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ITERATIVELY SOLVING A KIND OF SIGNORINI TRANSMISSION PROBLEM
IN A UNBOUNDED DOMAIN

Qiya Hu1 and Dehao Yu1

Abstract. In this paper, we are concerned with a kind of Signorini transmission problem in a
unbounded domain. A variational inequality is derived when discretizing this problem by coupled
FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a vari-
ant of the D-N alternative method, will be introduced. In the iterative method, the finite element part
and the boundary element part can be solved independently. It will be shown that the convergence
speed of this iteration is independent of the mesh size. Besides, a combination between this method
and the steepest descent method is also discussed.
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1. Introduction

In this paper we analyze the following transmission problem in R2. Let Ω be a bounded domain with
Lipschitz boundary Γ. To describe mixed boundary conditions, let Γ = Γt ∪ Γs where Γt and Γs are nonempty,
disjoint, and open in Γ. Let n denote the unit normal on Γ defined almost everywhere pointing from Ω into
Ωc := R2\Ω̄. Assume that f ∈ L2(Ω), u0 ∈ H

1
2 (Γ) and t0 ∈ L2(Γ).

As the interior part, we consider the nonlinear partial differential equation

div(p(|∇u|) · ∇u) + f = 0 in Ω, (1.1)

where p : [0,∞) → [0,∞) is a continuous function with t·p(t) being monotonously increasing with t. In the
exterior part, we consider the Laplace equation

�u = 0 in Ωc, (1.2)

with the radiation condition (note Lem. 3.6 of [2])

u(x) = a+ o(1) (|x| → ∞), (1.3)
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where a is a real constant. Writing u1 := u|Ω and u2 := u|Ωc , the traction on Γ are given by the traces of
p(|∇u|)∂u1

∂n and −∂u2
∂n . We consider transmission conditions on Γt,

u1|Γt = u2|Γt + u0|Γt and p(|∇u|)∂u1

∂n
|Γt =

∂u2

∂n
|Γt + t0|Γt , (1.4)

and Signorini conditions on Γs,

u1|Γs≤u2|Γs + u0|Γs , (1.5)

p(|∇u|)∂u1

∂n
|Γs =

∂u2

∂n
|Γs + t0|Γs ≤ 0 (1.6)

0 = p(|∇u|)∂u1

∂n
|Γs · (u2 + u0 − u1)|Γs . (1.7)

This problem can be considered as a scalar model of the two-body contact problem between a linear elastic
unbounded medium and a deformable body allowing some nonlinear monotone stress strain relationship (refer
to [4,12]). Some similar problems have been considered in [5,8,9,14]. The paper [2] introduced a coupled FEM-
BEM variational inequality of the problem (1)–(5), and considered the corresponding approximation problem.
Moreover, an asymptotic error estimate has been derived in that paper.

However, there is no literature to study the numerical method for solving this kind of coupled FEM-BEM
variational inequality. In the present paper we introduce an iterative method for solving (1)–(5). This method
can be viewed as a variant of the D-N alternative method, which has been applied to solving the Poisson
equations in bounded domain and unbounded domain (see [7,19,20]). It will be shown that the solution sequence
generated by this iteration converges to the solution of the coupled system given in [2], and the convergence
speed is independent of the mesh size. The new method has obvious advantages: (1) the finite element problem
and boundary element problem are solved respectively; (2) the memory requirement was decreased.

This paper is organized as follows. In Section 2, we describe the coupled variational problem in suitable
way. In Section 3, a basic iteration method is described, and its convergence results are given. In Section 4,
we analyze the convergence rate. In Section 5, we discuss a combination between this iterative method and the
steepest descent method.

2. A coupled system derived by FEM and BEM

In this section, we describe the variational problems considered by [2]. For convenience, we would like to use
the equivalent forms to (24) and (28) in [2].

Let H1(Ω), H
1
2 (Γ), H1

0 (Ω) and H− 1
2 (Γ) denote the usual Sobolev spaces (refer to [10]). We define the (non-

linear) functional A : H1(Ω)×H1(Ω)→R and the linear functional F : H1(Ω)×H 1
2 (Γ)→R by

A(u, v) =
∫

Ω

p(|∇u|)(∇u)t · ∇vdx, u, v ∈ H1(Ω)

and

F (u, ϕ) =
∫

Ω

f ·udx+
∫

Γ

t0 · ϕds, u ∈ H1(Ω), ϕ ∈ H
1
2 (Γ).

