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Abstract. In this paper we solve the time-dependent incompressible Navier-Stokes equations by
splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element
methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the
pressure. We present some numerical experiments.
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Introduction

The Navier-Stokes equations characterize a variety of flows, which play an important role in many engineering
applications. For incompressible flows, the momentum and continuity equations are:

ut − µ∆u + u · ∇u + ∇p = f , ∇ · u = 0,

where u is the fluid velocity, p the pressure, µ > 0 the constant viscosity, and f a given external force. These
equations are completed by adequate boundary and initial conditions.

These equations are difficult to solve numerically because on one hand, they are nonlinear and on the other
hand, the velocity is coupled with the pressure. In this paper, we study a particular operator splitting technique
introduced by Blasco et al. [5] in 1997, for decoupling the convection and pressure terms. It is convenient to
describe the general idea of this splitting technique at the semi-discrete time level; given an approximation U j

of the velocity u(tj) at time tj and an approximation f j+1 of f(tj+1), the computation of the discrete velocity
and pressure at time tj+1 proceeds in two steps:
1) Linearized convection step: solve for an intermediate velocity Ũ

j+1
satisfying

1
∆t

(Ũ
j+1 − U j) − µ∆Ũ

j+1
+ U j · ∇Ũ

j+1
= f j+1. (0.1)

Keywords and phrases. Operator splitting, time-dependent Navier-Stokes, SIPG.
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2) Incompressibility step: solve for U j+1 and P j+1 satisfying

1
∆t

(U j+1 − Ũ
j+1

) − µ∆(U j+1 − Ũ
j+1

) + ∇P j+1 = 0, (0.2)

∇ · U j+1 = 0. (0.3)

If the space discretization is well chosen, this splitting technique has the advantages that
1) the first step reduces to a system of scalar equations, that can be solved in parallel;
2) the discrete velocity obtained from the second step is locally conservative; and
3) the boundary condition can be enforced at each step.

There are several strategies for space discretizations that benefit from part or all of these advantages.
For instance,

1) both steps can be solved by a symmetric or non-symmetric discontinuous Galerkin method;
2) the second step can be solved by a discontinuous Galerkin method while the first step can be solved

by a continuous finite element method in some appropriate region (possibly the entire region) and by a
discontinuous Galerkin method in other regions;

3) the domain can be subdivided into regions in which both steps are solved either by a discontinuous or
by a nonconforming finite element method.

The idea of decoupling the nonlinearity from the incompressibility condition dates back to the work of Chorin [7]
and Temam [27]. This method was known as the projection method and since then, it has been studied and
modified by several authors. The reader can find a good historical account in the introduction of [4] by Blasco and
Codina. Without being exhaustive, let us quote the work of Yanenko [31] on fractional step methods, the work
of Fernandez-Cara and Beltram [11], Rannacher [25], Turek [29], Guermond and Quartapelle [17], Quarteroni
et al. [24], Almgren et al. [2], Guermond and Shen [18, 19], all on projection methods. We refer to the recent
book of Glowinski [15] for a very comprehensive treatment of fractional step methods and projection methods.
The splitting technique of [4] studied here can be viewed as a very particular case of fractional step methods in
which the time advances by a full time step. On the other hand, it differs from the above-mentioned projection
methods because it projects in H1 instead of L2. Thus it is more complex than the standard projection method,
but in contrast it preserves the boundary condition and produces no artificial boundary layer.

To our knowledge, there is very little in the literature on the analysis of discontinuous Galerkin methods for
Navier-Stokes equations. The Symmetric Interior Penalty Galerkin (SIPG) method (originally called interior
penalty method) and Non-symmetric Interior Penalty Galerkin (NIPG) method were first introduced for elliptic
problems by Wheeler [30] and Rivière et al. [26]. The idea of using a non-symmetric form without penalty
was introduced by Baumann and Oden [3]. The NIPG and SIPG methods for the steady-state Navier-Stokes
equations were first formulated and analyzed in Girault et al. [14]. In Kaya and Rivière [20] both NIPG
and SIPG methods coupled with a subgrid eddy viscosity method are applied to the time-dependent Navier-
Stokes problem. The method we propose here employs the SIPG or NIPG methods, i.e. the bilinear form that
approximates the viscous term is either symmetric or non-symmetric. Our numerical experiments with both
methods in Section 7 give accurate results.

The discontinuous Galerkin methods present several advantages: they are easily used on highly unstructured
meshes, they are locally conservative and they lend themselves well to domain decomposition. Furthermore, the
approach we propose satisfies a compatibility condition, which is important in air and water quality modeling
(see Rem. 1.5).

Moreover, as far as the Navier-Stokes equations are concerned, discontinuous Galerkin methods lend them-
selves easily to an upwinding of the convection term, as was studied by Lesaint and Raviart [21] in neutron
transport.

The coupling of the continuous regions with the discontinuous regions is useful in many applications such as
surface flow (see the application to shallow water in [9]), where the cost of using fully discontinuous Galerkin
methods can be reduced. However, in the forthcoming analysis, we shall see that we lose optimality if the
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finite elements change when we pass from step 1 to step 2. In this respect, combining a simple continuous finite
element method with a discontinuous Galerkin method requires less degrees of freedom but is less attractive than
combining an appropriate nonconforming method with a discontinuous Galerkin method. The nonconforming
approach, which is locally conservative, appears to be a good compromise between strategies 1 and 2. It is
interesting to note that none of the analysis below requires a quasi-uniform triangulation.

Although this method and most of its analysis apply to 3D, for simplicity, we shall only approximate the
Navier-Stokes equations in 2D. The full problem is:

ut − µ∆u + u · ∇u + ∇p = f , in Ω × (0, T ), (0.4)
∇ · u = 0, in Ω × (0, T ), (0.5)

u = 0, on ∂Ω × (0, T ), (0.6)
u = u0, in Ω × {0}, (0.7)

where Ω is a domain in IR2 with Lipschitz-continuous boundary ∂Ω. As usual, we write formally:

u · ∇v =
2∑

i=1

ui
∂v

∂xi
and ∇ · u =

2∑

i=1

∂ui

∂xi
·

It is well known that if f ∈ L2(0, T ; H−1(Ω)2) and u0 ∈ H(div, Ω), then this problem has a unique solution
u ∈ L2(0, T ; H1

0(Ω)2)∩L∞(0, T ; L2(Ω)2), p ∈ W−1,∞(0, T ; L2
0(Ω)) and ut ∈ L2(0, T ; V ′) (see Lions [23], Temam

[28], Girault and Raviart [13]). Here, L2(Ω) is the classical space of square-integrable functions with the inner-
product (f, g) =

∫
Ω fg , L2

0(Ω) is the subspace of functions of L2(Ω) with zero mean value:

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫

Ω

v = 0
}

,

and H1(Ω) denotes the classical Sobolev space:

H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ (L2(Ω))2}.

By definition, H1
0 (Ω) is the closure of D(Ω) in H1(Ω), where D(Ω) is the space of infinitely differentiable

functions with compact support, H−1(Ω) is the dual of H1
0 (Ω), V is the space of functions of (H1

0 (Ω))2 with
zero divergence:

V = {v ∈ (H1
0 (Ω))2 : ∇ · v = 0}, (0.8)

and V ′ is its dual space. It is well known that H1
0 (Ω) is characterized as the subspace of functions of H1(Ω)

that vanish on ∂Ω. More generally, we shall use the spaces

W 1,r(Ω) = {v ∈ Lr(Ω) : ∇v ∈ (Lr(Ω))2},

equipped with the semi-norm

|v|W 1,r(Ω) =
(∫

Ω

|∇v|r
)1/r

,

and norm for which it is a Banach space:

‖v‖W 1,r(Ω) = (‖v‖r
Lr(Ω) + |v|rW 1,r(Ω))

1/r.

These definitions are extended in the usual way to r = ∞. We shall also use

H2(Ω) = {v ∈ H1(Ω) : ∇v ∈ (H1(Ω))2},
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with the semi-norm
|v|H2(Ω) = |∇v|H1(Ω)

and the norm
‖v‖H2(Ω) = (‖v‖2

H1(Ω) + |v|2H2(Ω))
1/2.

We refer to Adams [1], Lions and Magenes [22] for these spaces and for extending them to fractional exponents.
As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time interval
(a, b) with values in a functional space, say Y (see [22]). More precisely, let ‖ · ‖Y denote the norm of Y ; then
for any number r, 1 ≤ r ≤ ∞, we define

Lr(a, b; Y ) =

{
f measurable in (a, b) :

∫ b

a

‖f(t)‖r
Y dt < ∞

}

equipped with the norm ‖f‖Lr(a,b;Y ) = (
∫ b

a ‖f(t)‖r
Y dt)1/r, with the usual modification if r = ∞. It is a Banach

space if Y is a Banach space.
The outline of the paper is as follows. First, we present the discontinuous Galerkin method and the first

splitting technique. In Sections 2 and 4, a priori estimates and suboptimal error estimates are derived.
Section 3 contains Lr estimates. Improved (optimal) error estimates are proved in Section 5. The second
and third splitting methods are briefly presented in Section 6. The paper ends with numerical experiments in
Section 7.

1. Discontinuous Galerkin for both steps

Problem (0.4)–(0.7) has the following weak formulation, valid a.e. on (0, T ):

∀v ∈ H1
0 (Ω)2, (ut(t), v) + µ(∇u(t),∇v) + (u(t) · ∇u(t), v) − (p(t),∇ · v) = (f (t), v), (1.1)

∀q ∈ L2
0(Ω), (∇ · u(t), q) = 0, (1.2)

u(0) = u0, in Ω. (1.3)

To discretize this problem, we introduce a regular family of triangulations of Ω̄, Eh, consisting of triangles of
maximum diameter h. Let hE denote the diameter of a triangle E and ρE the diameter of its inscribed circle.
By regular, we mean (see Ciarlet [6]) that there exists a parameter ζ > 0, independent of h, such that

∀E ∈ Eh,
hE

ρE
= ζE ≤ ζ. (1.4)

We shall use this assumption throughout this work. We denote by Γh the set of all edges of Eh, i.e. the set of
all edges in the domain Ω̄. Let e denote a segment of Γh shared by two triangles Ek and El of Eh; we associate
with e a specific unit normal vector ne directed from Ek to El and we define formally the jump and average of
a function φ on e by:

[φ] = (φ|Ek)|e − (φ|El)|e, {φ} =
1
2
(φ|Ek)|e +

1
2
(φ|El)|e.

If e is adjacent to ∂Ω, then ne is the unit normal n exterior to Ω and the jump and the average of φ on e
coincide with the trace of φ on e. Then, we define the spaces of discontinuous functions

X = {v ∈ L2(Ω)2 : ∀E ∈ Eh, v|E ∈ (W 2,4/3(E))2}, (1.5)

M = {q ∈ L2
0(Ω) : ∀E ∈ Eh, q|E ∈ W 1,4/3(E)}, (1.6)
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and the broken norm, for any vector or tensor v:

|||v|||0,Ω =

(
∑

E∈Eh

‖v‖2
L2(E)

)1/2

.

