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TIME-DELAY REGULARIZATION OF ANISOTROPIC DIFFUSION
AND IMAGE PROCESSING
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Abstract. We study a time-delay regularization of the anisotropic diffusion model for image denoising
of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629–639], which has been
proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826–835]. In
the two-dimensional case, we show the convergence of a numerical approximation and the existence of
a weak solution. Finally, we show some experiments on images.
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Introduction

In a well-known paper, Perona and Malik [18] have proposed a model for image restoration based on the
following partial differential equation:

∂u

∂t
= div

(
g(|Du|2)Du) u(·, 0) = u0. (1)

Here u0 is the grey level intensity of the original image, u(·, t) is the restored version, that depends on the
scale parameter t, and g is a smooth non-increasing positive function with g(0) = 1 and sg(s2) → 0 at infinity.
The main idea is that the restoration process obtained by the equation is conditional: if x is an edge point,
where the gradient is large, then the diffusion will be stopped and therefore the edge will be kept. If x is in a
homogeneous area, the gradient has to be small, and the diffusion will tend to smooth around x. By introducing
an edge stopping function g(|Du|2) in the diffusion process, the model has been considered as an important
improvement of the theory of edge detection [15]. The experiments of Perona and Malik were very impressive,
edges remained stable over a very long time. In their paper [18], they claim that edge detection based on this
process clearly outperforms the Canny edge detector [3].

Unfortunately, the Perona-Malik model is ill-posed. Indeed, among the functions which Perona and Malik
advocate in their papers, we find g(s2) = 1/(1 + s2) or g(s2) = e−s2

for which no correct theory of equation (1)
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is available. By writing the equation in dimension two:

∂u

∂t
= g(|Du|2)|Du|div

(
Du

|Du|
)

+
(
g(|Du|2) + 2|Du|2g′(|Du|2))D2u

(
Du

|Du| ,
Du

|Du|
)
, (2)

where D2u( Du
|Du| ,

Du
|Du| ) is the second derivative of u in the gradient direction and |Du|div ( Du

|Du| ) is the second
derivative in the orthogonal direction, we observe that the diffusion runs backwards if sg(s2) is non-increasing.
Then, in the regions where the gradient of a solution is large, the process can be interpreted as a backwards
heat equation which is actually ill-posed. In the continuous setting, it means that (1) may have no solution at
all. One could also imagine very close pictures producing divergent solutions [11]. In practice, the equation is
discretized into a (obviously well-posed) finite-dimensional version of (1), however, it does not seem correct to
interpret such a discretization as an approximation of the ill-posed problem (1).

For these reasons, there have been many attempts to understand the Perona-Malik equation and find out
whether (1) can be given a sound interpretation. There are essentially two approaches: the first, motivated
by favorable numerical results, consists in studying the original equation and in establishing theoretical results
that explain the observed behaviour. The second approach consists in modifying the equation by regularizing
the term g(|Du|2) in order to get a well-posed equation.

1. The Perona and Malik equation and the regularized versions

First, we expose the main mathematical results established on the Perona-Malik model. Most of these results
are restricted to the dimension one; the unique result in dimension two, given by You et al. [20] confirms the
ill-posedness of the equation. Kawohl and Kutev [13] establish, in 1D, nonexistence of global weak solution, and
prove the existence and uniqueness of a classical solution only if the initial data has everywhere a small slope.
In this case the equation remains parabolic for all time and there is no edge to preserve: the diffusion smooths
the data, like the heat equation would do. They also prove a comparison principle under special assumptions
on the initial data.

Kichenassamy [14] shows that in general the Perona-Malik equation does not have a weak solution if the initial
data is not analytic in a neighborhood of high gradient regions. His argument is based on interior regularity
properties of parabolic equations. Only in dimension one, he proposes a notion of generalized solutions, which
are piecewise linear with jumps, and shows existence.

Adopting a numerical viewpoint, Esedoglu [7] studies the one-dimensional Perona-Malik scheme. He estab-
lishes by a scaling argument the convergence to an evolution in the continuous setting. The resulting evolution
solves a system of heat equations coupled to each other through nonlinear boundary conditions.

Working in dimension one clearly reduces the difficulty by eliminating the first term of (2) which is nothing
but the mean curvature motion operator with the coefficient g(|Du|2). As it is known, the mean curvature
motion evolves each level line {u = C} with a normal speed proportional to its curvature (see [1, 8] for more
details).

In dimension two, You et al. [20] express the anisotropic diffusion of Perona and Malik as the steepest descent
of an energy surface and analyze the behaviour of the model. They prove that the ill-posedness is caused by the
fact that the energy functional has an infinite number of global minima that are dense in the image space. Each
of these minima corresponds to a piecewise constant image. This means that slightly different initial images
may end up in different minima for large t.

As mentioned, another approach relies on the idea that the ill-posedness may be alleviated through the
introduction of a smooth version of g(|Du|2). There are essentially two propositions which we consider as a
direct derivation from the Perona-Malik Model. The first consists in a spatial regularization, as in the following
model:

∂u

∂t
= div

(
g(|DGσ ∗ u|2)Du), (3)
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whereby g(|Du|2) is replaced by g(|DGσ ∗ u|2), where Gσ is a Gaussian with variance σ. In [4], Catté et al.
prove existence, uniqueness and regularity of a solution. It is known that Gσ ∗u(x, t) is nothing but the solution
at scale σ of the heat equation with u(x, t) as initial data.

A first observation is that near a sharp corner, the diffusion coefficient g(|DGσ ∗u|2) may remain very large,
hence this model will be unable to preserve corners.

Another problem is the choice of the regularization parameter σ. In fact, this choice is critical in the sense
that the diffusion process would be ill-posed if σ = 0, while image features would be blurred for too large an σ.
As proposed by Whitaker and Pizer [19], the regularization parameter σ should be a decreasing function in t,
by using large σ initially to suppress noise and reducing σ so that image features are not further blurred. In
spite of this, the choice of the initial and final values of σ remains an open question.

The second proposition is a time-delay regularization, where one replaces |Du|2 with an average of its values
from 0 to t. Then g(|Du|2) is replaced with g(v) with:

v(x, t) = e−tv0(x) +
∫ t

0

es−t|Du(x, s)|2 ds, (4)

where v0 is an initial data, for example v0 = 0 or |Du0|2. Therefore the new diffusion process is described by
the following system:

∂u

∂t
= div

(
g(v)Du

)
u(·, 0) = u0, (5)

∂v

∂t
= |Du|2 − v v(·, 0) = v0. (6)

Proposed by Nitzberg and Shiota [17], this model is very close to the Perona-Malik equation since there is
no spatial smoothing. In particular, it should mean that there is no previous motion of the features in the
diffusion process. In [2] the authors of the present paper have shown that in any dimension, the system (5)–(6)
admits a unique classical solution (u, v) which can blow up in finite time, and that as long as the solution exists,
the equation satisfies the maximum principle and does not create spurious information (that is, strict local
extrema). These properties of the system (5)–(6) have encouraged us to study it from a numerical viewpoint.
Let us mention that a similar equation involving the time-delay regularization of an anisotropic diffusion tensor
has been already studied, also for image processing, by Cottet and El Ayyadi [6].

