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Abstract. A Discontinuous Galerkin method is used for to the numerical solution of the time-domain
Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a
centered mean approximation for the surface integrals and a second-order leap-frog scheme for advanc-
ing in time. The method is proved to be stable for cases with either metallic or absorbing boundary
conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is
conserved for metallic cavities. Convergence is proved for Pk Discontinuous elements on tetrahedral
meshes, as well as a discrete divergence preservation property. Promising numerical examples with
low-order elements show the potential of the method.
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Introduction

The modeling of systems involving electromagnetic waves has known a kind of reinvention [24] through the
resolution of the time-domain Maxwell equations on space grids. Although the finite difference time-domain
(FDTD) methods based on Yee’s scheme [27] are still prominent, many different types of methods have been
proposed, like finite element time-domain (FETD) methods, which are based on unstructured meshes and can
deal with complex geometries [4]. However, they induce heavy computations or lumping of mass matrices and
significant works are still being devoted to the construction of edge elements allowing accurate and efficient
mass lumping [7,14]. Similarly, mimetic methods [13] have proven properties for Maxwell equations which make
them close to the classical edge elements in the unstructured case.

Gathering many advantages, finite volume time-domain (FVTD) methods can also be based on unstructured
meshes and get rid of differential operators (and finite element mass matrices) using Green’s formula for the
integration over finite volumes. FVTD methods (i.e. piecewise constant, discontinuous, Galerkin-type finite
element approximation) have been developed on body-fitted coordinates [23], on unstructured finite element
triangulations [4] or on totally destructured meshes [1]. First-order conservative upwind schemes, for which
stability [19], convergence [8] and L1 error estimates of h1/2 [25] were proven, are too dissipative to be used for the
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numerical simulation of electromagnetic waves propagation, since the numerical diffusion induced by upwinding
makes long-run computations (at least over several periods) very inaccurate. Remaki has proposed a non-
dissipative FVTD method in heterogeneous media [22], which is based on a second-order leap-frog time scheme
and on second-order centered numerical fluxes, and yields a conservative finite volume method with no numerical
diffusion, in the sense that some L2-type, quadratic, discrete, electromagnetic energy is conserved, even on finite
volumes of arbitrary shape. Still, the convergence of such a FVTD method is limited by the piecewise constant
approach (see [17] for a convergence result under some mesh regularity assumption). The discontinuous Galerkin
methods enjoy a renewed favor nowadays and are now used in many and various applications [5] as people
(re)discover the abilities of these methods to handle complicated geometries and meshes, to achieve a high order
of accuracy by simply choosing suitable basis functions, including spectral elements in order to reach high-order
accuracy [15], with different approaches either on tetrahedral meshes using Lagrange polynomials [10–12] or
ongoing work on hexahedral meshes using products of Legendre polynomials. The existing software are mostly
based on upwind or partially upwind fluxes, along with multi-step low-storage Runge-Kutta time-schemes (less
often on a leap-frog scheme and centered fluxes) and remain highly parallelizable. One can notice here that,
although Runge-Kutta schemes are robust and stable, no stability proof is available for these kind of schemes
on arbitrary meshes.

At the same time, one of the most important properties which should be aimed at is the conservation of a
discrete analog of the electromagnetic energy (if there is no electric conductivity). This cannot be obtained
with discontinuous Galerkin methods based on upwind fluxes [4, 15, 26], although upwind fluxes lead to more
robust codes, particularly for frequency-domain computations (low-frequency stabilization of centered fluxes
have been proposed though [12]). Another important property is the preservation of the divergence relations in
the absence of sources: the electric and magnetic fields should remain solenoidal throughout the computation.
Much work has recently been done in that direction, including divergence-free basis functions [2, 6].

We present in this paper a discontinuous Galerkin method for the time domain Maxwell equations based
on centered numerical fluxes and a leap-frog time-scheme. We show that this method yields discrete energy
conservation and divergence preservation (in a weak sense). We dress the outline of the method in the general
case in Section 2, then we prove the stability of the resulting time and space fully discretized scheme (with
metallic and absorbing conditions) and its energy conservation properties in Section 3. The convergence of the
method and the discrete divergence preservation property of the method are analyzed on tetrahedral meshes in
Section 4. The convergence result is slightly weaker than available results for general triangulations and upwind
(or monotone) fluxes [5, 9] and the same as one given recently [11] (this is also the case for the error bound on
the divergence of the fields). In Section 5, we pay a particular attention to low order (P0- P1-DGTD) methods
on tetrahedral meshes, for which numerical results are presented and compared with the exact solutions.

We consider in this paper the Maxwell equations in three space dimensions for heterogeneous anisotropic
linear media with no source. The electric permittivity tensor ¯̄ε(x) and the magnetic permeability tensor ¯̄µ(x) are
varying in space and both symmetric positive definite (for almost every x ∈ Ω). We assume they are uniformly
bounded with a strictly positive lower bound, i.e. there are constants λ > 0 and λ > 0 such that for almost
every x ∈ Ω,

∀ξ ∈ R
3,

{
λ|ξ|2 ≤ ξ · ¯̄ε(x)ξ ≤ λ|ξ|2,
λ|ξ|2 ≤ ξ · ¯̄µ(x)ξ ≤ λ|ξ|2. (1)

The electric field �E and the magnetic field �H verify

¯̄ε
∂ �E

∂t
= �curl �H, ¯̄µ

∂ �H

∂t
= − �curl �E. (2)

These equations are set and solved on a bounded polyhedral domain Ω of R
3. Everywhere on the domain

boundary ∂Ω (of unitary outwards normal �n), a boundary condition is set which is either metallic (�n× �E = �0)
on ∂Ωm or absorbing (�n × �E = cµ

(
�n× �H

)
× �n), on ∂Ωa, where we assume the medium is isotropic near the
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absorbing boundary, i.e. ¯̄ε = εI3 ¯̄µ = µI3 and the local light speed c is given by εµc2 = 1. We recall the following
existence and uniqueness result that has been proved in [18] for a regular domain and can be generalized for
Lipschitz-polyhedra.

Theorem 0.1. If ¯̄ε and ¯̄µ are uniformly bounded and verify (1), the problem (2) admits a unique solution
(�E, �H) ∈ C1([0, T ], (L2(Ω))6)∩C0([0, T ]),H( �curl)×H( �curl)), for any initial data (�E0, �H0) ∈ H( �curl)×H( �curl)
satisfying the boundary conditions �n× �E = �0 on ∂Ωm and �n× �E = cµ

(
�n× �H

)
× �n on ∂Ωa.

1. The Discontinuous Galerkin Time-Domain framework

1.1. Introduction

We assume we dispose of a partition of a polyhedral domain Ωh (approximating the regular or Lipschitz-
continuous domain of interest Ω) into a finite number of polyhedra (each one having a finite number of faces). For
each polyhedral element Ti, Vi denotes its volume, and ¯̄εi and ¯̄µi are respectively the local electric permittivity
and magnetic permeability tensors of the medium, which could be varying inside the element Ti. We call face
between two finite elements their intersection, whenever it is a polyhedral surface. We denote by Fh the union
of faces and by F int

h = Fh/∂Ωh the union of internal faces (common to two finite elements). For each internal
face aik = Ti

⋂
Tk, we denote by Sik the measure of aik and by �nik the unitary normal, oriented from Ti

towards Tk. The same definitions are extended to boundary faces (in the intersection of the domain boundary
∂Ωh = ∂Ωm

h

⋃
∂Ωa

h with a finite element), the index k corresponding to a fictitious element outside the domain.
Finally, we denote by Vi the set of indices of the neighboring elements of the Ti (having a face in common).

We also define the perimeter Pi of Ti by Pi =
∑

k∈Vi
Sik. We have the following geometrical property for all

elements:
∑

k∈Vi
Sik�nik = 0.

1.2. The time and space discretizations

Inside each finite element, the electric and magnetic fields are seeked for as linear combinations (�Ei, �Hi) of
linearly independent vector fields �ϕij , 1 ≤ j ≤ di, where di denotes the local number of scalar degrees of freedom
inside the finite element Ti. We denote by Pi = Span(�ϕij , 1 ≤ j ≤ di). The approximate fields (�Eh, �Hh),
defined by (∀i, �Eh|Ti

= �Ei, �Hh|Ti
= �Hi) are allowed to be discontinuous across element boundaries. For such a

discontinuous field �Uh, we define its average {�Uh}ik through any internal face aik, as

{�Uh}ik =
�Ui|aik

+ �Uk|aik

2
·

Note that for any internal face aik, {�Uh}ki = {�U}ik. Dot-multiplying (2) by any given vector field �ϕ, integrating
over Ti and integrating by parts yields



∫
Ti

�ϕ · ¯̄εi
∂�E
∂t

= −
∫

∂Ti

�ϕ · (�H× �n) +
∫
Ti

�curl �ϕ · �H,∫
Ti

�ϕ · ¯̄µi
∂ �H
∂t

=
∫

∂Ti

�ϕ · (�E× �n) −
∫
Ti

�curl �ϕ · �E.
(3)

In Equations (3), we now replace the exact fields �E and �H by the approximate fields �Eh and �Hh in order to
evaluate volume integrals. For integrals over ∂Ti, some additional approximations have to be done since the
approximate fields are discontinuous through element faces. We choose to use completely centered fluxes, i.e.

