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COUPLING DARCY AND STOKES EQUATIONS
FOR POROUS MEDIA WITH CRACKS

Christine Bernardi1, Frédéric Hecht1 and Olivier Pironneau1

Abstract. In order to handle the flow of a viscous incompressible fluid in a porous medium with
cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy
equations in the medium with the Stokes equations in the cracks by a new boundary condition at
the interface, namely the continuity of the pressure. We prove that this model admits a unique
solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite
element discretization and derive a priori and a posteriori error estimates. We present some numerical
experiments that are in good agreement with the analysis.
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1. Introduction

The modelling of cracks is important for the numerical simulation of geophysical systems. The difficulty
lies in the fact that there is a large difference of scales between the porous media proper and the crack where
the flow is much faster. In the d−dimensional porous medium (d = 2 or 3) Darcy equations are used and the
velocity of the flow is the gradient of the hydrostatic potential. Most often the thickness of the cracks is small
enough to be neglected and each crack is only modelled by a manifold of dimension d− 1 which is taken out of
the domain occupied by the porous medium. However, for thicker cracks, a new model must be used: provided
the effect of the sand filling the crack is neglected, the flow is Newtonian and at creeping speed it satisfies the
Stokes equations. The problem of the numerical matching of both Darcy and Stokes equations is the subject
of this study. There are other important applications beside cracks such as the seepage of water in sand, either
from a lake into the ground or from the sea in the sand beach [21]; but there the flow in the liquid part satisfies
the Navier–Stokes equations rather than the Stokes ones.

Interface conditions are a matter of controversy. From the mathematical standpoint homogenization reveals a
boundary layer and the interface conditions are far field approximations of this boundary layer. From a physical
point of view, conservation of fluid imposes continuity of the normal velocities at the interface. Similarly,
conservation of momentum enforces conservation of the normal stress. Such interface conditions are studied for
instance in [11,23] and ([9], Sect. 4.5), with a further equation on the tangential stress: its jump is assumed to
be proportional to the slip velocity. But this requires a modelling constant which must be measured.
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In this paper, we use a different approach, relying on the fact that on the Darcy flow side the stress is
normal and proportional to the pressure while the normal stress is

(
µ (∇u+ ∇uT ) + p Id

)
· n in the Stokes or

Navier–Stokes side. At high Reynolds number, µ is small and the normal stress is dominated by the pressure
because ∇u remains bounded (this is not proved but can be observed). Therefore a boundary condition which
imposes continuity of the pressure is an approximation at high Reynolds number of the continuity of the normal
stress. By deciding to work with this condition we avoid the modelling of the third interface condition. Indeed
it comes directly from the necessity that the rotational of the velocity is zero on the interface, otherwise the
continuity of the pressure cannot be enforced. So while the condition chosen in this paper is wrong from the
physical point of view, it is an approximation of the real – yet hypothetical – physical condition which does not
require any further modelling. In principle it should be used with the Navier–Stokes equation and not with the
Stokes equation on the viscous flow side. Here we present the analysis for the Stokes problem, mostly for the
sake of clarity, since the extension to the nonlinear Navier–Stokes equations is technical only.

It is not difficult to establish existence and uniqueness for our model in the continuous case; the main
difficulties are linked to the discretization. In [21] a fictitious domain approach is chosen and the interface
conditions are treated by a penalty-like method. In [22], a conforming finite element method is used and
convergence is established by choosing discrete spaces which satisfy the inf-sup condition, like for the Stokes
problem, but within this new framework. In [12,13], a domain decomposition is introduced, with one subdomain
for the medium and another one for the fluid, and an iterative procedure for solving the resulting system is
analyzed (see also [9], Sect. 4.5.5). Here we have chosen to discretize the system by a mixed finite element
method since the associated variational formulation has three advantages:

• it is fully equivalent to the system of partial differential equations, i.e. the equivalence does not require
any further regularity of the solution;

• it handles all the interface conditions except one;
• it allows to use the same discretization space for the variables in both regions.

A priori and a posteriori estimates are given. They are not optimal with respect to the approximation error
but they are almost optimal for the discretization, as shown by a counter-example.

Some preliminary numerical tests are given in the two-dimensional case. They confirm the theory and show
that the method is feasible and can be used for real life applications.

ΩF

ΩP

Γ

Figure 1. An example of geometry.

An outline of the paper is as follows.
• Section 2 is devoted to the description of the model and to the study of its standard formulation.
• In Section 3, we write the mixed formulation of the model and prove its well-posedness.
• In Section 4, the discrete problem relying on this last formulation is written. Its well-posedness is

proven, together with some a priori error estimates.
• In Section 5, we introduce some error indicators and derive a posteriori error estimates.
• Numerical experiments are presented in Section 6.
• An appendix is devoted to the proof of a rather technical result.
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2. Description and analysis of the model

Let Ω and ΩF be bounded connected open domains in Rd, d = 2 or 3, with Lipschitz–continuous boundaries,
such that ΩF is contained in Ω. For simplicity, we also assume that ΩF is simply connected and has a connected
boundary. We set: ΩP = Ω\ΩF and we denote by Γ = ∂ΩF the interface between ΩP and ΩF (this is illustrated
in Fig. 1). Let also n stand for the unit outward normal vector to ΩP on its boundary ∂ΩP .

We consider the following system of equations





µu+ grad p = f in ΩP ,

−ν∆u+ grad p = f in ΩF ,

divu = 0 in ΩP and ΩF ,

u · n = 0 on ∂Ω,
(u|ΩP

− u|ΩF
) · n = 0 on Γ,

p|ΩP
− p|ΩF

= 0 on Γ,
curlu|ΩF

× n = 0 on Γ.

(2.1)

Here, the unknowns are the velocity u and the pressure p, while f represents a density of body forces. The
parameters µ and ν are positive constants and denote the ratio of the viscosity of the fluid to the permeability
of the medium, respectively the viscosity of the fluid (note that the parameter µ−1 is also called the porosity).

