

h ×Hu
0,h ×H

γ
h ×R be a solution of (75). Then ϕh = 0 and (σh,uh,γh) is the

solution of (10).
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Proof. See Theorem 4.3 in [10]. �

In what follows, as indicated before, N stands for the total number of degrees of freedom (unknowns) of (75).
Also, the individual and total errors are denoted by

e(σ) := ‖σ − σh‖H(div ;Ω) , e(u) := |u − uh|[H1(Ω)]2 , e(γ) := ‖γ − γh‖[L2(Ω)]2×2 ,

and
e(σ,u,γ) :=

{
[e(σ)]2 + [e(u)]2 + [e(γ)]2

}1/2
,

respectively, whereas the effectivity index with respect to θ is defined by e(σ,u,γ)/θ.
On the other hand, we recall that given the Young modulus E and the Poisson ratio ν of a linear elastic

material, the corresponding Lamé constants are defined by µ := E
2(1+ν) and λ := E ν

(1+ν) (1−2 ν) . Then, in order
to emphasize the robustness of the a posteriori error estimator θ with respect to the Poisson ratio, in the
examples below we fix E = 1 and consider ν = 0.4900, ν = 0.4999, or both, which yield the following values
of µ and λ :

ν µ λ

0.4900 0.3356 16.4430
0.4999 0.3333 1666.4444

In addition, since the augmented method was already shown in [10] to be robust with respect to the parameters
κ1, κ2, and κ3, we simply consider for all the examples (κ1, κ2, κ3) =

(
µ, 1

2 µ ,
µ
2

)
, which corresponds to the

feasible choice described in Theorem 2.1 with C̃1 = 1 and C̃3 = 1
2 .

We now specify the data of the five examples to be presented here. We take Ω as either the square ]0, 1[2

or the L-shaped domain ] − 0.5, 0.5[2 \ [0, 0.5]2, and choose the datum f so that ν and the exact solution
u(x1, x2) := (u1(x1, x2), u2(x1, x2))t are given in the table below. Actually, according to (1) and (2) we have
σ = λ div (u) I + 2µ e(u), and hence simple computations show that f := −div(σ) = − (λ+µ)∇(div u) −
µ∆u. We also recall that the rotation γ is defined as 1

2

(
∇u− (∇u)t

)
.

We observe that the solution of Example 3 is singular at the boundary point (0,0). In fact, the behaviour
of u in a neighborhood of the origin implies that div (σ) ∈ [H1/3(Ω)]2 only, which, according to Theorem 2.3,
yields 1/3 as the expected rate of convergence for the uniform refinement. On the other hand, the solutions of
Examples 1, 4, and 5 show large stress regions in a neighborhood of the boundary point (1, 1), in a neighborhood
of the interior point (1/2, 1/2), and around the line x1 = 0, respectively.

Example Ω ν u1(x1, x2) = u2(x1, x2)

1 ]0, 1[2 0.4900
x1 (x1 − 1) x2 (x2 − 1)

(x1 − 1)2 + (x2 − 1)2 + 0.01

0.4999

2 ]0, 1[2 0.4900 x1 (x1 − 1) x2 (x2 − 1) (x2
1 + x2

2)
1/3

0.4999

3 ] − 0.5, 0.5[2 \ [0, 0.5]2 0.4900 x1 x2 (x2
1 − 0.25) (x2

2 − 0.25) (x2
1 + x2

2)
−1/3

4 ]0, 1[2 0.4900
sin(π x1) sin(π x2)