To define a symmetric and positive definite boundary operator, let γ(x, y) be the fundamental solution for the
Laplacian, i.e.

γ(x, y) = − 1
2π

log |x− y|, x, y ∈ R2.
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Set

V φ(z) = 2
∫

Γ

φ(x) · γ(z, x)dsx (V : H− 1
2 (Γ)→H

1
2 (Γ)),

Kφ(z) = 2
∫

Γ

φ(x) · ∂

∂nx
γ(z, x)dsx (K : H

1
2 (Γ)→H

1
2 (Γ)),

K ′φ(z) = 2
∫

Γ

φ(x) · ∂

∂nz
γ(z, x)dsx (K ′ : H− 1

2 (Γ)→H− 1
2 (Γ)),

Wφ(z) =
∂

∂nz
Kφ(z) (W : H

1
2 (Γ)→H− 1

2 (Γ)).

It is well known that V : H− 1
2 (Γ)→H

1
2 (Γ) is symmetric and positive definite, and W : H

1
2 (Γ)→H− 1

2 (Γ) is sym-
metric and positive semi-definite under suitable assumption (see [2,15]). Thus, the operator S : H

1
2 (Γ)→H− 1

2 (Γ)
defined by

S =
1
2
(W + (K ′ − I)V −1(K − I))

is also symmetric and positive definite. Note that the operator S is just the Dirichlet − Neumann map or
Steklov − Poincare operator (refer to [2, 18]).

Let 〈·, ·〉 be the L2 inner product on Γ. Set

L(u, ϕ) = F (u, ϕ) + 〈Sa, ϕ〉, u ∈ H1(Ω), ϕ ∈ H
1
2 (Γ).

For the function p(t), we make the natural assumption: p1 ≤ p(t) ≤ p2 and α ≤ p(t) + tp′(t) ≤ β for constants
p1, p2, α, β > 0 (refer to [2, 11]). Below we fix the constant a in some way to force uniqueness (see [2]).

Let E = H1(Ω)×H 1
2 (Γ). Set

D = {(u, ϕ) ∈ E : u = ϕ+ u0 on Γt and u ≤ ϕ+ u0 a.e. on Γs}.

The variational form of the problem (1)–(5) is: to find (u, ϕ) ∈ D such that

A(u, v − u) + 〈Sϕ, ϕ− ψ〉 ≥ L(v − u, ϕ− ψ),

∀(v, ψ) ∈ D. (2.1)
If (u, ϕ) is the solution of (2.1), then we can obtain the solution of (1)–(5) by u1 = u and

u2(z) =
1
2
(Kϕ+ V S(ϕ− a))(z) + a, z ∈ Ωc.

Without loss of generality, we assume that the domain Ω is a polygon. Let Ω be divided into some regular
quasi-uniform triangles with diameter h. Then let H1

h denote the finite-dimensional space of continuous and
piecewise linear function relating to this partition. The mesh in Ω leads to a mesh of the boundary, so that
we set

H
1
2
h = {u|Γ : u ∈ H1

h}.
Moreover, we may consider H− 1

2
h as the piecewise constant trial functions. For simplicity of exposition, we

assume that u0 ∈ H
1
2
h . Let Eh = H1

h×H
1
2
h , and set

Dh = {(uh, ϕh) ∈ Eh : uh = ϕh + u0 on Γt and uh ≤ ϕh + u0 a.e. on Γs}.

Let
ih : H

1
2
h ↪→ H

1
2 (Γ)
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and
jh : H− 1

2
h ↪→ H− 1

2 (Γ)
denote the canonical imbedding with its dual i∗h and j∗h

i∗h : H− 1
2 (Γ) ↪→ (H

1
2
h )∗

and
j∗h : H

1
2 (Γ) ↪→ (H− 1

2
h )∗.

Set
Sh =

1
2
(i∗hWih + i∗h(K ′ − I)jh(j∗hV jh)−1j∗h(K − I)ih).