In order to write a variational formulation of problem (2.1), we first introduce the space

H(div,Ω) =
{
v ∈ L2(Ω)d; div v ∈ L2(Ω)

}
,

provided with the norm

‖v‖H(div,Ω) =
(
‖v‖2

L2(Ω)d + ‖divv‖2
L2(Ω)

) 1
2
. (2.2)

We recall that H(div,Ω) is a Hilbert space and also that the trace operator: v �→ v · n is continuous from
H(div,Ω) onto H− 1

2 (∂Ω). We denote by H0(div,Ω) the space of functions v in H(div,Ω) such that v · n
vanishes on ∂Ω (and we use analogous spaces with Ω replaced by ΩP and ΩF ). Finally, we introduce the space

H(curl,Ω) =
{
v ∈ L2(Ω)d; curl v ∈ L2(Ω)

d(d−1)
2

}
,

also provided with the graph norm of the curl operator.
Note moreover that, for all functions v in H(div,Ω), the jump (v|ΩP

− v|ΩF
) · n vanishes on Γ. We now

consider the space

X =
{
v ∈ H(div,Ω); curl v|ΩF

∈ L2(ΩF )
d(d−1)

2 and v · n = 0 on ∂Ω
}
,

provided with the norm

‖v‖X =
(
‖v‖2

H(div,Ω) + ‖curl v‖2

L2(ΩF )
d(d−1)

2

) 1
2

. (2.3)

It is readily checked that X is a Hilbert space. We also need the space L2
0(Ω) of functions in L2(Ω) which have

a null integral on Ω.
Next, we introduce the bilinear forms

a(u,v) = µ

∫

ΩP

u · v dx+ ν

∫

ΩF

curlu · curl v dx, b(v, q) = −
∫

Ω

(div v)p dx. (2.4)
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Obviously, these forms are continuous on X ×X and X × L2
0(Ω), respectively. For any data f in L2(Ω)d, we

consider the variational problem
Find (u, p) in X × L2

0(Ω) such that

∀v ∈ X, a(u,v) + b(v, p) =
∫

Ω

f · v dx,

∀q ∈ L2
0(Ω), b(u, q) = 0.

(2.5)

Remark 2.1. Thanks to the formula

−∆u = curl(curlu) − grad(divu),

when the domain ΩF is of class C 1,1 and when the function f belongs to L2(Ω)d and is such that its restriction
to ΩF belong to H(curl,ΩF ), it is readily checked that any solution (u, p) of (2.5) such that p|ΩF

belongs to
H1(ΩF ), is a solution of (2.1) (see [4], Thm. 1.9): indeed, the first three lines are satisfied in the distribution
sense, the fourth and fifth line are satisfied in H− 1

2 (∂Ω) and H− 1
2 (Γ), respectively; the sixth line is satisfied

in H
1
2 (Γ) thanks to the assumption on p since it can be checked from the first line in (2.1) that p|ΩP

belongs

to H1(ΩP ); finally, the last line is satisfied in H− 1
2 (Γ)

d(d−1)
2 since, thanks to the assumption on ΩF and f ,

the function ω = curlu|ΩF
is such that ∆ω belongs to L2(ΩF )

d(d−1)
2 , hence has a trace in H− 1

2 (Γ)
d(d−1)

2 .
Conversely, it can be checked by the arguments in ([4], Thm. 1.8), that any solution (u, p) of problem (2.1) in
C 2(Ω) × C 1(Ω) is a solution of problem (2.5). However, the full equivalence of problems (2.1) and (2.5) would
require the density of the space D(Ω)d in X , which seems unknown.

In order to investigate the well-posedness of problem (2.5), we first introduce the kernel

V =
{
v ∈ X ; ∀q ∈ L2

0(Ω), b(v, q) = 0
}
. (2.6)

Since functions in X have their divergence in L2
0(Ω), this space is equivalently given by

V =
{
v ∈ X ; div v = 0 in Ω

}
. (2.7)

Moreover, for any solution (u, p) of problem (2.5), the velocity u belongs to V and satisfies

∀v ∈ V, a(u,v) =
∫

Ω

f · v dx.

So we must prove the ellipticity of the form a(·, ·) on V .
Let us first note that, if a function v in V satisfies a(v,v) = 0, its restriction to ΩP vanishes, so that its

restriction to ΩF satisfies

div v|ΩF
= 0 in ΩF , curl v|ΩF

= 0 in ΩF , v|ΩF
· n = 0 on Γ.

Since ΩF is simply-connected, that yields ([3], Prop. 3.14), that it is zero. So the form a(·, ·) is semi-positive
definite. However, since the imbedding of the space of functions in H(div; ΩF ) ∩H(curl; ΩF ) into L2(ΩF )d is
not compact ([3], Prop. 2.7), the ellipticity of a(·, ·) cannot be derived from the Peetre–Tartar lemma ([18],
Chap. I, Thm. 2.1), and requires a further argument.

Lemma 2.2. There exists a constant α0 > 0 such that

∀v ∈ X, ‖v‖L2(ΩF )d ≤ α0

(
‖v‖2

L2(ΩP )d + ‖divv‖2
L2(Ω) + ‖curl v‖2

L2(ΩF )
d(d−1)

2

) 1
2

. (2.8)
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Proof. The proof is only given in dimension d = 3 since it is more complex in this case. We have

‖v‖L2(ΩF )d = sup
g∈L2(ΩF )d, g �=0

∫
ΩF
g · v dx

‖g‖L2(ΩF )d

· (2.9)

Next, we use the following property ([3], Sect. 3.e): since ΩF is simply–connected, each function g in L2(ΩF )d

can be written: g = gradχ + curlϕ, where χ belongs to H1(ΩF ) ∩ L2
0(ΩF ) and ϕ is divergence-free on ΩF

and has a zero tangential trace on ∂ΩF . Note that this yields the property

‖g‖2
L2(ΩF )d = ‖gradχ‖2

L2(ΩF )d + ‖curlϕ‖2
L2(ΩF )d . (2.10)

1) We have

∫

ΩF

gradχ · v dx = −
∫

ΩF

(div v)χ dx+
∫

Γ

v · nχ dτ ≤ ‖div v‖L2(ΩF )‖χ‖L2(ΩF ) + ‖v · n‖
H− 1

2 (Γ)
‖χ‖

H
1
2 (Γ)

.

We also deduce from the trace theorem on H(div,ΩP ) that

‖v · n‖
H− 1

2 (Γ)
≤ c

(
‖v‖2

L2(ΩP )d + ‖div v‖2
L2(ΩP )

) 1
2
.

By combining all this and using the trace theorem on H1(ΩF ) together with Bramble–Hilbert inequality, we
obtain ∫

ΩF

gradχ · v dx ≤ c
(
‖v‖2

L2(ΩP )d + ‖divv‖2
L2(Ω)

) 1
2 ‖gradχ‖L2(ΩF )d . (2.11)

2) On the other hand, since ϕ × n vanishes on Γ, we have

∫

ΩF

curlϕ · v dx =
∫

ΩF

curl v · ϕ dx ≤ ‖curl v‖
L2(ΩF )

d(d−1)
2

‖ϕ‖
L2(ΩF )

d(d−1)
2

.