We associate with the spaces X and M the following norms:

‖v‖X = (|||∇v|||20,Ω + J0(v, v))1/2, (1.7)

‖q‖M = ‖q‖L2(Ω), (1.8)

where

J0(u, v) =
∑

e∈Γh

σe

|e|
∫

e

[u] · [v]. (1.9)

Here |e| denotes the measure of e and σe is a jump coefficient bounded below by a sufficiently large constant
σ0 ≥ 1 and bounded above by a constant σm, both constants being independent of h, but dependent on the
method used. For the symmetric method, SIPG, each constant σe is adjusted in order to guarantee ellipticity
of the form a + J0, see (1.22). For the non-symmetric method, NIPG, it is well-known that it suffices to take
each constant equal to one (for instance). However, we shall see in Section 2, that because of the splitting, each
constant σe has to be adjusted in order to prove stability of the algorithm. Nevertheless, our numerical results
in Section 7 tend to show that in the examples we have chosen, the error is not very sensitive to the choice of σe

when using NIPG.
On this triangulation, we define two finite-dimensional subspaces Xh ⊂ X and Mh ⊂ M :

Xh = {vh ∈ (L2(Ω))2 : ∀E ∈ Eh, vh ∈ (IP 1(E))2}, (1.10)
Mh = {qh ∈ L2

0(Ω) : ∀E ∈ Eh, qh ∈ IP 0(E)}. (1.11)

For simplicity, we derive the analysis for piecewise linear velocity and piecewise constant pressure. This is
consistent with the fact that we shall use a first-order discretization in time. We could consider a higher-
order approximations in space, but this would have to be matched by a higher-order approximation in time
or an appropriately small time step as demonstrated in the numerical examples in Section 7. To simplify the
discussion, we shall analyze in detail the standard discontinuous symmetric method SIPG and briefly sketch the
analysis for the non-symmetric method. In both methods, the incompressibility condition is enforced by means
of the bilinear form b : X × M → IR

b(v, p) = −
∑

E∈Eh

∫

E

p∇ · v +
∑

e∈Γh

∫

e

{p}[v] · ne, (1.12)

that is simply obtained by applying Green’s formula in each element to the left-hand side of (1.2). In particular
if p ∈ H1(Ω), then

∀v ∈ X, b(v, p) =
∫

Ω

∇p · v. (1.13)

Thus, we approximate the space V defined in (0.8) by

V h = {vh ∈ Xh : ∀qh ∈ Mh, b(vh, qh) = 0}. (1.14)

Finally the nonlinear convection term u · ∇u is approximated by the following variant of Lesaint-Raviart
upwinding (see [21]) that was introduced in [14]. In theory, it is difficult to prove that it brings an improvement,
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because the Navier-Stokes equation is not purely a transport equation, but in practice, upwinding is useful when
the convection is dominant. The approximation we propose is:

∀u, v, w, z ∈ X, cz(u; v, w) =
∑

E∈Eh

(∫

E

(u · ∇v) · w +
1
2

∫

E

(∇ · u)v · w
)

− 1
2

∑

e∈Γh

∫

e

[u] · ne{v · w} +
∑

E∈Eh

∫

∂E−
|{u} · nE |(vint − vext) · wint, (1.15)

where

∂E− = {x ∈ ∂E : {z} · nE < 0},

the superscript z denotes the dependence of ∂E− on z and the superscript int (resp. ext) refers to the trace of
the function on a side of E coming from the interior of E (resp. coming from the exterior of E on that side).
When the side of E belongs to ∂Ω, the convention is the same as for defining the jump and average, i.e., the
jump and average coincide with the trace of the function. Note that cz(u; v, w) can also be written as

cz(u; v, w) =
∑

E∈Eh

(∫

E

(u · ∇v) · w +
∫

∂E−
|{u} · nE |(vint − vext) · wint

)
− 1

2
b(u, v · w).

Thus if v is continuous in Ω or belongs to (H1(Ω))2, we have

c(u; v, w) =
∑

E∈Eh

∫

E

(u · ∇v) · w − 1
2
b(u, v · w).

The superscript z is dropped since the integral on ∂E− disappears. It is proven in [14] that for all u, v, w ∈ X,
we have

cu(u; v, w) = −c̄u(u; w, v), (1.16)
where

c̄u(u; w, v) :=
∑

E∈Eh

(∫

E

(u · ∇w) · v +
1
2

∫

E

(∇ · u)w · v
)
− 1

2

∑

e∈(Γh)\(∂Ω)

∫

e

[u] · ne{v · w}

+
∑

E∈Eh

∫

(∂E−)\(∂Ω)

|{u} · nE |(wint − wext) · vext − 1
2

∑

e∈∂Ω

∫

e

|u · ne|v · w. (1.17)

This implies that for all u, v ∈ X,

cu(u; v, v) =
1
2

∑

E∈Eh

∫

∂E−
|{u} · nE |‖[v]‖2 +

1
2

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|u · nE |‖v‖2, (1.18)

where ‖ · ‖ denotes the Euclidean norm.

1.1. Approximation with SIPG

In SIPG, the diffusion operator is approximated by the bilinear form a : X × X → IR

a(u, v) =
∑

E∈Eh

∫

E

∇u : ∇v −
∑

e∈Γh

∫

e

{∇u}ne · [v] −
∑

e∈Γh

∫

e

{∇v}ne · [u]. (1.19)
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Considering this form a, it will be useful to introduce another mesh-dependent norm:

∀v ∈ X,
[|v|] =

(
‖v‖2

X +
∑

e∈Γh

|e|‖{∇v} · ne‖2
L2(e)

)1/2

.

Then, we have
∀u, v ∈ X, |a(u, v)| ≤ [|u|][|v|]. (1.20)

Note that when v ∈ Xh, the equivalence of norms in finite-dimensional spaces on the reference element implies
that there exists a constant C independent of h such that

∀v ∈ Xh,

(
∑

e∈Γh

|e|‖{∇v} · ne‖2
L2(e)

)1/2

≤ C|||∇v|||0,Ω. (1.21)

As far as the ellipticity of the form a + J0 is concerned, it is established in [30] that, if the coefficients σe are
sufficiently large but independent of h, there exists a constant K > 0, also independent of h, such that

∀vh ∈ Xh, a(vh, vh) + J0(vh, vh) ≥ K‖vh‖2
X . (1.22)

In the sequel, we shall always assume that (1.22) holds so that a + J0 is elliptic. As far as the inf-sup condition
is concerned, it is proven in [14] that the pair of spaces defined by (1.10), (1.11) satisfies a uniform discrete
inf-sup condition. More precisely, with the space

X̄h =
{

vh ∈ Xh : ∀e ∈ Γh,

∫

e

[vh] = 0
}

, (1.23)

we have the following result:

Lemma 1.1. There exists a constant β∗ > 0, independent of h, such that

inf
ph∈Mh

sup
vh∈ ¯Xh

b(vh, ph)
‖vh‖X‖ph‖M

≥ β∗. (1.24)

Discretization with respect to time is done on a uniform subdivision of the interval [0, T ]. Let N ≥ 2 be an
integer, ∆t = T

N and tj = j∆t, 0 ≤ j ≤ N . Since the approximation both in space and time are of order one,
we assume that h and ∆t are of the same order, i.e. there exist constants γ0 and γ1 independent of h and ∆t
such that

γ0∆t ≤ h ≤ γ1∆t. (1.25)

The discrete scheme consists of two steps. First, knowing U j ∈ V h, find Ũ
j+1 ∈ Xh solution of

∀vh ∈ Xh,
1

∆t
(Ũ

j+1−U j , vh)+µ
(
a(Ũ

j+1
, vh) + J0(Ũ

j+1
, vh)

)
+cU

j

(U j ; Ũ
j+1

, vh) = (f̌
j+1

, vh). (1.26)

Second, find U j+1 ∈ Xh and P j+1 ∈ Mh, solution of

∀vh ∈ Xh,
1

∆t
(U j+1 − Ũ

j+1
, vh) + µ

(
a(U j+1 − Ũ

j+1
, vh) + J0(U j+1 − Ũ

j+1
, vh)

)
+ b(vh, P j+1) = 0,

(1.27)
∀qh ∈ Mh, b(U j+1, qh) = 0. (1.28)
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At time t = 0, U0 is a suitable approximation of u0 that we specify later. The term f̌
j

denotes an appropriate
approximation of f at time tj . To simplify the analysis, we choose

f̌
j

=
1

∆t

∫ tj

tj−1
f ,

but this is only a matter of convenience. As far as existence is concerned, given U j , (1.26) has a unique solution
owing to the ellipticity property (1.22) and the positivity (1.18) of c. Similarly, given Ũ

j+1
, (1.27), (1.28)

has a unique solution owing to the ellipticity property (1.22) and the inf-sup condition (1.24). By summing
the two steps, the consistency of the scheme follows from the following lemma. We skip the proof, which is
straightforward.

Lemma 1.2. Formally, the solution (u, p) of (0.4)–(0.7) satisfies a.e. on (0, T ):

∀vh ∈ Xh, (ut, vh) + µ
(
a(u, vh) + J0(u, vh)

)
+ c(u; u, vh) + b(vh, p) = (f , vh). (1.29)

Now we recall some approximation properties of the spaces Xh and Mh. For Xh, let Rh ∈ L(H1(Ω)2; Xh) be
the operator defined by

∀v ∈ H1(Ω)2, ∀e ∈ Γh,

∫

e

(Rhv − v) = 0. (1.30)

It is easy to see that (1.30) defines a unique function Rhv ∈ Xh (see [8]) and implies that

∀v ∈ H1(Ω)2,
∫

E

∇ · (Rhv − v) = 0, (1.31)

∀v ∈ H1
0 (Ω)2, ∀e ∈ Γh,

∫

e

[Rhv] = 0. (1.32)

Thus, we have
∀v ∈ H1

0 (Ω)2, ∀qh ∈ Mh, b(v − Rhv, qh) = 0. (1.33)
Furthermore, since Rh preserves the polynomials of IP 1 in each element, it satisfies the error bounds:

∀E ∈ Eh, ∀s ∈ [1, 2], ∀r ≥ 2, ∀v ∈ W s,r(E)2, m = 0, 1, |v − Rhv|W m,r(E) ≤ Chs−m
E |v|W s,r(E). (1.34)

For Mh, let rh ∈ L(L2
0(Ω); Mh) be defined in each E ∈ Eh by:

∀E ∈ Eh,

∫

E

(rhq − q) = 0.

Then
∀q ∈ Hs(E), ∀s ∈ [0, 1], ‖q − rhq‖L2(E) ≤ Chs

E |q|Hs(E). (1.35)
From (1.32) and (1.34) with s = m = 1 and r = 2, we easily derive the next lemma.

Lemma 1.3. The operator Rh satisfies the following stability property: there exists a constant C independent
of h such that,

∀u ∈ H1
0 (Ω)2, ‖Rhu‖X ≤ C|u|H1(Ω). (1.36)

We have the following consistency error for a:

Lemma 1.4. There exists a constant C, independent of h, such that for all u in (H2(Ω)∩H1
0 (Ω))2 and all vh

in Xh:
|a(u − Rhu, vh)| ≤ Ch|u|H2(Ω)‖vh‖X . (1.37)
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Proof. In view of (1.20) and (1.21) it suffices to prove that

∀u ∈ (H2(Ω) ∩ H1
0 (Ω))2,

[|u − Rhu|] ≤ Ch|u|H2(Ω). (1.38)

This follows easily from (1.34). �

Remark 1.5. The proposed splitting technique satisfies the compatibility condition of zero accuracy described
in [10] where piecewise discontinuous linears are used in a discontinuous Galerkin transport scheme. In other
words, constants are reproduced when an approximate velocity defined by (1.27), (1.28) is used in transport.
The compatibility condition is:

∀j > 0, ∀E ∈ Eh,

∫

∂E

{U j} · nE = 0.

This condition follows immediately from (1.28).

1.2. Approximation with NIPG

In NIPG, the form a is replaced by

a(u, v) =
∑

E∈Eh

∫

E

∇u : ∇v −
∑

e∈Γh

∫

e

{∇u}ne · [v] +
∑

e∈Γh

∫

e

{∇v}ne · [u], (1.39)

and for the moment, we take each constant σe ≥ 1 arbitrary. All the other terms are unchanged and the
formulation of the discrete problem is given, with this new form a, by (1.26)–(1.28). Clearly, all the properties
listed above are preserved and (1.22) is improved since

∀vh ∈ Xh, a(vh, vh) + J0(vh, vh) = ‖vh‖2
X . (1.40)

2. A PRIORI estimates

In this section, we prove that the scheme (1.26)–(1.28) is unconditionally stable. The proof uses the discrete
Poincaré inequality (3.14) in the particular case where r = 2.