The discrete problem associated with (2.1) is: to find (uh, ϕh) ∈ Dh such that

A(uh, vh − uh) + 〈Shϕh, ψh − ϕh〉 ≥ Lh(vh − uh, ψh − ϕh),

∀(vh, ψh) ∈ Dh (2.2)
where

Lh(v, ψ) = F (v, ψ) + 〈Sha, ψ〉.
It has been shown in [2] that the discrete problem (2.2) (and (2.1)) has a unique solution (by transforming it
to an equivalent form). Moreover, an asymptotic estimate of the errors uh − u and ϕh − ϕ was also derived. If
(uh, ϕh) is the solution of (2.2), then we can obtain the approximate solution of (1)–(5) by u1h = uh and

u2h(z) =
1
2
(Kϕh + V S(ϕh − a))(z) + a, z ∈ Ωc.

Remark 2.1. Since the stiffness matrix of the boundary integral operator Sh is dense, it is very expensive to
solve the variational inequality (2.2) by the existing methods (refer to [6,19]). For this reason, we will introduce
an iterative method to solve (2.2) in the next section.

3. A basic iterative method

At first, we describe the algorithm.
For a given λ ∈ H

1
2 (Γ), we define

Ĥ1
λ = {v ∈ H1

h : v = λ+ u0 on Γt and v ≤ λ+ u0 a.e. on Γs}.

For a given w ∈ H
1
2
h , let w ∈ H1

h denote the zero extension of w (which equals w on Γ, and equals zero at the
internal nodes of Ω).

Algorithm 3.1 Let ϕ0
h ∈ H

1
2
h be given. When ϕn

h ∈ H
1
2
h have been gotten, ϕn+1

h ∈ H
1
2
h will be obtained by

step 1◦: to find un+1
h ∈Ĥ1

ϕn
h

such that

A(un+1
h , vh − un+1

h ) ≥ (f, vh − un+1
h ), ∀vh ∈ Ĥ1

ϕn
h
; (3.1)

step 2◦: to find pn+1
h ∈ H

1
2
h such that

〈Shp
n+1
h , ψh〉 = (f, ψh) −A(un+1

h , ψh) + 〈t0 + Sa, ψh〉, ∀ψh ∈ H
1
2
h ; (3.2)

step 3◦: set
ϕn+1

h = θpn+1
h + (1 − θ)ϕn

h , 0 < θ < 1. (3.3)
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Remark 3.1. In essence, the step 1◦ and the step 2◦ can be regarded respectively as solving a Dirichlet
(inequality) problem on Ω (by FEM) and as solving a Neumann problem on Ωc (by BEM). In the implementation
of the step 2◦, it is unnecessary to consider the operator i∗h or j∗h. Instead, only the Galerkin method is used
(refer to [1]).

Remark 3.2. The main merits of this algorithm are: (1) the finite element problem and the boundary element
problem are solved independently, the variational inequality (3.1) and the boundary integral equation (3.2) can
be solved by the existing methods (see [3, 6]); (2) it has smaller memory requirement than the algorithms to
solve globally the variational inequality (2.2).

Now, we give the convergence result of this iteration.
Since Sh : H

1
2
h → (H

1
2
h )∗ is a symmetric and positive definite operator, we can define the norm

‖ · ‖Sh
= (〈Sh·, ·〉) 1

2 . Let ϕh ∈ H
1
2 be determined by the variational inequality (2.2), and set en

h = ϕh − ϕn
h.

Theorem 3.1. There exists a constant c0 independent of the mesh size h, such that when 0 < θ < 1
c0+1 , the

D-N alternative algorithm is convergent. Moreover, we have

‖en+1
h ‖2

Sh
≤ (1 − 2θ + 2(c0 + 1)θ2)‖en

h‖2
Sh
. (3.4)

In particular, when θ = 1
2(c0+1) , the upper bound of (3.4) is minimal and there holds

‖en+1
h ‖2

Sh
≤ (1 − 1

2(c0 + 1)
)‖en

h‖2
Sh
. (3.5)

Remark 3.3. Set un
1h = un

h and

un
2h(z) =

1
2
(Kϕn

h + V S(ϕn
h − a))(z) + a, z ∈ Ωc.