Using a generalized Poincaré–Friedrichs inequality which is proven in ([3], Cor. 3.19), we derive

∫

ΩF

curlϕ · v dx ≤ ‖curlv‖
L2(ΩF )

d(d−1)
2

‖curlϕ‖L2(ΩF )d . (2.12)

Inserting (2.11) and (2.12) into (2.9) and using (2.10) yield the desired property.

By combining (2.7) and Lemma 2.2, we obtain the ellipticity property

∀v ∈ V, a(v,v) ≥ inf{µ, ν}
1 + α2

0

‖v‖2
X .

Moreover, since H1
0 (Ω)d is continuously imbedded in X , it follows from the standard inf-sup condition for the

Stokes problem ([18], Chap. I, Cor. 2.4), that there exists a constant β > 0 such that

∀q ∈ L2
0(Ω), sup

v∈X

b(v, q)
‖v‖X

≥ β ‖q‖L2(Ω). (2.13)

So the well-posedness of problem (2.5) follows from the standard theory of saddle-point problems.
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Theorem 2.3. For any data f in L2(Ω)d, problem (2.5) has a unique solution (u, p) in X ×L2
0(Ω). Moreover,

this solution satisfies
‖u‖X + ‖p‖L2(Ω) ≤ c ‖f‖L2(Ω)d . (2.14)

As a conclusion, it must be noted that standard arguments fail for proving a further regularity of the solution
(u, p) on the whole domain.

3. Another formulation

In view of the finite element discretization and according to the ideas in [2, 14, 15, 27], we now propose a
modified formulation of problem (2.5), which relies on the introduction of a new unknown: the vorticity ω
associated with u in ΩF .

We denote by H̃0(curl,ΩF ) the space of functions in L2(ΩF )
d(d−1)

2 with curl in L2(ΩF )d and zero traces on Γ
in dimension d = 2, zero tangential traces on Γ in dimension d = 3, provided with the graph norm ‖ ·‖H̃(curl,ΩF )

of the curl operator. Note that this space is rather different according to the dimension: it is equal to H1
0 (ΩF )

in dimension d = 2 while, in dimension d = 3, it coincides with the subspace of functions in H(curl,ΩF )
(introduced in Sect. 2) with zero tangential traces on Γ. We consider the following problem:

Find (ω,u, p) in H̃0(curl,ΩF ) ×H0(div,Ω) × L2
0(Ω) such that

∀ϕ ∈ H̃0(curl,ΩF ),
∫

ΩF

ω · ϕ dx−
∫

ΩF

u · curlϕ dx = 0,

∀v ∈ H0(div,Ω), µ

∫

ΩP

u · v dx+ ν

∫

ΩF

curlω · v dx+ b(v, p) =
∫

Ω

f · v dx,

∀q ∈ L2
0(Ω), b(u, q) = 0.

(3.1)

Remark 3.1. In opposite to the result investigated in Remark 2.1, problems (2.1) and (3.1) are fully equivalent
whenever p|ΩF

belongs H1(ΩF ). This comes from the density of D(Ω)d in H0(div,Ω) and of D(ΩF )
d(d−1)

2

in H̃0(curl,ΩF ), see ([18], Chap. I, Thms. 2.6 and 2.12) or ([28], Chap. 1, Thm. 1.3).

We first check the following property.

Proposition 3.2. For any solution (ω,u, p) of problem (3.1) in the space H̃0(curl,ΩF )×H0(div,Ω)×L2
0(Ω),

the pair (u, p) belongs to X × L2
0(Ω) and is a solution of problem (2.5).

Proof. The first line in problem (3.1) implies that curlu coincides with ω in the distribution sense on ΩF ,
hence in L2(ΩF )

d(d−1)
2 . So the function u belongs to X . Taking v in X in the second line of problem (3.1),

integrating by parts and taking into account the fact that ω × n vanishes on Γ yields the first line in problem
(2.5). Finally the last line in problem (3.1) is the same as the second line in problem (2.5).

To go further, we must prove that problem (3.1) admits a solution. So we first introduce the modified kernel

W =
{
v ∈ H0(div,Ω); ∀q ∈ L2

0(Ω), b(v, q) = 0
}

=
{
v ∈ H0(div,Ω); div v = 0 in Ω

}
,

and the product space X = H̃0(curl,ΩF ) ×W . We also consider the kernel

W =
{

(θ,v) ∈ X ; ∀ϕ ∈ H̃0(curl,ΩF ),
∫

ΩF

θ · ϕ dx−
∫

ΩF

v · curlϕ dx = 0
}
.

Due to the continuity of the bilinear form

B(V,ϕ) =
∫

ΩF

θ · ϕ dx−
∫

ΩF

v · curlϕ dx, with V = (θ,v), (3.2)
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on X × H̃0(curl,ΩF ), W is a closed subspace of X , hence is a Hilbert space. Moreover it can be checked that,
thanks to the density of D(ΩF )

d(d−1)
2 in H̃0(curl,ΩF ) quoted in Remark 3.1, that this space is equivalently

defined by

W =
{
V = (θ,v) ∈ H̃0(curl,ΩF ) ×W ; θ = curl v in ΩF

}
. (3.3)

We consider the reduced problem
Find U in W such that

∀v ∈W, A(U,v) =
∫

Ω

f · v dx, (3.4)

where the bilinear form A(·, ·) is now defined on (H̃0(curl,ΩF ) ×H0(div,Ω)) ×H0(div,Ω) by

A(U,v) = µ

∫

ΩP

u · v dx+ ν

∫

ΩF

curlω · v dx, with U = (ω,u). (3.5)

The analysis of problem (3.4) requires the following lemmas.

Lemma 3.3. The operator C:

ϕ �→ Cϕ =
{

curlϕ in ΩF ,
0 in ΩP ,

(3.6)

is continuous from H̃0(curl,ΩF ) into W .

Proof. For any ϕ in H̃0(curl,ΩF ), the function curlϕ belongs to L2(ΩF )
d(d−1)

2 and is divergence-free in ΩF ,
so it belongs to H(div,ΩF ). Moreover, since ϕ × n vanishes on Γ, the same property holds for curlϕ · n, so
that curlϕ belongs to H0(div,ΩF ). Since the extension by zero is continuous from this space into H0(div,Ω),
the lemma is proved.

Lemma 3.4. The form A(·, ·) satisfies the positivity property

∀v ∈ W,v 
= 0, sup
U∈W

A(U,v) > 0, (3.7)

and the inf-sup condition, for a constant γ > 0,

∀U ∈ W , sup
v∈W

A(U,v)
‖v‖H(div,Ω)

≥ γ ‖U‖X . (3.8)

Proof. We prove successively the two inequalities.