This paper is organized as follows: in Section 2 we propose a natural discretization in time of (5)–(6) with
|Du|2 replaced by F (|Du|2), F being a sort of truncation. In practice, this modification does not have any
impact on the output images since the threshold implicitly exists in the numerical scheme. Indeed, if the
discrete scheme satisfies the maximum principle, then the discrete gradient is always bounded (for example by
(maxu0 −minu0)/∆x, ∆x being the grid size). Theoretically, the introduction of F is a huge regularization of
the system (we will see that it yields existence of a weak solution for all time). Section 3 proposes a numerical
scheme for solving the system, and Section 4 shows some experiments on synthetic and natural images. In
Section 5 we establish a priori estimates and regularity results on the proposed approximation and prove the
main result of this paper. In Section 6 we give the proofs of two technical results on elliptic equations that are
needed in Section 5.

2. Numerical approximation

The goal of this paper is to study and approximate numerically the system:

∂u

∂t
= div (g(v)Du) u(·, 0) = u0, (7)

∂v

∂t
= F (|Du|2) − v v(·, 0) = v0, (8)
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in Ω × (0, T ) where Ω = (0, 1)2, 0 < T < ∞. We will show that the system admits a weak solution, under the
following technical assumptions:

– g ∈ C1([0,+∞)) is a positive non-increasing function with g(0) = 1 and g(+∞) = 0;
– F ∈ C1([0,+∞)) is a smooth version of s → min(s,M), where M > 0 is a (large) real number (in

particular, we assume 0 ≤ F ′ ≤ 1).
Fixed δt > 0, we define the sequence (un

δt, v
n
δt)n by the semi-implicit scheme:

(u0
δt, v

0
δt) = (u0, v0) ∈

(
H1(Ω) ∩ L∞(Ω)

) × (
H1(Ω) ∩ L∞(Ω)

)
, v0 ≥ 0 and

un+1
δt − un

δt

δt
= div (g(vn

δt)Du
n+1
δt )

∂un+1
δt

∂n

∣
∣
∣
∂Ω

= 0 (9)

vn+1
δt − vn

δt

δt
= F (|Dun+1

δt |2) − vn+1
δt . (10)

We define the piecewise constant (in t > 0), functions

uδt(x, t) = u
[t/δt]+1
δt (x),

where [·] denotes the integer part. We also define (vδt) in the same way. Then we can write the discrete system
(9)–(10) in the form (τ−δt is defined by τ−δtf(·, t) = f(·, t− δt)):

uδt − τ−δtuδt

δt
= div (g(τ−δtvδt)Duδt),

∂uδt

∂n

∣
∣∣
∂Ω

= 0, (11)

vδt − τ−δtvδt

δt
= F (|Duδt|2) − vδt. (12)

The main result of this paper is the following theorem:

Theorem 1. Let T > 0. There exist a subsequence (uδtj
, vδtj

) of (uδt, vδt) and (u, v) a weak solution of the
system (7)–(8) in

(
H1(Ω × (0, T )) ∩ L∞(Ω × (0, T ))

) × (
H1(Ω × (0, T )) ∩ L∞(Ω × (0, T ))

)
such that, we have

the convergences, as j → +∞:

uδtj
−−→ u strongly in L2(0, T ;H1(Ω)), (13)

vδtj −−⇀ v weakly in L2(0, T ;H1(Ω)). (14)

The proof of this theorem will be given in Section 5.

3. Discretization

To discretize (9)–(10) we denote by un
i,j (resp. vn

i,j) the approximation of u (resp. v) at point (ih, jh)
(0 ≤ i, j ≤ N) and time t = n δt, where the size of the initial image u0 is given by N ×N and h = 1/N . Using
the following finite-differences formulas:

∆x
+w = wi+1,j − wi,j , ∆x

−w = wi,j − wi−1,j ,

∆y
+w = wi,j+1 − wi,j and ∆y

−w = wi,j − wi,j−1,

the approximation of div
(
g(v)Du

)
at point (ih, jh) and at scale t = (n+ 1) δt is given by:

1
h2

(
∆x

−
(
g(vn

i,j)∆
x
+u

n+1
i,j

)
+ ∆y

−
(
g(vn

i,j)∆
y
+u

n+1
i,j

))
.
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Then the equation (9) becomes:

un+1
i,j − un

i,j

δt
=

1
h2

{
g(vn

i,j)
(
un+1

i+1,j − un+1
i,j

) − g(vn
i−1,j)

(
un+1

i,j − un+1
i−1,j

)

+ g(vn
i,j)

(
un+1

i,j+1 − un+1
i,j

)
+ g(vn

i,j−1)
(
un+1

i,j − un+1
i,j−1

)}
(15)

with the Neumann boundary condition:

un+1
i,0 − un+1

i,1 = 0, un+1
i,N−1 − un+1

i,N = 0, for 0 ≤ i ≤ N,

un+1
0,j − un+1

1,j = 0, un+1
N−1,j − un+1

N,j = 0, for 0 ≤ j ≤ N.

Rearranging the right hand side of (15), we get

un+1 − un

δt
+ h−2A(vn)un+1 = 0,

where the matrix A(vn) is tridiagonal by blocks, and positive defined. By classical arguments [5] we know that
[I + δth−2A(vn)] is invertible.

To avoid any additional anisotropy in the scheme, we try to build a discrete gradient of u in (10) as rotationally
invariant as possible. We use the discretization proposed in [4, 17] which writes:

∆xw = (1 + 2
1
2 )−1

{(
wi+1,j − wi−1,j

)
+ 2−

1
2
(
wi+1,j−1 − wi−1,j−1

)
+ 2−

1
2
(
wi+1,j+1 − wi−1,j+1

)}
,

∆yw = (1 + 2
1
2 )−1

{(
wi,j+1 − wi,j−1

)
+ 2−

1
2
(
wi+1,j+1 − wi+1,j−1

)
+ 2−

1
2
(
wi−1,j+1 − wi+1,j−1

)}
.

The discretization of (10) is then written (assuming that in the whole range
[
0,max

(
(∆xu)2 + (∆yu)2

)]
, we

have F (s) = s)

vn+1
i,j =

1
1 + δt

(
δt h−2((∆xu)2 + (∆yu)2) + vn

i,j

)
. (16)

We can now give a discrete version of the maximum principle and show that the proposed algorithm will not
create new information (local extrema).

Lemma 1. For all n > 0 and (k, l), 0 ≤ k, l ≤ N , we have:

min
i,j

u0
i,j ≤ . . . ≤ min

i,j
un

i,j ≤ un+1
k,l ≤ max

i,j
un

i,j ≤ · · · ≤ max
i,j

u0
i,j . (17)

In particular, if un+1
k,l is a strict local maximum (resp. strict local minimum) of

(
un+1

i,j

)
then

un+1
k,l < un

k,l

(
resp. un+1

k,l > un
k,l

)
. (18)

Proof. Let un+1
k,l a global maximum of

(
un+1

i,j

)
, then in particular:

un+1
k,l − un+1

k+1,l ≥ 0, un+1
k,l − un+1

k−1,l ≥ 0,

un+1
k,l − un+1

k,l+1 ≥ 0, un+1
k,l − un+1

k,l−1 ≥ 0.
(19)

Using (15), and the fact that g > 0, we obtain:

un+1
k,l ≤ un

k,l,
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and we deduce:

max
i,j

un+1
i,j ≤ max

i,j
un

i,j ≤ · · · ≤ max
i,j

u0
i,j.