Theorem 3.1 proves that un
1h and un

2h converge to u1h and u2h respectively. In fact, we have

‖un
1h − u1h‖1,Ω ≤ C

(
1 − 1

2(c0 + 1)

)n
2

‖e0h‖Sh
,

with C being a constant independent of h and n. The error un
2h − u2h has a similar estimate, but it involves a

particular norm on the unbounded domain Ωc.

4. Analysis of the convergence rate

Since the nonlinear variational inequality is involved, Theorem 3.1 can not be derived by the standard
eigenvalue method, which has been used to analyze the convergence rate of the usual iterative method (com-
pare [7, 19]). The proof of Theorem 3.1 is based on four lemmas.

Lemma 4.1. The variational inequality (2.2) can be decomposed into the following sub-problems

A(uh, vh − uh)≥(f, vh − uh), ∀vh ∈ Ĥ1
ϕh

(4.1)

and

〈Shϕh, ψh〉 = (f, ψh) − A(uh, ψh) + 〈t0 + Sa, ψh〉, ∀ψh ∈ H
1
2
h . (4.2)
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Proof. The variational inequality (4.1) follows by setting ψh = ϕh in (2.2).

For any wh∈H
1
2
h , we set vh = uh + wh (or uh − wh) and ψh = ϕh + wh (or ϕh − wh) in (2.2). Then, the

function ϕh∈H
1
2
h satisfies

A(uh, wh) + 〈Shϕh, wh〉 ≥ (f, wh) + 〈t0 + Sa,wh〉
and

A(uh,−wh) + 〈Shϕh,−wh〉 ≥ (f,−wh) + 〈t0 + Sa,−wh〉.
These two inequalities imply the equation (4.2). �

Set
µn

h = pn+1
h − ϕh.

Lemma 4.2. The following inequality is valid:

A(uh, uh − un+1
h ) −A(un+1

h , uh − un+1
h ) ≤ 〈Shµ

n
h, e

n
h〉. (4.3)

Proof. It can be verified directly that

〈Shµ
n
h, e

n
h〉 = 〈Shµ

n
h, uh − un+1

h 〉 + 〈Shµ
n
h, ϕh + u0 − uh〉 + 〈Shµ

n
h, u

n+1
h − (ϕn

h + u0)〉
= 〈Shµ

n
h, uh − un+1

h 〉 + 〈Shp
n+1
h , ϕh + u0 − uh〉 − 〈Shϕh, ϕh + u0 − uh〉

+〈Shp
n+1
h , un+1

h − (ϕn
h + u0)〉 − 〈Shϕh, u

n+1
h − (ϕn

h + u0)〉. (4.4)

Set wh = ϕh + u0 − uh|Γ. From the definition of pn+1
h (see step 2◦), we have

〈Shp
n+1
h , ϕh + u0 − uh〉 = 〈Shp

n+1
h , wh〉 = (f, wh) −A(un+1

h , wh) + 〈t0 + Sa,wh〉
= 〈t0 + Sa,wh〉 − [(f,−wh) −A(un+1

h ,−wh)]
= 〈t0 + Sa,wh〉 − [(f, (un+1

h − wh) − un+1
h )

−A(un+1
h , (un+1

h − wh) − un+1
h )]. (4.5)

Since uh ∈ Ĥ1
ϕh

, we know that
wh|Γt = 0 and wh|Γs ≥ 0 (a.e. on Γs). (4.6)

Note that un+1
h ∈ Ĥ1

ϕn
h
, we have

un+1
h |Γt = ϕn

h + u0 and un+1
h |Γt ≤ ϕn

h + u0 (a.e. on Γs),

by (4.6), this leads to

(un+1
h − wh)|Γt = ϕn

h + u0 and (un+1
h − wh)|Γt ≤ ϕn

h + u0 (a.e. on Γs).