1) Let v be an element of W such that A(U,v) vanishes for all U in W . Since v · n has a null integral on Γ,
the problem {

−∆χ = 0 in ΩF ,
∂nχ = v · n on Γ,

has a unique solution χ in H1(ΩF ) ∩ L2
0(ΩF ). Then the pair U = (ω,u) defined by

u =
{
v in ΩP ,
gradχ in ΩF ,

ω = 0,

belongs to W and the equation A(U,v) = 0 implies that v is zero on ΩP . Next, since v is divergence-free
in ΩF , has a null normal trace on Γ from the previous result and since ΩF is simply-connected, there exists ([3],
Thm. 3.17), a ϕ in H̃0(curl,ΩF ) which is divergence-free and such that v is equal to curlϕ on ΩF . Moreover,
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since ϕ is divergence-free on ΩF and Γ is connected, there exists ([3], Thm. 3.12), a divergence–free ψ with zero
normal trace on Γ such that ϕ = curlψ. So the pair U = (ω,u) defined by

u =
{

0 in ΩP ,
ψ in ΩF ,

ω = ϕ,

belongs to W and the equation A(U,v) = 0 implies that v is also zero on ΩF . This proves (3.7).

2) For any U = (ω,u) in W , when setting v equal to u+ Cω, we have

A(U,v) = µ ‖u‖2
L2(ΩP )d + ν

∫

ΩF

curlω · udx+ ν ‖curlω‖2
L2(ΩF )d .

Integrating by parts int the middle term and recalling from (3.3) that ω is equal to curlu, we obtain

A(U,v) ≥ min
{
µ,
ν

2

}

(
‖u‖2

L2(ΩP )d + ‖curlu‖2

L2(ΩF )
d(d−1)

2
+ ‖ω‖2

L2(ΩF )
d(d−1)

2
+ ‖curlω‖2

L2(ΩF )d

)
.

Thus, since u is divergence-free, it follows from Lemma 2.2 that

A(U,v) ≥ c ‖U‖2
X .

On the other hand, Lemma 3.3 yields that

‖v‖H(div,Ω) ≤ c ‖U‖X .

Combining the previous two inequalities leads to condition (3.8).

Standard arguments ([18], Chap. I, Lem. 4.1) (see also [5, 25] or [6], Thm. 2.1 and Rem. 2.1) allow for
deriving from Lemma 3.4 the following result.

Proposition 3.5. For any data f in L2(Ω)d, problem (3.4) has a unique solution U = (ω,u) in W.

Finally we introduce the space

Y =
{

(θ,v) ∈ H̃0(curl,ΩF ) ×H0(div,Ω); ∀ϕ ∈ H̃0(curl,ΩF ),
∫

ΩF

θ · ϕ dx−
∫

ΩF

v · curlϕ dx = 0
}
,

and we consider the problem
Find (U, p) in Y × L2

0(Ω), with U = (ω,u), such that

∀v ∈ H0(div,Ω), A(U,v) + b(v, p) =
∫

Ω

f · v dx,

∀q ∈ L2
0(Ω), b(u, q) = 0,

(3.9)

for the form b(·, ·) defined in (2.4). Note that, since X is imbedded in H0(div,Ω), the following inf-sup condition
is obviously derived from (2.13):

∀q ∈ L2
0(Ω), sup

v∈H0(div,Ω)

b(v, q)
‖v‖H(div,Ω)

≥ β ‖q‖L2(Ω). (3.10)



COUPLING DARCY AND STOKES EQUATIONS FOR POROUS MEDIA WITH CRACKS 15

This yields the following proposition.

Proposition 3.6. For any data f in L2(Ω)d, problem (3.9) has a unique solution (U, p) in Y×L2
0(Ω). Moreover,

the part U of this solution belongs to W and is the unique solution of problem (3.4).

Thanks to the definition of the space Y, problem (3.9) coincides with problem (3.1). So we now state the
final result.

Corollary 3.7. For any data f in L2(Ω)d, problem (3.1) has a unique solution (ω,u, p) in H̃0(curl,ΩF ) ×
H0(div,Ω) × L2

0(Ω). Moreover, the part ω of this solution is equal to curlu on ΩF .

Remark 3.8. Thanks to the two inf-sup conditions (3.8) and (3.10), the solution (ω,u, p) of problem (3.1)
satisfies the estimate

‖ω‖H̃(curl,ΩF ) + ‖u‖H(div,Ω) + ‖p‖L2(Ω) ≤ c ‖f‖L2(Ω)d . (3.11)

Moreover, the existence result stated in Corollary 3.7 and the previous estimate extend to slightly more general
data f , namely in the dual space of H0(div,Ω). However we have no direct applications for that.

Using formulation (3.1) as a basis for the discretization of problem (2.1) by the Galerkin method has two
advantages:

• when replacing H0(div,Ω), L2
0(Ω) and H̃0(curl,ΩF ) by finite-dimensional subspaces, problem (3.1)

results into a square linear system;
• the discrete spaces on Ω and on ΩF can a priori be constructed in a completely independent way.

4. Finite element discretization

In what follows and for simplicity, we make the further assumption that both Ω and ΩF are polygons in
dimension d = 2, polyhedra in dimension d = 3. We introduce a regular family (Th)h of triangulations by closed
triangles (d = 2) or tetrahedra (d = 3), in the usual sense that

• for each h, Ω is the union of all elements of Th;
• for each h, the intersection of two different elements of Th, if not empty, is a corner, a whole edge or a

whole face of both of them;
• the ratio of the diameter hK of an element K in Th to the diameter of its inscribed circle or sphere is

bounded by a constant independent of K and h;
and with the further condition

• for each h, the intersection of Γ with the interior of any element K of Th is empty.
As usual, h denotes the maximum of the diameters of the elements of Th. We denote by T F

h the set of elementsK
of Th with are contained in ΩF .

Next, for each K in Th, we introduce the space P0(K) of restrictions to K of constant functions on Rd, the
space P1(K) of restrictions to K of affine functions on R

d, the space PK of restrictions to K of polynomials p
of the form

p(x) = a+ bx, a ∈ R
d, b ∈ R,

and finally, in dimension d = 3, the space P ′
K of restrictions to K of polynomials p of the form

p(x) = a+ b × x, a ∈ R
3, b ∈ R

3.

The spaces PK and P ′
K and the corresponding finite elements are studied in ([24], Sect. 1.1). Next, we introduce

the discrete spaces

Dh(Ω) =
{
vh ∈ H0(div,Ω); ∀K ∈ Th, vh |K ∈ PK

}
,

Mh(Ω) =
{
qh ∈ L2

0(Ω); ∀K ∈ Th, qh |K ∈ P0(K)
}
.