∀i, ∀k ∈ Vi, �E|aik
� {�Eh}ik, �H|aik

� {�Hh}ik.
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Concerning the time discretization, we propose to use a leap-frog advancing-in-time scheme. This kind of time
scheme has both the advantages to be explicit and to be free of time-dissipation. In the sequel, superscripts
refer to time stations and ∆t is the fixed time-step. The unknowns related to the electric field are approximated
at integer time-stations tn = n∆t and are denoted by �En

i . The unknowns related to the magnetic field are
approximated at half-integer time-stations tn+ 1

2 = (n + 1
2 )∆t and are denoted by �H

n+ 1
2

i . Then, assuming we

dispose of the fields �En
i and �H

n+ 1
2

i , the fields �En+1
i and �H

n+ 3
2

i are seeked for in Pi such that, ∀ϕ ∈ Pi,




∫
Ti

�ϕ · ¯̄εi

�En+1
i − �En

i

∆t
= −

∑
k∈Vi

∫
aik

�ϕ · {�Hn+ 1
2

h }ik × �nik +
∫
Ti

�curl �ϕ · �Hn+ 1
2

i ,

∫
Ti

�ϕ · ¯̄µi

�H
n+ 3

2
i − �H

n+ 1
2

i

∆t
=
∑
k∈Vi

∫
aik

�ϕ · {�En+1
h }ik × �nik −

∫
Ti

�curl �ϕ · �En+1
i .

(4)

We can rewrite this formulation in terms of scalar unknowns. Inside each element, the fields �En
i and �H

n+ 1
2

i are
decomposed according to

∀x ∈ Ti, �En
i (x) =

∑
1≤j≤di

En
ij �ϕij(x), �H

n+ 1
2

i (x) =
∑

1≤j≤di

H
n+ 1

2
ij �ϕij(x). (5)

We denote by En
i (resp. H

n+ 1
2

i ) the column (En
il)1≤l≤di (resp. (Hn+ 1

2
il )1≤l≤di). The scheme (4) can be rewritten

in the following semi-matrix form:




[
M ε

i

En+1
i − En

i

∆t

]
j

= −
∑
k∈Vi

∫
aik

�ϕij · {�Hn+ 1
2 }ik × �nik +

∫
Ti

�curl �ϕij · �H
n+ 1

2
i ,

[
Mµ

i

H
n+ 3

2
i − H

n+ 1
2

i

∆t

]
j

=
∑
k∈Vi

∫
aik

�ϕij · {�En+1}ik × �nik −
∫
Ti

�curl �ϕij · �En+1
i ,

(6)

where the j subscripts denote the jth component of vectors, the fields �En
i , �En+1

i , and �H
n+ 1

2
i are given in (5) in

functions of scalar degrees of freedom, and M ε
i and Mµ

i are square matrices of size di, given by

(M ε
i )jl =

∫
Ti

t�ϕij ¯̄εi�ϕil, 1 ≤ j, l ≤ di,

(Mµ
i )jl =

∫
Ti

t�ϕij ¯̄µi�ϕil, 1 ≤ j, l ≤ di.
(7)

It is clear that the matrices M ε
i and Mµ

i are symmetric and definite positive, because the tensors ¯̄εi and ¯̄µi are
symmetric definite positive, and the basis vector fields �ϕij are assumed linearly independent. The semi-matrix
form (6) makes clear that the actual implementation of the scheme (4) only requires the inversion of local mass
matrices and the computation of numerical fluxes.

1.3. Weak treatment of boundary conditions

The metallic and absorbing conditions are dealt with in a weak sense by taking some values for the fields �E
and �H at the boundary face on its outer side. In all cases, a boundary face is still denoted by aik, where i is
the index of the boundary element Ti and some fictitious neighbor Tk is virtually created. The treatment of
boundary conditions is weak in the sense that the traces on aik of fictitious fields �En

k and �H
n+ 1

2
k are used for

the computation of numerical fluxes in (4) for the boundary element Ti.
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For a metallic boundary face aik, the boundary condition is �nik × �E|aik
= 0. We then choose to use

Metallic boundary:

{
�En

k |aik
= −�En

i |aik
,

�H
n+ 1

2
k |aik

= �H
n+ 1

2
i |aik

,
(8)

which leads to {�En}ik = 0 and {�Hn+1
2 }ik = �H

n+ 1
2

i |aik
.

For an absorbing boundary face aik, a first-order Silver–Müller absorbing condition is used. It takes the form:
�nik×�E|aik

= −ciµi�nik×(�nik× �H|aik
) and symmetrically �nik× �H|aik

= ciεi�nik×(�nik×�E|aik
), where ci = 1/

√
µiεi

is the local light speed (we recall we have assumed that the medium is isotropic near the absorbing boundary;
the permeability and permittivity tensors ¯̄ε and ¯̄µ are scalars, respectively εi and µi). This boundary condition
is exact for outgoing plane waves (with a wave vector collinear with �nik). It is a first-order approximation,
asymptotically correct when the fictitious absorbing boundary is far enough and normal to the wave propagation.

In view of the absorbing boundary condition above, we propose the following fictitious fields �Hn+ 1
2

k and �En+1
k

over an absorbing face aik.

Absorbing boundary:




�H
n+ 1

2
k |aik

= ciεi �nik ×
�En

i |aik
+�En+1

i |aik

2 ,

�En+1
k |aik

= −ciµi �nik ×
�H

n+ 1
2

i |aik
+�H

n+ 3
2

i |aik

2 ·

(9)

Some remarks can be made concerning these boundary fields:

• they are used in the computation of boundary fluxes in (4) for the element Ti. Then they both are cross-
multiplied by the local normal �nik, which yields back the original form of the Silver–Müller condition;

• the reader can check that the fields �En
k |aik

and �H
n+ 1

2
k |aik

are not actually available when needed for
advancing in time. They lead to a locally implicit time scheme. The linear systems induced for each
field are not singular since they correspond to the positive definite quadratic forms εiqi and µiqi, where
the positive definite quadratic form qi is given by

qi(�ϕij , �ϕil) =
1

∆t

∫
Ti

�ϕij · �ϕil +
ci
4

∑
k∈Vi

aik⊂∂Ωa
h

∫
aik

(�nik × �ϕij) · (�nik × �ϕil);

• one can also notice that the proposed formulae fluxes are time-consistent. They lead to a second-order
time-accurate method;

• among many possible choices, the origin of these fluxes is not really obvious. In fact, these values
correspond to upwind fluxes at the absorbing boundary, based on the hyperbolic nature of the global
six-component Maxwell system.

2. Stability for problems with metallic and absorbing boundaries

We aim at giving and proving a sufficient condition for the L2-stability of the Discontinuous Galerkin
scheme (4) or its equivalent matrix form (6) with only metallic and absorbing boundary conditions dealt with
according to (8) and (9). We use the same kind of energy approach as in [19], where a quadratic form plays the
role of a Lyapunov function of the whole set of numerical unknowns.
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2.1. A discrete electromagnetic energy

Definition 2.1. We define the electromagnetic energy in any given connected group G of finite elements by
E

n
G =

∑
i∈G E

n
i , where the electromagnetic energy inside each element is given by

E
n
i =

1
2

∫
Ti

(
t�En

i
¯̄εi
�En

i +
t
�H

n- 1
2

i
¯̄µi
�H

n+ 1
2

i

)
=

1
2

tEn
i M

ε
i E

n
i +

1
2

t

H
n- 1

2
i Mµ

i H
n+ 1

2
i .

The reason why the discrete energy E
n should be a positive definite quadratic form of all numerical unknowns

is absolutely not obvious. We notice here that the situation is quite different from the proof of the L2-stability of
the first-order upwind finite-volume scheme of [19], where the energy was obviously a positive definite quadratic
form of all unknowns. At the same time, the energy proposed here depends explicitly on the numerical scheme,
since it can be only written as a quadratic form of unknowns (En

i ,H
n- 1

2
i ) through the use of the second part of

the scheme (4) with boundary values given in (8) or (9).
The proof follows the same ideas as the one provided in [21] for the finite volume time domain method (i.e.

the P0-DGTD method), but we feel that the present generalization is worth writing it. In particular, energy
conservation for centered schemes is not restricted to finite volumes, but would not be valid for systems where
fluxes involve space varying coefficients (aeroacoustics for example). Also, the proof of the positiveness of the
proposed energy is quite more complex in the general context of Pk-DGTD methods with k > 0.

In the following, we shall prove that the proposed energy is not increasing through each time step and that
it is a positive definite quadratic form of all unknowns under a CFL-like condition on the time-step ∆t. This
will yield the proof that the scheme (4) with metallic or absorbing boundary conditions is L2-stable under some
sufficient condition on ∆t.

2.2. Variation of the discrete electromagnetic energy through one time-step

We aim at building a discrete version of Poynting’s theorem, which states in the continuous case (with no
current source) that the volumic electromagnetic energy E = 1

2 (
t �E¯̄ε�E +

t �H ¯̄µ�H) verifies the balance equation
∂tE + div(�E× �H) = 0. We propose the following lemma.