1000 (x1 − 1/2)2 + 1000 (x2 − 1/2)2 + 10

5 ] − 0.5, 0.5[2 \ [0, 0.5]2 0.4900 x1 x2 (x2
1 − 0.25) (x2

2 − 0.25) (x2
1 + 0.0001)−1/3

The numerical results given below were obtained using a Compaq Alpha ES40 Parallel Computer and a
Fortran code. The linear system arising from the augmented mixed scheme (75) is implemented as explained in
Section 4.3 of [10], and the individual errors are computed on each triangle using a Gaussian quadrature rule.
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We first utilize Examples 1 and 2 to illustrate the good behaviour of the a posteriori error estimator θ in
a sequence of uniform meshes generated by equally spaced partitions on the sides of the square ]0, 1[2. In
Tables 5.1 through 5.4 we present the individual and total errors, the a posteriori error estimators, and the
effectivity indices for these examples, with ν = 0.4900 and ν = 0.4999, for this sequence of uniform meshes.
We remark that in both cases, and independently of how large the errors could become, there are practically
no differences between the effectivity indices obtained with the two values of ν, which numerically shows the
robustness of θ with respect to the Poisson ratio (and hence with respect to the Lamé constant λ). Moreover,
this index always remains in a neighborhood of 0.89 in Example 1 (resp. 0.46 in Ex. 2), which confirms the
reliability and efficiency of θ. In fact, as established by our main Theorem 3.1, the effectivity index must lie
between the constants Ceff and Crel (see (21)).

Next, we consider Examples 3, 4, and 5, to illustrate the performance of the following adaptive algorithm
based on θ for the computation of the solutions of (75) (see [14]):

1. Start with a coarse mesh Th.
2. Solve the Galerkin scheme (75) for the current mesh Th.
3. Compute θT for each triangle T ∈ Th.
4. Consider stopping criterion and decide to finish or go to next step.
5. Use blue-green procedure to refine each element T ′ ∈ Th whose local indicator θT ′ satisfies θT ′ ≥

1
2 max{θT : T ∈ Th}.

6. Define resulting mesh as the new Th and go to step 2.

At this point we introduce the experimental rate of convergence, which, given two consecutive triangulations
with degrees of freedom N and N ′ and corresponding total errors e and e′, is defined by

r(e) := − 2
log(e/e′)

log(N/N ′)
·

In Tables 5.5 through 5.10 we provide the individual and total errors, the experimental rates of convergence,
the a posteriori error estimators, and the effectivity indices for the uniform and adaptive refinements as applied
to Examples 3–5. In this case, uniform refinement means that, given a uniform initial triangulation, each
subsequent mesh is obtained from the previous one by dividing each triangle into the four ones arising when
connecting the midpoints of its sides. We observe from these tables that the errors of the adaptive procedure
decrease much faster than those obtained by the uniform one, which is confirmed by the experimental rates of
convergence provided there. This fact can also be seen in Figures 5.1 through 5.3 where we display the total
error e(σ,u,γ) vs. the degrees of freedom N for both refinements. As shown by the values of r(e), particularly
in Example 3 (where r(e) approaches 1/3 for the uniform refinement), the adaptive method is able to recover, at
least approximately, the quasi-optimal rate of convergence O(h) for the total error. Furthermore, the effectivity
indices remain again bounded from above and below, which confirms the reliability and efficiency of θ for the
adaptive algorithm. On the other hand, some intermediate meshes obtained with the adaptive refinement are
displayed in Figures 5.4 through 5.6. Note that the method is able to recognize the singularities and the large
stress regions of the solutions. In particular, this fact is observed in Example 3 (see Fig. 5.4) where the adapted
meshes are highly refined around the singular point (0, 0). Similarly, the adapted meshes obtained in Examples 4
and 5 (see Figs. 5.5 and 5.6) concentrate the refinements around the interior point (1/2, 1/2) and the segment
x1 = 0, respectively, where the largest stresses occur.

Summarizing, the numerical results presented in this section underline the reliability and efficiency of θ and
strongly demonstrate that the associated adaptive algorithm is much more suitable than a uniform discretization
procedure when solving problems with non-smooth solutions.
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Table 5.1. Mesh sizes, individual and total errors, a posteriori error estimators, and effectivity
indices for a sequence of uniform meshes (Ex. 1, ν = 0.4900).