(4.1)
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Note that the finite element involved in the definition of the space Dh(Ω) is that of Raviart and Thomas [26].
On the other hand, since the space H̃0(curl,ΩF ) is made of scalar functions in dimension d = 2, of vector fields
in dimension d = 3, we use different discrete spaces to approximate it according to the dimension, namely

Ch(ΩF ) =






{
ϕh ∈ H1

0 (ΩF ); ∀K ∈ T F
h , ϕh |K ∈ P1(K)

}
, if d = 2,

{
ϕh ∈ H̃0(curl,ΩF ); ∀K ∈ T F

h , ϕh |K ∈ P ′
K

}
, if d = 3.

(4.2)

The discrete problem is now derived from problem (3.1) by the Galerkin method. It reads
Find (ωh,uh, ph) in Ch(ΩF ) × Dh(Ω) × Mh(Ω) such that

∀ϕh ∈ Ch(ΩF ),
∫

ΩF

ωh · ϕh dx−
∫

ΩF

uh · curlϕh dx = 0,

∀vh ∈ Dh(Ω), µ

∫

ΩP

uh · vh dx+ ν

∫

ΩF

curlωh · vh dx+ b(vh, ph) =
∫

Ω

f · vh dx,

∀qh ∈ Mh(Ω), b(uh, qh) = 0.

(4.3)

Note that, as scheduled at the end of the previous section, problem (4.3) results into a square linear system.
Moreover the discretization is conforming.

Proving the existence of a solution is simpler than for the continuous problem. We introduce the kernel

Wh =
{
vh ∈ Dh(Ω); ∀qh ∈ Mh(Ω), b(vh, qh) = 0

}
,

and observe that, since the range of Dh(Ω) by the divergence operator is contained in Mh(Ω),

Wh =
{
vh ∈ Dh(Ω); div vh = 0 in Ω

}
.

Proposition 4.1. For any data f in L2(Ω)d, problem (4.3) has a unique solution in Ch(ΩF )×Dh(Ω)×Mh(Ω).

Proof. Since problem (4.3) results into a square linear system, it suffices to check that its only solution for f
equal to zero is zero. In order to prove this, we take f equal to zero and choose vh in the second equation
of (4.3) equal to uh. Since it belongs to Wh, this yields

µ ‖uh‖2
L2(ΩP )d + ν

∫

ΩF

curlωh · uh dx = 0.

Then, using the first line of (4.3) with ϕh equal to ωh leads to

µ ‖uh‖2
L2(ΩP )d + ν ‖ωh‖2

L2(ΩF )
d(d−1)

2
= 0,

so that uh is zero on ΩP and ωh is zero on ΩF . Thus, we have the equation

∀ϕh ∈ Ch(ΩF ),
∫

ΩF

uh · curlϕh dx = 0.

On the other hand, it can be checked by similar arguments as in [19] that any function which is the restriction
to ΩF of a function in Wh and moreover has a null normal trace on Γ is the curl of a function ϕ̃h in Ch(ΩF ).
So the previous equation implies that uh is zero on ΩF also. Finally, the pressure ph satisfies

∀vh ∈ Dh(Ω), b(vh, ph) = 0,
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and it follows from [26] that ph is zero on Ω. This concludes the proof.
We now intend to prove a priori error estimates between the solutions (ω,u, p) and (ωh,uh, ph). In order to

do this, we define the product space Xh = Ch(ΩF ) ×Wh and the kernel

Wh =
{
(θh,vh) ∈ Xh; ∀ϕh ∈ Ch(ΩF ),

∫

ΩF

θh · ϕh dx−
∫

ΩF

vh · curlϕh dx = 0
}
.

We first consider the problem
Find Uh in Wh such that

∀vh ∈ Wh, A(Uh,vh) =
∫

Ω

f · vh dx. (4.4)

Let WF
h denote the space of restrictions to ΩF of functions vh in Wh which moreover have a zero normal trace

on Γ. The following property is established in ([27], Sect. 2.1), and ([15], Prop. 5), in the case of dimension
d = 2. So we only prove it in dimension d = 3.

Lemma 4.2. There exists a constant σ0 independent of h such that the following property holds

∀vh ∈WF
h , sup

ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ0 ‖vh‖L2(ΩF )d . (4.5)

Proof. In dimension d = 3, we consider the problem
Find (ψh, λh) in Ch(ΩF ) × Hh(ΩF ) such that

∀ϕh ∈ Ch(ΩF ),
∫

ΩF

curlψh · curlϕh dx+
∫

ΩF

ϕh · grad λh dx =
∫

ΩF

vh · curlϕh dx,

∀µh ∈ Hh(ΩF ),
∫

ΩF

ψh · gradµh dx = 0,

where Hh(ΩF ) stands for the space of functions in H1
0 (ΩF ) such that their restrictions to any K in T F

h belong
to P1(K). It is proved in ([3], Props. 4.11 and 4.12) that, since ΩF is simply-connected and has a connected
boundary, this problem has a unique solution (ψh, λh), that this λh is equal to zero and moreover that

‖ψh‖H̃(curl,ΩF ) ≤ c ‖curlψh‖L2(ΩF )3 .

So taking ϕh equal to ψh yields

sup
ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H̃(curl,ΩF )

≥ c ‖curlψh‖L2(ΩF )3 . (4.6)

On the other hand, it can be checked by similar arguments as in [19] loc. cit. that any function vh in WF
h is

the curl of a function ϕ̃h in Ch(ΩF ). So taking ϕh equal to ϕ̃h in the previous problem leads to

‖vh‖L2(ΩF )3 ≤ ‖curlψh‖L2(ΩF )3 .