2.1. Approximation with SIPG

Proposition 2.1. If the ellipticity (1.22) holds, the sequences U j and Ũ
j

defined by (1.26)–(1.28) satisfy the
following a priori estimate:

‖UN‖2
L2(Ω) +

N−1∑

j=0

(
‖U j+1 − Ũ

j+1‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω)

)
+

N−1∑

j=0

∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2

+
N−1∑

j=0

∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖Ũ j+1‖2 + µK∆t




N∑

j=1

‖U j‖2
X +

1
2

N∑

j=1

‖Ũ j‖2
X +

N∑

j=1

‖U j − Ũ
j‖2

X





≤ ‖U0‖2
L2(Ω) +

2C2
0

µK

N∑

j=1

∆t‖f̌ j‖2
L2(Ω), (2.1)

where K is the constant of (1.22) and C0 is the constant of (3.14) with r = 2.
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Proof. First taking v = Ũ
j+1

in (1.26) and using (1.18), we obtain:

1
2∆t

(
‖Ũ j+1‖2

L2(Ω) − ‖U j‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω)

)
+ µ

(
a(Ũ

j+1
, Ũ

j+1
) + J0(Ũ

j+1
, Ũ

j+1
)
)

+
1
2

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2 +
1
2

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖Ũ j+1‖2 = (f̌
j+1

, Ũ
j+1

). (2.2)

Next taking v = U j+1 in (1.27) and using the symmetry of a and (1.28), we obtain

1
2∆t

(
‖U j+1‖2

L2(Ω) − ‖Ũ j+1‖2
L2(Ω) + ‖U j+1 − Ũ

j+1‖2
L2(Ω)

)

+
µ

2

(
a(U j+1, U j+1) − a(Ũ

j+1
, Ũ

j+1
) + a(U j+1 − Ũ

j+1
, U j+1 − Ũ

j+1
)
)

+
µ

2

(
J0(U j+1, U j+1) − J0(Ũ

j+1
, Ũ

j+1
) + J0(U j+1 − Ũ

j+1
, U j+1 − Ũ

j+1
)
)

= 0. (2.3)

Summing (2.2) and (2.3), and using the ellipticity (1.22), we obtain

1
2∆t

(
‖U j+1‖2

L2(Ω) − ‖U j‖2
L2(Ω) + ‖U j+1 − Ũ

j+1‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω)

)

+
1
2

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2 +
1
2

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖Ũ j+1‖2

+
µK

2

(
‖U j+1‖2

X + ‖Ũ j+1‖2
X + ‖U j+1 − Ũ

j+1‖2
X

)
≤ |(f̌ j+1

, Ũ
j+1

)|. (2.4)

We now derive an estimate that is proportional to T and essentially inversely proportional to the viscosity. First
from (3.14), the right hand-side of (2.4) is bounded as follows, for any ε > 0:

|(f̌ j+1
, Ũ

j+1
)| ≤ ‖f̌ j+1‖L2(Ω)‖Ũ j+1‖L2(Ω) ≤ C0‖f̌ j+1‖L2(Ω)‖Ũ j+1‖X ≤ ε

2
‖Ũ j+1‖2

X +
C2

0

2ε
‖f̌ j+1‖2

L2(Ω).

Choose ε = µK
2 , then (2.4) becomes

1
2∆t

(
‖U j+1‖2

L2(Ω) − ‖U j‖2
L2(Ω) + ‖U j+1 − Ũ

j+1‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω)

)

+
1
2

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2 +
1
2

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖Ũ j+1‖2

+
µK

2

(
‖U j+1‖2

X +
1
2
‖Ũ j+1‖2

X + ‖U j+1 − Ũ
j+1‖2

X

)
≤ C2

0

µK
‖f̌ j+1‖2

L2(Ω).

The result follows by multiplying by 2∆t and summing from j = 0 to j = N − 1. �

Proposition 2.1 has in particular the following corollary.

Corollary 2.2. If the ellipticity (1.22) holds, the quantities:

sup
j

‖U j‖L2(Ω), sup
j

‖Ũ j‖L2(Ω),
√

µK




N∑

j=1

∆t‖U j‖2
X




1/2

,

√
µK

2




N∑

j=1

∆t‖Ũ j‖2
X




1/2
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are all bounded by



‖U0‖2
L2(Ω) +

2C2
0

µK

N∑

j=1

∆t‖f̌ j‖2
L2(Ω)




1/2

.

2.2. Approximation with NIPG

The scheme (1.26)–(1.28) is also unconditionally stable for NIPG provided each constant σe is sufficiently
large, but independent of h. More precisely, we assume that each σe is chosen so that:

∀v ∈ Xh,
∑

e∈Γh

|e|
σe

∫

e

‖{∇v}ne‖2 ≤ 1
2
|||∇v|||20,Ω. (2.5)

It is easy to check that (2.5) holds provided that

∀e ∈ Γh, σ0 ≤ σe ≤ σm,

for σ0 ≥ 1 and σm both independent of e and h (but possibly different from the constants of SIPG). Then
Lemma 2.1 is replaced by

Proposition 2.3. Assume that (2.5) holds. Then, the sequences U j and Ũ
j

defined by (1.26)–(1.28), with the
form a defined by (1.39), satisfy the following a priori estimate:

‖UN‖2
L2(Ω) +

N−1∑

j=0

(
‖U j+1 − Ũ

j+1‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω)

)
+

N−1∑

j=0

∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2

+
N−1∑

j=0

∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖Ũ j+1‖2 +
µ

2

N∑

j=1

∆t
(
‖U j‖2

X + ‖Ũ j‖2
X

)

≤ ‖U0‖2
L2(Ω) +

2C2
0

µ

N∑

j=1

∆t‖f̌ j‖2
L2(Ω), (2.6)

where C0 is the constant of (3.14) with r = 2.

Proof. As in Lemma 2.1, we start with (2.2), but in (1.27) we cannot use the symmetry of a, so instead of (2.3),
we have:

1
2∆t

(
‖U j+1‖2

L2(Ω) − ‖Ũ j+1‖2
L2(Ω) + ‖U j+1 − Ũ

j+1‖2
L2(Ω)

)

+
µ

2

(
‖U j+1‖2

X − ‖Ũ j+1‖2
X + ‖U j+1 − Ũ

j+1‖2
X

)

+ µ

(
∑

e∈Γh

∫

e

{∇Ũ
j+1}ne · [U j+1] −

∑

e∈Γh

∫

e

{∇U j+1}ne · [Ũ j+1
]

)
= 0, (2.7)
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and we must find an upper bound for this last factor of µ. This term can be written:

∑

e∈Γh

∫

e

{∇Ũ
j+1}ne · [U j+1] −

∑

e∈Γh

∫

e

{∇U j+1}ne · [Ũ j+1
] =

∑

e∈Γh

∫

e

{∇(Ũ
j+1 − U j+1)}ne · [U j+1]

+
∑

e∈Γh

∫

e

{∇U j+1}ne · [U j+1 − Ũ
j+1

]

≤
∑

e∈Γh

|e|
σe

‖{∇(Ũ
j+1 − U j+1)}ne‖2

L2(e) +
1
4

∑

e∈Γh

σe

|e| ‖[U
j+1]‖2

L2(e)

+
1
2

∑

e∈Γh

|e|
σe

‖{∇U j+1}ne‖2
L2(e) +

1
2

∑

e∈Γh

σe

|e| ‖[U
j+1 − Ũ

j+1
]‖2

L2(e)

≤ 1
4
‖U j+1‖2

X +
1
2
‖Ũ j+1 − U j+1‖2

X ,

where we have used (2.5) in the last inequality. Then substituting this bound into (2.7) and adding (2.2), we
derive

1
2∆t

(
‖U j+1‖2

L2(Ω) − ‖U j‖2
L2(Ω) + ‖Ũ j+1 − U j‖2

L2(Ω) + ‖U j+1 − Ũ
j+1‖2

L2(Ω)

)

+
µ

2

(
1
2
‖U j+1‖2

X + ‖Ũ j+1‖2
X

)
+

1
2

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[Ũ j+1

]‖2

+
1
2

∑

E∈Eh

∫

∂E−∩(∂Ω)

|U j · nE |‖Ũ j+1‖2 ≤ ε

2
‖Ũ j+1‖2

X +
C2

0

2ε
‖f̌ j+1‖2

L2(Ω).

Finally, (2.6) is obtained by choosing ε = µ
2 and summing over j. �

Proposition 2.3 has a corollary similar to Corollary 2.2.

Remark 2.4. The estimate (2.6) is slightly better than (2.1) because it does not involve the factor K that is
likely to be smaller than one half. On the other hand, it does not give an estimate for

∑N
j=1 ∆t‖U j − Ũ

j‖2
X ,

but we shall not use this term further on.

3. Lr
estimates

In the sequel, we shall require some estimates in Lr and interpolation estimates for the functions of Xh.
These are a refinement of the Lr estimates proven in Lemma 6.2 of [14].

We first define a postprocessing technique: with any function uh in Xh, we want to associate a function ūh

in X̄h (see 1.23). To this end, given an interior edge e ∈ Γh common to two elements E1
e and E2

e in Eh, such
that ne is outward to E1

e , we construct a piecewise IP 1 function λe as follows. Let be denote the midpoint of e
and let λe ∈ IP 1(E) for all E ∈ Eh be defined by

λe(be)|E1
e

= 1, λe(be)|E2
e

= 0, λe(be′) = 0 ∀e′ ∈ Γh, e′ �= e.

Thus, λe vanishes over all triangles other than E1
e and

[λe](be) = 1,
1
|e|
∫

e

[λe] = 1,

∫

e′
[λe] = 0, ∀e′ ∈ Γh, e′ �= e.
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If e ∈ Γh lies on ∂Ω then we simply set

λe(be) = 1, λe(be′) = 0, ∀e′ ∈ Γh, e′ �= e.

Now, for any uh ∈ Xh, define ūh ∈ Xh by:

ūh = uh −
∑

e∈Γh

(
1
|e|
∫

e

[uh])λe. (3.1)

Then,

∀e ∈ Γh,

∫

e

[ūh] =
∫

e

[uh] − 1
|e|
∫

e

[uh]
∫

e

[λe] = 0,

and hence ūh ∈ X̄h. The next two lemmas show that ūh and uh are closely related.

Lemma 3.1. There exists a constant C, independent of h, such that

∀uh ∈ Xh, ‖uh − ūh‖X ≤ CJ0(uh, uh)1/2. (3.2)

Proof. It suffices to consider a component of uh, denoted by uh. Let us first study the gradient part of the
norm. By (1.4), we have for any E ∈ Eh:

‖∇(uh − ūh)‖L2(E) ≤
∑

e∈∂E

1
|e|
∣∣∣∣
∫

e

[uh]
∣∣∣∣ ‖∇λe‖L2(E)

≤ C1|E|1/2 1
ρE

∑

e∈∂E

1
|e|1/2

‖[uh]‖L2(e)‖∇̂λ̂e‖L2(Ê) ≤ C2

∑

e∈∂E

1
|e|1/2

‖[uh]‖L2(e),

where here and in the sequel, the hat superscript denotes the reference element and quantities related to the
reference element. Thus, (

∑

E∈Eh

‖∇(uh − ūh)‖2
L2(E)

)1/2

≤ C3J0(uh, uh)1/2. (3.3)

Next, we consider the jump term. For any interior e ∈ Γh, the set of edges e′ ∈ Γh for which [λe′ ]|e �= 0 is a
subset of the union of e and the edges of ∂(E1

e ∪E2
e ), and if e ⊂ ∂Ω∩ ∂E1

e , it is a subset of ∂E1
e ; we denote this

set by Se. Therefore,

‖[uh − ūh]‖L2(e) ≤ C4|e|1/2
∑

e′∈Se

1
|e′|1/2

‖[uh]‖L2(e′)‖[λ̂e′ ]‖L2(ê).

Hence,
1

|e|1/2
‖[uh − ūh]‖L2(e) ≤ C5

∑

e′∈Se

1
|e′|1/2

‖[uh]‖L2(e′),

and thus
J0(uh − ūh, uh − ūh)1/2 ≤ C6J0(uh, uh)1/2.

This completes the proof. �
Lemma 3.2. For any r ∈ [2,∞], there exists a constant Cr depending on r but not on h, such that

∀uh ∈ Xh, ‖uh − ūh‖Lr(Ω) ≤ Crh
2/rJ0(uh, uh)1/2. (3.4)
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Proof. Let E ∈ Eh and let 2 ≤ r < ∞. As in the proof of (3.3), we write for any component uh of uh:

‖uh − ūh‖Lr(E) ≤ C1|E|1/r
∑

e∈∂E

1
|e|1/2

‖[uh]‖L2(e).

Then summing over all E and applying Jensen’s inequality (that is valid since r ≥ 2), we obtain

‖uh − ūh‖Lr(Ω) ≤ C2h
2/rJ0(uh, uh)1/2.