N h e(σ) e(u) e(γ) e(σ, u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.9067E+2 0.2756E+1 0.1899E+1 0.9073E+2 0.1277E+3 0.7102

363 0.16667 0.9112E+2 0.2576E+1 0.2452E+1 0.9118E+2 0.1085E+3 0.8397

643 0.12500 0.7570E+2 0.2050E+1 0.2458E+1 0.7577E+2 0.8784E+2 0.8625

1003 0.10000 0.6100E+2 0.1673E+1 0.2321E+1 0.6107E+2 0.7070E+2 0.8637

1443 0.08333 0.5047E+2 0.1422E+1 0.2168E+1 0.5054E+2 0.5854E+2 0.8633

1963 0.07143 0.4348E+2 0.1227E+1 0.2026E+1 0.4355E+2 0.5026E+2 0.8663

2563 0.06250 0.3859E+2 0.1060E+1 0.1899E+1 0.3865E+2 0.4435E+2 0.8714

3243 0.05556 0.3483E+2 0.9191E+0 0.1784E+1 0.3489E+2 0.3980E+2 0.8766

4003 0.05000 0.3174E+2 0.8000E+0 0.1681E+1 0.3179E+2 0.3609E+2 0.8810

4843 0.04545 0.2911E+2 0.7009E+0 0.1587E+1 0.2916E+2 0.3297E+2 0.8846

5763 0.04167 0.2685E+2 0.6187E+0 0.1501E+1 0.2690E+2 0.3031E+2 0.8874

6763 0.03846 0.2489E+2 0.5503E+0 0.1423E+1 0.2494E+2 0.2803E+2 0.8898

7843 0.03571 0.2318E+2 0.4930E+0 0.1352E+1 0.2323E+2 0.2605E+2 0.8918

9003 0.03333 0.2169E+2 0.4446E+0 0.1286E+1 0.2173E+2 0.2432E+2 0.8936

10243 0.03125 0.2037E+2 0.4034E+0 0.1226E+1 0.2041E+2 0.2280E+2 0.8951

11563 0.02941 0.1919E+2 0.3681E+0 0.1171E+1 0.1923E+2 0.2145E+2 0.8965

12963 0.02777 0.1815E+2 0.3375E+0 0.1120E+1 0.1818E+2 0.2025E+2 0.8978

Table 5.2. Mesh sizes, individual and total errors, a posteriori error estimators, and effectivity
indices for a sequence of uniform meshes (Ex. 1, ν = 0.4999).

N h e(σ) e(u) e(γ) e(σ, u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.9045E+4 0.2534E+3 0.1713E+3 0.9050E+4 0.1257E+5 0.7198

363 0.16667 0.8986E+4 0.2439E+3 0.2248E+3 0.8992E+4 0.1065E+5 0.8446

643 0.12500 0.7447E+4 0.1962E+3 0.2268E+3 0.7453E+4 0.8609E+4 0.8657

1003 0.10000 0.5991E+4 0.1610E+3 0.2152E+3 0.5997E+4 0.6926E+4 0.8659

1443 0.08333 0.4948E+4 0.1372E+3 0.2019E+3 0.4954E+4 0.5729E+4 0.8647

1963 0.07143 0.4255E+4 0.1183E+3 0.1894E+3 0.4261E+4 0.4914E+4 0.8671

2563 0.06250 0.3771E+4 0.1022E+3 0.1781E+3 0.3777E+4 0.4332E+4 0.8719

3243 0.05556 0.3401E+4 0.8848E+2 0.1677E+3 0.3407E+4 0.3885E+4 0.8769

4003 0.05000 0.3098E+4 0.7688E+2 0.1583E+3 0.3103E+4 0.3521E+4 0.8813

4843 0.04545 0.2841E+4 0.6721E+2 0.1497E+3 0.2846E+4 0.3216E+4 0.8848

5763 0.04167 0.2620E+4 0.5918E+2 0.1418E+3 0.2625E+4 0.2957E+4 0.8877

6763 0.03846 0.2429E+4 0.5249E+2 0.1345E+3 0.2433E+4 0.2733E+4 0.8901

7843 0.03571 0.2262E+4 0.4688E+2 0.1279E+3 0.2266E+4 0.2540E+4 0.8922

9003 0.03333 0.2116E+4 0.4214E+2 0.1218E+3 0.2120E+4 0.2371E+4 0.8940

10243 0.03125 0.1987E+4 0.3810E+2 0.1162E+3 0.1991E+4 0.2223E+4 0.8956

11563 0.02941 0.1873E+4 0.3462E+2 0.1110E+3 0.1876E+4 0.2092E+4 0.8970

12963 0.02777 0.1771E+4 0.3161E+2 0.1062E+3 0.1774E+4 0.1975E+4 0.8983
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Table 5.3. Mesh sizes, individual and total errors, a posteriori error estimators, and effectivity
indices for a sequence of uniform meshes (Ex. 2, ν = 0.4900).