In the same way we prove the “min” part of (17), by considering un+1
k,l a global minimum of

(
un+1

i,j

)
. We

prove (18) by using the same argument and the fact that we now have strict inequalities in (19). �

4. Experiments

In Figure 1 (resp. Figs. 2 and 3) we compare the performances of our scheme with the Catté et al. model
[4] (resp. with the Perona-Malik model [18]) and in Figure 4 we present an example of restoration on a natural
image. The experiments have been done with the edge stopping function

g(s2) =
1

1 + (s2/λ2)
·

We have chosen a value of λ = 6, for images in the range [0, 255] and with a spatial grid size h = 1 (contrarily
to the convention in the previous section). The temporal increment we have used is δt = 0.1.

Figure 1a is a synthetic image (128 × 128) representing superimposed shapes having each one a constant
grey level. Figure 1b shows image 1a where 20% of Gaussian noise is added. We represent by Figure 1c the
restoration of the noisy image with the Catté et al. model (3) at scales 4 and 8 (from left to right) and by
Figure 1d the restoration with our scheme at the same scales. Notice that respectively, the scales 4 and 8
correspond to the stopping time t = 8 and 32. As explained in [4] by the authors of the model (3), the scale σ
used in the convolution term Gσ ∗ u must be taken in relation to the stopping time. Thus in Figure 1c we have
used σ = 4 and 8.

As mentioned in Section 1 the threshold introduced by F implicitly exists in the numerical scheme. Indeed,
since the discrete scheme satisfies the maximum principle and the fact that spatial increment is assumed to be 1,
then the discrete gradient is always bounded by

√
2(maxu0 − minu0) and M can be chosen to be 2(maxu0 −

minu0)2.
In the left image of 1b, the noise is smoothed in the homogeneous areas but is kept near the edges. This

drawback is caused by the fact that the diffusion is inhibited also in the neighborhood of edges. Whereas in the
left image of 1c, the noise is only partially smoothed but in a uniform way. In the right image of 1b the edges
and corners are blurred. Indeed, we know that ‖DGσ ∗ u‖L∞ decreases for large values of σ consequently for
large values of σ we diffuse more near edges: in particular, if ‖DGσ ∗u‖L∞ < λ, the diffusion is never inhibited.
Whereas in the right image of 1c, the noise has disappeared and the reconstructed image is very close to the
original.

The goal of Figures 2 and 3 is to compare the performance of our scheme with the Perona-Malik model
in regions where the gradient is moderately large, such as affine and blurred regions. To this aim, we have
constructed a synthetic images, 2a and 3a where 20% of Gaussian noise is added, in which we have superimposed
a blurred disk, a constant disk, and a disk with smoothly varying intensity. The resulting images, 2b with the
Perona-Malik model and 2c with our scheme, present a staircasing effect and are perceptually very close. The
same remarks holds in the case where the noise is added, images 3b and 3c.

In the experiences 2d and 3d we have introduced a relaxation parameter w in the second equation: (vn+1
δt −

vn
δt)/δt = w

(
F (|Dun+1

δt |2) − vn+1
δt

)
in order to delay as far as possible the staircasing effect, by choosing a small

value of w. Here we use w = 10−2. Note that in these figures, all diffusions are be done at scale 20 which
corresponds to the stopping time t = 200.

Figure 4 right represents a natural image (256× 256) without additive noise and Figure 4 left represents its
restoration with our scheme at scale 5 that corresponds to the stopping time t = 12.5. We remark that salient
edges and textures are preserved (see for example the top of the hat) whereas the noise in homogeneous areas
is smoothed.
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Figure 1. Top left: (a) Original image. Top right: (b) Image (a) with 20% of Gaussian noise.
Middle line: (c) Image (b) restored by the Catté et al. model [4] with scales 4, and 8. Bottom
line: (d) Image (b) restored by our scheme with scales 4, and 8.

5. Numerical analysis

First we check that our scheme makes sense. Indeed, for all δt > 0, the sequence (un
δt, v

n
δt) exists and is unique.

Equation (10) allows to write vn+1
δt explicitly:

vn+1
δt =

1
1 + δt

(
δt F (|Dun+1

δt |2) + vn
δt

)
, (20)

and by induction we find

0 ≤ vn+1
δt ≤ (

1 − (1 + δt)−(n+1)
)
M +

(
1 + δt

)−(n+1)||v0||L∞(Ω).

We deduce that (vn
δt) is uniformly bounded in L∞(Ω) and satisfies:

0 ≤ vn
δt ≤ max(M, ||v0||L∞(Ω)) := M′, for all n and δt. (21)
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Figure 2. Top left: (a) Original image. Top right: (b) Image (a) filtered by the Perona-Malik
model at scale 20. Bottom left: (c) Image (a) filtered by our scheme with w = 1 at scale 20.
Bottom right: (d) Image (a) filtered by our scheme with w = 0.01 at scale 20.

Using the fact that g is a positive non-increasing function, we have 0 < g(M′) ≤ g(vn
δt) ≤ 1. Therefore

equation (9) is strictly elliptic and we know that there exists a unique solution un+1
δt in H1(Ω). In addition,

un+1
δt is given by the problem

min
{
E(δt,n)(w) =

∫

Ω

g(vn
δt)|Dw|2 dx +

1
2δt

∫

Ω

|w − un
δt|2 dx : w ∈ H1(Ω)

}
. (22)

By the maximum principle, it is clear that for almost all x ∈ Ω we have

inf u0 ≤ · · · ≤ inf un
δt ≤ un+1

δt (x) ≤ supun
δt ≤ · · · ≤ supu0. (23)

Multiplying by un+1
δt the equation (9) and integrating on Ω we get

0 ≤ δt

∫

Ω

g(vn
δt)|Dun+1

δt |2dx ≤
∫

Ω

un
δtu

n+1
δt dx−

∫

Ω

|un+1
δt |2, (24)

from which we deduce
||un+1

δt ||L2(Ω) ≤ ||un
δt||L2(Ω) ≤ · · · ≤ ||u0||L2(Ω). (25)

We now define the piecewise affine (in t > 0)

ûδt(x, t) = (1 − θ)u[t/δt]
δt (x) + θu

[t/δt]+1
δt (x)
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Figure 3. Same configuration as in Figure 2, with an additional noise.

Figure 4. Right: original natural image. Left: the output of our scheme at scale 5.
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with θ = t/δt− [t/δt] ∈ [0, 1). We also define (v̂δt) in the same way. Then we can write discrete system (11)–(12)
in the form

∂ûδt

∂t
= div (g(τ−δtvδt)Duδt), (26)

∂v̂δt

∂t
= F (|Duδt|2) − vδt. (27)

Lemma 2.
(
∂v̂δt/∂t

)
is uniformly bounded in L∞((0, T ) × Ω), and in particular

lim
δt→0

||v̂δt − vδt||L∞((0,T );L2(Ω)) = 0. (28)

Proof. From (27) and the inequalities (21), we easily deduce a uniform bound for
(
∂v̂δt/∂t

)
,

∣
∣
∣
∣
∣
∣
∂v̂δt

∂t

∣
∣
∣
∣
∣
∣
L∞((0,T )×Ω)

≤ M′.