Lemma 2.2. Using the scheme (4) for an arbitrary connected group G of finite elements, the variation during
one time step of the discrete electromagnetic energy inside the group, defined in Definition 2.1 is given by

E
n+1
G = E

n
G − ∆t

∑
aik⊂∂G

∫
aik

�nik ·
�E

[n+ 1
2 ]

i × �H
n+ 1

2
k + �E

[n+ 1
2 ]

k × �H
n+ 1

2
i

2
,

with the convention that �E[n+ 1
2 ]

i = (�En
i + �En+1

i )/2.

Proof. Because of the leap-frog structure of the energy in (2.1), and since the tensors ¯̄εi and ¯̄µi are symmetric,
we have inside each finite element that

E
n+1
i = E

n
i +

∫
Ti

(
t
�E

[n+ 1
2 ]

i
¯̄εi(�En+1

i − �En
i ) +

1
2

t
�H

n+ 1
2

i
¯̄µi(�H

n+ 3
2

i − �H
n- 1

2
i )

)
.

Since �E[n+ 1
2 ]

i and �H
n+ 1

2
i are in Pi, they can play the role of �ϕ in (4). We obtain

E
n+1
i = E

n
i −∆t

∑
k∈Vi

∫
aik

�E
[n+ 1

2 ]

i · {�Hn+ 1
2 }ik × �nik + ∆t

∫
Ti

�H
n+ 1

2
i · �curl �E[n+ 1

2 ]

i

+∆t
∑
k∈Vi

∫
aik

�H
n+ 1

2
i · {�E[n+ 1

2 ]}ik × �nik − ∆t
∫
Ti

�E
[n+ 1

2 ]

i · �curl �Hn+ 1
2

i .
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Reorganizing terms and integrating by parts yields

E
n+1
i = E

n
i − ∆t

2

∑
k∈Vi

∫
aik

(�E[n+ 1
2 ]

i × �H
n+ 1

2
k + �E

[n+ 1
2 ]

k × �H
n+ 1

2
i ) · �nik.

Then, in the evaluation of E
n+1
G − E

n
G derived from the expression above, all terms corresponding to the faces

aik which are internal to the group G vanish. Only boundary terms are conserved, and we simply obtain the
result of the lemma. �

Lemma 2.3. Using the scheme (4) with metallic boundaries only, taken into account according to (8), the total
discrete electromagnetic energy defined in Definition 2.1 is exactly conserved, i.e. E

n+1
Ωh

= E
n
Ωh

.

Proof. This is a direct consequence of Lemma 2.2. Since all boundaries are metallic, we have on all boundaries
of the whole polyhedral domain Ωh: �E[n+ 1

2 ]

k |aik
= −�E[n+ 1

2 ]

i |aik
and �H

n+ 1
2

k |aik
= �H

n+ 1
2

i |aik
. �

Remark 2.4. The non-dissipative nature of the scheme proposed is already established by Lemma 2.3. It
will be shown that the discrete electromagnetic energy of Definition 2.1 is a definite positive quadratic form of
unknowns under some stability condition on the time-step ∆t. Then, since the energy is conserved, no damped
behaviour can be observed in a totally metallic cavity.

2.3. A corrected discrete electromagnetic energy for absorbing boundaries

We consider the case where some boundary faces of Ωh are absorbing. The absorbing condition is dealt with
according to (9). We can give the variation of the total electromagnetic energy given in Definition 2.1. This is
the result of the following lemma.

Lemma 2.5. Using the scheme (4)-(8)-(9), assuming the material is isotropic near absorbing boundaries, the
variation ∆EΩh

≡ E
n+1
Ωh

− E
n
Ωh

of the discrete electromagnetic energy (see Def. 2.1) through one time-step is
given by

∆EΩh
= −∆t

2

∑
aik⊂∂Ωa

h

∫
aik

[
ciµi

∥∥∥�nik × �H[n]
i

∥∥∥2

+ ciεi

∥∥∥�nik × �E
[n+ 1

2 ]

i

∥∥∥2
]

+
∆t
4

∑
aik⊂∂Ωa

h

∫
aik

ciµi

(
�nik × �H

n- 1
2

i

)
·
(
�nik × �H[n]

i

)

−∆t
4

∑
aik⊂∂Ωa

h

∫
aik

ciµi

(
�nik × �H

n+ 1
2

i

)
·
(
�nik × �H[n+1]

i

)
,

with the convention that �H[n]
i = (�Hn- 1

2
i + �H

n+ 1
2

i )/2.

Proof. This is a direct consequence of Lemma 2.2. Boundary terms corresponding to metallic boundaries vanish.
For remaining terms, corresponding to absorbing faces, we just have to use the definitions of fictitious fields
given in (9) and elementary recombinations lead to the result of the lemma. �

We can point out here that the discrete energy is not anymore conserved (this is natural since we want waves
to go out). It is probably non-increasing for very small time steps (since the first term in the energy variation
is first-order in ∆t and negative, and the two others compensate and lead to second-order terms). The form of
the result of Lemma 2.5 suggests we introduce a corrected discrete electromagnetic energy.

Definition 2.6. We correct the electromagnetic energies inside each finite element and in any given connected
group G of finite elements E

n
i and E

n
G (given in Def. 2.1) by defining
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(i) ∀i, F
n
i = E

n
i +

∆t
4

∑
aik⊂∂Ωa

h

∫
aik

ciµi

(
�nik × �H

n- 1
2

i

)
·
(
�nik × �H[n]

i

)
,

(ii) F
n
G = E

n
G +

∆t
4

∑
aik⊂∂Ωa

h

∫
aik

ciµi

(
�nik × �H

n- 1
2

i

)
·
(
�nik × �H[n]

i

)
.

The physical meaning of these corrected discrete energies is not clear. Correction terms are only related to
absorbing boundaries (which means that F

n
Ωh

= E
n
Ωh

if there are none). The additional terms probably find
their origin in the time-asymmetry in the form of the electromagnetic energy. We can now prove that the
discrete energy F

n
Ωh

is non-increasing. Lemma 2.5 and Definition 2.6 lead simply to the following lemma.

Lemma 2.7. Using the scheme (4)-(8)-(9), assuming the material is isotropic near absorbing boundaries, the
corrected discrete energy F

n
Ωh

of Definition 2.6 is non-increasing. More precisely, ∆FΩh
= F

n+1
Ωh

−F
n
Ωh

is given by

∆FΩh
= −∆t

2

∑
aik⊂∂Ωa

h

∫
aik

(
ciµi

∥∥∥�nik × �H[n]
i

∥∥∥2

+ ciεi

∥∥∥�nik × �E
[n+ 1

2 ]

i

∥∥∥2
)
.

2.4. Definite positivity of the corrected discrete energy and stability

In order to prove that our scheme is stable, we finally show that the discrete energy F
n
Ωh

, under some

stability condition on ∆t, is a positive definite quadratic form of the numerical unknowns H
n- 1

2
i and En

i . Being
non increasing, it is bounded, and the stability of the scheme is easy to prove. We assume that, inside each
finite element Ti, there exist two positive constants εi and µi such that

∀�X,
t �X¯̄εi

�X ≥ εi‖�X‖2,
t �X ¯̄µi

�X ≥ µi‖�X‖2. (10)

We denote by ci = 1/
√
εiµi an upper bound for the light speed in the finite element Ti. We also assume that

there exist dimensionless constants αi and βik (k ∈ Vi) such that

∀�X ∈ Pi,




‖ �curl �X‖Ti ≤
αiPi

Vi
‖�X‖Ti ,

‖�X‖2
aik

≤ βikSik

Vi
‖�X‖2

Ti
,

(11)

where ‖�X‖Ti and ‖�X‖aik
denote the L2-norm of the vector field �X over Ti and the face aik respectively. The

constants αi and βik do not depend on the size of the finite element Ti (they are invariant by any homothetic
transformation), but on its geometry and on the shapes of the basis fields �ϕij .

Lemma 2.8. Using the scheme (4)-(8)-(9), under assumptions (10) and (11), and assuming the material is
isotropic near absorbing boundaries, the local discrete electromagnetic energy F

n
i introduced in Definition 2.6

verifies

F
n
i ≥

(
1
2
− αiPici∆t

4Vi

)(
εi‖�Ei‖2

Ti
+ µi‖�Hi‖2

Ti

)
−∆t

8

∑
k∈Vi

aik

⋂
∂Ωa

h=∅

(
βikSik

√
µi

Vi
√
εk

‖�Hn- 1
2

i ‖2
Ti

+
βkiSik

√
εk

Vk
√
µi

‖�En
k‖2

Tk

)
,

where we set by convention for any metallic boundary face aik: ‖�En
k‖Tk

≡ ‖�En
i ‖Ti , ‖�Hn- 1

2
k ‖Tk

≡ ‖�Hn- 1
2

i ‖Ti,
βki ≡ βik, Vk ≡ Vi, εk ≡ εi, and µk ≡ µi.
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Proof. Using the scheme (4) to replace the occurrences of �Hn+ 1
2

i in Definition 2.6, and using the boundary fluxes
given in (8) and (9), we get

F
n
i =

1
2

∫
Ti

(
t�En

i
¯̄εi
�En

i +
t
�H

n- 1
2

i
¯̄µi
�H

n- 1
2

i

)

−∆t
4

∫
Ti

(
�curl �Hn- 1

2
i · �En

i + �curl �En
i · �Hn- 1

2
i

)

+
∆t
4

∑
aik⊂F int

h

∫
aik

(�Hn- 1
2

i × �En
k ) · �nik − ∆t

4

∑
aik⊂∂Ωm

h

∫
aik

(�Hn- 1
2

i × �En
i ) · �nik.