When r = ∞, let E be any element where the maximum value of |uh − ūh| is attained. Then,

max
x∈E

|uh(x) − ūh(x)| ≤ C3

∑

e∈∂E

1
|e|1/2

‖[uh]‖L2(e),

and we recover again (3.4). �
Lemma 3.3. There exists a constant C, independent of h, such that

∀ūh ∈ X̄h, J0(ūh, ūh)1/2 ≤ C|||∇ūh|||L2(Ω). (3.5)

Proof. Let uh be a component of ūh ∈ X̄h. For any e ∈ Γh, as uh|e has the same mean value, denoted by me,
coming from E1

e and from E2
e , we can write (for simplicity, we assume that |ê| = 1):

‖[uh]‖L2(e) = |e|1/2‖ûh|Ê1 − ûh|Ê2‖L2(ê) = |e|1/2‖(ûh − me)|Ê1 − (ûh − me)|Ê2‖L2(ê)

≤ |e|1/2
(‖(ûh − me)|Ê1‖L2(ê) + ‖(ûh − me)|Ê2‖L2(ê)

)
.

Similarly, if e lies on ∂Ω, since the mean value me = 0, we have

‖[uh]‖L2(e) ≤ |e|1/2‖ûh − me‖L2(ê).

As the mean-value is preserved by the transformation that maps e onto ê, we obtain

‖[uh]‖L2(e) ≤ C1|e|1/2(‖∇̂ûh‖L2(Ê1) + ‖∇̂ûh‖L2(Ê2)).

Hence,
1

|e|1/2
‖[uh]‖L2(e) ≤ C2(‖∇uh‖L2(E1

e) + ‖∇uh‖L2(E2
e )),

thus implying (3.5). �
Now we define a lifting function ū(h) of ūh, as in [14]: ū(h) ∈ (H1

0 (Ω))2 is the only solution of

∀v ∈ (H1
0 (Ω))2,

∫

Ω

∇ū(h) : ∇v =
∑

E∈Eh

∫

E

∇ūh : ∇v. (3.6)

From (3.6) and (3.3), we immediately derive that

‖∇ū(h)‖L2(Ω) ≤ |||∇ūh|||L2(Ω) ≤ C‖uh‖X . (3.7)

Lemma 3.4. For any r ∈ [2,∞), there exists a constant Cr, depending on r but not on h, such that

‖uh − ū(h)‖Lr(Ω) ≤ Crh
2/rJ0(uh, uh)1/2 if r ≥ 4, (3.8)

‖uh − ū(h)‖Lr(Ω) ≤ Crh
1/2J0(uh, uh)1/2 if 2 ≤ r < 4. (3.9)
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Proof. Again, we consider one component uh of uh. Since we have (3.4), it suffices to prove that (3.8), (3.9)
hold for ūh − ū(h). The proof is similar, but sharper than that of Lemma 6.2 of [14]. We proceed by duality
and write with 1/r′ + 1/r = 1:

‖ūh − ū(h)‖Lr(Ω) = sup
g∈Lr′(Ω)

∫
Ω
(ūh − ū(h))g
‖g‖Lr′(Ω)

· (3.10)

For a fixed g in Lr′
(Ω), let φ ∈ H1

0 (Ω) solve:

−∆φ = g, φ|∂Ω = 0. (3.11)

When r ≥ 4, then r′ ≤ 4/3 and it follows from [16] that φ ∈ W 2,r′
(Ω) with

‖φ‖W 2,r′ (Ω) ≤ C1(r)‖g‖Lr′(Ω). (3.12)

When r < 4, then r′ > 4/3 and g belongs always to L4/3(Ω). Therefore we also have φ ∈ W 2,4/3(Ω) with

‖φ‖W 2,4/3(Ω) ≤ C1(4)‖g‖L4/3(Ω) ≤ C2(r)‖g‖Lr′(Ω). (3.13)

From (3.11), we derive
∫

Ω

(ūh − ū(h))g = −
∫

Ω

∆φ(ūh − ū(h))

=
∑

E∈Eh

∫

E

∇φ · (∇ūh −∇ū(h)) −
∑

E∈Eh

∫

∂E

∇φ · nE(ūh − ū(h)) = −
∑

e∈Γh

∫

e

∇φ · ne[ūh],

owing to (3.6) and the regularity of φ and ū(h). Thus, the zero mean-value of [ūh] on each e implies that for
any constants ce, we have: ∫

Ω

(ūh − ū(h))g = −
∑

e∈Γh

∫

e

(∇φ · ne − ce)[ūh].

Let E be a triangle adjacent to e and take ce = c · ne, where

c =
1
|E|

∫

E

∇φ.

Let 4 ≤ r < ∞. Then 1 < r′ ≤ 4/3 and the trace of ∇φ on each edge e belongs to (Ls′
(e))2 with 1/s′ = 2/r′−1

and 1 < s′ ≤ 2. Then, with 1
s′ + 1

s = 1,

∣∣∣∣
∫

e

(∇φ − c) · ne[ūh]
∣∣∣∣ ≤ ‖∇φ − c‖Ls′(e)‖[ūh]‖Ls(e).

On one hand, passing to the reference element, applying the trace theorem with this value of s′ and using the
definition of c, we have

‖∇φ − c‖Ls′(e) ≤ C3|e|1/s′ |∇̂φ|W 1,r′ (Ê) ≤ C4|e|1/s′
hE|E|−1/r′ |∇φ|W 1,r′ (E) ≤ C5|∇φ|W 1,r′ (E).

On the other hand, a local equivalence of norms gives:

‖[ūh]‖Ls(e) ≤ C6|e|1/s‖[̂ūh]‖L2(ê) ≤ C6|e|1/s−1/2‖[ūh]‖L2(e).
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Combining these two inequalities, we obtain

∣∣∣∣
∫

e

(∇φ − c) · ne[ūh]
∣∣∣∣ ≤ C7h

2/r|∇φ|W 1,r′ (E)

1
|e|1/2

‖[ūh]‖L2(e).

Then, summing over e, applying Jensen’s inequality and (3.12), we obtain for r ≥ 4:

∣∣∣∣
∫

Ω

(ūh − ū(h))g
∣∣∣∣ ≤ C8h

2/rJ0(ūh, ūh)1/2‖g‖Lr′(Ω).

When 2 ≤ r < 4, we apply the above result with the exponent r′ = 4/3 and we use (3.13):

∣∣∣∣
∫

Ω

(ūh − ū(h))g
∣∣∣∣ ≤ C9h

1/2J0(ūh, ūh)1/2‖g‖Lr′(Ω).

This concludes the proof. �

Remark 3.5. Of course, by combining (3.7), (3.8) and (3.9) we recover the Lr estimates of [14]: for any
r ∈ [2,∞), there exists a constant Cr, depending on r but not on h, such that

∀uh ∈ Xh, ‖uh‖Lr(Ω) ≤ Cr‖uh‖X . (3.14)

Remark 3.6. When 2 ≤ r < 4, we can improve (3.9) by restricting the angles of ∂Ω. In particular, if r = 2
and Ω is convex, we recover a full power of h:

‖uh − ū(h)‖L2(Ω) ≤ ChJ0(uh, uh)1/2. (3.15)

This follows from the fact that (3.13) is replaced by:

‖φ‖H2(Ω) ≤ C‖g‖L2(Ω).

Remark 3.7. We easily derive from the above results that there exists a constant Cr, that depends on r but
not on h, such that for all u in (H1

0 (Ω))2 and all uh in Xh, we have

‖uh − u‖Lr(Ω) ≤ Cr‖uh − u‖X .

Indeed, since ū = u, we associate ū(h) to ūh − u as in (3.6). Hence, Sobolev’s imbedding gives

‖uh − u‖Lr(Ω) ≤ ‖uh − u − ū(h)‖Lr(Ω) + C1|ū(h)|H1(Ω).

Then, we easily check that (3.4), (3.8) and (3.9) hold for uh − u and it suffices to bound |ū(h)|H1(Ω). But

|ū(h)|H1(Ω) ≤ |||∇(ūh − u)|||L2(Ω).

Then Lemma 3.1 gives the result.

Finally, when r = 4, we derive an analogue of the well-known interpolation inequality, that is valid in H1
0 (Ω):

∀v ∈ H1
0 (Ω), ‖v‖L4(Ω) ≤ 21/4‖v‖1/2

L2(Ω)‖∇v‖1/2
L2(Ω). (3.16)
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Theorem 3.8. There exist constants Ci, 1 ≤ i ≤ 3, independent of h, such that

∀uh ∈ Xh, ‖uh‖L4(Ω) ≤ C1‖uh‖1/2
L2(Ω)‖uh‖1/2

X + C2h
1/4J0(uh, uh)1/4‖uh‖1/2

X + C3h
1/2J0(uh, uh)1/2. (3.17)

When Ω is convex, the above inequality can be improved

∀uh ∈ Xh, ‖uh‖L4(Ω) ≤ C1‖uh‖1/2
L2(Ω)‖uh‖1/2

X + C2h
1/2J0(uh, uh)1/4‖uh‖1/2

X + C3h
1/2J0(uh, uh)1/2.

Proof. Consider one component uh of uh. From (3.8) and (3.16) we infer

‖uh‖L4(Ω) ≤ ‖uh − ū(h)‖L4(Ω) + ‖ū(h)‖L4(Ω) ≤ C1h
1/2J0(uh, uh)1/2 + 21/4‖ū(h)‖1/2

L2(Ω)‖∇ū(h)‖1/2
L2(Ω).

Then (3.7) and (3.9) give

‖uh‖L4(Ω) ≤ C1h
1/2J0(uh, uh)1/2 + C2‖uh‖1/2

X

(
‖uh‖1/2

L2(Ω) + C3h
1/4J0(uh, uh)1/4

)
.

This implies (3.17). When Ω is convex, the result follows by applying (3.15) instead of (3.9). �

4. First error estimate for velocity

In this section, we obtain a first error estimate for the velocity that is suboptimal in time, namely of the
order O(h + ∆t1/2). An improved optimal estimate is obtained in Section 5.

We shall need the following estimates for the trilinar form c. The proof is similar to that of Lemma 6.4 of
[14], but we write it here for the reader’s convenience.

Proposition 4.1. (i) Assume that u ∈ W 1,r(Ω)2 for some r > 2. There exists a constant C that is independent
of h, such that for all vh ∈ V h and wh ∈ Xh,

|c(vh; u, wh)| ≤ C|u|W 1,r(Ω)‖wh‖X‖vh‖L2(Ω). (4.1)

(ii) If u ∈ H2(Ω)2, then for any z ∈ X, vh ∈ V h and w ∈ Xh we have

|cz(vh; Rhu − u, wh)| ≤ C(|Rhu − u|W 1,r(Ω) + h1/2|u|H2(Ω))‖vh‖L2(Ω)‖wh‖X . (4.2)

(iii) Finally, for any z ∈ X, vh, uh and wh in Xh, we have

|cz(vh; uh, wh)| ≤ C‖vh‖X‖uh‖X‖wh‖X . (4.3)

Proof. (i) Since u has no jumps, we can write:

c(vh; u, wh) =
∑

E∈Eh

∫

E

(vh · ∇u) · wh − 1
2
b(vh, u · wh).

The first term is bounded by virtue of (3.14):

∑

E∈Eh

∫

E

(vh · ∇u) · wh ≤ ‖vh‖L2(Ω)‖∇u‖Lr(Ω)‖wh‖Lr′(Ω) ≤ Cr′‖vh‖L2(Ω)|u|W 1,r(Ω)‖wh‖X ,



1132 V. GIRAULT ET AL.

where 1/r + 1/r′ = 1/2, r > 2, r′ > 2. To bound the second term, we use an argument of Girault and Lions
[12]. Denote by c the piecewise constant that is, in each element E, the scalar product of two constant vectors
c1 · c2. In view of (1.14), we can write

b(vh, u · wh) = b(vh, u · wh − c1 · c2) = b(vh, (u − c1) · wh) + b(vh, c1 · (wh − c2)).

Let us choose in each E:
c1 =

1
|E|

∫

E

u, c2 =
1
|E|

∫

E

wh.

From the definition of r′, we have

‖(u − c1) · wh‖L2(E) ≤ ‖u − c1‖Lr(E)‖wh‖Lr′(E) ≤ C1h‖wh‖Lr′(E)|u|W 1,r(E). (4.4)

Similarly,

‖c1 · (wh − c2)‖L2(E) ≤ ‖c1‖‖wh − c2‖L2(E) ≤ C2h‖u‖L∞(E)‖∇wh‖L2(E).