Let t ∈ (0, T ). We set θ = t/δt− [t/δt], and write

∫

Ω

|v̂δt(x, t) − vδt(x, t)|2 dx =
∫

Ω

|(1 − θ)(v[t/δt]
δt (x) − v

[t/δt]+1
δt (x))|2 dx. (29)

Hence ∫

Ω

|v̂δt(x, t) − vδt(x, t)|2 dx ≤ δt2
∫

Ω

∣
∣
∣
∂v̂δt

∂t
(x, t)

∣
∣
∣
2

dx ≤ δt2M′2 ,

(28) follows. �

Lemma 3. (uδt) is uniformly bounded in L∞(
0, T ;H1(Ω)

)
. More precisely we have:

||Duδt||2L∞(0,T ;L2(Ω)) ≤ 1
g(M′)

(
||Du0||2L2(Ω) +

C

g(M′)
||u0||2L2(Ω)

)
(30)

with C =
(
sup |g′|)

∣
∣
∣
∣
∣
∣
∂v̂δt

∂t

∣
∣
∣
∣
∣
∣
L∞((0,T )×Ω)

.

Proof. First we establish a uniform bound for (uδt) in L2(0, T ;H1(Ω)), and prove the lemma by showing the
following inequality:

||Duδt||2L∞(0,T ;L2(Ω)) ≤ C1||Du0||2L2(Ω) + C2||Duδt||2L2(0,T ;L2(Ω)) (31)

where C1, C2 > 0 are constants that will be made precise.
Multiplying (9) by un+1

δt and integrating by part in Ω as in (24), we obtain

g(M′)
∫ (n+1)δt

nδt

∫

Ω

|Duδt|2dxdt = g(M′)δt
∫

Ω

|Dun+1
δt |2dx

≤ δt

∫

Ω

g(vn
δt)|Dun+1

δt |2dx

≤ ||un
δt||2L2(Ω) − ||un+1

δt ||2L2(Ω).
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Then we deduce (for simplicity we use the notation k := [T/δt])

g(M′)
∫ T

0

∫

Ω

|Duδt|2 dxdt = g(M′)
∫ δtk

0

∫

Ω

|Duδt|2 dxdt+ g(M′)
∫ T

δtk

∫

Ω

|Duδt|2 dxdt

≤
(
||u0||2L2(Ω) − ||uk

δt||2L2(Ω)

)
+
T − δtk

δt

(
||uk

δt||2L2(Ω) − ||uk+1
δt ||2L2(Ω)

)

≤ ||u0||2L2(Ω) +
T − δt(k + 1)

δt
||uk

δt||2L2(Ω) −
T − δtk

δt
||uk+1

δt ||2L2(Ω)

and since δtk ≤ T ≤ δt(k + 1), we obtain
∫ T

0

∫

Ω

|Duδt|2 dxdt ≤ 1
g(M′)

||u0||2L2(Ω). (32)

This proves that (uδt) is uniformly bounded in L2(0, T ;H1(Ω)).
Now we show (31). For all n ≥ 0, we have

∫

Ω

g(vn+1
δt )|Dun+1

δt |2 dx−
∫

Ω

g(vn
δt)|Dun

δt|2 dx =
∫

Ω

(
g(vn+1

δt ) − g(vn
δt)

)|Dun+1
δt |2dx+

∫

Ω

g(vn
δt)

(|Dun+1
δt |2 − |Dun

δt|2
)
dx. (33)

Using the minimum problem (22) we have E(δt,n)(un+1
δt ) ≤ E(δt,n)(un

δt), that is,
∫

Ω

g(vn
δt)|Dun+1

δt |2 dx+
1

2δt

∫

Ω

|un+1
δt − un

δt|2 dx ≤
∫

Ω

g(vn
δt)|Dun

δt|2 dx . (34)

Then the second integral of (33) satisfies
∫

Ω

g(vn
δt)

(|Dun+1
δt |2 − |Dun

δt|2
)
dx ≤ 0.

The first integral of (33) we can be written
∫

Ω

(
g(vn+1

δt ) − g(vn
δt)

)|Dun+1
δt |2dx ≤ δt

∫

Ω

∣
∣∣
∣
g(vn+1

δt ) − g(vn
δt)

δt

∣
∣∣
∣ |Dun+1

δt |2dx (35)

≤ C δt

∫

Ω

|Dun+1
δt |2 dx,

with C := (sup |g′|)
∣
∣
∣
∣
∣
∣∂v̂δt

∂t

∣
∣
∣
∣
∣
∣
L∞((0,T )×Ω)

. Using this estimate in (33), we get

∫

Ω

g(vn+1
δt )|Dun+1

δt |2 dx−
∫

Ω

g(vn
δt)|Dun

δt|2 dx ≤ C δt

∫

Ω

|Dun+1
δt |2 dx.

Taking the sum as n varies from 0 to [t/δt] and using the fact that uδt(·, t) = u
[t/δt]+1
δt , we obtain

∫

Ω

g(v[t/δt]+1
δt )|Du[t/δt]+1

δt |2 dx−
∫

Ω

g(v0)|Du0|2 dx ≤ C

[t/δt]∑

n=0

δt

∫

Ω

|Dun+1
δt |2 dx

≤ C

∫ δt([t/δt]+1)

0

∫

Ω

|Duδt|2 dxdt.
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We conclude that for all t ∈ (0, T )

∫

Ω

g(vδt(·, t))|Duδt(·, t)|2 dx ≤
∫

Ω

g(v0)|Du0|2 dx+ C

∫ T

0

∫

Ω

|Duδt|2 dxdt.

Since g(M′) ≤ g(vδt) ≤ 1, we get

||Duδt(·, t)||2L2(Ω) ≤ 1
g(M′)

(∫

Ω

|Du0|2 dx+ C

∫ T

0

∫

Ω

|Duδt|2 dxdt

)

,

this proves (31). To conclude the proof of the lemma we combine the last result with (32) to obtain (30). �

Lemma 4. (ûδt) is uniformly bounded in H1
(
(0, T ) × Ω

)
and satisfies the inequality

1
2

∣∣
∣
∣∣
∣
∂ûδt

∂t

∣∣
∣
∣∣
∣
2

L2((0,T )×Ω)
≤ ||Du0||2L2(Ω) +

C

g(M′)
||u0||2L2(Ω), (36)

where C is the constant of Lemma 3. In particular we have

lim
δt→0

||ûδt − uδt||L2((0,T );L2(Ω)) = 0. (37)

Proof. First we rewrite the inequality (34) in the form

∫ (n+1)δt

nδt

∣∣
∣
∣∣
∣
∂ûδt

∂t

∣∣
∣
∣∣
∣
2

L2(Ω)
dt = δt

∫

Ω

∣∣
∣
∣
un+1

δt − un
δt

δt

∣∣
∣
∣

2

dx

≤ 2
(∫

Ω

g(vn
δt)|Dun

δt|2 dx−
∫

Ω

g(vn
δt)|Dun+1

δt |2 dx
)
.