In the remainder of this proof, we omit the superscripts n and n-1/2 respectively in electric and magnetic
variables. We have the following inequalities:

1
2

∫
Ti

(
t�Ei ¯̄εi

�Ei +
t �Hi ¯̄µi

�Hi

)
≥ εi

2
‖�Ei‖2

Ti
+
µi

2
‖�Hi‖2

Ti
,

∆t
4

∣∣∣∣
∫
Ti

(
�curl �Hi · �Ei + �curl �Ei · �Hi

)∣∣∣∣ ≤ αiPi∆t
2Vi

‖�Hi‖Ti‖�Ei‖Ti,∫
aik

(
ciµi

∥∥∥�nik × �Hi

∥∥∥2

+ ciεi

∥∥∥�nik × �Ei

∥∥∥2
)

≤ ciβikSik

Vi

(
µi

∥∥∥�Hi

∥∥∥2

Ti

+ εi

∥∥∥�Ei

∥∥∥2

Ti

)
.

We also have, for any metallic or internal face aik:∣∣∣∣
∫

aik

(�Hn- 1
2

i × �En
k ) · �nik

∣∣∣∣ ≤ 1
√
µiεk

∫
aik

‖√µi
�Hi‖‖

√
εk�Ek‖

≤ 1
2

√
µi

εk
‖�Hi‖2

aik
+

1
2

√
εk
µi

‖�Ek‖2
aik

≤ 1
2

√
µi

εk

βikSik

Vi
‖�Hi‖2

Ti
+

1
2

√
εk
µi

βkiSik

Vk
‖�Ek‖2

Ti
.

Noticing that ‖�Hi‖Ti‖�Ei‖Ti = ci
√
µi‖�Hi‖Ti

√
εi‖�Ei‖Ti ≤ ci

2 (µi‖�Hi‖2
Ti

+εi‖�Ei‖2
Ti

) and gathering all lower bounds
for terms in the expression of F

n
i leads to

F
n
i ≥

(
1
2
− αiPici∆t

4Vi

)(
εi‖�Ei‖2

Ti
+ µi‖�Hi‖2

Ti

)

−∆t
8

∑
aik⊂∂Ωm

h

(√
µi

εk

βikSik

Vi
‖�Hi‖2

Ti
+
√
εk
µi

βikSik

Vi
‖�Ei‖2

Ti

)

−∆t
8

∑
aik⊂F int

h

(√
µi

εk

βikSik

Vi
‖�Hi‖2

Ti
+
√
εk
µi

βkiSik

Vk
‖�Ek‖2

Ti

)
,

which is a less compact form of the result of the lemma (with the proposed conventions). �
Lemma 2.9. Using the scheme (4)-(8)-(9), under assumptions (10) and (11), and assuming the material is
isotropic near absorbing boundaries, the corrected total discrete electromagnetic energy F

n
Ωh

introduced in Defi-

nition 2.6 is a positive definite quadratic form of all unknowns (i.e. the �En
i and �H

n- 1
2

i ) if

∀i, ∀k ∈ Vi, ci∆t
[
2αi + βik max

(√
µi

µk
,

√
εi
εk

)]
<

4Vi

Pi
·
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Proof. Following the result of the previous lemma, we first split the lower bound for F
n
i using Pi =

∑
k∈Vi

Sik.
We have

F
n
i ≥

∑
k∈Vi

Sik

Pi

(
1
2
− αiPici∆t

4Vi

)(
εi‖�Ei‖2

Ti
+ µi‖�Hi‖2

Ti

)

−∆t
8

∑
k∈Vi

(
βikSik

√
µi

Vi
√
εk

‖�Hn- 1
2

i ‖2
Ti

+
βkiSik

√
εk

Vk
√
µi

‖�En
k‖2

Tk

)
.

Then, summing up these inequalities in order to obtain a lower bound for F
n
Ωh

leads to an expression we re-
organize as sum over faces. We omit again the superscripts n and n -1/2 in electric and magnetic variables). We
find that FΩh

≥
∑

aik
SikTik with

Tik =
(

1
2Pi

− αici∆t
4Vi

)(
εi‖�Ei‖2

Ti
+ µi‖�Hi‖2

Ti

)
+
(

1
2Pk

− αkck∆t
4Vk

)(
εk‖�Ek‖2

Tk
+ µk‖�Hk‖2

Tk

)
−∆t

8

(
βik

√
µi

Vi
√
εk

‖�Hi‖2
Ti

+
βki

√
εk

Vk
√
µi

‖�Ek‖2
Tk

)

−∆t
8

(
βki

√
µk

Vk
√
εi

‖�Hk‖2
Tk

+
βik

√
εi

Vi
√
µk

‖�Ei‖2
Ti

)
.

This can be rewritten as

Tik = εi‖�Ei‖2
Ti

(
1

2Pi
− αici∆t

4Vi
− βik∆t

8Vi
√
εiµk

)

+µi‖�Hi‖2
Ti

(
1

2Pi
− αici∆t

4Vi
− βik∆t

8Vi
√
εkµi

)

+εk‖�Ek‖2
Tk

(
1

2Pk
− αkck∆t

4Vk
− βki∆t

8Vk
√
εkµi

)

+µk‖�Hk‖2
Tk

(
1

2Pk
− αkck∆t

4Vk
− βki∆t

8Vk
√
εiµk

)
·

Under the conditions proposed in the lemma, the Tik are positive definite quadratic forms and F
n
Ωh

is a positive
definite quadratic form of all unknowns (the careful reader can check that the stability conditions also include
the boundary faces). This concludes the proof. �

Under the hypotheses of Lemma 2.9, the corrected energy F
n
Ωh

is non-increasing, then it is bounded. Being
a positive definite quadratic form of all unknowns, we get the following stability result.

Theorem 2.10. Using the scheme (4)-(8)-(9) on arbitrary finite elements as described in this section, under
assumptions (10) and (11), and assuming the material is isotropic near absorbing boundaries, the corrected total
discrete electromagnetic energy F

n
Ωh

introduced in Definition 2.6 is non-increasing through iterations. It is also

a positive definite quadratic form of all unknowns (�En
i and �H

n- 1
2

i ), and therefore the scheme is L2-stable, if the
time step ∆t is such that

∀i, ∀k ∈ Vi, ci∆t
[
2αi + βik max

(√
µi

µk
,

√
εi
εk

)]
<

4Vi

Pi
(12)

(with the convention that µk ≡ µi and εk ≡ εi for boundary faces aik).

The stability condition (12) on ∆t is a sufficient condition. It might be suboptimal. It has the form of a CFL
stability condition, since the fraction Vi/Pi has the dimension of a length and gives an approximation of the
diameter hi of the finite element, the parameters αi and βik are dimensionless and independent of hi, and finally
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ci has the dimension of a wave speed (it is indeed an upper bound for the local wave speed in the heterogeneous
anisotropic medium). The fact that the scheme is conditionally stable is not surprising, since it is explicit.

3. Convergence analysis and discrete divergence preservation

on tetrahedral meshes

In this section we shall prove the convergence of the DGTD-method in the case where all finite elements are
tetrahedra and the discretization space Vh is given by discontinuous piecewise polynomials of degree at most k
inside each tetrahedron:

Vh =
{
�Vh ∈ L2(Ω)3

∣∣∣ ∀i, �Vh|Ti
∈ Pk(Ti)3

}
. (13)

We call this method the Pk-DGTD. The proof of the convergence should be adapted for other spaces Vh (but
the stability result of the previous section would remain valid). We shall also prove a discrete divergence
preservation property which yields an upper bound for the divergence error.

We recall here that we use totally centered numerical fluxes and, because of this particular choice, the proof
given here is slightly different from the one given for upwind fluxes [11] (regularity hypotheses on the solution
are slightly weaker here). Other weak convergence results are also available with upwind fluxes in the general
context of nonlinear systems [16].