Combining the two last inequalities gives the desired result.
The extension to functions in Wh which have non zero normal traces on Γ is more technical. Let hΓ

min stand
for the smallest length of the edges e (d = 2) or diameter of the faces e (d = 3) of elements of Th which are
contained in Γ.
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Lemma 4.3. There exists a constant σ independent of h such that the following property holds

∀vh ∈ Wh, ‖vh‖L2(ΩP )d + sup
ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ (hΓ

min)
1
2 | log hΓ

min|−1 ‖vh‖L2(Ω)d . (4.7)

Proof. Since the second term in the left-hand side of (4.7) is nonnegative, it suffices to prove the modified
estimate, for some constant ρ, 0 < ρ ≤ 1,

∀vh ∈Wh, ‖vh‖L2(ΩP )d + ρ sup
ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ ‖vh‖L2(Ω)d . (4.8)

Next, for any vh in Wh, we consider the problem
Find λ̃h in H̃h(ΩF )/R such that

∀µ̃h ∈ H̃h(ΩF ),
∑

K∈T F
h

∫

K

grad λ̃h · grad µ̃h dx =
∫

Γ

vh · n µ̃h dτ , (4.9)

where H̃h(ΩF ) stands for the space of functions in L2(ΩF ) such that their restriction to each K in T F
h belongs

to P1(K) and which are continuous in the midpoints of the edges (d = 2) or barycenters of the faces (d = 3) of
all elements of T F

h (the corresponding finite element was introduced in [10]). Since vh is divergence-free in ΩF ,
the integral on Γ of its normal trace vanishes, so that this problem has a unique solution λ̃h. Next, for each
edge (d = 2) or face (d = 3) e of an element of T F

h , taking µ̃h equal to the basis function associated with the
midpoint or barycenter of e yields that

(i) if e is the intersection of two elements of T F
h , the jump of ∂λ̃h

∂n through e vanishes;
(ii) if e is contained in Γ, the normal trace ∂λ̃h

∂n is equal to vh · n on e.

As a consequence, the function grad λ̃h belongs to H(div,ΩF ) and is divergence-free, so the function v0
h =

vh − grad λ̃h belongs to WF
h . Applying Lemma 4.2 to this function yields that

sup
ϕh∈Ch(ΩF )

∫
ΩF
v0

h · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ0 ‖v0

h‖L2(ΩF )d ,

so that

sup
ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ0 ‖vh‖L2(ΩF )d − (1 + σ0) ‖grad λ̃h‖L2(ΩF )d . (4.10)

In order to bound this last norm, we take µ̃h equal to λ̃h in (4.9), so that

‖grad λ̃h‖2
L2(ΩF )d ≤

∫

Γ

vh · n λ̃h dτ .

Using inequality (A.9) of the appendix gives

∫

Γ

vh · n λ̃h dτ ≤ α(h) ‖vh‖L2(ΩP )d

( ∑

K∈T F
h

‖λ̃h‖2
H1(K)

) 1
2

, (4.11)
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with α(h) = α∗ (hΓ
min)−

1
2 | log hΓ

min|. Moreover the function λ̃h is defined up to an additive constant, so it can
be chosen to have a null mean value on ΩF . Thus using ([1], Lem. 4.2), yields

( ∑

K∈T F
h

‖λ̃h‖2
H1(K)

) 1
2

≤ c0 ‖grad λ̃h‖L2(ΩF )d .

Inserting this into (4.11) gives
‖grad λ̃h‖L2(ΩF )d ≤ c0 α(h) ‖vh‖L2(ΩP )d ,

whence, by (4.10),

sup
ϕh∈Ch(ΩF )

∫
ΩF
vh · curlϕh dx

‖ϕh‖H(curl,ΩF )
≥ σ0 ‖vh‖L2(ΩF )d − (1 + σ0) c0 α(h) ‖vh‖L2(ΩP )d .

We now use (4.8) with ρ =
(
2(1 + σ0) c0 α(h)

)−1 and we obtain the desired result.

Remark 4.4. Let us consider the function vh in Dh(Ω) which is constant equal to v on ΩF and satisfies, for
all edges or faces e of elements of Th \ T F

h ,

∫

e

vh · ndτ =
{ ∫

e v · ndτ if e is contained in Γ,
0 otherwise.

Then, it can be checked than

∀ϕh ∈ Ch(ΩF ),
∫

ΩF

vh · curlϕh dx = 0,

and also that
‖vh‖L2(Ω)d ≥ |v|meas(ΩF ) and ‖vh‖L2(ΩP )d ≤ c (hΓ)

1
2 |v|,

where hΓ denotes the largest length of the edges e or diameter of the faces e of elements of Th which are contained
in Γ. Even if this function vh does not belong to Wh, this seems to indicate that, at least when the family of
triangulations (Th)h is uniformly regular in a neighbourhood of Γ and up to the | log hΓ

min|−1, the constant in
the right-hand side of (4.7) cannot be improved.

It is readily checked that the operator C introduced in (3.6) maps Ch(ΩF ) into Dh(Ω) and even into Wh. So
we are now in a position to prove the following inf-sup condition.

Lemma 4.5. The form A(·, ·) satisfies the inf-sup condition, for a constant γ∗ > 0 independent of h,

∀Uh ∈ Wh, sup
vh∈Wh

A(Uh,vh)
‖vh‖H(div,Ω)

≥ γ∗ (hΓ
min)

1
2 | log hΓ

min|−1 ‖Uh‖X . (4.12)

Proof. For any Uh = (ωh,uh) in Wh, we take vh = uh + Cωh. This gives

A(Uh,vh) = µ ‖uh‖2
L2(ΩP )d + ν

∫

ΩF

curlωh · uh dx+ ν ‖curlωh‖2
L2(ΩF )d ,

whence, thanks to the definition of Wh,

A(Uh,vh) = µ ‖uh‖2
L2(ΩP )d + ν ‖ωh‖2

L2(ΩF )
d(d−1)

2
+ ν ‖curlωh‖2

L2(ΩF )d .
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On the other hand, we have

sup
ϕh∈Ch(ΩF )

∫
ΩF
uh · curlϕh dx

‖ϕh‖H̃(curl,ΩF )

≤ sup
ϕh∈Ch(ΩF )

∫
ΩF
ωh · ϕh dx

‖ϕh‖
L2(ΩF )

d(d−1)
2

≤ ‖ωh‖
L2(ΩF )

d(d−1)
2

.

Combining all this yields

A(Uh,vh) ≥ min
{
µ,
ν

2

}


‖uh‖2
L2(ΩP )d +

(

sup
ϕh∈Ch(ΩF )

∫
ΩF
uh · curlϕh dx

‖ϕh‖H(curl,ΩF )

)2

+ ‖ωh‖2

L2(ΩF )
d(d−1)

2
+ ‖curlωh‖2

L2(ΩF )d

)

.

Then applying Lemma 4.3 yields

A(Uh,vh) ≥ min
{
µ,
ν

2

}
σ (hΓ

min)
1
2 | log hΓ

min|−1 ‖Uh‖2
X .

On the other hand, we derive from Lemma 3.3 that

‖vh‖H(div,Ω) ≤ c ‖Uh‖X ,

whence the desired condition.

Obviously, if (ωh,uh, ph) denotes the solution of problem (4.3), the pair Uh = (ωh,uh) is a solution of
problem (4.4). This yields for any Zh in Wh and vh in Wh

A(Uh − Zh,vh) =
∫

Ω

f · vh dx−A(Zh,vh).