Let k := [T/δt]; we obtain using the last inequality

1
2

∫ T

0

∣
∣
∣
∣
∣
∣
∂ûδt

∂t

∣
∣
∣
∣
∣
∣
2

L2(Ω)
dt =

1
2

(
k−1∑

n=0

δt
∣
∣
∣
∣
∣
∣
un+1

δt − un
δt

δt

∣
∣
∣
∣
∣
∣
2

L2(Ω)
+ (T − δtk)

∣
∣
∣
∣
∣
∣
uk+1

δt − uk
δt

δt

∣
∣
∣
∣
∣
∣
2

L2(Ω)

)

,

≤
k−1∑

n=0

(∫

Ω

g(vn
δt)|Dun

δt|2 dx−
∫

Ω

g(vn
δt)|Dun+1

δt |2 dx
)

+
T − δtk

δt

(∫

Ω

g(vk
δt)|Duk

δt|2 dx− g(vk
δt)|Duk+1

δt |2 dx
)
,

≤
∫

Ω

g(v0)|Du0|2 dx (38)

+
k−1∑

n=1

(∫

Ω

g(vn
δt)|Dun

δt|2 dx−
∫

Ω

g(vn−1
δt )|Dun

δt|2 dx
)

(39)

+
(
T − δtk

δt

∫

Ω

g(vk
δt)|Duk

δt|2 dx−
∫

Ω

g(vk−1
δt )|Duk

δt|2 dx
)

(40)

−T − δtk

δt

∫

Ω

g(vk+1
δt )|Duk+1

δt |2 dx. (41)
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Let us estimate the last four terms. Since g ≤ 1, (38) satisfies
∫

Ω

g(v0)|Du0|2 dx ≤ ||Du0||2L2(Ω).

For the term (39), we proceed as in (35)

k−1∑

n=1

(∫

Ω

g(vn
δt)|Dun

δt|2 dx−
∫

Ω

g(vn−1
δt )|Dun

δt|2 dx
)

≤ C

∫ δt(k−1)

δt

∫

Ω

|Duδt|2 dxdt.

We use T − δtk ≤ δt to estimate the term (40),

(
T − δtk

δt

∫

Ω

g(vk
δt)|Duk

δt|2 dx−
∫

Ω

g(vk−1
δt )|Duk

δt|2 dx
)

≤ C

∫ δtk

δt(k−1)

∫

Ω

|Duδt|2 dxdt,

and since T − δtk ≥ 0, (41) is non-positive. Thus

1
2

∫ T

0

∣
∣
∣
∣
∣
∣
∂ûδt

∂t

∣
∣
∣
∣
∣
∣
2

L2(Ω)
dt ≤ ||Du0||2L2(Ω) + C

∫ T

0

∫

Ω

|Duδt|2 dxdt.

To find (36), in the last inequality we put the right hand side of (32) in place of the integral term.
To show (37) we proceed as in (29), then we obtain after integrating on (0, T )

∫ T

0

∫

Ω

|ûδt(x, t) − uδt(x, t)|2 dxdt ≤ δt2
∫ T

0

∫

Ω

∣
∣∣
∂ûδt

∂t

∣
∣∣
2

dxdt,

which goes to 0 as δt goes to 0. �

Now we will focus on the regularity and the convergence of the sequence (vδt). The idea is the following:
the fact that v0

δt ∈ H1(Ω), allows us to establish a regularity on the second derivative of u1
δt which in his turn

used to show that v1
δt ∈ H1(Ω), and so on. For this, we will use the classical theory of topological degree and

standard regularity results for solutions of elliptic equations (see Gilbarg and Trudinger [9], Meyers [16]), to
establish the following lemma.

Lemma 5. Let w ∈ H1(Ω) ∩ L∞(Ω; R+) such that 0 < λ ≤ w(x) a.e. in Ω, f ∈ L2(Ω) and u ∈ H1(Ω) the
solution of the elliptic problem

div (wDu) = f,
∂u

∂n

∣
∣
∣
∂Ω

= 0,
∫

Ω

−u(x) dx = 0. (42)

Then for all bounded continuous function ψ ∈ C(]0,∞[,R) satisfying |ψ(s)| ≤ λ0 and |sψ(s)| ≤ λ1 for all s > 0,
we have

||ψ(|Du|)D2u||L2(Ω) ≤ λ−1
(
λ0||f ||L2(Ω) + λ1||Dw||L2(Ω)

)
. (43)

The proof of Lemma 5 is given in Section 6.

Remark 1. Since the divergence term of (9) has zero average, we have for all δt > 0 and all n
∫
Ω
−u0(x) dx =∫

Ω−un
δt(x) dx. Thus, using the fact that our model is grey level shift invariant, we can assume that u0 has zero

average in Ω: it is not restrictive as we may always replace u0 with u0 − ∫
Ω− u0(x)dx. This allows to have∫

Ω
−un

δt(x) dx = 0 for all δt and all n.

Lemma 6. For all n ≥ 0, we have vn
δt ∈ H1(Ω).
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Proof. We begin by proving that v1
δt ∈ H1(Ω). Since v1

δt is a linear combination of F (|Du1
δt|2) and v0 ∈ H1(Ω),

it amounts to show that F (|Du1
δt|2) ∈ H1(Ω). The first step is to determine the distributional derivative of

F (|Du1
δt|2). For simplicity we use the notation u := u1

δt.
By applying Lemma 5 to the equation (9) with n = 0, we know (from the proof of the same lemma) that

there exists ε ∈ (0, 1) such that D2u ∈ L1+ε(Ω), and since u ∈ H1(Ω) in particular we have u ∈W 2,1(Ω). Then,
there exists a sequence of C2 functions (un)n that strongly converges to u in W 2,1(Ω) and satisfy un → u,
Dun → Du a.e. in Ω.

Let φ ∈ C∞
0 (Ω). Since F is bounded and continuous we have |F (|Dun|2) ∂iφ| ≤ M|∂iφ| and F (|Dun|2) →

F (|Du|2) a.e. in Ω. Then by applying the Lebesgue theorem we obtain the convergence

∫

Ω

F (|Dun|2) ∂iφdx→
∫

Ω

F (|Du|2) ∂iφdx, as n→ ∞. (44)

By the fact that F ′(s) = 0 for large values of s, it’s clear that (F ′(|Dun|2)∂jun)n is bounded in L∞(Ω).
Then there exists a function ξ ∈ L∞(Ω) and a subsequence still denoted by (F ′(|Dun|2)∂jun)n such that
F ′(|Dun|2)∂jun

�
⇀ ξ in L∞(Ω). By using the continuity of F ′ we have F ′(|Dun|2)∂jun → F ′(|Du|2)∂ju a.e. in

Ω. Then ξ = F ′(|Du|2)∂ju. Combining the last weak convergence with the strong convergence ∂ijunφ→ ∂ijuφ
in L1(Ω) (here we use ||∂ijunφ− ∂ijuφ||L1 ≤ ||φ||L∞ ||∂ijun − ∂iju||L1 → 0), we obtain

∫

Ω

−2F ′(|Dun|2)∂ijun ∂jun φdx→
∫

Ω

−2F ′(|Du|2)∂iju∂juφdx, as n→ ∞. (45)

The fact that the two sequences in the left hand side of (44) and (45) are identical, proves that the distributional
derivative of F (|Du|2) is given by −2F ′(|Du|2)D2uDu.