Hence, using locally an inverse inequality in each E, we have:
∣∣∣∣
∫

E

∇ · vh(u · wh − c1 · c2)
∣∣∣∣ ≤ C3‖vh‖L2(E)

(
|u|W 1,r(E)‖wh‖Lr′(E) + ‖u‖L∞(E)‖∇wh‖L2(E)

)
.

To estimate the edge terms in b, we consider one element E1
e adjacent to e and we apply the trace theorem:

‖(u − c1) · wh|E1
e
‖L2(e) ≤ C4|e|1/2(|E1

e |−1/2‖(u − c1) · wh‖L2(E1
e) + ‖∇((u − c1) · wh)‖L2(E1

e)).

We apply (4.4) to the first term and for the second term we write

‖∇((u − c1) · wh)‖L2(E1
e ) ≤ ‖∇u‖Lr(E1

e)‖wh‖Lr′(E1
e ) + C5‖u‖L∞(E1

e)‖∇wh‖L2(E1
e ).

Hence, using a local equivalence of norms and denoting E12
e = E1

e ∪ E2
e , we obtain

∣∣∣∣
∫

e

{(u − c1) · wh}[vh] · ne

∣∣∣∣ ≤ C6‖vh‖L2(E12
e )(|u|W 1,r(E12

e )‖wh‖Lr′(E12
e ) + ‖u‖L∞(E12

e )|||∇wh|||L2(E12
e )).

The second edge term is easier since it only involves equivalent norms:
∣∣∣∣
∫

e

{c1 · (wh − c2)}[vh] · ne

∣∣∣∣ ≤ C7‖u‖L∞(E12
e )|||∇wh|||L2(E12

e )‖vh‖L2(E12
e ).

Then summing over all elements and edges, applying Holder’s inequality, (3.14) and Sobolev imbedding, we
obtain:

∀vh ∈ V h, ∀wh ∈ Xh, |b(vh, u · wh)| ≤ C8‖vh‖L2(Ω)|u|W 1,r(Ω)‖wh‖X . (4.5)
(ii) To establish (4.2), observe that the above argument applies to Rhu − u instead of u for all except the
upwind term. Using the approximation properties of Rh and (3.14), the upwind term is bounded by

C9

∑

e∈Γh

‖vh‖L4(e)‖wh‖L4(e)‖[Rhu − u]‖L2(e)

≤ C10

∑

e∈Γh

|e|1/4|E|−1/2‖vh‖L2(E)|e|1/4|E|−1/4‖wh‖L4(E)|e|1/2(|E|−1/2‖Rhu − u‖L2(E) + ‖∇(Rhu − u)‖L2(E))

≤ C11

∑

E∈Eh

h
1/2
E ‖vh‖L2(E)‖wh‖L4(E)|u|H2(E) ≤ C12h

1/2|u|H2(Ω)‖vh‖L2(Ω)‖wh‖X .
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(iii) We skip the proof of (4.3) because it is straightforward. The proof of a sharper version is given in [14] when
vh belongs to V h. �

We denote the errors between the numerical solutions and the approximation by ej = U j − Rhuj and
ẽj = Ũ

j −Rhuj , where uj(·) stands for u(tj , ·). The following lemma shows exactly where the loss of optimality
occurs. It is valid for both SIPG and NIPG.

Lemma 4.2. Assume that p ∈ L2(0, T ; H1(Ω)). Then for each η > 0, there exists a constant C that depends
on η but not on h, such that:

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1, p)

∣∣∣∣∣ ≤
1
4
‖ẽj+1 − ej+1‖2

L2(Ω) + η∆t‖ej+1‖2
X + (Ch2 + ∆t)‖∇p‖2

L2(tj ,tj+1;L2(Ω)2). (4.6)

Proof. Since ej+1 ∈ V h, we can write

b(ẽj+1, p) = b(ẽj+1 − ej+1, p) + b(ej+1, p − rhp).

Now, (1.13) implies

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1 − ej+1, p)

∣∣∣∣∣ ≤ ‖ẽj+1 − ej+1‖L2(Ω)∆t1/2‖∇p‖L2(tj ,tj+1;L2(Ω)2)

≤ 1
4
‖ẽj+1 − ej+1‖2

L2(Ω) + ∆t‖∇p‖2
L2(tj ,tj+1;L2(Ω)2).

On the other hand, the approximation property (1.35) of rh implies

|b(ej+1, p − rhp)| ≤ C‖ej+1‖Xh‖∇p‖L2(Ω).

Therefore, for any η > 0,
∣∣∣∣∣

∫ tj+1

tj

b(ej+1, p − rhp)

∣∣∣∣∣ ≤ η∆t‖ej+1‖2
X + Ch2‖∇p‖2

L2(tj ,tj+1;L2(Ω)2).

This concludes the proof of (4.6). �

The next theorem establishes an a priori error estimate for SIPG.

Theorem 4.3. Assume that u ∈ L∞(0, T ; H2(Ω)2), ut ∈ L2(0, T ; H1(Ω)2), p ∈ L2(0, T ; H1(Ω)), u0 ∈ V and
U0 = Rhu0. If the ellipticy (1.22) holds, there exists a constant C, independent of h and ∆t, such that

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ẽj+1 − ej‖2
L2(Ω) +

1
2

N−1∑

j=0

‖ẽj+1 − ej+1‖2
L2(Ω) +

N−1∑

j=0

∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2

+
N−1∑

j=0

∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 +
1
2
Kµ

N−1∑

j=0

∆t
(‖ej+1‖2

X + ‖ẽj+1‖2
X + ‖ej+1 − ẽj+1‖2

X

)

≤ C(h2 + ∆t2 + ∆t). (4.7)
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Proof. 1) Error equations
Integrating (1.26) between tj and tj+1 and using (1.29), we derive:

∀vh ∈ Xh, (Ũ
j+1 − U j , vh) + µ∆t(a(Ũ

j+1
, vh) + J0(Ũ

j+1
, vh)) +

∫ tj+1

tj

cU
j

(U j ; Ũ
j+1

, vh)

= (uj+1 − uj , vh) + µ

∫ tj+1

tj

(a(u, vh) + J0(u, vh)) +
∫ tj+1

tj

c(u; u, vh) +
∫ tj+1

tj

b(vh, p).

Now inserting the approximations Rhuj+1 and Rhuj and choosing v = ẽj+1, we obtain a first error equation

(ẽj+1 − ej , ẽj+1) + µ∆t
(
a(ẽj+1, ẽj+1) + J0(ẽj+1, ẽj+1)

)
+
∫ tj+1

tj

cU
j

(U j ; ẽj+1, ẽj+1) +
∫ tj+1

tj

c(ej ; u, ẽj+1)

= (uj+1 − Rhuj+1 − (uj − Rhuj), ẽj+1) + µ

∫ tj+1

tj

(
a(u − Rhuj+1, ẽj+1) + J0(u − Rhuj+1, ẽj+1)

)

+
∫ tj+1

tj

cU
j

(U j ; u − Rhuj+1, ẽj+1) +
∫ tj+1

tj

c(u − Rhuj ; u, ẽj+1) +
∫ tj+1

tj

b(ẽj+1, p).

Applying (1.18), this implies

1
2
(‖ẽj+1‖2

L2(Ω) − ‖ej‖2
L2(Ω) + ‖ẽj+1 − ej‖2

L2(Ω)) + µ∆t(a(ẽj+1, ẽj+1) + J0(ẽj+1, ẽj+1))

+
1
2

∫ tj+1

tj

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2 +

1
2

∫ tj+1

tj

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 +
∫ tj+1

tj

c(ej; u, ẽj+1)

=
∫ tj+1

tj

((u − Rhu)t, ẽ
j+1) + µ

∫ tj+1

tj

(a(u − Rhuj+1, ẽj+1) + J0(u − Rhuj+1, ẽj+1))

+
∫ tj+1

tj

cU
j

(U j ; u − Rhuj+1, ẽj+1) +
∫ tj+1

tj

c(u − Rhuj ; u, ẽj+1) +
∫ tj+1

tj

b(ẽj+1, p). (4.8)

Similarly, inserting Rhuj+1 in (1.27), we get a second error equation:

∀vh ∈ Xh,
1

∆t
(ej+1 − ẽj+1, vh) + µ(a(ej+1 − ẽj+1, vh) + J0(ej+1 − ẽj+1, vh)) + b(vh, P j+1) = 0.

Choosing vh = ej+1, integrating between tj and tj+1 and using (1.28) and the symmetry of a, we derive

1
2
(‖ej+1‖2

L2(Ω) − ‖ẽj+1‖2
L2(Ω) + ‖ej+1 − ẽj+1‖2

L2(Ω)) +
µ∆t

2
(a(ej+1, ej+1) + J0(ej+1, ej+1)

− a(ẽj+1, ẽj+1) − J0(ẽj+1, ẽj+1) + a(ej+1 − ẽj+1, ej+1 − ẽj+1) + J0(ej+1 − ẽj+1, ej+1 − ẽj+1)) = 0. (4.9)
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Summing (4.8) and (4.9), we obtain a third error equation:

‖ej+1‖2
L2(Ω) − ‖ej‖2

L2(Ω) + ‖ẽj+1 − ej‖2
L2(Ω) + ‖ej+1 − ẽj+1‖2

L2(Ω) + µ∆t(a(ej+1, ej+1) + J0(ej+1, ej+1)

+ a(ẽj+1, ẽj+1) + J0(ẽj+1, ẽj+1) + a(ej+1 − ẽj+1, ej+1 − ẽj+1) + J0(ej+1 − ẽj+1, ej+1 − ẽj+1))

+ ∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2 + ∆t

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 + 2
∫ tj+1

tj

c(ej ; u, ẽj+1)

= 2
∫ tj+1

tj

((u − Rhu)t, ẽ
j+1) + 2µ

∫ tj+1

tj

(a(u − Rhuj+1, ẽj+1) + J0(u − Rhuj+1, ẽj+1))

+ 2
∫ tj+1

tj

cU
j

(U j ; u − Rhuj+1, ẽj+1) + 2
∫ tj+1

tj

c(u − Rhuj ; u, ẽj+1) + 2
∫ tj+1

tj

b(ẽj+1, p). (4.10)

By virtue of (4.1), for any ε > 0, we have
∣∣∣∣∣2
∫ tj+1

tj

c(ej ; u, ẽj+1)

∣∣∣∣∣ ≤ ε∆t‖ẽj+1‖2
X + C‖u‖2

L∞(0,T,W 1,r(Ω)2)∆t‖ej‖2
L2(Ω);

in this proof, C denotes various constants that depend on ε, but not on h and ∆t. Therefore, from (1.22), the
left-hand side of (4.10) is bounded below by

‖ej+1‖2
L2(Ω) − ‖ej‖2

L2(Ω) + ‖ẽj+1 − ej‖2
L2(Ω) + ‖ej+1 − ẽj+1‖2

L2(Ω) + ∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2

+ ∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 + Kµ∆t(‖ej+1‖2
X + ‖ẽj+1‖2

X + ‖ej+1 − ẽj+1‖2
X)

− ε∆t‖ẽj+1‖2
X − C∆t‖ej‖2

L2(Ω)‖u‖2
L∞(0,T,W 1,r(Ω)2). (4.11)

2) Upper bound of linear terms
We now bound the linear terms in the right-hand side of (4.10); first (1.34) gives

∣∣∣∣∣

∫ tj+1

tj

((u − Rhu)t, ẽ
j+1)

∣∣∣∣∣ ≤ Ch‖ẽj+1‖L2(Ω)

∫ tj+1

tj

‖∇ut‖L2(Ω)

≤ Ch∆t1/2‖ẽj+1‖L2(Ω)‖ut‖L2(tj ,tj+1,H1(Ω)2) ≤ ε∆t‖ẽj+1‖2
L2(Ω) + Ch2‖ut‖2

L2(tj ,tj+1,H1(Ω)2). (4.12)

We rewrite the second term as follows:

a(Rhuj+1 − u, ẽj+1) = a(Rh(uj+1 − u), ẽj+1) + a(Rhu − u, ẽj+1).