Namely, un+1
h − wh ∈ Ĥ1

ϕn
h
. Thus, by (4.5) and the definition of un+1

h (see step 1◦) we obtain

〈Shp
n+1
h , ϕh + u0 − uh〉 ≥ 〈t0 + Sa,wh〉 = 〈t0 + Sa, ϕh + u0 − uh〉. (4.7)

Similarly, we can prove

−〈Shϕh, u
n+1
h − (ϕn

h + u0)〉 = 〈Shϕh, ϕ
n
h + u0 − un+1

h 〉
≥ 〈t0 + Sa, ϕn

h + u0 − un+1
h 〉. (4.8)

On the other hand, let v̂h ∈ H1
h denote a suitable extension of ϕh +u0 such that v̂h−uh is just the zero extension

of ϕh + u0 − uh|Γ. From (4.2), we have

〈Shϕh, ϕh + u0 − uh〉 = (f, v̂h − uh) −A(uh, v̂h − uh) + 〈t0 + Sa, ϕh + u0 − uh)〉. (4.9)
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It is clear that v̂h ∈ Ĥ1
ϕh

. Thus, by (4.1) and (4.9) we obtain

〈Shϕh, ϕh + u0 − uh〉 ≤ 〈t0 + Sa, ϕh + u0 − uh〉.

Namely,
−〈Shϕh, ϕh + u0 − uh〉 ≥ −〈t0 + Sa, ϕh + u0 − uh〉. (4.10)

In an analogous way, we can prove

〈Shp
n+1
h , un+1

h − (ϕn
h + u0)〉 = −〈Shp

n+1
h , ϕn

h + u0 − un+1
h 〉

≥ −〈t0 + Sa, ϕn
h + u0 − un+1

h 〉. (4.11)

Using (4.4), together with (4.7)–(4.8) and (4.10)–(4.11), yields

〈Shµ
n
h, e

n
h〉 ≥ 〈Shµ

n
h, uh − un+1

h 〉 = 〈Shp
n+1
h , uh − un+1

h 〉 − 〈Shϕh, uh − un+1
h 〉. (4.12)

Subtracting (4.2) from (3.2), and choosing ψh = (uh − un+1
h )|Γ, we obtain

〈Shp
n+1
h , uh − un+1

h 〉 − 〈Shϕh, uh − un+1
h 〉 = A(uh, ehΓ) −A(un+1

h , ehΓ) (4.13)

with ehΓ = (uh − un+1
h )|Γ. It follows by (3.1) and (4.1) that

A(un+1
h , wh) = (f, wh), ∀wh ∈ H1

h∩H1
0 (Ω)

and
A(uh, wh) = (f, wh), ∀wh ∈ H1

h∩H1
0 (Ω).

Hence,
A(un+1

h , ehΓ − (uh − un+1
h )) = (f, ehΓ − (uh − un+1

h )) = A(uh, ehΓ − (uh − un+1
h )).

Namely,
A(uh, ehΓ) −A(un+1

h , ehΓ) = A(uh, uh − un+1
h ) −A(un+1

h , uh − un+1
h ). (4.14)

This, together with (4.12) and (4.13), gives the desired result. �
By (4.3) and the monotonicity of the (nonlinear) functional A(·, ·) (see [2]), we obtain

Corollary 4.1. We have the inequality
〈Shµ

n
h, e

n
h〉 ≥ 0. (4.15)

For a given λ ∈ H
1
2
h , let λ̃ ∈ H1

h denote the discrete harmonic extension of λ.

Lemma 4.3. There exists a positive constant c such that

|µ̃n
h|21,Ω ≤ c〈Shµ

n
h, µ

n
h〉. (4.16)

Proof. Let H(µn
h) ∈ H1(Ω) denote the (continuous) harmonic extension. Since µ̃n

h is just the orthogonal
projection of H(µn

h), we have
|µ̃n

h|21,Ω ≤ |H(µn
h)|21,Ω. (4.17)

It follows by the well-known property of H(µn
h) that there is a positive constant c1 independent of h, such that

|H(µn
h)|21,Ω ≤ c1‖µn

h‖2
1
2 ,Γ.

Thus, by (4.17) and Lemma 5.1 in [2], we obtain

|µ̃n
h|21,Ω ≤ c1‖µn

h‖2
1
2 ,Γ ≤ c〈Shµ

n
h , µ

n
h〉. �
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Lemma 4.4. There exists a positive constant c0 such that

〈Shµ
n
h, µ

n
h〉 ≤ c0〈She

n
h, e

n
h〉. (4.18)

Proof. Subtracting (4.2) from (3.2), and choosing ψh = µn
h, yields

〈Shµ
n
h, µ

n
h〉 = 〈Shp

n+1
h , µn

h〉 − 〈Shϕh, µ
n
h〉

= A(uh, µn
h) −A(un+1

h , µn
h). (4.19)

Since (µn
h − µ̃n

h)|Γ = 0, we have (refer to (4.14))

A(uh, µn
h) −A(un+1

h , µn
h) = A(uh, µ̃n

h) −A(un+1
h , µ̃n

h).