The second step is to show that D(F (|Du|2)) ∈ L2(Ω). Indeed, we have |F ′(|Du|2)∂iu (1 + |Du|)| ≤
C(M) a.e. in Ω with C(M) = (M

1
2 + M). Then we can write

∣
∣
∣
∣D

(
F (|Du|2))∣∣∣∣

L2(Ω)
≤ C(M)

∣
∣
∣
∣
∣
∣

D2u

1 + |Du|
∣
∣
∣
∣
∣
∣
L2(Ω)

· (46)

Applying once more the Lemma 5 to the equation (9), with n = 0 and ψ(s) = 1/(1 + s) to conclude that the
right hand side of (46) is bounded in L2(Ω) by writing

∣
∣∣
∣
∣∣

D2u

1 + |Du|
∣
∣∣
∣
∣∣
L2(Ω)

≤ (g(M ′))−1
(∣
∣∣
∣
∣∣
u− u0

δt

∣
∣∣
∣
∣∣
L2(Ω)

+ ||Dv0||L2(Ω)

)
. (47)

We return to equation (20). Since v0 ∈ H1(Ω), we deduce that v1
δt ∈ H1(Ω). By induction we conclude that

vn
δt ∈ H1(Ω) for all n > 0. This proves the lemma. �

Lemma 7. The sequence (vδt) is uniformly bounded in L∞(0, T ;H1(Ω)). In addition we have

||Dvδt(·, t)||L2(Ω) ≤ eKt||Dv0||L2(Ω) +K

∫ t

0

eK(t−s)
∣
∣∣
∣
∣∣
∂ûδt

∂t
(·, s)

∣
∣∣
∣
∣∣
L2(Ω)

ds

with K = (g(M ′))−1
(
M

1
2 + M

)
.

Proof. Deriving the equation (20) with n = 0, and using the L2 norm, we get

||Dv1
δt||L2(Ω) ≤ δt

1 + δt
||D(

F (|Du1
δt|2)

)||L2(Ω) +
1

1 + δt
||Dv0||L2(Ω).
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Then using (46) and (47), we obtain

||Dv1
δt||L2(Ω) ≤ Kδt

1 + δt

∣
∣
∣
∣
∣
∣
u1

δt − u0

δt

∣
∣
∣
∣
∣
∣
L2(Ω)

+
1 +Kδt

1 + δt
||Dv0||L2(Ω),

with K := (g(M ′))−1C(M). We may prove in the same way that

||Dvn+1
δt ||L2(Ω) ≤ Kδt

1 + δt

∣∣
∣
∣∣
∣
un+1

δt − un
δt

δt

∣∣
∣
∣∣
∣
L2(Ω)

+
1 +Kδt

1 + δt
||Dvn

δt||L2(Ω).

Then by induction we get for all n

||Dvn
δt||L2(Ω) ≤ K

1 + δt

n∑

j=1

{(
1 +Kδt

1 + δt

)n−j

δt
∣
∣
∣
∣
∣
∣
uj

δt − uj−1
δt

δt

∣
∣
∣
∣
∣
∣
L2(Ω)

}

+
(

1 +Kδt

1 + δt

)n

||Dv0||L2(Ω).

Finally by using the inequality (1 +Kδt

1 + δt

)n−j

≤ eKδt(n−j),

we obtain for all t ∈ (0, T ) (n = [t/δt]),

||Dvδt(·, t)||L2(Ω) ≤ K

∫ t

0

eK(t−s)
∣
∣∣
∣
∣∣
∂ûδt

∂t
(·, s)

∣
∣∣
∣
∣∣
L2(Ω)

ds+ eKt||Dv0||L2(Ω).

In particular we have

||Dvδt(·, t)||L2(Ω) ≤ KT eKT
∣
∣
∣
∣
∣
∣
∂ûδt

∂t

∣
∣
∣
∣
∣
∣
L2((0,T );L2(Ω))

+ eKT ||Dv0||L2(Ω),

which is bounded according to Lemma 4. �
Proof of Theorem 1. According to (23) and Lemmas 3 and 4 there exist two subsequences, (uδtj ) and (ûδtj ),
and a function u ∈ H1(Ω × (0, T )) ∩ L∞(Ω × (0, T )) such that

ûδtj
, uδtj

j→+∞−−→ u strongly in L2(Ω × (0, T )),

ûδtj , uδtj

j→+∞−−⇀ u weakly in L2(0, T ;H1(Ω)),

ûδtj

j→+∞−−−⇀ u weakly in H1(Ω × (0, T )).

We draw the same conclusion from (21) and Lemmas 2 and 7 if we replace (uδtj
, ûδtj

) with (vδtj
, v̂δtj

) and u with
v. It remains to prove the strong convergence (13) and the fact that (u, v) is a solution of a system (7)–(8).

Up to a subsequence, we can assume that vδtj
→ v a.e. in Ω × (0, T ). In addition, by using the fact that

(∂v̂δt/∂t) is bounded in L∞(Ω× (0, T )), we deduce that τ−δtjvδtj → v a.e. in Ω× (0, T ) and by continuity of g,
we also obtain that g(τ−δtjvδtj

) → g(v) a.e. in Ω × (0, T ).
Let φ ∈ C∞(Ω× (0, T )). Multiplying the equation (26) by φ with δtj in place of δt, and integrating the result

in Ω × (0, T ), we get ∫ T

0

∫

Ω

∂ûδtj

∂t
φdxdt = −

∫ T

0

∫

Ω

g(τ−δtjvδtj )DuδtjDφdxdt.

We study the limit of the two terms of the equality as j goes to +∞. By using the weak convergence ∂ûδtj
/∂t ⇀

∂u/∂t in L2(Ω × (0, T )), ∫ T

0

∫

Ω

∂ûδtj

∂t
φdxdt

j→+∞−−−→
∫ T

0

∫

Ω

∂u

∂t
φdxdt.
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Combining the weak convergence of Duδtj
to Du in L2((Ω × (0, T )); R2) with the strong convergence of

g(τ−hjvδtj )Dφ to g(v)Dφ in L2((Ω×(0, T ))); R2) (using Lebesgue’s dominated convergence theorem), we deduce
that

∫ T

0

∫

Ω

g(τ−hjvδtj
)Duδtj

Dφdxdt
j→+∞−−−→

∫ T

0

∫

Ω

g(v)DuDφdxdt.