Let us make precise some notations that will be useful in the sequel. We consider a family of unstructured
grids Th, h being the mesh parameter of each unstructured grid, defined by h = maxi hi. We assume that the
unstructured grids Th are uniformly shape regular in the sense that there is a constant σ > 0 such that

∀h, ∀ Ti ∈ Th,
hi

ρi
≤ σ, (14)

where ρi is the diameter of the biggest ball included in Ti. We shall further make the following inverse assump-
tion: there is a positive constant η (independent of h) such that

∀h, ∀ Ti ∈ Th, ∀k ∈ Vi,
hi

hk
≤ η. (15)

We also assume that the meshes Th are compatible with the domain boundary ∂Ω, i.e. the discretized volume
Ωh ≡

⋃
Ti∈Th

Ti is equal to Ω. We finally assume that the electromagnetic coefficients ¯̄ε and ¯̄µ are piecewise
constant (this assumption is not restrictive and the proofs could be adapted if the electromagnetic tensors
were piecewise regular) and that the induced partition is also compatible in the sense that ∀h, ∀Ti ∈ Th,
∀x ∈ Ti, ¯̄ε(x) = ¯̄εi and ¯̄µ(x) = ¯̄µi with ¯̄εi, ¯̄µi ∈ R

3×3. We denote by Ωj the subdomains of Ω where the
electromagnetic tensors are constant. We then also have Ωj

h ≡ Ωj .
We next introduce the broken Sobolev spaces PHs(Ω) = {v : ∀j, v|Ωj ∈ Hs(Ωj)} equipped with the norm

‖v‖PHs(Ω) = (
∑

j ‖v|Ωj‖2
s,Ωj )1/2, where ‖·‖s,Ωj denotes the standardHs-norm on Ωj . Note that the element-wise

traces of functions in PHs(Ω) on the set of all faces F are well defined as elements of tr(F) = ΠT∈Th
L2(∂T ) for

any s > 1/2. In order to avoid problems for the definition of traces in general, we make the following regularity
assumption for the exact solution (�E, �H) of (2) in the sense of Theorem 0.1:

∃s > 1/2 such that ∀h, ∀t ∈ [0, T ] : (�E(t), �H(t)) ∈ PHs(Ω)6. (16)

This assumption guarantees that {�E} × �n and {�H} × �n are well defined as elements in sftr(F). Moreover, we
can state that {�E} × �n = �E × �n and {�H} × �n = �H × �n on [0, T ] × a for any internal face a ∈ F int

h , since �E(t)
and �H(t) belong to H( �curl) for any t ∈ [0, T ].
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3.1. Properties of the semi-discretized scheme

In a first step we shall discuss consistency and stability of the spatially semi-discretized method. In the
following, we denote by �Ui the restriction of �U ∈ Hs(Th)3 with s > 1/2 to the element Ti. According to (8)
and (9), boundary conditions for the semi-discretized scheme are taken into account as follows: for any metallic
boundary face aik ⊂ ∂Ωm

h , we take �Ek|aik
(t) = −�Ei|aik

(t) and �Hk|aik
(t) = �Hi|aik

(t), while for any absorbing
boundary face aik ⊂ ∂Ωa

h, we take �Ek|aik
(t) = −ciµi �nik × �Hi|aik

(t) and �Hk|aik
(t) = ciεi �nik × �Ei|aik

(t). The
semi-discrete solution (�Eh, �Hh) is thus the solution in C1([0, T ];V 2

h ) of the following weak formulation: for any
test field (�Uh, �Vh) ∈ V 2

h , for 0 < t ≤ T and all i,




∫
Ti

�Vi · ¯̄µi
∂ �Hi

∂t
+
∫

Ti

�Ei · �curl �Vi −
∑
k∈Vi

aik∈F int
h

∫
aik

�Vi ·
(
{�Eh}ik × �nik

)

−1
2

∑
k∈Vi

aik⊂∂Ωa
h

∫
aik

�Vi · (�Ei − ciµi�nik × �Hi) × �nik = 0,

∫
Ti

�Ui · ¯̄εi
∂�Ei

∂t
−
∫
Ti

�Hi · �curl �Ui +
∑
k∈Vi

aik∈F int
h

∫
aik

�Ui ·
(
{�Hh}ik × �nik

)

+
∑
k∈Vi

aik⊂∂Ωm
h

∫
aik

�Ui ·
(
�Hi × �nik

)
+

1
2

∑
k∈Vi

aik⊂∂Ωa
h

∫
aik

�Ui · (�Hi + ciεi�nik × �Ei) × �nik = 0,

(17)

together with the initial conditions

�Eh(0) = Ph(�E0) and �Hh(0) = Ph(�H0), (18)

where Ph : L2(Ω)3 → Vh denotes the orthogonal projection onto Vh. We introduce the following bilinear forms
that are well defined on Vh. For �Q = (�U, �V) and �Q′ = (�U′, �V′), we set

m(�Q, �Q′) =
∫

Ω

(¯̄ε�U · �U′ + ¯̄µ�V · �V′), (19)

a(�Q, �Q′) =
∫

Ω

(�U · �curlh �V′ − �V · �curlh �U′), (20)

b(�Q, �Q′) =
∫
F int

h

{�V} · [[�U′]] −
∫
F int

h

{�U} · [[�V′]] +
∫

∂Ωm
h

(�V × �n) · �U′

+
1
2

∫
∂Ωa

h

(�V × �n) · �U′ − (�U × �n) · �V′

+
1
2

∫
∂Ωa

h

(
cε(�n× �U) × �n

)
· �U′ +

(
cµ(�n× �V) × �n

)
· �V′ (21)

where �curlh is the piecewise �curl-operator given by ∀i, ( �curlh �U)|Ti
= �curl (�U|Ti

) and [[�Uh]]ik denotes the tangential
jump of the discontinuous field �Uh through any internal face aik, defined as follows:

[[�Uh]]ik =
(
�Uk|aik

− �Ui|aik

)
× �nik.
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Note that for any internal face aik, [[�Uh]]ki = [[�Uh]]ik. Summing up the identities in (17) with respect to i, we
see that the discrete solution �Qh = (�Eh, �Hh) satisfies

m(∂t
�Qh, �Q′) + a(�Qh, �Q′) + b(�Qh, �Q′) = 0 ∀�Q′ ∈ Vh × Vh. (22)

We now state that the method is consistent with (2) in the following sense.

Proposition 3.1. Let �Q = (�E, �H) be the exact solution of (2). We assume that the regularity assumption (16)
holds. Then

m(∂t
�Q, �Q′) + a(�Q, �Q′) + b(�Q, �Q′) = 0, ∀�Q′ ∈ Vh × Vh. (23)

Proof. We first notice that the bilinear forms are well defined for �Q under the regularity assumption. Next, we
know from Theorem 0.1 that �Q(t) ∈ H( �curl) × H( �curl) for t ∈ [0, T ] and thus ∀i, ∀k ∈ Vi, {�H}ik · [[�U]]ik =(
�Haik

× �nik

)
· (�Ui|aik

− �Uk|aik
). Taking into account that cε(�n× �E)×�n = �H×�n and cµ(�n× �H)×�n = −�E×�n

on absorbing boundary faces aik ⊂ Ωa
h as well as �E× �n = 0 on metallic boundary faces yields

b(�Q, �Q′) =
∑

aik⊂F int
h

∫
aik

(
�H|aik

× �nik

)
· (�Ui − �Uk) −

(
�E|aik

× �nik

)
· (�Vi − �Vk)

+
∑

aik⊂∂Ωh

∫
aik

(
�H|aik

× �nik

)
· �Ui −

(
�E|aik

× �nik

)
· �Vi

=
∑
Ti

∫
∂Ti

(
�H× �n

)
· �Ui −

(
�E× �n

)
· �Vi,

and (23) then follows by integration by parts. �

In the sequel, the following stability lemma will be useful, which can be obtained by simple calculus.

Lemma 3.2. For any �Qh in Vh × Vh, we have

a(�Qh, �Qh) + b(�Qh, �Qh) =
1
2

∫
∂Ωa

h

cε|�n× �Uh|2 + cµ|�n× �Vh|2. (24)

The semi-discrete energy Eh(t) = 1
2m(�Qh(t), �Qh(t)), where �Qh = (�Eh, �Hh) is the solution of (17)-(18), is thus

non-increasing on [0, T ] and we have

Eh(t) ≤ Eh(0) ≤ E(0) ∀t ∈ [0, T ].

3.2. Convergence of the semi-discretized problem

We recall some standard approximation results known in the context of finite element methods:

Lemma 3.3. (cf. [3]) Let T ∈ Th and assume that u belongs to the space Hs+1(T ) for s ≥ 0. Let Π be a linear
continuous operator from Hs+1(T ) onto Pk(T ) such that Π(u) = u for all u ∈ Pk(T ). Then we have

|u− Π(u)|m,T ≤ Ch
min {s,k}+1−m
T ‖u‖s+1,T , m = 0, 1 (25)

‖u− Π(u)‖0,∂T ≤ Ch
min {s,k}+1/2
T ‖u‖s+1,T (26)

where C is a positive constant depending only on k, s and the regularity parameter σ of the mesh.
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Lemma 3.4. (cf. [3]) For all p ∈ Pk(T ) we have

‖p‖0,∂T ≤ Cinvh
−1/2
T ‖p‖0,T (27)

‖p‖1,T ≤ Cinvh
−1
T ‖p‖0,T (28)

where Cinv is a positive constant depending only on k and the regularity parameter σ of the mesh.

Theorem 3.5. Let (Th)h be a family of unstructured meshes satisfying (14) and (15). Let ¯̄ε and ¯̄µ satisfy (1).
Vh is given by (13).

Let (�E, �H) be the exact solution of (2) and let (�Eh, �Hh) ∈ C1([0, T ], V 2
h ) be the semi-discrete solution satisfy-

ing (17)-(18). If in addition (�E, �H) belongs to C0([0, T ];PHs+1(Ω)6) for s ≥ 0, then there is a constant C > 0
independent of h such that

max
t∈[0,T ]

(
‖Ph(�E) − �Eh‖2

0,Ω + ‖Ph(�H) − �Hh‖2
0,Ω

)1/2

≤ C T hmin (s,k)‖(�E, �H)‖C0((0,T ),PHs+1(Ω)). (29)

Proof. To prove (29), we proceed in two steps. First, we will show that the left hand side in (29) actually may
be majored by a term involving only surface integrals. In a second step, we then will provide estimates with
the help of the standard error estimates (26) and (27).