Substituting the above equality into (4.19), yields

〈Shµ
n
h, µ

n
h〉 = A(uh, µ̃n

h) −A(un+1
h , µ̃n

h). (4.20)

On the other hand, by the assumptions to the function p(t) (see Sect. 2), we can prove (refer to [2, 11])

A(uh, µ̃n
h) −A(un+1

h , µ̃n
h) ≤ β|uh − un+1

h |1,Ω · |µ̃n
h|1,Ω (4.21)

and
α|uh − un+1

h |21,Ω ≤ A(uh, uh − un+1
h ) −A(un+1

h , uh − un+1
h ). (4.22)

Hence, by (4.20)–(4.22), we obtain

〈Shµ
n
h, µ

n
h〉 ≤ α− 1

2 β[A(uh, uh − un+1
h ) −A(un+1

h , uh − un+1
h )]

1
2 · |µ̃n

h |1,Ω.

Furthermore, it follows by (4.3) that

〈Shµ
n
h, µ

n
h〉 ≤ α− 1

2β〈Shµ
n
h, e

n
h〉

1
2 · |µ̃n

h|1,Ω, (4.23)

which, together with (4.16), yields
〈Shµ

n
h , µ

n
h〉 ≤ α−1β2c〈Shµ

n
h, e

n
h〉.

Since Sh : H
1
2
h → (H

1
2
h )∗ is a symmetric and positive definite, by the Cauchy-Schwarz inequality, we obtain

〈Shµ
n
h, µ

n
h〉 ≤ α−1β2c〈Shµ

n
h, µ

n
h〉

1
2 · 〈She

n
h, e

n
h〉

1
2 .

Namely,
〈Shµ

n
h, µ

n
h〉 ≤ α−2β4c2〈She

n
h, e

n
h〉.

This means that the inequality (4.18) is valid with c0 = α−2β2c2. �

Now, we can prove our main result easily.

Proof of Theorem 3.1. From (3.3), we have

en+1
h = en

h − θgn
h . (4.24)

where gn
h = pn+1

h − ϕn
h. It follows by (4.24) that

‖en+1
h ‖2

Sh
= ‖en

h‖2
Sh

− 2θ〈She
n
h, g

n
h〉 + θ2‖gn

h‖2
Sh
. (4.25)
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Namely,

‖en+1
h ‖2

Sh
=

(
1 − 2θ

〈She
n
h, g

n
h〉

‖en
h‖2

Sh

+ θ2
‖gn

h‖2
Sh

‖en
h‖2

Sh

)
‖en

h‖2
Sh

(en
h �= 0). (4.26)

By Corollary 4.1, yields (note that gn
h = en

h + µn
h)

〈She
n
h, g

n
h〉 = ‖en

h‖2
Sh

+ 〈She
n
h, µ

n
h〉 ≥ ‖en

h‖2
Sh
. (4.27)

Moreover, it follows by Lemma 4.4 that

‖gn
h‖2

Sh
= ‖µn

h + en
h‖2

Sh

≤ 2(‖µn
h‖2

Sh
+ ‖en

h‖2
Sh

)
≤ 2(c0 + 1)‖en

h‖2
Sh

). (4.28)

Using (4.26), together with (4.27) and (4.28), we deduce to (3.4).
It is clear that when 0 < θ < 1

c0+1 , we have

‖en+1
h ‖2

Sh
< ‖en

h‖2
Sh
.

It can be verified directly that when θ = 1
2(c0+1) , the function

g(θ) = 1 − 2θ + 2(c0 + 1)θ2

reaches the minimum value 1 − 1
2(c0+1) · �

Remark 4.1. Some iterative methods for nonlinear minimization problems have been developed by [16,17]. It is
easy to see that the methods as well as the convergence results can be extended to the case of nonlinear equation.
On the other hand, the unknown ϕh satisfies a nonlinear equation, and Algorithm 3.1 can be interpreted as a
preconditioned Richardson iteration (refer to the next section). Thus, Theorem 3.1 may be derived by using
the extended results.