Then we obtain
∫ T

0

∫

Ω

∂u

∂t
φdxdt = −

∫ T

0

∫

Ω

g(v)DuDφdxdt, (48)

which means that u is a weak solution of (7).
Now, to prove the convergence (13), it remains to show that Duδtj

strongly converges to Du in L2((Ω ×
(0, T ))); R2). For this we write

∫ T

0

∫

Ω

g(τ−δtjvδtj
)|Duδtj

−Du|2 dxdt =
∫ T

0

∫

Ω

g(τ−δtjvδtj
)|Duδtj

|2 dxdt

−2
∫ T

0

∫

Ω

g(τ−δtjvδtj
)(Duδtj

.Du) dxdt

+
∫ T

0

∫

Ω

g(τ−δtjvδtj
)|Du|2 dxdt

= −
∫ T

0

∫

Ω

∂ûδtj

∂t
uδtj

dxdt+ 2
∫ T

0

∫

Ω

∂ûδtj

∂t
u dxdt

+
∫ T

0

∫

Ω

g(τ−δtjvδtj
)|Du|2 dxdt. (49)

Let us study the convergence of each term of (49) as j goes to +∞. Taking into account that ∂ûδtj
/∂t converges

weakly to ∂u/∂t and that uδtj
converges strongly to u, both in L2(Ω × (0, T )), we obtain:

∫ T

0

∫

Ω

∂ûδtj

∂t
uδtj

dxdt
j→+∞−−−→

∫ T

0

∫

Ω

∂u

∂t
u dxdt ,

∫ T

0

∫

Ω

∂ûδtj

∂t
u dxdt

j→+∞−−−→
∫ T

0

∫

Ω

∂u

∂t
u dxdt .

Using the fact that g(τ−δtjvδtj
) → g(v) a.e. and g(τ−δtjvδtj

)|Du|2 ≤ |Du|2, we deduce (by Lebesgue’s theorem)

∫ T

0

∫

Ω

g(τ−δtjvδtj )|Du|2 dxdt
j→+∞−−−→

∫ T

0

∫

Ω

g(v)|Du|2 dxdt,

thus

lim
j→+∞

∫ T

0

∫

Ω

g(τ−δtjvδtj
)|Duδtj

−Du|2 dxdt =
∫ T

0

∫

Ω

∂u

∂t
u dxdt+

∫ T

0

∫

Ω

g(v)|Du|2 dxdt.

By density of C∞(Ω × (0, T )) in H1(Ω × (0, T )) we substitute φ by u in the equation (48), and get

∫ T

0

∫

Ω

∂u

∂t
u dxdt = −

∫ T

0

∫

Ω

g(v)|Du|2 dxdt,
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then

g(M′) lim
j→+∞

∫ T

0

∫

Ω

|Duδtj −Du|2dxdt ≤ lim
j→+∞

∫ T

0

∫

Ω

g(τ−δtjvδtj )|Duδtj −Du|2 dxdt = 0

this shows the strong convergence (13).
Finally, up to a subsequence we have that Duδtj

→ Du a.e. in Ω × (0, T ) and the continuity of F allows us
to obtain that F (|Duδtj |2) → F (|Du|2) a.e. in Ω × (0, T ). This proves that v is a solution of (8). �

6. Appendix

Proof of Lemma 5. By a density argument there exists a sequence (wn) in C∞(Ω) that converges to w in H1(Ω).
Using classical truncation and convolution arguments we can chose (wn) in L∞(Ω; R+) and which satisfy λ ≤ wn

for all n ≥ 0. We deduce that the solution un of the elliptic problem:

div (wnDun) = f,
∂un

∂n

∣
∣∣
∂Ω

= 0,
∫

Ω

−un(x)dx = 0, (50)

exists and unique in H1(Ω). Moreover, from ||Dwn||L∞(Ω) <∞, f ∈ L2(Ω) and using classical regularity results
it appears that un ∈ H2(Ω).

First we prove that the inequality (43) is true for the regularized problem (50). For this writing (50) in the
form

wn∆un = −f +DwnDun, (51)

and multiplying the equation by ψ(|Dun|), then we get using the L2-norm

||ψ(|Dun|)wn∆un||L2(Ω) ≤ ||ψ(|Dun|)f ||L2(Ω) + ||ψ(|Dun|)DwnDun||L2(Ω).

As 0 < λ ≤ wn, |ψ| ≤ λ0 and |sψ(s)| ≤ λ1 together with the last inequality, we obtain

||ψ(|Dun|)∆un||L2(Ω) ≤ λ−1
(
λ0||f ||L2(Ω) + λ1||Dwn||L2(Ω)

)
. (52)

To continue we need the following lemma that we prove in the end of this section (let us recall Ω is the plane
square (0, 1)2):

Lemma 8. Let u ∈ H2(Ω) an Ω-periodic function, then for all bounded continuous function ψ ∈ C(]0,∞[,R),
we have the equality

||ψ(|Du|)∆u||L2(Ω) = ||ψ(|Du|)D2u||L2(Ω).

Now we extend un on all R
2 by symmetry and periodicity to a function ũn 2Ω-periodic. Then invoking Lemma 8,

we get
||ψ(|Dũn|)D2ũn||L2(2Ω) = ||ψ(|Dũn|)∆ũn||L2(2Ω),

and by symmetry of ũn in 2Ω, that

||ψ(|Dun|)D2un||L2(Ω) = ||ψ(|Dun|)∆un||L2(Ω),

that we use in (52) to obtain

||ψ(|Dun|)D2un||L2(Ω) ≤ λ−1
(
λ0||f ||L2(Ω) + λ1||Dwn||L2(Ω)

)
. (53)

This proves that the inequality (43) is true for the regularized problem (50).
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Inequality (53) implies that the sequence
(
ψ(|Dun|)D2un

)
is bounded. Then there exists a subsequence (still

denoted by (ψ(|Dun|)D2un)) weakly convergent in L2(Ω). Let us assume that its weak limit is ψ(|Du|)D2u.
Then by applying Fatou’s lemma we obtain

||ψ(|Du|)D2u||L2(Ω) ≤ lim inf
n→+∞ ||ψ(|Dun|)D2un||L2(Ω)

≤ λ−1 lim inf
n→+∞

(
λ0||f ||L2(Ω) + λ1||Dwn||L2(Ω)

)
,

≤ λ−1
(
λ0||f ||L2(Ω) + λ1||Dw||L2(Ω)

)
,

showing in particular (43).
Before proving that the weak limit of (ψ(|Dun|)D2un) is ψ(|Du|)D2u, let us show that up to a subsequence,

(un) is strongly convergent in H1(Ω). Indeed, multiplying div (wnDun) = f by un and integrating the result
on Ω, ∫

Ω

wn|Dun|2dx = −
∫

Ω

fundx.

The left hand side satisfies

λ||Dun||2L2(Ω) ≤
∫

Ω

wn|Dun|2dx,
and using the Hölder and Poincaré-Wirtinger inequalities, we get for the right hand side

∫

Ω

fundx ≤ ||f ||L2(Ω)||un||L2(Ω) ≤ C||f ||L2(Ω)||Dun||L2(Ω). (54)

We deduce that (un) is uniformly bounded in H1(Ω) and we have

||Dun||L2(Ω) ≤ C

λ
||f ||L2(Ω). (55)

Then there exists u ∈ H1(Ω) and a subsequence still denoted by (un) that strongly converges to u in L2(Ω),
weakly in H1(Ω) and a.e. in Ω. To prove the strong convergence Dun → Du in L2(Ω) we can write

∫

Ω

wn|Dun −Du|2dx =
∫

Ω

wn|Dun|2dx− 2
∫

Ω

wnDunDu dx+
∫

Ω

wn|Du|2dx,

and
∫

Ω

wn|Dun|2dx = −
∫

Ω

fundx
n→+∞−−−→ −

∫

Ω

fu dx,
∫

Ω

wn|Du|2 dx
n→+∞−−−→

∫

Ω

w|Du|2dx = −
∫

Ω

fu dx,

−2
∫

Ω

wnDunDu dx = 2
∫

Ω

fu dx,

thus

λ

∫

Ω

|Dun −Du|2dx ≤
∫

Ω

wn|Dun −Du|2dx n→+∞−−−→ 0.