Applying (1.20), (1.21) and (1.36) to the first term, it is bounded by

a(Rh(uj+1 − u), ẽj+1) ≤ C‖Rh(uj+1 − u)‖X‖ẽj+1‖X ≤ C|uj+1 − u|H1(Ω)‖ẽj+1‖X

≤ C(tj+1 − t)1/2‖ut‖L2(tj ,tj+1;H1(Ω)2)‖ẽj+1‖X .

Next, by Lemma 1.4,

|a(Rhu − u, ẽj+1)| ≤ Ch|u|H2(Ω)‖ẽj+1‖X .
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Thus,
∣∣∣∣∣

∫ tj+1

tj

a(Rhuj+1 − u, ẽj+1)

∣∣∣∣∣ ≤ ε∆t‖ẽj+1‖2
X + C∆t2‖ut‖2

L2(tj ,tj+1,H1(Ω)2) + Ch2‖u‖2
L2(tj ,tj+1,H2(Ω)2). (4.13)

Because of the regularity of u, the jump term satisfies:

J0(Rhuj+1 − u, ẽj+1) = J0(Rhuj+1 − uj+1, ẽj+1).

Hence, by (1.38)
∣∣∣∣∣

∫ tj+1

tj

J0(Rhuj+1 − u, ẽj+1)

∣∣∣∣∣ ≤ Ch∆t|uj+1|H2(Ω)‖ẽj+1‖X ≤ ε∆t‖ẽj+1‖2
X + Ch2∆t‖u‖2

L∞(0,T ;H2(Ω)2). (4.14)

3) Upper bound of nonlinear terms
Now, we estimate the nonlinear terms. The first nonlinear term is split as follows:

cU
j

(U j ; Rhuj+1 − u, ẽj+1) = cU
j

(ej ; Rhuj+1 − u, ẽj+1) + cU
j

(Rhuj ; Rh(uj+1 − u), ẽj+1)

+cU
j

(Rhuj ; Rhu − u, ẽj+1). (4.15)

By noting that the upwind term involving Rhuj+1 −u is the same as the one involving Rhuj+1 −uj+1, we can
apply Proposition 4.1 to the first term in (4.15) and obtain

|cU j

(ej ; Rhuj+1 − u, ẽj+1)| ≤ C‖ej‖L2(Ω)‖ẽj+1‖X(|Rhuj+1 − u|W 1,r(Ω) + h1/2|u|H2(Ω))

≤ C‖u‖L∞(0,T ;H2(Ω)2)‖ej‖L2(Ω)‖ẽj+1‖X .

For the second term, by applying (4.3) and (1.36):

|cU j

(Rhuj ; Rh(uj+1 − u), ẽj+1)| ≤ C(tj+1 − t)1/2|uj |H1(Ω)‖ut‖L2(tj ,tj+1;H1(Ω)2)‖ẽj+1‖X . (4.16)

The third term is bounded straightforwardly as follows:

|cU j

(Rhuj ; Rhu − u, ẽj+1)| ≤ Ch|uj |H1(Ω)‖u‖H2(Ω)‖ẽj+1‖X .

Thus, combining all terms in (4.15):

∣∣∣∣∣

∫ tj+1

tj

cU
j

(U j ; Rhuj+1 − u, ẽj+1)

∣∣∣∣∣ ≤ ε∆t‖ẽj+1‖2
X + C∆t‖u‖2

L∞(0,T ;H2(Ω)2)‖ej‖2
L2(Ω)

+ C∆t2‖u‖2
L∞(0,T ;H1(Ω)2)‖ut‖2

L2(tj ,tj+1;H1(Ω)2) + Ch2‖u‖2
L∞(0,T ;H1(Ω)2)‖u‖2

L2(tj ,tj+1;H2(Ω)2). (4.17)

The other nonlinear term is rewritten as:

∫ tj+1

tj

c(Rhuj − u; u, ẽj+1) =
∫ tj+1

tj

c(Rhuj − uj ; u, ẽj+1) +
∫ tj+1

tj

c(uj − u; u, ẽj+1).

A slight variant of the argument in Proposition 4.1 gives

|c(Rhuj − uj ; u, ẽj+1)| ≤ Ch2|uj |H2(Ω)|u|W 1,4(Ω)‖ẽj+1‖X .



OPERATOR SPLITTING AND DG FOR NAVIER-STOKES 1137

The second term reduces to:

c(uj − u; u, ẽj+1) =
∑

E∈Eh

∫

E

(uj − u) · ∇u · ẽj+1 = −
∫ t

tj

∑

E∈Eh

∫

E

∂u

∂τ
· ∇u · ẽj+1

≤
∫ t

tj

∥∥∥∥
∂u

∂τ

∥∥∥∥
L2(Ω)

|u|W 1,4(Ω)‖ẽj+1‖L4(Ω).

Thus,

∣∣∣∣∣

∫ tj+1

tj

c(Rhuj − u; u, ẽj+1)

∣∣∣∣∣ ≤ C∆t1/2‖ẽj+1‖X(∆t‖u‖L∞(0,T ;W 1,4(Ω)2)‖ut‖L2(tj ,tj+1;L2(Ω)2)

+ Ch2|uj |H2(Ω)‖u‖L2(tj ,tj+1;W 1,4(Ω)2))

≤ ε∆t‖ẽj+1‖2
X + C∆t2‖u‖2

L∞(0,T ;W 1,4(Ω)2)‖ut‖2
L2(tj ,tj+1;L2(Ω)2)

+ Ch4‖u‖2
L∞(0,T ;H2(Ω)2)‖u‖2

L2(tj ,tj+1;W 1,4(Ω)2). (4.18)

Combining the bounds (4.12), (4.13), (4.14), (4.17) and (4.18) and using the fact that u ∈ L∞(0, T ; H2(Ω)2),
the right-hand side of (4.10) is bounded by

ε∆t‖ẽj+1‖2
X + C(h2 + ∆t2)‖ut‖2

L2(tj ,tj+1;H1(Ω)2) + Ch2‖u‖2
L2(tj ,tj+1;H2(Ω)2)

+ Ch2∆t‖u‖2
L∞(0,T ;H2(Ω)2) + C∆t‖ej‖2

L2(Ω)‖u‖2
L∞(0,T ;H2(Ω)2) + 2

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1, p)

∣∣∣∣∣ . (4.19)

The last term is estimated by Lemma 4.2. Then, for an appropriate choice of ε and η in Lemma 4.2, we obtain:

‖ej+1‖2
L2(Ω) − ‖ej‖2

L2(Ω) + ‖ẽj+1 − ej‖2
L2(Ω) +

1
2
‖ej+1 − ẽj+1‖2

L2(Ω)

+
1
2
Kµ∆t(‖ej+1‖2

X + ‖ẽj+1‖2
X + ‖ej+1 − ẽj+1‖2

X) + ∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2

+ ∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 ≤ C∆t‖ej‖2
L2(Ω)‖u‖2

L∞(0,T ;H2(Ω)2) + C(h2 + ∆t2)‖ut‖2
L2(tj ,tj+1;H1(Ω)2)

+ Ch2‖u‖2
L2(tj ,tj+1;H2(Ω)2) + Ch2∆t‖u‖2

L∞(0,T ;H2(Ω)2) + (Ch2 + 2∆t)‖∇p‖2
L2(tj ,tj+1,L2(Ω)2). (4.20)

Since U0 = Rhu0, we have ‖e0‖L2(Ω) ≤ Ch|u0|H1(Ω) and hence applying Gronwall’s lemma, we have:

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ẽj+1 − ej‖2
L2(Ω) +

1
2

N−1∑

j=0

‖ẽj+1 − ej+1‖2
L2(Ω) +

N−1∑

j=0

∆t
∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2

+
N−1∑

j=0

∆t
∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2 +
1
2
Kµ

N−1∑

j=0

∆t(‖ej+1‖2
X + ‖ẽj+1‖2

X + ‖ej+1 − ẽj+1‖2
X)

≤ C1(h2 + ∆t2 + ∆t)eC2N∆t,

whence (4.7). �
The following theorem establishes an error estimate for NIPG. We skip the proof which is a straightforward

combination of the proofs of Theorem 4.3 and Proposition 2.3.
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Theorem 4.4. We retain the assumptions of Theorem 4.3, but we replace (1.22) by (2.5). Then there exists a
constant C, independent of h and ∆t, such that

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ẽj+1 − ej‖2
L2(Ω) +

1
2

N−1∑

j=0

‖ẽj+1 − ej+1‖2
L2(Ω)

+
N−1∑

j=0

(
∆t

∑

E∈Eh

∫

∂E−
|{U j} · nE |‖[ẽj+1]‖2 + ∆t

∑

E∈Eh

∫

(∂E−)∩(∂Ω)

|U j · nE |‖ẽj+1‖2

)

+
µ

2

N−1∑

j=0

∆t

(
1
2
‖ej+1‖2

X + ‖ẽj+1‖2
X

)
≤ C(h2 + ∆t2 + ∆t). (4.21)

These two theorems imply immediately the next result.

Corollary 4.5. Under the assumptions of Theorem 4.3 for SIPG or Theorem 4.4 for NIPG, there exists a
constant C independent of h and ∆t such that

(1)

max
j

‖ẽj‖2
L2(Ω) ≤ C(h2 + ∆t2 + ∆t) . (4.22)

(2)

max
j

‖ej‖X ≤ C, max
j

‖ẽj‖X ≤ C. (4.23)

5. Further error estimate for velocity and estimate for pressure

The following theorem sharpens the results of Theorem 4.3 for SIPG.

Theorem 5.1. Under the assumptions of Theorem 4.3 and if u0 ∈ H3/2(Ω)2, there exists a constant C and a
constant δ > 0 independent of h and ∆t such that for all ∆t ≤ δ, we have

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ej+1 − ej‖2
L2(Ω) +

µK

2

N−1∑

j=0

∆t‖ej+1‖2
X ≤ C(h2 + ∆t2).

Proof. Now that we have a first estimate for ej and ẽj , we can sharpen the estimate for ej by eliminating ẽj+1

from the error equation. This is achieved by summing the two equations (1.26) and (1.27) and integrating
between tj and tj+1:

∀vh ∈ Xh, (U j+1 − U j , vh) + µ

∫ tj+1

tj

(
a(U j+1, vh) + J0(U j+1, vh)

)

+
∫ tj+1

tj

b(vh, P j+1) +
∫ tj+1

tj

cU
j

(U j ; Ũ
j+1

, vh) =
∫ tj+1

tj

(f̌
j+1

, vh). (5.1)
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Inserting Rhuj and Rhuj+1, using (1.28) and (1.29) and choosing the test function vh in V h in order to
eliminate the discrete pressure, give:

∀vh ∈ V h, (ej+1 − ej , vh) + µ

∫ tj+1

tj

(
a(ej+1, vh) + J0(ej+1, vh)

)
=
∫ tj+1

tj

(ut, vh) + (Rhuj − Rhuj+1, vh)

+ µ

∫ tj+1

tj

(
a(u − Rhuj+1, vh) + J0(u − Rhuj+1, vh)

)
+
∫ tj+1

tj

c(u; u, vh)

−
∫ tj+1

tj

cU
j

(U j ; Ũ
j+1

, vh) +
∫ tj+1

tj

b(vh, p − rhp).

Taking vh = ej+1 ∈ V h and applying (1.22), we obtain:

1
2
(‖ej+1‖2

L2(Ω) − ‖ej‖2
L2(Ω) + ‖ej+1 − ej‖2

L2(Ω)) + µK∆t‖ej+1‖2
X

≤
∣∣∣∣∣

(∫ tj+1

tj

∂

∂t
(u − Rhu), ej+1

)∣∣∣∣∣+ µ

∣∣∣∣∣

∫ tj+1

tj

(
a(u − Rhuj+1, ej+1) + J0(u − Rhuj+1, ej+1)

)
∣∣∣∣∣

+

∣∣∣∣∣

∫ tj+1

tj

c(u; u, ej+1) −
∫ tj+1

tj

cU
j

(U j ; Ũ
j+1

, ej+1)

∣∣∣∣∣+

∣∣∣∣∣

∫ tj+1

tj

b(ej+1, p − rhp)

∣∣∣∣∣ . (5.2)

The first three linear terms are bounded as in Theorem 4.3. For the pressure term, considering the definition
of the approximation operator rh, we have

|b(ej+1, p − rhp)| ≤ CJ0(ej+1, ej+1)1/2h|p|H1(Ω).