Then, noting that Wh is contained in W , we use (3.4), which gives

A(Uh − Zh,vh) = A(U − Zh,vh).

Applying Lemma 4.5 and a triangle inequality leads to the first estimate

‖U − Uh‖X ≤ c (hΓ
min)−

1
2 | log hΓ

min| inf
Zh∈Wh

‖U − Zh‖X . (4.13)

To go further, we note that Wh is the kernel of the form B(·, ·) introduced in (3.2).

Lemma 4.6. The form B(·, ·) satisfies the inf-sup condition, for a constant δ > 0,

∀ϕh ∈ Ch(ΩF ), sup
Vh∈Xh

B(Vh,ϕh)
‖Vh‖X

≥ δ ‖ϕh‖H̃(curl,ΩF ). (4.14)

Proof. With any ϕh in Ch(ΩF ), we associate the pair Vh = (ϕh,−Cϕh), which belongs to Xh. Thus, it is
readily checked that

B(Vh,ϕh) = ‖ϕh‖2
H̃(curl,ΩF )

,
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and, from Lemma 3.3, that

‖Vh‖X ≤ c ‖ϕh‖H̃(curl,ΩF ).

This gives the desired result.
By combining Lemma 4.6 with ([18], Chap. II, form. (1.16)) (see also [6], Prop. 2.1), we derive from (4.13)

the second estimate

‖U − Uh‖X ≤ c (hΓ
min)−

1
2 | log hΓ

min| inf
Zh∈Xh

‖U − Zh‖X . (4.15)

Finally, the following inf-sup condition is proven in ([26], Thm. 4): for a constant β∗ > 0 independent of h,

∀qh ∈ Mh(Ω), sup
vh∈Dh(Ω)

b(vh, qh)
‖vh‖H(div,Ω)

≥ β∗ ‖qh‖L2(Ω). (4.16)

This allows first for replacing in (4.15)

inf
Zh∈Xh

‖U − Zh‖X ≤ c inf
Zh∈Ch(ΩF )×Dh(Ω)

‖U − Zh‖H̃(curl,ΩF )×H(div,Ω), (4.17)

and also, by standard arguments that we omit here, for proving an estimate of the error on the pressure.
Combining all this leads to

‖ω − ωh‖H̃( curl,ΩF ) + ‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω)

≤ c (hΓ
min)−

1
2 | log hΓ

min|
(

inf
θh∈Ch(ΩF )

‖ω − θh‖H̃( curl,ΩF ) + inf
vh∈Dh(Ω)

‖u− vh‖H(div,Ω) + inf
qh∈Mh(Ω)

‖p− qh‖L2(Ω)

)

.

(4.18)

The approximation properties of the spaces Mh(Ω) and Ch(ΩF ) in the two-dimensional case are well-known
while those of Dh(Ω) and Ch(ΩF ) for d = 3 can be derived from ([24], Thms. 2 and 4) (see also [26]). This leads
to the final a priori error estimate.

Theorem 4.7. Assume that the solution (u, p) of problem (2.1) belongs to Hs(Ω)d ×Hs(Ω) and that curlu|ΩF

belongs to Hs+1(ΩF )
d(d−1)

2 for a real number s, 0 < s ≤ 1. The following a priori error estimate holds between
the solution (ω,u, p) of problem (3.1) and the solution (ωh,uh, ph) of problem (4.3)

‖ω − ωh‖H̃( curl,ΩF ) + ‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω)

≤ c (hΓ
min)−

1
2 | log hΓ

min|hs

(
‖ω‖

Hs+1(ΩF )
d(d−1)

2
+ ‖u‖Hs(Ω)d + ‖p‖Hs(Ω)

)
. (4.19)

Remark 4.8. According to ([3], Sect. 4), the quantity ‖ω‖
Hs+1(Ω)

d(d−1)
2

in the previous estimate can be

replaced by

‖ω‖
Hs(ΩF )

d(d−1)
2

+ ‖curlω‖Hs(ΩF )d ,

there also for any s, 0 < s ≤ 1.

Estimate (4.19) is not optimal but yields the convergence of the discretization under some non restrictive
assumptions on the size of the mesh in a neighbourhood of Γ and a stronger one on the regularity of the solution.
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5. A POSTERIORI analysis of the discretization

We now intend to prove a posteriori error estimates between the solutions (ω,u, p) of problem (3.1) and
(ωh,uh, ph) of problem (4.3). We first observe that the error function U − Uh, with U = (ω,u) and Uh =
(ωh,uh), belongs to X and satisfies

∀v ∈W, A(U − Uh,v) = 〈F,v〉,
∀ϕ ∈ H̃0(curl,ΩF ), B(U − Uh,ϕ) = 〈G,ϕ〉,

(5.1)

where the “residuals” F and G belong to the dual spaces of H0(div,Ω) and H̃0(curl,ΩF ), respectively, and are
defined by

∀v ∈W, 〈F,v〉 =
∫

Ω

f · v dx− µ

∫

ΩP

uh · v dx− ν

∫

ΩF

curlωh · v dx,

∀ϕ ∈ H̃0(curl,ΩF ), 〈G,ϕ〉 = −
∫

ΩF

ωh · ϕ dx+
∫

ΩF

uh · curlϕdx.

Deriving a posteriori estimates from these equations requires the following inf-sup condition, which is proven
by exactly the same arguments as for Lemma 4.6: there exists a constant δ > 0 such that

∀ϕ ∈ H̃0(curl,ΩF ), sup
V ∈X

B(V,ϕ)
‖V ‖X

≥ δ ‖ϕ‖H̃(curl,ΩF ). (5.2)

Indeed, using this condition, we derive the existence of a function Z in X such that

∀ϕ ∈ H̃0(curl,ΩF ), B(Z,ϕ) = 〈G,ϕ〉,

and which satisfies
‖Z‖X ≤ δ−1 ‖G‖H̃0( curl,ΩF )′ .

The idea is that, now, the function U − Uh − Z belongs to W , so that applying (3.8) and a triangle inequality
yields the estimate, for a constant c independent of h,

‖ω − ωh‖H̃( curl,ΩF ) + ‖u− uh‖H(div,Ω) ≤ c
(
‖F‖W ′ + ‖G‖H̃0( curl,ΩF )′

)
. (5.3)

So, we must now evaluate the terms in the right-hand side.
We introduce the space

Zh(Ω) =
{
gh ∈ L2(Ω)d; ∀K ∈ Th, gh |K ∈ P0(K)d

}
,

and fix an approximation fh of the data f in Zh(Ω). We denote by Eh the set of all edges (d = 2) or faces
(d = 3) of elements of Th that are not contained in ∂Ω. Next, for each K in T F

h , we introduce the set EK of
edges (d = 2) or faces (d = 3) of K that are not contained in Γ. Here, nK stands for the unit outward normal
vector to K on ∂K. For each K in T F

h and for each e in EK , we also denote by [·]e the jump through e. Finally
the function χF is defined on Th as follows: χF (K) is equal to 1 if K belongs to T F

h and to zero otherwise. We
also set: χP = 1 − χF .