5. A combination between the Algorithm 3.1 and the steepest descent method

In most applications, it is difficult to estimate exactly the constant c in (4.16) (or c0 in Theorem 3.1). To
solve this problem, we consider the steepest descent method, by which we can determine a (variable) relaxation
parameter θn in the n− th iteration (refer to [6, 13]).

For a given λ ∈ H
1
2
h , let Ψ(λ) ∈ Ĥ1

λ denote the solution of the variational inequality

A(Ψ(λ), v − Ψ(λ)) ≥ (f, v − Ψ(λ)), ∀v ∈ Ĥ1
λ. (5.1)

We define the (nonlinear) operator SΩ : H
1
2
h → (H

1
2
h )∗ by

〈SΩλ, µ〉 = A(Ψ(λ), µ̄) − (f, µ̄), ∀µ ∈ H
1
2
h .

Since Ψ(ϕh) = uh, it follows by Lemma 4.1 that ϕh satisfies the interface equation

Ŝϕh = g, (5.2)

where
Ŝ = SΩ + Sh and g = t0 + Sha.
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It is clear that pn+1
h = S−1

h (g − SΩϕ
n
h). Thus, the algorithm 3.1 given in Section 3 can be regarded as the

preconditioned Richardson iteration
ϕn+1

h = ϕn
h + θS−1

h (g − Ŝϕn
h). (5.3)

Now, the (variable) parameter θ (=θn) in (5.3) is chosen such that the function

G(θ) = ‖Ŝϕh − Ŝϕn+1
h ‖2

S−1
h

reaches its minimum value when θ = θn.
Some algorithms of determining the parameter θn are given in [13]. For the combined method, the main cost

still results from the Algorithm 3.1 described in Section 3.
Let {ϕn

h} denote the solution sequence generated by this method.

Theorem 5.1. For the combined method, we have the following convergence result:

‖ϕh − ϕn
h‖2

Sh
≤

(
1 − 1

2(c0 + 1)

)n

‖Ŝϕh − Ŝϕ0
h‖2

S−1
h

, (5.4)

where c0 is the constant given in the last section.

To prove this theorem, we need two lemmas.
The following result can be proved like (4.3) (refer to Cor. 4.1).

Lemma 5.1. The following inequality is valid for any λ, µ ∈ H
1
2
h

〈λ− µ, SΩλ− SΩµ〉 ≥ A(Ψ(λ),Ψ(λ) − Ψ(µ)) −A(Ψ(µ),Ψ(λ) − Ψ(µ)) ≥ 0. (5.5)

Lemma 5.2. For any λ, µ ∈ H
1
2
h , we have

‖SΩλ− SΩµ‖2
S−1

h

≤ c0‖λ− µ‖2
Sh
. (5.6)

Proof. From the definition of the operator SΩ, we have

‖SΩλ− SΩµ‖2
S−1

h

= A(Ψ(λ), w̃) −A(Ψ(µ), w̃),

where
w = S−1

h (SΩλ− SΩµ).
Thus, we can prove, in an analogous way with (4.18), that

‖SΩλ− SΩµ‖2
S−1

h

≤ α−1β2cA(Ψ(λ),Ψ(λ) − Ψ(µ)) −A(Ψ(µ),Ψ(λ) − Ψ(µ)). (5.7)

On the other hand, it follows by (5.5) that

A(Ψ(λ),Ψ(λ) − Ψ(µ)) −A(Ψ(µ),Ψ(λ) − Ψ(µ)) ≤ 〈λ− µ, SΩλ− SΩµ〉
≤ ‖S 1

2
h (λ− µ)‖ · ‖S− 1

2
h (SΩλ− SΩµ)‖. (5.8)

Using (5.7) and (5.8), we deduce to (5.6). �

Proof of Theorem 5.1. It follows, by a well-known identity, that

‖Ŝϕh − Ŝϕn+1
h ‖2

S−1
h

− ‖Ŝϕh − Ŝϕn
h‖2

S−1
h

= 2〈Ŝϕh − Ŝϕn
h , Ŝϕ

n
h − Ŝϕn+1

h 〉S−1
h

+ ‖Ŝϕn
h − Ŝϕn+1

h ‖2
S−1

h

. (5.9)
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Since
ϕn

h − ϕn+1
h = −θnS

−1
h (Ŝϕh − Ŝϕn

h),
we have

〈Ŝϕh − Ŝϕn
h, Ŝϕ

n
h − Ŝϕn+1

h 〉S−1
h

= −θ−1〈ϕn
h − ϕn+1

h , Ŝϕn
h − Ŝϕn+1

h 〉. (5.10)