Let �Q = (�E, �H), �Qh = (�Eh, �Hh) and �q = �Q− �Qh = (�e, �h) (thus �e and �h denote the error of, respectively, the
electric field and the magnetic field). Let us introduce ε(t) = 1

2m(Ph(�q)(t), Ph(�q)(t)). Using the lower bound
λ > 0 of ¯̄ε and ¯̄µ, we first get, for 0 < t ≤ T ,

λ

2

(
‖Ph(�e)(t)‖2

0,Ω + ‖Ph(�h)(t)‖2
0,Ω

)
≤ ε(t).

Due to the definition of the discrete initial conditions, we have ε(0) = 0 and then, for 0 < t ≤ T ,

ε(t) =
1
2

∫ t

0

d
ds
m(Ph(�q)(s), Ph(�q)(s)) ds =

∫ t

0

m(∂sPh(�q)(s), Ph(�q)(s)) ds .

Applying the first result of Lemma 3.2 to Ph(�q) ∈ C1([0, T ];Vh × Vh), we get

ε(t) ≤
∫ t

0

(
m(∂sPh(�q)(s), Ph(�q)(s))+a(Ph(�q)(s), Ph(�q)(s)) + b(Ph(�q)(s), Ph(�q)(s))

)
ds. (30)

Subtracting (22) from the consistency result (23) with �Q′
h = Ph(�q)(s) yields

m(∂s�q(s), Ph(�q)(s)) + a(�q(s), Ph(�q)(s)) + b(�q(s), Ph(�q)(s)) = 0.

Since Ph(�Qh) = �Qh, subtracting the above equality from (30) leads to

ε(t) ≤
∫ t

0

(
m([Ph(∂s

�Q) − ∂s
�Q](s), Ph(�q)(s))

+a([Ph(�Q) − �Q](s), Ph(�q)(s)) + b([Ph(�Q) − �Q](s), Ph(�q)(s))
)

ds.

But Ph is a projector on Vh and Ph(�q) belongs to Vh × Vh. Thus, m(Ph(∂s
�Q) − ∂s

�Q, Ph(�q)) = 0. In the same
way, it follows that a([Ph(�Q) − �Q], Ph(�q)) = 0 since �curlh(Ph(�q))(s) ∈ Vh × Vh for all 0 < s ≤ t. We thus get

λ

2

(
‖Ph(�e)(t)‖2

0,Ω + ‖Ph(�h)(t)‖2
0,Ω

)
≤
∫ t

0

b([Ph(�Q) − �Q](s), Ph(�q)(s))) ds (31)
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which proves the first step. Now, we estimate the surface integrals in the preceding expression which derive
from the definition of b(·, ·). Let aik ∈ F int

h be an internal face shared by the tetrahedra Ti and Tk. Due to
Lemmas 3.3 and 3.4, we get, according to the inverse assumption (15) on the mesh:∫

aik

{Ph(�H) − �H}ik · [[Ph�e]]ik dσ ≤

Cηhmin (s,k)
(
‖�H‖2

s+1,Ti
+ ‖�H‖2

s+1,Tk

) 1
2 (‖Ph(�e)‖2

0,Ti
+ ‖Ph(�e)‖2

0,Tk

) 1
2 ,

with a generic constant C > 0 independent from h and �Q. We get the corresponding upper bound for the term∫
aik

{Ph(�H) − �H}ik · [[Ph�e]]ik dσ. Next, let aik be a boundary face of ∂Ωm
h such that aik ⊂ ∂Ti. We have

∫
a

[(
Ph(�H) − �H

)
× �n

]
· Ph�e dσ ≤ Chmin (s,k)‖�H‖s+1,Ti‖Ph(�e)‖0,Ti.

In the same way we deal with the other terms involving boundary faces. Summing up with respect to all
interfaces together with Cauchy-Schwartz’ inequality (and taking into account that each element Ti of the mesh
has at most four neighbors) then yields

b([Ph(�Q) − �Q](s), Ph(�q))(s) ≤
Cηhmin (s,k)

(
‖Ph(�e)(s)‖2

0,Ω + ‖Ph(�h)(s)‖2
0,Ω

)1/2

‖(�E(s), �H(s))‖PHs+1(Ω),

Integration in time, together with (31), finally leads to the result. �
In [11], the same convergence order is obtained for upwind fluxes and problems with periodic or perfect

conducting boundary conditions. Notice that the regularity assumptions on the exact solution are slightly
stronger than those in Theorem 3.5.

An estimation for the error �q can be easily deduced from Theorem 3.5 since �q = �Q− �Qh = �Q−Ph(�Q)+Ph(�q)
and the approximation error ‖�Q− Ph(�Q)‖0,Ω is of order O(hmin (s,k)+1).

Corollary 3.6. Under the assumptions of Theorem 3.5, there is a constant C > 0 independent from the mesh
parameter h such that the error �q = (�E − �Eh, �H− �Hh) satisfies the estimate

‖�q‖C0((0,T ),L2(Ω)) ≤ CT hmin (s,k)‖(�E, �H)‖C0((0,T ),PHs+1(Ω)). (32)

3.3. Convergence of the totally discretized problem

The completely discretized scheme (6) may be seen as the discretization in time of a system of ordinary
differential equations. This time discretization is everywhere second-order accurate. Estimates of the consis-
tency error then follow directly from Taylor expansions. Indeed, if (�En+1

h , �H
n+ 3

2
h ) have been computed from

�En
h = �Eh(tn) and �H

n+ 1
2

h = �Hh(tn+ 1
2
) by (6) where (�Eh(·), �Hh(·)) denotes the semi-discrete solution of (17), we

simply get that for some constant C independent of ∆t and h,

‖�Eh(tn+1) − �En+1
h ‖0,Ω + ‖�Hh(tn+3/2) − �Hn+3/2

h ‖0,Ω ≤ C
λ

λ
∆t3

(
‖∂3

t
�Eh‖C0(0,T ;L2(Ω)) + ‖∂3

t
�Hh‖C0(0,T ;L2(Ω))

)
.

The main ideas which should easily lead to the result are based on the following assumptions and remarks:
• the exact solution of the Maxwell system (2) is regular enough in time and space;
• second and first order accurate estimates for the initial values of first and second time derivatives of

(�E, �H) are available;
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• since we have noticed that (∂m
t
�E, ∂m

t
�H) are also solutions of Maxwell equations (time derivative of fields

are also solutions of Maxwell equations, with the same boundary conditions), ‖∂m
t
�Eh‖C0(0,T ;L2(Ω)) and

‖∂m
t
�Hh‖C0(0,T ;L2(Ω)) can be bounded independently from h;

• (∂m
t
�Eh, ∂

m
t
�Hh) are some discrete approximation of (∂m

t
�E, ∂m

t
�H).

In that case, the consistency error is altogether of O(∆t2) (the leapfrog time-scheme is second-order accurate
and time-derivatives of fields are also solution of Maxwell equations; then the total error is the sum of terms in
O(∆t2) for the fields and derivatives, summed up with ∆t times the initial error on the time-derivatives, which
was of order ∆t, and ∆t2 times the initial error on the time-derivatives, which was of order 1). Together with
the stability result of Theorem 2.10 we thus get an error of order O(Thmin (s,k)) +O(∆t2) for the total error in
C0([0, T ];L2(Ω)).

3.4. A discrete divergence preservation property

In the Maxwell equations (2), the divergence relations div(¯̄ε �E) = 0 and div(¯̄µ �H) = 0 have not been considered
because they are redundant in the absence of sources provided they are verified initially. This is true for the
exact solutions but might lead to spurious effects (equivalent to artificial creation of electric charges) in the
approximate solution. We prove here that the Pk-DGTD method (tetrahedral mesh, piecewise polynomials)
preserves the divergence relations in the following discrete weak sense.

Proposition 3.7. Let Xh ⊂ H1
0(Ω) be the space of continuous, element-wise polynomial functions defined as

Xh =
{
v ∈ C0(Ω̄)

∣∣ ∀i, v|Ti
∈ Pk+1, v|Γ = 0

}
. The electromagnetic fields obtained with the scheme (4) verify

∀ψ ∈ Xh,

{
〈 div¯̄ε�En+1

h , ψ 〉−1 = 〈 div¯̄ε�En
h , ψ 〉−1

〈 div¯̄µ�Hn+ 1
2

h , ψ 〉−1 = 〈 div¯̄µ�Hn- 1
2

h , ψ 〉−1,
(33)

where 〈·, ·〉−1 denotes the duality product between H−1(Ω) and H1
0(Ω). In addition, if the initial data ¯̄ε�E0 and

¯̄µ�H0 are divergence-free, the approximate solution is discrete divergence-free, i.e.

∀ψ ∈ Xh,

{
〈 div¯̄ε�En+1

h , ψ 〉−1 = 0
〈 div¯̄µ�Hn+ 1

2
h , ψ 〉−1 = 0.

Proof. The proof is quite simple. If ψ belongs to Xh ⊂ H1
0(Ω), we have

〈div
(
¯̄ε(�En+1

h − �En
h)
)
, ψ〉−1 = −

∫
Ω

∇ψ · ¯̄ε(�En+1
h − �En

h)

= −
∑

i

∫
Ti

�∇ψ · ¯̄εi

(
�En+1

i − �En
i

)
.