The difficulty is to bound the nonlinear terms; we split them as follows:

c(u; u, ej+1) − cU
j

(U j ; Ũ
j+1

, ej+1) = c(u − Rhuj ; u, ej+1) − c(ej ; u, ej+1)

+ cU
j

(U j ; u − Rhu, ej+1) + cU
j

(U j ; Rh(u − uj+1), ej+1) − cU
j

(U j ; ẽj+1, ej+1).

First, as in Theorem 4.3 (cf. (4.18)), we have

|c(u−Rhuj ; u, ej+1)| ≤ C‖ej+1‖X(‖u‖L∞(0,T ;W 1,4(Ω)2)(t− tj)1/2‖ut‖L2(tj ,tj+1;L2(Ω)2) +h2|uj |H2(Ω)|u|W 1,4(Ω)).

Using Proposition 4.1, we have, for some r > 2

|c(ej ; u, ej+1)| ≤ C|u|W 1,r(Ω)‖ej+1‖X‖ej‖L2(Ω).

In view of (1.16), we write

cU
j

(U j ; u−Rhu, ej+1) = −c̄U
j

(U j ; ej+1, u−Rhu) = −c̄U
j

(ej ; ej+1, u−Rhu)− c̄U
j

(Rhuj ; ej+1, u−Rhu).

For the first term, using the approximation properties of Rh and the fact that, according to Corollary 4.5, ‖ej‖X

is bounded by a constant independent of j, h and ∆t, we obtain

|c̄U j

(ej ; ej+1, u − Rhu)| ≤ Ch3/2|u|H2(Ω)‖ej+1‖X .
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Similarly, the approximation properties of Rh imply that, for some r > 2,

|c̄U j

(Rhuj ; ej+1, u − Rhu)| ≤ Ch2|u|H2(Ω)|uj |W 1,r(Ω)‖ej+1‖X .

Next

cU
j

(U j ; Rh(u − uj+1), ej+1) = cU
j

(ej ; Rh(u − uj+1), ej+1) + cU
j

(Rhuj ; Rh(u − uj+1), ej+1).

For the first term, we use (4.3), (1.36) and Corollary 4.5:

|cU j

(ej ; Rh(u − uj+1), ej+1)| ≤ C‖ej‖X |uj+1 − u|H1(Ω)‖ej+1‖X

≤ C|uj+1 − u|H1(Ω)‖ej+1‖X ≤ C(tj+1 − t)1/2‖ut‖L2(tj ,tj+1,H1(Ω)2)‖ej+1‖X .

The second term is bounded like (4.16). Therefore

|cU j

(U j ; Rh(u − uj+1), ej+1)| ≤ C(tj+1 − t)1/2‖ej+1‖X‖ut‖L2(tj ,tj+1;H1(Ω)2)‖u‖L∞(0,T ;H1(Ω)2).

Finally, applying (1.16), we write

cU
j

(U j ; ẽj+1, ej+1) = −c̄U
j

(U j ; ej+1, ẽj+1) = −c̄U
j

(ej ; ej+1, ẽj+1) − c̄U
j

(Rhuj ; ej+1, ẽj+1).

For the first term, applying Theorem 3.8, Theorem 4.3, Corollary 4.5 and (1.25)

|c̄U j

(ej ; ej+1, ẽj+1)| ≤ C‖ej‖X‖ej+1‖X‖ẽj+1‖L4(Ω)

≤ C‖ej‖X‖ej+1‖X(C1‖ẽj+1‖1/2
L2(Ω)‖ẽj+1‖1/2

X + C2h
1/4J0(ẽj+1, ẽj+1)1/4‖ẽj+1‖1/2

X + C3h
1/2J0(ẽj+1, ẽj+1)1/2)

≤ C∗∆t1/4‖ej‖X‖ej+1‖X .

For the second term, the approximation properties of Rh and Corollary 4.5 imply that

|c̄U j

(Rhuj ; ej+1, ẽj+1)| ≤ C‖ej+1‖X |uj |W 1,4(Ω)‖ẽj+1‖L2(Ω) ≤ C(∆t)1/2‖u‖L∞(0,T ;W 1,r(Ω)2)‖ej+1‖X ,

considering that u ∈ L∞(0, T ; W 1,4(Ω)2). Thus, integrating all these terms over tj and tj+1 and summing
over j, the right-hand side of (5.2) is bounded by

ε

N−1∑

j=0

∆t‖ej+1‖2
X + C(h2 + ∆t2) + C

N−1∑

j=0

∆t‖ej‖2
L2(Ω) + C∗∆t1/4

N∑

j=0

∆t‖ej‖2
X .

First, let us choose δ such that C∗δ1/4 = µK
2 , i.e.

δ =
(

µK

2C∗

)4

, (5.3)
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and note that C∗ does not depend on ε. Next, take ε = µK
4 . Then, (5.2) becomes

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ej+1 − ej‖2
L2(Ω) +

µK

2

N−1∑

j=0

∆t‖ej+1‖2
X

≤ ‖e0‖2
L2(Ω) + C(h2 + ∆t2) + C

N−1∑

j=0

∆t‖ej‖2
L2(Ω) + µK∆t‖e0‖2

X

≤ C(h2 + ∆t2) + C
N−1∑

j=0

∆t‖ej‖2
L2(Ω),

by applying the regularity of u0, the approximation properties of Rh and (1.25). Then, the result follows from
Gronwall’s lemma. �

Similarly, the next theorem sharpens the result of Theorem 4.4 for NIPG; its proof is almost identical to that
of Theorem 5.1, but (5.3) is replaced by

δ =
( µ

2C∗
)4

. (5.4)

Theorem 5.2. Under the assumptions of Theorem 4.4 and if u0 ∈ H3/2(Ω)2, there exists a constant C and a
constant δ > 0, independent of h and ∆t, such that for all ∆t ≤ δ, we have

max
j

‖ej‖2
L2(Ω) +

N−1∑

j=0

‖ej+1 − ej‖2
L2(Ω) +

µ

2

N−1∑

j=0

∆t‖ej+1‖2
X ≤ C(h2 + ∆t2).

Remark 5.3. We can improve the estimate for ‖ẽj‖L2(Ω) by using a bootstrap argument in Theorems 4.3
and 4.4. Indeed, in the case of SIPG, let the assumptions of Theorem 5.1 hold, and let us revisit the last term
of (4.19). Owing to the fact that ej belongs to V h, this term can be written (without the factor 2)

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1, p)

∣∣∣∣∣ =

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1 − ej , p) +
∫ tj+1

tj

b(ej , p − rhp)

∣∣∣∣∣

≤
∫ tj+1

tj

∣∣∣∣∣(∇p, ẽj+1 − ej) +
∑

e∈Γh

∫

e

{p − rhp}[ej ] · ne

∣∣∣∣∣

≤ ∆t
∥∥p‖L∞(0,T ;H1(Ω))

∥∥ ẽj+1 − ej‖L2(Ω) + Ch∆t1/2J0(ej , ej)1/2‖p‖L2(tj ,tj+1;H1(Ω)).

To simplify, denote C = ‖p‖L∞(0,T ;H1(Ω)). Then, either

‖ẽj+1 − ej‖L2(Ω) ≤ 2∆tC, (5.5)

or
‖ẽj+1 − ej‖L2(Ω) > 2∆tC. (5.6)

If (5.6) holds, then

∣∣∣∣∣

∫ tj+1

tj

b(ẽj+1, p)

∣∣∣∣∣ ≤
1
2
‖ẽj+1 − ej‖2

L2(Ω) + Ch∆t1/2J0(ej, ej)1/2‖p‖L2(tj ,tj+1;H1(Ω)),
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and the first term of this bound is absorbed by the left-hand side of (4.20). Since all the remaining terms are
of the order O(h2 + ∆t2), then the end of the argument of Theorem 4.3 implies that

∑
j ‖ẽj+1 − ej+1‖2

L2(Ω)

is O(h2 + ∆t2). Otherwise, if (5.6) does not hold, (5.5) holds and since we know from Theorem 5.1 that
maxj ‖ej‖L2(Ω) = O(h + ∆t), this implies that

max
j

‖ẽj‖L2(Ω) = O(h + ∆t). (5.7)

Hence, in all cases, (5.7) holds. The proof for NIPG is the same.

Now, we estimate the pressure. The bound we derive below is not optimal, considering the degree of the
polynomials used because the argument of Theorem 5.1 does not give a sharper estimate for ‖ẽj‖X . The only
result we have comes from Section 4; we only have

N∑

j=1

∆t‖ẽj‖2
X = O(∆t), (5.8)

whereas, an optimal error for the pressure requires

N∑

j=1

∆t‖ẽj‖2
X = O(∆t2). (5.9)

Indeed, we shall see that the error estimate for the pressure requires an L2 in space and time estimate for the
discrete derivative of U j . More precisely, we need to show that

N−1∑

j=0

∆t

∥∥∥∥
ej+1 − ej

∆t

∥∥∥∥
2

L2(Ω)

= O(∆t2). (5.10)

But, we cannot prove this because it makes use of (5.9) in the treatment of the nonlinear term. As it is, we
only have the following suboptimal estimate, which is an easy consequence of Theorems 5.1 or 5.2:

N−1∑

j=0

∆t

∥∥∥∥
ej+1 − ej

∆t

∥∥∥∥
2

L2(Ω)

= O(∆t). (5.11)

With this, we prove the following bound for the pressure.

Theorem 5.4. Under the assumptions of Theorem 5.1 for SIPG or Theorem 5.2 for NIPG, there exists a
constant C independent of h and ∆t such that for all ∆t ≤ δ as defined in (5.3) for SIPG or (5.4) for NIPG,
we have

N∑

j=1

∆t‖pj − P j‖2
L2(Ω) ≤ C(h2 + ∆t). (5.12)

Proof. From (1.29) and (5.1), we have an error equation for p:

∫ tj+1

tj

b(vh, p − P j+1) = (U j+1 − U j − (uj+1 − uj), vh) + µ

∫ tj+1

tj

(
a(U j+1 − u, vh) + J0(U j+1 − u, vh)

)

+
∫ tj+1

tj

(
cU

j

(U j ; Ũ
j+1

, vh) − c(u; u, vh)
)

, ∀vh ∈ Xh.
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Inserting rhpj+1, Rhuj+1 and Rhuj and setting ξj = P j − rhpj , this becomes

−
∫ tj+1

tj

b(vh, ξj+1) = −
∫ tj+1

tj

b(vh, p − rhpj+1) + (ej+1 − ej , vh) + (Rhuj+1 − Rhuj − (uj+1 − uj), vh)

+ µ

∫ tj+1

tj

(
a(ej+1, vh) + J0(ej+1, vh)

)
+
∫ tj+1

tj

(
cU

j

(U j ; Ũ
j+1

, vh) − c(u; u, vh)
)

+ µ

∫ tj+1

tj

(
a(Rhuj+1 − u, vh) + J0(Rhuj+1 − u, vh)

)
, ∀vh ∈ Xh.

From the inf-sup condition (1.24), it suffices to estimate the right-hand side in terms of ‖vh‖X for an arbitrary
vh ∈ X̄h. This estimate is obtained in much the same way as in the proof of Theorem 5.1 for all terms except
the one involving ej+1 − ej . All the other terms have an optimal upper bound. For ej+1 − ej , we simply write

|(ej+1 − ej , vh)| ≤ ‖ej+1 − ej‖L2(Ω)‖vh‖L2(Ω) ≤ C‖ej+1 − ej‖L2(Ω)|||∇vh|||L2(Ω),

by (3.5). When summing over j, it is clear in view of (5.11) that the contribution to the error of this term is
only O(h2 + ∆t). �

6. Coupling continuous or nonconforming and discontinuous methods

In this section, we present two possible combinations of continuous IP 1, nonconforming IP 1 and IP 1-SIPG
or IP 1-NIPG in this splitting algorithm. From the computational point of view, they are less costly than the
scheme presented in Section 1.

To simplify the presentation, we assume that Ω is a Lipschitz polygon partitioned into two Lipschitz polygonal
subdomains Ω1 and Ω2 with interface γ, that each Ωi is subdivided by a regular family of triangulation E i

h that
match on γ. In other words, we do not consider hanging nodes.