Now we are going to study the convergence of the sequences (D2un) and (ψ(|Dun|)) to prove that
(ψ(|Dun|)D2un) −−⇀ ψ(|Du|)D2u weakly in L2(Ω).
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Denoting Ω1 = (−1, 2)× (−1, 2) and choosing a function ξ ∈ C∞
c (R2), such that Ω ⊂⊂ supp(ξ) ⊂⊂ Ω1, and

satisfies

ξ(x) =
{

1 if x ∈ Ω
0 if x ∈ R

2/Ω1.

Remark that ũnξ ∈ W 2,1+ε
0 (Ω1) for all ε ∈ (0, 1) (ε fixed later). Then, according to Gilbarg-Trudinger ([9]

Chap. 9, Cor. 10), there exists a constant C(ε) > 0 such that

||D2(ũnξ)||L1+ε(Ω1) ≤ C(ε)||∆(ũnξ)||L1+ε(Ω1).

It follows that

||D2un||L1+ε(Ω) ≤ ||D2(ũnξ)||L1+ε(Ω1),

≤ C(ε)||∆(ũnξ)||L1+ε(Ω1),

≤ C(ε)
{
||ξ∆ũn||L1+ε(Ω1) + ||ũn∆ξ||L1+ε(Ω1) + 2||DũnDξ||L1+ε(Ω1)

}
,

≤ C(ε)C
{
||∆ũn||L1+ε(Ω1) + ||ũn||L1+ε(Ω1) + ||Dũn||L1+ε(Ω1)

}
,

where C := max
(||ξ||∞, 2||Dξ||∞, ||∆ξ||∞

)
. Thus

||D2un||L1+ε(Ω) ≤ 9C(ε)C
{
||∆un||L1+ε(Ω) + ||un||L1+ε(Ω) + 2||Dun||L1+ε(Ω)

}
. (56)

The two sequences (||un||L1+ε(Ω)) and (||Dun||L1+ε(Ω)) are bounded according to (54) and (55). For the sequence
(||∆un||L1+ε(Ω)) we use (51), and write

||∆un||L1+ε(Ω) ≤ λ−1
(||f ||L1+ε(Ω) + ||DvnDun||L1+ε(Ω)

)
. (57)

Then it remains to show that the sequence (||DwnDun||L1+ε(Ω)) is bounded. Remark that by the symmetry and
the fact that un satisfies the Neumann type boundary, the equation

f̃ = div (w̃nDũn)

still holds in Ω2 := (−2, 3)× (−2, 3) where the functions f̃ and w̃n are defined in the same way that ũn. Then
according to Meyers’ theorem [16], Theorem 2, there exists p > 2, depending only on max w̃/min w̃ ≤ ‖w‖∞/λ,
such that for all x ∈ Ω2 and for all R > 0 satisfying B(x,R) ⊂ B(x, 2R) ⊂ Ω2, we have:

||Dũn||Lp(B(x,R)) ≤ C
{
R2( 1

p− 1
2 )−1||ũn||L2(B(x,2R)) +R2( 1

p− 1
2 )+1||f̃ ||L2(B(x,2R))

}
.

Choosing x ∈ Ω and R such that Ω ⊂ B(x,R), for example x = (1
2 ,

1
2 ) and R =

√
2, we deduce that (|Dun|) is

bounded in Lp(Ω).
Coming back to (57) and choosing ε = (p− 2)/(p+ 2), then the sequence (DwnDun) is bounded in L1+ε(Ω)

and consequently (D2un) is bounded in L1+ε(Ω). We conclude that up to extracting a subsequence

D2un

n→+∞−−⇀ D2u weakly in L1+ε(Ω). (58)

Consider φ ∈ C∞(Ω). Since Dun → Du a.e. in Ω, the continuity and boundedness of ψ, we obtain using the
Lebesgue theorem

ψ(|Dun|)φ
n→+∞−−−→ ψ(|Du|)φ in Lq(Ω) for all q ∈ [1,∞).
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Finally, choosing q such that 1/(1 + ε) + 1/q = 1 and combining the last strong convergence with the weak
convergence (58), we obtain

∫

Ω

ψ(|Dun|)D2un φdx
n→+∞−−−→

∫

Ω

ψ(|Du|)D2uφdx.

This conclude the proof of the lemma. �

To prove Lemma 8 we need the following result which comes from the topological degree’s theory, and is a
particular case of [12], Lemma 2.10 (see also [10], Th. 6):

Lemma 9. Let f ∈ C1(R2; R2) an Ω-periodic function. Then for all ψ ∈ C0(]0,+∞[) we have
∫

Ω

ψ(|f(x)|)Jf (x)dx = 0, (59)

where Jf (x) is the Jacobian of f at point x, i.e. Jf (x) = det
[
∂if

j(x)
]
.

Proof of Lemma 8. Let u ∈ C2(R2) an Ω-periodic function, ψ ∈ C0(]0,∞[; R). Using (59):
∫

Ω

ψ(|Du|)JDu dxdy = 0,

that is, ∫

Ω

ψ(|Du|)∂xxu ∂yyu dxdy =
∫

Ω

ψ(|Du|)(∂xyu
)2 dxdy.

This implies
∫

Ω

ψ(|Du|)
((
∂xxu

)2 +
(
∂yyu

)2 + 2∂xxu∂yyu
)

dxdy =
∫

Ω

ψ(|Du|)
((
∂xxu

)2 +
(
∂yyu

)2 + 2
(
∂xyu

)2
)

dxdy,

that is, ∫

Ω

ψ(|Du|)|∆u|2 dxdy =
∫

Ω

ψ(|Du|)|D2u|2 dxdy. (60)

Since |Du| is bounded (u ∈ C2(R2) and Ω-periodic), it’s clear that (60) remains true if ψ is only bounded and
continuous function from R

+ to R.
Now we show that (60) is true for u in H2(Ω). Indeed, by density argument there exists a sequence (wn) ∈

C2(R2)∩H2(Ω) that converges to u in H2(Ω). In particular we have ∆wn → ∆u, D2wn → D2u et Dwn → Du
in L2(Ω). In addition, there exists a subsequence still denoted by (wn) such that Dwn → Du a.e. in Ω.

Using the fact that ψ is bounded, there exists a function h ∈ L∞(Ω) and a subsequence still denoted by
(wn) such that ψ2(Dwn) �

⇀ h in L∞(Ω). Combining this with the strong convergences |∆wn|2 → |∆u|2 and
|D2wn|2 → |D2u|2 in L1(Ω), then we obtain:

ψ2(Dwn)|∆wn|2 → h |∆u|2 and ψ2(Dwn)|D2wn|2 → h |D2u|2 in L1(Ω).

Now using the fact that Dwn → Du strongly and a.e. in Ω and the continuity of ψ we deduce that h = ψ2(Du).
Finally, the sequence (wn) can be chosen Ω-periodic (for example as a convolution of u with a smooth kernel),
then we obtain the desired result by applying the equality (60) to wn and passing to the limit. �
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