Since �∇ψ is defined inside all tetrahedra and is a discontinuous polynomial vector field of degree at most k, it
belongs to Vh. Applying (4) on any tetrahedron to �ϕ = �∇ψ and noticing that �curl �∇ψ = 0, we get:

− 1
∆t

∫
Ti

�∇ψ · ¯̄εi

(
�En+1

i − �En
i

)

=
∑
k∈Vi

aik∈F int
h

∫
aik

�∇ψ ·
(
{�Hn+ 1

2
h }ik × �nik

)
+

∑
k∈Vi

aik⊂∂Ω

∫
aik

�∇ψ ·
(
�H

n+ 1
2

i × �nik

)
.
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Summing over all tetrahedra yields

1
∆t

〈div
(

¯̄ε(�En+1
h − �En

h)
)
, ψ〉−1 =

∫
F int

h

{�Hn+ 1
2

h } · [[�∇ψ]] +
∫

∂Ω

�H
n+ 1

2
h ·

(
�n× �∇ψ

)
.

Since ψ is continuous, the tangential jump [[�∇ψ]] ≡ 0 obviously vanishes on internal faces. Similarly, since ψ = 0
on ∂Ω, �∇ψ×�n = 0 on ∂Ω. This leads to the result for the electric field. The proof follows the same line for the
magnetic field.

Now, assume that div¯̄ε�E0 = 0 and div¯̄µ�H0 = 0. The discrete initial data are given by �E0
h = Ph(�E0) and

�H1/2
h = Ph(�H0). Hence,

〈 div¯̄ε�E0
h , ψ 〉−1 = −

∫
Ω

Ph(�E0) · ¯̄ε∇ψ = −
∫

Ω

¯̄ε�E0 · ∇ψ = 0

since ¯̄ε∇ψ belongs to Vh for piecewise constant ¯̄ε and Ph is a projector. �

In the same way, we prove that the semi-discrete approximation (�Eh(t), �Hh(t)) is discrete divergence-free:

Proposition 3.8. Let Xh be the vector space defined in Proposition 3.7. The solution (�Eh(t), �Hh(t)) of the
semi-discrete scheme (17)-(18) satisfies

∀ψ ∈ Xh,

{
〈 div¯̄ε�Eh(t) , ψ 〉−1 = 0
〈 div¯̄µ�Hh(t) , ψ 〉−1 = 0

(34)

for all t ∈ [0, T ] provided the initial data �E0 and �H0 are divergence-free.

Proposition 3.9. Let the initial data �E0 and �H0 be divergence-free. Under the assumptions of Theorem 3.5,
we have the following estimate for the divergence of the semi-discrete solution

max
t∈[0,T ]

(
(‖div¯̄ε�Eh(t)‖−1,Ω + ‖div¯̄ε�Hh(t)‖−1,Ω

)
≤ CT hmin (s,k)‖(�E, �H)‖C0((0,T ),PHs+1(Ω)). (35)

Proof. Let ψ ∈ C∞
0 (Ω) and denote by Πhψ its interpolate in Xh in the sense of Lagrange finite elements of type

P k+1. Due to Proposition 3.8 we have

〈 div¯̄ε�Eh(t) , ψ 〉−1 = −
∫

Ω

∇(ψ − Πhψ) · ¯̄ε�Eh(t).

Next, taking into account that ψ − Πhψ ∈ H1
0(Ω), we get by integration by parts on each tetrahedron

−
∫

Ω

∇(ψ − Πhψ) · ¯̄ε�Eh(t) ≤
∑
Ti

‖div¯̄ε�Eh(t)‖0,Ti‖ψ − Πhψ‖0,Ti

+
∑

aik⊂F int
h

‖[[¯̄ε�Eh(t) · �n]]‖0,aik
‖ψ − Πhψ‖0,aik

≤ Ch

(∑
Ti

‖div¯̄ε�Eh(t)‖2
0,Ti

)1/2

|ψ|1,Ω

+Ch1/2


 ∑

aik⊂F int
h

‖[[¯̄ε�Eh(t) · �n]]‖2
0,aik




1/2

|ψ|1,Ω,
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where the last estimate follows from the approximation properties of Πh (see Lemma 3.3). Applying the inverse
estimate (28) and the convergence Theorem 3.5 yields, after division by |ψ|1,Ω, the result of the proposition
(and to the one of [11] as well). �

4. Numerical examples for low-order methods

We have implemented the low order P0-DGTD and P1-DGTD methods on tetrahedral meshes. The corre-
sponding solvers were parallelized according to a widely used SPMD (single program multiple data) strategy
that combines a partitioning of the underlying mesh (element-wise decomposition and minimum overlap of sub-
domain artificial interfaces) and a message passing programming model (MPICH implementation of the message
passing interface).

In this section, we first compare the sufficient stability conditions obtained for both methods as well as
memory requirements. We then present numerical results in order to validate and compare the two methods.

4.1. A comparison of the P0- and P1-DGTD methods on tetrahedral meshes

For tetrahedral discretizations, the P0-DGTD method is exactly the classical finite volume approach proposed
in [21], for which assumptions (11) are verified with ∀i ∈ G, αi = 0 and ∀i ∈ G, ∀k ∈ Vi, βik = 1. In that case,
Theorem 2.10 states that the finite volume method is stable, if

∀i, ∀k ∈ Vi, ci∆t
[
max

(√
µi

µk
,

√
εi
εk

)]
<

4Vi

Pi
·

This condition is slightly more restrictive than the condition obtained in the less general context of [21].
Similarly, the basis vector fields considered in the P1-DGTD method are simply P1 fields inside the tetrahe-

dron. This leads to twelve degrees of freedom for each field inside each tetrahedron (three components times four
P1 scalar basis functions). Therefore, we have ∀i ∈ G, di = 12. We have chosen to limit our first implementation
to isotropic materials which are also homogeneous inside each tetrahedron. Because of this simple choice, exact
integrations were performed for volume integrals over tetrahedra and surface integrals over faces.

Lemma 4.1. For this P1-DGTD method, assumptions (11) are verified with ∀i, α2
i = 20

9 maxk∈Vi(Sik/Pi) and
∀i, ∀k ∈ Vi, βik = 8/3.

Proof. Let us consider the standard P1 scalar basis functions ϕij (equal to 0 on aij and 1 on the other vertex;
then degrees of freedom can be grouped into vectors, related to a given vertex, or equivalently to a given opposite
neighboring tetrahedron). We have:∫

Ti

ϕijϕij′ = (1 + δjj′ )Vi/20,
∫

aik

ϕijϕij′ = (1 − δkj)(1 − δkj′ )(1 + δjj′ )Sik/12.

Then, for any P1 field �X =
∑
k∈Vi

�Xik ϕik, ‖�X‖2
Ti

≥ (Vi/20)
∑
k∈Vi

‖ �Xik‖2. Also,

‖ �curl �X‖2
Ti

=
1

9Vi

(∑
k∈Vi

Sik�nik × �Xik

)2

=
P 2

i

9Vi

(∑
k∈Vi

Sik

Pi
�nik × �Xik

)2

≤ P 2
i

9Vi

∑
k∈Vi

Sik

Pi

(
�nik × �Xik

)2

≤ Pi

9Vi
max
k∈Vi

(Sik)
∑
k∈Vi

‖ �Xik‖2,

which leads to the given value for αi of Definition 11 in the lemma (the value is optimal). Concerning the βik,
they are all identical and can be obtained explicitly by a simple minimization problem. �
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Figure 1. Cubic cavity: P1-DGTD, P0, and exact solutions.

These results lead to the following sufficient stability condition for our P1-DGTD method on unstructured
tetrahedral meshes:

∀i, ∀k ∈ Vi, ci∆t


4

√
5

3

√
maxk∈Vi(Sik)

Pi
+

8
3

max
(√

µi

µk
,

√
εi
εk

) < 4Vi

Pi
·

Noticing that maxk∈Vi(Sik) ≤ Pi/2, this expression can be simplified, for example in the case of an homogeneous
medium, into the following slightly more restrictive sufficient condition:

∀i, ∀j ∈ Vi, ci∆t
8 +

√
40

3
<

4Vi

Pi
·

This means that, theoretically, the limit possible time step for the P1-DGTD method on unstructured tetrahedral
meshes should be roughly 4.7 times more restrictive than the FVTD method.

4.2. Resonance in metallic cavities

We consider here resonance inside close metallic cavities, in order to verify energy conservation and to compare
with analytical solution. At the same time, these computations where numerical errors are accumulated are
good benchmark problems for numerical methods.