In the first method that corresponds to the second strategy announced in the introduction, for step 1, we
use continuous IP 1 elements in Ω1 and SIPG (resp. NIPG) in Ω2 and for step 2, we use SIPG (resp. NIPG) in
the whole domain Ω. Thus, setting

X1
h = {vh ∈ C0(Ω1) : ∀E ∈ E1

h, vh ∈ IP 1(E)2, vh = 0 on ∂Ω ∩ ∂Ω1},

defining X2
h by

X2
h = {vh ∈ L2(Ω2)2 : ∀E ∈ E2

h, vh ∈ IP 1(E)2},
and setting

X̃h = {vh ∈ L2(Ω)2 : vh|Ω1 ∈ X1
h, vh|Ω2 ∈ X2

h},
we replace (1.26) by: knowing U j ∈ V h, find Ũ

j+1 ∈ X̃h solution of

∀vh ∈ X̃h,
1

∆t
(Ũ

j+1 − U j , vh) + µ
(
a(Ũ

j+1
, vh) + J0(Ũ

j+1
, vh)

)
+ cU

j

(U j ; Ũ
j+1

, vh) = (f̌
j+1

, vh), (6.1)

and keep (1.27) and (1.28) unchanged. Since the forms a, J0 and c are consistent, we can denote them by the
same symbol in (6.1) although from a computational point of view, they simplify on Ω1; in particular, there
are no jump terms and no upwind in Ω1. It is easy to see that the estimates in Section 4 remain valid for this
discretization. However the improved estimates of Section 5 do not appear to carry on here, because the spaces
Xh and X̃h are different. Thus, this scheme seems less accurate but it requires fewer degrees of freedom. When
the spaces Xh and X̃h are different (and more precisely X̃h is a proper subspace of Xh), then Equations (1.26)
and (1.27) can no longer be summed because they are not stated with the same test functions. Indeed, on one
hand (1.26) cannot be stated with discontinuous test functions in Ω1. And on the other hand, (1.27) cannot be
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stated with continuous IP 1 functions, since they do not satisfy the inf-sup condition when combined with IP 0

pressures. Hence, (5.1), that is the starting point of Theorem 5.1, does not hold.
In the second method that corresponds to the third strategy announced in the introduction, we use the same

decomposition of Ω and the same spaces in both steps. In Ω1, we replace the continuous IP 1 approximation of
u by a IP 1 nonconforming method. More precisely, let Γ1

h denote the set of edges of E1
h that do not lie on the

interface γ, let Γ2
h = Γh \ Γ1

h and define

X̄
1
h =

{
vh ∈ L2(Ω1)2 : ∀E ∈ E1

h, vh|E ∈ IP 1(E)2, ∀e ∈ Γ1
h,

∫

e

[vh] = 0
}

,

which is very similar to (1.23). The space X2
h is defined as above and we set

Xh = {vh ∈ L2(Ω)2 : vh|Ω1 ∈ X1
h, vh|Ω2 ∈ X2

h}.

It is easy to see that the bilinear form a and the trilinar form c apply to all three SIPG, NIPG and the IP 1-
nonconforming method. On the other hand, the jump J0 is not required although it does not necessarily vanish
in the nonconforming method. Thus we replace (1.9) by

J0(u, v) =
∑

e∈Γ2
h

σe

|e|
∫

e

[u] · [v].

With this new space Xh and new form J0, the formulation of this scheme is given again by (1.26), (1.27) and
(1.28). As for the first method, the estimates of Section 4 are valid here. In addition, since the same space is
used in both steps, the estimates of Section 5 are also valid and therefore, as far as the velocity is concerned,
this second method has an optimal accurary. It requires less degrees of freedom than the SIPG or NIPG method
and it retains the property of local mass conservation.

7. Numerical experiments

Let Ω =]0, 1[×]0, 1[ and consider the transient Navier-Stokes equations (0.4)–(0.7) with solution

u =
(
(x4 − 2x3 + x2)(4y3 − 6y2 + 2y)t,−(4x3 − 6x2 + 2x)(y4 − 2y3 + y2)t

)
, p = 0. (7.1)

We study here the numerical convergence of the scheme (1.26)–(1.28) introduced in Section 1, but instead of
restricting the discussion to IP 1 − IP 0, we also compute the solution with IP 2 − IP 1 (that also satisfies the
inf-sup condition, see [14]). The time step ∆t is chosen accordingly so that it is of the order h for the case
IP 1 − IP 0 and of the order h2 for the case IP 2 − IP 1. The domain is subdivided into an initial mesh consisting
of two elements. We then successively refine the mesh and compute the errors eh on the mesh of size h and
the numerical convergence rates by the ratio ln(eh/eh/2)/ ln(2). We present the numerical errors of the velocity
in the energy norm and in the L2 norm and the numerical error of the pressure in the L2 norm computed at
the final time of simulation. We choose a constant penalty parameter σe = 10 for SIPG and we consider three
cases for NIPG: σe = 0, σe = 1 and σe = 10. We did explore the case of SIPG with σe = 1, but the results were
inconclusive. In the following tables, the number after the name SIPG or NIPG corresponds to the value of σe.

Table 1 shows the errors and convergence rates for the case where the velocities are approximated by piecewise
linears and the pressure by piecewise constants. As predicted by the theory, we observe that the error of u in
the H1

0 norm is O(h). The first interesting point in this table is that the error of p in the L2 norm is O(h) and
that of u is O(h2), much better than what the theory predicts. The second interesting point is that the results
for NIPG are also optimal, even better in some cases than SIPG, and in this experiment are not sensitive to the
choices of σe. Let us recall that usually, the advantage of NIPG is that the penalty parameter σe does not have
to be adjusted and can be kept small, i.e. σe = 1. The third interesting point is that NIPG with σe = 0 (i.e.
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Table 1. Numerical errors and convergence rates, for IP 1 − IP 0 with ∆t = 10−2.

Method h ‖u(T ) − UN‖H1
0 (Ω) rate ‖u(T ) − UN‖L2(Ω) rate ‖p(T )− PN‖L2(Ω) rate

SIPG 10 1/2 5.113 × 10−3 3.748× 10−4 1.432 × 10−3

1/4 3.123 × 10−3 0.711 1.736× 10−4 1.110 1.395 × 10−3 0.038
1/8 1.651 × 10−3 0.919 6.517× 10−5 1.414 1.250 × 10−3 0.159

1/16 8.208 × 10−4 1.009 2.055× 10−5 1.665 8.797 × 10−4 0.506
1/32 4.045 × 10−4 1.021 5.725× 10−6 1.844 5.163 × 10−4 0.769
1/64 2.006 × 10−4 1.012 1.502× 10−6 1.930 2.767 × 10−4 0.899

NIPG 10 1/2 4.937 × 10−3 3.549× 10−4 8.497 × 10−4

1/4 2.968 × 10−3 0.734 1.326× 10−4 1.419 1.174 × 10−3 −0.467
1/8 1.580 × 10−3 0.909 4.091× 10−5 1.697 1.219 × 10−3 −0.547

1/16 7.995 × 10−4 0.983 1.151× 10−5 1.829 8.804 × 10−4 0.470
1/32 3.995 × 10−4 1.001 3.037× 10−6 1.923 5.166 × 10−4 0.769
1/64 1.995 × 10−4 1.002 7.781× 10−7 1.964 2.767 × 10−4 0.901

NIPG 1 1/2 5.569 × 10−3 6.990× 10−4 5.649 × 10−4

1/4 3.129 × 10−3 0.832 2.654× 10−4 1.397 1.255 × 10−3 −1.152
1/8 1.567 × 10−3 0.997 8.047× 10−5 1.721 6.290 × 10−4 0.997

1/16 7.698 × 10−4 1.025 2.193× 10−5 1.875 2.491 × 10−4 1.336
1/32 3.789 × 10−4 1.023 5.647× 10−6 1.957 9.425 × 10−5 1.402
1/64 1.876 × 10−4 1.014 1.422× 10−6 1.989 3.777 × 10−5 1.319

NIPG 0 1/2 6.396 × 10−3 1.041× 10−3 9.736 × 10−4

1/4 3.940 × 10−3 0.699 4.829× 10−4 1.107 1.630 × 10−3 −0.743
1/8 2.134 × 10−3 0.885 1.975× 10−4 1.290 7.075 × 10−4 1.204

1/16 1.095 × 10−3 0.962 8.738× 10−5 1.177 3.013 × 10−4 1.232
1/32 5.516 × 10−4 0.989 4.178× 10−5 1.064 1.381 × 10−4 1.125
1/64 2.763 × 10−4 0.997 2.058× 10−5 1.022 6.715 × 10−5 1.040

without jumps) gives good results, except for the error of u in L2. This is surprising because there is no error
analysis for NIPG 0. Since this method is not adapted to the IP 1 discretization of time independent elliptic
problems, this good performance here may be due to the effect of the time derivative.

We repeated the experiments for the case where the velocities are approximated by piecewise quadratics and
the pressure by piecewise linears. The results are shown in Table 2. All methods converge optimally in energy
norm for velocity and in L2 norm for pressure. SIPG 10 is also optimal in L2 for the velocity, but the NIPG
methods are suboptimal and only of the order O(h2). This is consistent with previous results with NIPG for
elliptic problems, namely optimal results in the L2 norm are only observed when the degree of the polynomial
used is odd.

Concluding remarks:
In this work, we presented several discretizations based on an operator-splitting technique. Besides the

advantages of the decoupling of the incompressibility condition and the nonlinearity, our proposed methods
benefit from the advantages of the discontinuous Galerkin methods: local mass conservation, high order of
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Table 2. Numerical errors and convergence rates, for IP 2 − IP 1 with ∆t = 10−3.

Method h ‖u(T ) − UN‖H1
0 (Ω) rate ‖u(T ) − UN‖L2(Ω) rate ‖p(T )− PN‖L2(Ω) rate

SIPG 10 1/2 2.920× 10−4 1.265× 10−5 8.253 × 10−5

1/4 8.922× 10−5 1.711 1.948× 10−6 2.699 2.745 × 10−5 1.588
1/8 2.309× 10−5 1.950 2.522× 10−7 2.950 7.741 × 10−6 1.826

1/16 5.693× 10−6 2.020 3.104× 10−8 3.022 2.150 × 10−6 1.848
1/32 1.399× 10−6 2.025 3.813× 10−9 3.025 5.756 × 10−7 1.901

NIPG 10 1/2 2.519× 10−4 1.233× 10−5 6.761 × 10−5

1/4 7.355× 10−5 1.776 1.823× 10−6 2.758 3.896 × 10−5 0.795
1/8 1.953× 10−5 1.913 2.554× 10−7 2.835 8.512 × 10−6 2.194

1/16 4.940× 10−6 1.983 3.917× 10−8 2.705 1.869 × 10−6 2.186
1/32 1.236× 10−6 2.00 7.563× 10−9 2.373 4.399 × 10−7 2.088

NIPG 1 1/2 2.654× 10−4 1.407× 10−5 2.274 × 10−4

1/4 7.941× 10−5 1.741 2.398× 10−6 2.553 5.230 × 10−5 2.121
1/8 2.117× 10−5 1.907 3.646× 10−7 2.717 1.130 × 10−5 2.210

1/16 5.340× 10−6 1.987 6.086× 10−8 2.583 2.378 × 10−6 2.249
1/32 1.331× 10−6 2.003 1.261× 10−8 2.270 5.189 × 10−7 2.197

NIPG 0 1/2 2.712× 10−4 1.513× 10−5 2.567 × 10−4

1/4 8.473× 10−5 1.678 2.783× 10−6 2.443 6.396 × 10−5 2.005
1/8 2.287× 10−5 1.889 4.314× 10−7 2.690 1.425 × 10−5 2.165

1/16 5.766× 10−6 1.988 7.344× 10−8 2.554 3.033 × 10−6 2.233
1/32 1.434× 10−6 2.008 1.546× 10−8 2.247 6.703 × 10−7 2.178

approximation, robustness and stability. It is to be noted that the SIPG version might be preferred to the
NIPG from a point of view of better conditioning of the linear system. Finally our multi-numerics approach
(coupling of continuous and discontinuous finite elements) allows the use of efficient solvers for the first step,
while still obtaining a locally divergence-free velocity.
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