N h e(σ) e(u) e(γ) e(σ, u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.2730E+1 0.1483E+0 0.2631E+0 0.2747E+1 0.8203E+1 0.3349

363 0.16666 0.1841E+1 0.1108E+0 0.2492E+0 0.1861E+1 0.5159E+1 0.3607

643 0.12500 0.1386E+1 0.8231E-1 0.2236E+0 0.1406E+1 0.3696E+1 0.3804

1003 0.10000 0.1110E+1 0.6260E-1 0.1978E+0 0.1129E+1 0.2855E+1 0.3955

1443 0.08333 0.9259E+0 0.4904E-1 0.1751E+0 0.9436E+0 0.2315E+1 0.4074

1963 0.07143 0.7939E+0 0.3952E-1 0.1561E+0 0.8101E+0 0.1941E+1 0.4171

2563 0.06250 0.6947E+0 0.3264E-1 0.1403E+0 0.7095E+0 0.1668E+1 0.4252

3243 0.05556 0.6176E+0 0.2753E-1 0.1271E+0 0.6311E+0 0.1460E+1 0.4320

4003 0.05000 0.5558E+0 0.2364E-1 0.1160E+0 0.5683E+0 0.1297E+1 0.4378

4843 0.04545 0.5053E+0 0.2061E-1 0.1066E+0 0.5169E+0 0.1166E+1 0.4429

5763 0.04167 0.4632E+0 0.1820E-1 0.9852E-1 0.4739E+0 0.1059E+1 0.4474

6763 0.03846 0.4276E+0 0.1626E-1 0.9153E-1 0.4376E+0 0.9695E+0 0.4513

7843 0.03571 0.3970E+0 0.1466E-1 0.8543E-1 0.4064E+0 0.8935E+0 0.4548

9003 0.03333 0.3706E+0 0.1333E-1 0.8006E-1 0.3794E+0 0.8284E+0 0.4579

10243 0.03125 0.3474E+0 0.1221E-1 0.7532E-1 0.3557E+0 0.7719E+0 0.4608

11563 0.02941 0.3270E+0 0.1126E-1 0.7109E-1 0.3348E+0 0.7226E+0 0.4633

12963 0.02777 0.3088E+0 0.1044E-1 0.6730E-1 0.3162E+0 0.6791E+0 0.4657

Table 5.4. Mesh sizes, individual and total errors, a posteriori error estimators, and effectivity
indices for a sequence of uniform meshes (Ex. 2, ν = 0.4999).

N h e(σ) e(u) e(γ) e(σ, u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.2707E+3 0.1356E+2 0.2536E+2 0.2722E+3 0.8067E+3 0.3374