The inequality (5.5) infers that
〈ϕn

h − ϕn+1
h , SΩϕ

n
h − SΩϕ

n+1
h 〉 ≥ 0. (5.11)

Thus (note that Ŝ = SΩ + Sh)

〈ϕn
h − ϕn+1

h , Ŝϕn
h − Ŝϕn+1

h 〉 ≥ 〈ϕn
h − ϕn+1

h , Sh(ϕn
h − ϕn+1

h )〉
= (θn)2‖Ŝϕh − Ŝϕn

h‖2
S−1

h

.

This, together with (5.10), leads to

〈Ŝϕh − Ŝϕn
h , Ŝϕ

n
h − Ŝϕn+1

h 〉S−1
h

≤ −θ‖Ŝϕh − Ŝϕn
h‖2

S−1
h

. (5.12)

On the other hand, it follows by (5.6) that (note that Ŝ = SΩ + Sh)

‖Ŝϕn
h − Ŝϕn+1

h ‖2
S−1

h

≤ 2(‖SΩϕ
n
h − SΩϕ

n+1
h ‖2

S−1
h

+ ‖ϕn
h − ϕn+1

h ‖2
Sh

)

≤ 2(1 + c0)‖ϕn
h − ϕn+1

h ‖2
Sh

)
= 2(1 + c0)θ2n‖Ŝϕh − Ŝϕn

h‖2
S−1

h

. (5.13)

Using (5.9), together with (5.12) and (5.13), yields

‖Ŝϕh − Ŝϕn+1
h ‖2

S−1
h

≤ (1 − 2θn + 2(1 + c0)θ2n)‖Ŝϕh − Ŝϕn
h‖2

S−1
h

. (5.14)

Since the parameter θn is chosen such that

‖Ŝϕh − Ŝϕn+1
h ‖2

S−1
h

reaches its minimum value, by (5.14) we obtain (set θn = 1
2(c0+1) )

‖Ŝϕh − Ŝϕn+1
h ‖2

S−1
h

≤
(

1 − 1
2(c0 + 1)

)
‖Ŝϕh − Ŝϕn

h‖2
S−1

h

, n = 0, 1, · · · .

Hence,

‖Ŝϕh − Ŝϕn
h‖2

S−1
h

≤ (1 − 1
2(c0 + 1)

)n‖Ŝϕh − Ŝϕ0
h‖2

S−1
h

.

To prove (5.4), we only need to verify

‖Ŝϕh − Ŝϕn
h‖2

S−1
h

≥ ‖ϕh − ϕn
h‖2

Sh
. (5.15)

In fact, it is clear that

‖Ŝϕh − Ŝϕn
h‖2

S−1
h

= ‖(SΩϕh − SΩϕ
n
h) + Sh(ϕh − ϕn

h)‖2
S−1

h

≥ 2〈SΩϕh − SΩϕ
n
h, ϕh − ϕn

h〉 + ‖Sh(ϕh − ϕn
h)‖2

S−1
h

,

which, together with (5.5), gives (5.15). �
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Remark 5.1. Since the (nonlinear) operator SΩ can not be expressed explicitly, it is impossible to calculate
directly its Gateaux derivative (or Frechet derivative). Thus, Theorem 5.1 can not be proved in the usual way
(compare [13] and [16]).

Remark 5.2. Since the convergence speed of the methods discussed in this paper is independent of the mesh
size h, it is not sensitive to the errors of the solutions un

h, pn
h (and the parameter θn). The analysis to this

dependence is standard (refer to [16]).

Remark 5.3. A similar algorithm with Algorithm 3.1 has been designed for solving linear elliptic problems in
unbounded domains in [19], where the efficiency of such algorithm was confirmed by numerical experiments.

Acknowledgements. The authors wish to thank two anonymous referees for many constructive comments which lead to
a great improvement of the results and the presentation of the paper.
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