We first compute the (1, 1, 1) mode which is a standing wave of 0.260 GHz frequency in a 1m-side cubic cavity.
We use an unstructured grid of 16 464 tetrahedra and 3375 nodes which gives 13 points per wavelength. We plot
in Figure 1 (left) the time evolution of Ez after ten periods at a fixed point in the cavity. One can see that the
P1-DG solution compares very well with the exact one, with a much smaller dispersion error compared to the
P0 (finite volume) solution (we recall that the finite volume scheme has the same order of dispersion error as the
Yee scheme [22]). The overall L2-error on the electromagnetic field (E,H) of the P1-DGTD and P0 approximate
solutions are plotted in Figure 1 (right). The errors are increasing in time because of the dispersion and the
level of dispersion is a lot smaller for the P1-DGTD method. Figure 2 shows some contours of the electric
and magnetic fields respectively, for the exact and P1-DGTD solutions in the cut plane x + y + z = 1.5. A
similar experiment was done for the lowest (0, 1, 1) TE mode in a spherical cavity (1m radius). The resonant
frequency is 0.21 GHz and the 81 920-tetrahedron 14 993-vertex mesh with an average edge length of 56 mm
(which corresponds to an average of 10 points per wavelength for the frequency 0.53 GHz). We compare in
Figure 3 (left) the time evolution of the Hz component of the exact and computed magnetic field during seven
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Figure 2. Cubic cavity: P1-DGTD and exact solutions (plane x+ y + z = 1.5).
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Figure 3. Spherical cavity: Hz in P1-DGTD and exact solutions - first 7 periods (left) and
zoom after 5 periods (right).

periods. One may see again that the two solutions compare very well. These solutions are compared to the P0

approximate solution in Figure 3 (right) and the gain in accuracy in favor of the P1-DGTD solution is obvious.
Figure 4 shows contours of the computed and exact magnetic field respectively in the plane z = 0.

We have also considered the transient simulation of waves inside the cubic and spherical cavities for an initial
Gaussian pulse, in order to evaluate the ability of both methods to recover the resonating eigenfrequencies.
The normalized discrete Fourier transforms of the signal obtained with the P1-DGTD method (vertical electric
field at some observation point) are shown in Figure 5 for the cube and Figure 6 for the sphere. The signals
obtained with the P0-DGTD were too noisy to allow a good resolution for the frequencies. Results shown for
the cube are quite accurate and eigenfrequencies are well captured up to 700 MHz, which correspond for this
mesh (made of cubes divided into tetrahedra) to six points per wavelength at this frequency. Results shown for
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Figure 4. Spherical cavity (plane z = 0): Ex, Ey , and Hz for P1-DGTD and exact solutions.
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Figure 5. Cubic cavity: Fourier transforms for the P1-DGTD approximate solution (amplitude
in function of the frequency in MHz).

the sphere correspond to the same mesh (14 993 vertices, 81 920 tetrahedra). All frequencies are well captured
up to somewhere near 0.5 GHz, which corresponds to ten points per wavelength.
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Figure 6. Spherical cavity: Fourier transforms for the P1-DGTD approximate solution (am-
plitude in function of the frequency in MHz).

Figure 7. Component Ex of the electric field (cuts in the x = 0 and y = 0 planes).

4.3. Scattering by a metallic sphere

We use a 43 932 node tetrahedral grid with 244 608 tetrahedra to mesh the exterior of a one meter radius
perfectly conducting sphere. The mesh is quite uniform, with 13 points per wavelength in the radial direction.
In Figures 7 and 8, we have respectively shown contours of the Ex and Hy components scattered by a Ox
polarized incident plane wave propagating along the Oz axis at a frequency of 0.3 GHz (which corresponds to
ka = 2π). Let us note that the absorbing boundary is set at only one wavelength away from the sphere. In
Figure 9, we have shown both analytic and computed radar cross sections (RCS) for the metallic sphere under
the selected incident wave. One can see that both RCS compare very well.
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Figure 8. Component Hy of the magnetic field (cuts in the x = 0 and y = 0 planes).
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Figure 9. RCS of the exact and approximate solutions (θ = 0, 0 ≤ φ ≤ 180).

4.4. Scattering by a dielectric sphere

The problem considered here deals with the propagation of a 1 GHz Gaussian pulse past a dielectric ball. The
computational domain is setup has a dielectric ball (radius 0.138 m, εr = 4.431) surrounded by air and embedded
in a outer sphere of radius 0.438 m delimiting the computational domain and thus supporting the first-order
absorbing boundary condition. The Gaussian pulse is defined as G(x, t) = G0 exp

(
−[t− tr − (x− xr)/c0]2/α2

r

)
with G0 = 102 V/m, αr = 0.7 ns, tr = 1.5 ns, and xr = −0.3 m. The simulation has been carried out for a
physical duration of 15 ns. Two unstructured (yet regular) tetrahedral meshes have been constructed: a coarse
one named MS1, with 39 091 vertices and 229 873 tetrahedra, and a finer one named MS2, with 163 132 vertices
and 968 027 tetrahedra. The coarser grid (resp. the finer grid) is meshed with around 11 points per wavelength
(resp. 17) in the dielectric sphere and 12 points per wavelength (resp. 20) outside. The surfacic triangular mesh
of the inner sphere for the coarser mesh is shown in Figure 10, where we also give contour lines of the maximum
of the electric field amplitude: Emax(�xi) = maxt∈[t0,te] |�E(�xi, t)| on the surface of the inner sphere. We note
that the P1-DGTD method produces a smoother solution even on a coarser mesh while the mesh refinement
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Figure 10. Gaussian pulse past a dielectric sphere.

considered here is not sufficient to obtain an acceptable convergence with the P0-DGTD method. For the sake
of completeness, we compare in Figure 11 the time evolutions of Ez at a specific point location in the free space
(ahead of the dielectric sphere), for numerical simulations performed with a FDTD method and with the two
DGTD methods considered here. With such comparisons, the advantage of the P1-DGTD method over the
P0-DGTD method is less remarkable.

Finally, we give some informations on the simulation times required by both methods. On a cluster of PC
computers (Intel Pentium 4.2 GHz biprocessors with 1 Gb of RDRAM memory) with a Gigabit Ethernet switch,
on four subdomains, the P0-DGTD required 570 s on the coarse mesh MS1 and 2326 s on the finer mesh MS2,
while the P1-DGTD required 5492 s on the coarse mesh MS1. We obtain that in this case the P1-DGTD method
is ten times more costly for the given mesh. However, the P0-DGTD would have required a very fine mesh and
a huge computation time to obtain the same kind of accuracy.

4.5. Scattering of a plane wave by an aircraft

We consider a problem involving a complex geometry and a fully unstructured tetrahedral mesh with the
numerical simulation of the scattering of plane wave by an aircraft geometry (Airbus A318, courtesy of EADS).
A partial view of the surfacic mesh is shown in Figure 12. The underlying mesh is made of 225 326 vertices and
1 305 902 tetrahedra. The minimum, maximum and average lengths of the mesh edges are respectively given
by lmin = 0.706 mm, lmax = 0.119 m and lavg = 0.037 m. The frequency of oscillation of the plane wave
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Table 1. Scattering by an aircraft: performance results (for time integration over a period).

Method Np CPU REAL % CPU
P0-DGTD 24 214 s 235 s 91%
P1-DGTD 24 2536 s 2727 s 86%

is 565 MHz which corresponds to a wavelength λ = 0.531 m. Note that λ/lavg ≈ 14. The polarization of the
plane wave is such that the wave vector is �k = k�ex (with �E × �ez = 0). Finally, the absorbing boundary is
defined by a cube [–1.4 m, 1.4 m]3. For this problem, it has not been possible to obtain a sufficiently converged
solution with the P0-DGTD method. The solution obtained with the P1-DGTD method is shown in Figure 12
in terms of the contour lines of the quantity jmax(�xi) = maxt∈[t0,te] |�n × �H(�xi, t)| for mesh vertices located on
the surface of the aircraft. Finally, performance results are given in Table 1.

5. Conclusion and further works

We presented a Discontinuous Galerkin formulation applied to the time domain Maxwell equations. The
method is based on centered numerical fluxes and a leap-frog time-scheme. It can be seen as a simplified
version of methods found in the literature [5] and an extension of centered finite volume schemes [22]. Beyond
its convergence properties, the framework proposed herein presents two other important features. First, some
discrete equivalent of the electromagnetic energy is conserved (away from absorbing boundaries) on any kind of
mesh and discontinuous elements, including hp-type or non-conformal refinement. This also leads to the proof
of the stability under some CFL-type stability condition, including for simple absorbing boundary conditions.
Second, for some particular choices of discontinuous finite elements, some discrete divergence preservation
property is achieved, justifying the transient solution of the hyperbolic part of Maxwell equations only.



1174 L. FEZOUI ET AL.

XY Z

Frame 001  30 Apr 2004 

Figure 12. Scattering by an aircraft: surfacic mesh and contour lines of jmax(�xi).

The three-dimensional numerical results presented here, obtained with a parallel implementation of the
P1-DGTD method on unstructured tetrahedral meshes, are encouraging and should be developed in a near future
in several interesting directions. For some particular geometries (with very refined devices), non-conforming local
refinement could be used as was done for antenna design [2]. Also, local time-stepping should be investigated.
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It has been shown it is possible to build totally-explicit energy-conserving partitioned procedures allowing
time-stepping [20]. The use of leap-frog-type time-scheme makes it really difficult, compared to partitioned
explicit-implicit Runge-Kutta schemes. Finally, and most importantly, extensions to higher accuracy in time
(using a fourth-order energy-conserving time-scheme [20]) and space (using modal or nodal basis functions [11]
not leading to ill-conditioned mass and stiffness matrices) are to be considered.
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[20] S. Piperno, Schémas en éléments finis discontinus localement raffinés en espace et en temps pour les équations de Maxwell
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