363 0.16666 0.1825E+3 0.1053E+2 0.2375E+2 0.1843E+3 0.5070E+3 0.3635

643 0.12500 0.1373E+3 0.7847E+1 0.2126E+2 0.1392E+3 0.3628E+3 0.3837

1003 0.10000 0.1100E+3 0.5913E+1 0.1879E+2 0.1118E+3 0.2801E+3 0.3990

1443 0.08333 0.9176E+2 0.4558E+1 0.1665E+2 0.9337E+2 0.2270E+3 0.4112

1963 0.07143 0.7867E+2 0.3599E+1 0.1484E+2 0.8014E+2 0.1903E+3 0.4211

2563 0.06250 0.6884E+2 0.2903E+1 0.1334E+2 0.7018E+2 0.1634E+3 0.4293

3243 0.05556 0.6119E+2 0.2386E+1 0.1209E+2 0.6242E+2 0.1430E+3 0.4362

4003 0.05000 0.5507E+2 0.1993E+1 0.1104E+2 0.5620E+2 0.1270E+3 0.4422

4843 0.04545 0.5007E+2 0.1689E+1 0.1014E+2 0.5111E+2 0.1142E+3 0.4474

5763 0.04167 0.4589E+2 0.1449E+1 0.9377E+1 0.4686E+2 0.1036E+3 0.4519

6763 0.03846 0.4236E+2 0.1256E+1 0.8712E+1 0.4327E+2 0.9490E+2 0.4559

7843 0.03571 0.3934E+2 0.1099E+1 0.8132E+1 0.4018E+2 0.8745E+2 0.4595

9003 0.03333 0.3671E+2 0.9697E+0 0.7622E+1 0.3751E+2 0.8106E+2 0.4627

10243 0.03125 0.3442E+2 0.8617E+0 0.7171E+1 0.3517E+2 0.7553E+2 0.4656

11563 0.02941 0.3239E+2 0.7708E+0 0.6768E+1 0.3310E+2 0.7070E+2 0.4682

12963 0.02777 0.3059E+2 0.6935E+0 0.6408E+1 0.3126E+2 0.6644E+2 0.4706
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Table 5.5. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the uniform refinement (Ex. 3).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.2182E+1 0.1994E+0 0.9131E-1 0.2193E+1 —– 0.2898E+1 0.7567

483 0.1525E+1 0.9385E-1 0.9919E-1 0.1531E+1 0.5254 0.1840E+1 0.8323

1923 0.1122E+1 0.4040E-1 0.7723E-1 0.1125E+1 0.4455 0.1242E+1 0.9058

7683 0.8585E+0 0.2246E-1 0.4795E-1 0.8601E+0 0.3885 0.8996E+0 0.9561

Table 5.6. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the adaptive refinement (Ex. 3).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.2182E+1 0.1994E+0 0.9131E-1 0.2193E+1 —— 0.2898E+1 0.7567

243 0.1795E+1 0.1516E+0 0.7951E-1 0.1803E+1 0.5745 0.2340E+1 0.7707

483 0.1372E+1 0.9211E-1 0.8634E-1 0.1378E+1 0.7839 0.1702E+1 0.8094

543 0.1259E+1 0.9159E-1 0.8658E-1 0.1265E+1 1.4583 0.1609E+1 0.7860

663 0.1137E+1 0.8250E-1 0.8357E-1 0.1143E+1 1.0150 0.1476E+1 0.7746

778 0.1045E+1 0.8113E-1 0.8228E-1 0.1051E+1 1.0454 0.1386E+1 0.7583

1228 0.8540E+0 0.7469E-1 0.6693E-1 0.8599E+0 0.8821 0.1100E+1 0.7814

1518 0.7810E+0 0.7270E-1 0.5604E-1 0.7864E+0 0.8423 0.9562E+0 0.8224

1783 0.7100E+0 0.7233E-1 0.6058E-1 0.7162E+0 1.1622 0.8812E+0 0.8127

2288 0.6381E+0 0.7912E-1 0.6245E-1 0.6460E+0 0.8269 0.7869E+0 0.8209

2533 0.6040E+0 0.7605E-1 0.6008E-1 0.6117E+0 1.0727 0.7569E+0 0.8082

3663 0.5089E+0 0.9206E-1 0.5993E-1 0.5206E+0 0.8745 0.6383E+0 0.8156

4703 0.4449E+0 0.7418E-1 0.5634E-1 0.4546E+0 1.0850 0.5560E+0 0.8175

5698 0.4056E+0 0.7651E-1 0.5628E-1 0.4166E+0 0.9091 0.5052E+0 0.8246

7243 0.3654E+0 0.7278E-1 0.5394E-1 0.3764E+0 0.8448 0.4506E+0 0.8355

8203 0.3428E+0 0.6653E-1 0.5370E-1 0.3533E+0 1.0209 0.4290E+0 0.8234

10818 0.3138E+0 0.8197E-1 0.5696E-1 0.3293E+0 0.5078 0.3865E+0 0.8520
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Figure 5.1. Total errors e(σ,u,γ) vs. degrees of freedom N for the uniform and adaptive refinements (Ex. 3).
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Table 5.7. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the uniform refinement (Ex. 4).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

163 0.3813E+2 0.5025E+1 0.2685E+1 0.3855E+2 —— 0.4070E+2 0.9472

643 0.3593E+2 0.2015E+1 0.1361E+1 0.3601E+2 0.0991 0.3692E+2 0.9755

2563 0.2021E+2 0.1035E+1 0.8087E+0 0.2025E+2 0.8327 0.2093E+2 0.9673

10243 0.9898E+1 0.7493E+0 0.6000E+0 0.9944E+1 1.0267 0.1027E+2 0.9677

Table 5.8. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the adaptive refinement (Ex. 4).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

163 0.3813E+2 0.5025E+1 0.2685E+1 0.3855E+2 —— 0.4070E+2 0.9472

343 0.3594E+2 0.1913E+1 0.1156E+1 0.3601E+2 0.1827 0.3686E+2 0.9771

643 0.2042E+2 0.1255E+1 0.8721E+0 0.2048E+2 1.7958 0.2122E+2 0.9654

883 0.1174E+2 0.1232E+1 0.6751E+0 0.1183E+2 3.4620 0.1237E+2 0.9559

2583 0.6525E+1 0.1246E+1 0.7400E+0 0.6684E+1 1.0638 0.7092E+1 0.9424

4988 0.4748E+1 0.1109E+1 0.6405E+0 0.4918E+1 0.9324 0.5114E+1 0.9615

9748 0.3540E+1 0.8796E+0 0.5435E+0 0.3688E+1 0.8591 0.3785E+1 0.9743
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Figure 5.2. Total errors e(σ,u,γ) vs. degrees of freedom N
for the uniform and adaptive refinements (Ex. 4).
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Table 5.9. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the uniform refinement (Ex. 5).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.1399E+2 0.4737E+0 0.1629E+0 0.1400E+2 —— 0.1436E+2 0.9745

483 0.2522E+2 0.2957E+0 0.1577E+0 0.2522E+2 —— 0.2527E+2 0.9980

1923 0.2494E+2 0.1375E+0 0.1454E+0 0.2494E+2 0.0162 0.2496E+2 0.9992

7683 0.1449E+2 0.6395E-1 0.1742E+0 0.1449E+2 0.7834 0.1453E+2 0.9975

Table 5.10. Individual and total errors, experimental rates of convergence, a posteriori error
estimators, and effectivity indices for the adaptive refinement (Ex. 5).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.1399E+2 0.4737E+0 0.1629E+0 0.1400E+2 —— 0.1436E+2 0.9745

263 0.2524E+2 0.3215E+0 0.1510E+0 0.2524E+2 —— 0.2535E+2 0.9957

513 0.2498E+2 0.2298E+0 0.1420E+0 0.2498E+2 0.0309 0.2507E+2 0.9963

988 0.1507E+2 0.2026E+0 0.1888E+0 0.1507E+2 1.5421 0.1523E+2 0.9894

2383 0.8488E+1 0.1927E+0 0.1773E+0 0.8492E+1 1.3033 0.8603E+1 0.9871

4038 0.6955E+1 0.1424E+0 0.1249E+0 0.6958E+1 0.7556 0.7042E+1 0.9881

7938 0.5361E+1 0.1458E+0 0.1082E+0 0.5364E+1 0.7696 0.5439E+1 0.9862

12743 0.4272E+1 0.1353E+0 0.1044E+0 0.4275E+1 0.9587 0.4331E+1 0.9870
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Figure 5.3. Total errors e(σ,u,γ) vs. degrees of freedom N
for the uniform and adaptive refinements (Ex. 5).
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Figure 5.4. Adapted intermediate meshes with 1783, 3663, 8203, and 10818 degrees of free-
dom (Ex. 3).

Figure 5.5. Adapted intermediate meshes with 883, 2583, 4988, and 9748 degrees of freedom (Ex. 4).
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Figure 5.6. Adapted intermediate meshes with 2383, 4038, 7938, and 12743 degrees of free-
dom (Ex. 5).
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