We are now in a position to define the two sets of error indicators:
• for each K in Th,

ηK = ‖fh − µχP (K)uh − ν χF (K) curlωh‖L2(K)d , (5.4)
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• for each K in T F
h ,

ηF
K = hK ‖ωh − curluh‖

L2(K)
d(d−1)

2
+
∑

e∈EK

(h
1
2
e ‖ [uh × n]e ‖L2(e)d + δd3 h

3
2
e ‖ [ωh · n]e ‖L2(e)

)
, (5.5)

where he denotes the length of e in dimension d = 2, its diameter in dimension d = 3, and δ·· stands for
the Kronecker symbol (so, δd3 is equal to zero in dimension d = 2, to 1 in dimension d = 3).

Lemma 5.1. The following estimates hold

‖F‖W ′ ≤ c

(
∑

K∈Th

η2
K + ‖f − fh‖2

L2(K)d

) 1
2

, ‖G‖H̃0( curl,ΩF )′ ≤ c




∑

K∈T F
h

λF
K (ηF

K)2





1
2

, (5.6)

where λF
K is equal to 1 always in dimension d = 2 and in dimension d = 3 only if ΩF is convex, to h

− 1
2

K in
dimension d = 3 if ΩF is not convex.

Proof. The first estimate in (5.6) follows from a simple triangle inequality. To obtain the second one, we note
that, for any ϕh in Ch(ΩF ),

〈G,ϕ〉 = −
∫

ΩF

ωh · (ϕ−ϕh) dx+
∫

ΩF

uh · curl (ϕ−ϕh) dx. (5.7)

We treat separately the dimensions d = 2 and d = 3.
1) In dimension d = 2, since H̃0(curl,ΩF ) coincides with H1

0 (ΩF ), we integrate by parts the last term of (5.7)
and take ϕh equal to the image of ϕ by a Clément type regularization operator, which satisfies for all K in T F

h

and e in EK ,

‖ϕ−ϕh‖L2(K) ≤ c hK ‖ϕ‖H1(∆K) and ‖ϕ−ϕh‖L2(e) ≤ c h
1
2
e ‖ϕ‖H1(∆K),

where ∆K stands for the union of the elements of T F
h that intersect K. This leads to the desired result.

2) In dimension d = 3, and for all ϕ in H̃0( curl,ΩF ), we consider the solution λ in H1
0 (ΩF ) of the problem

∀µ ∈ H1
0 (ΩF ),

∫

ΩF

gradλ · gradµ dx =
∫

ΩF

ϕ · gradµ dx.

Then, the function ϕ0 = ϕ−gradλ belongs to H̃0( curl,ΩF ) and is divergence-free on ΩF . So the pair (ϕ0, λ)
belongs ([3], Sect. 2), to Hs(Ω)3 ×Hs+1(Ω) with s = 1 if Ω is convex, with s = 1

2 (and even with some s > 1
2

since Ω is a polyhedron) otherwise. Next, we observe that, for all ψ0
h in Ch(ΩF ) and µh in H1

0 (ΩF ) such that
its restriction to each K in T F

h belongs to P1(K),

〈G,ϕ〉 = −
∫

ΩF

ωh · (ϕ0 −ψ0
h) dx−

∫

ΩF

ωh · grad (λ− µh) dx+
∫

ΩF

uh · curl (ϕ0 −ψ0
h) dx.

By integrating by parts on each K and noting that divωh is zero on each K, we obtain

〈G,ϕ〉 =
∑

K∈T F
h

(

−
∫

K

(ωh − curluh) · (ϕ0 −ψ0
h) dx

+
1
2

∑

e∈EK

(∫

e

[uh × n] · (ϕ0 −ψ0
h) dτ +

∫

e

[ωh · n] (λ− µh) dτ
))

.
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So we take ψ0
h equal to the image of ϕ0 by the Raviart-Thomas operator (see below for its exact definition) and

µh equal to the image of λ by the Clément type regularization operator quoted above. By using the regularity
properties of ϕ0 and λ, we derive the desired estimate.

Combining estimate (5.3) with Lemma 5.1, we obtain the first a posteriori estimate.

Corollary 5.2. The following a posteriori error estimate holds between the solution (ω,u, p) of problem (3.1)
and the solution (ωh,uh, ph) of problem (4.3)

‖ω − ωh‖H̃( curl,ΩF ) + ‖u− uh‖H(div,Ω) ≤ c




∑

K∈Th

(
η2

K + ‖f − fh‖2
L2(K)d

)
+
∑

K∈T F
h

λF
K (ηF

K)2





1
2

. (5.8)

A further argument is needed to obtain an error estimate on the pressure. Indeed this relies on the residual
equation

∀v ∈ H(div,Ω), A(U − Uh,v) + b(v, p− ph) = 〈F,v〉 − b(v, ph). (5.9)
Moreover, it can be noted that, for all vh in Dh(Ω),

〈F,v〉 − b(v, ph) = 〈F,v − vh〉 − b(v − vh, ph). (5.10)

In a further step, we introduce the Raviart–Thomas operator: for any smooth enough vectorial function v, Rhv
belongs to Dh(Ω) and satisfies

∀e ∈ Eh,

∫

e

(v −Rhv) · ndτ = 0. (5.11)

Moreover, this operator satisfies, see ([26], Thm. 3) or ([24], Thm. 4), for all functions v in H1(Ω)d and for all
K in Th,

‖v −Rhv‖L2(K)d ≤ c hK ‖v‖H1(K)d . (5.12)
The idea here is that, thanks to the definition of Mh(Ω),

b(v −Rhv, ph) = 0. (5.13)

Proposition 5.3. The following a posteriori error estimate holds between the solution (ω,u, p) of problem (3.1)
and the solution (ωh,uh, ph) of problem (4.3)

‖p− ph‖L2(Ω) ≤ c

(
∑

K∈Th

h2
K

(
η2

K + ‖f − fh‖2
L2(K)d

)
) 1

2

+ ‖ω − ωh‖H̃( curl,ΩF ) + ‖u− uh‖H(div,Ω). (5.14)

Proof. The proof relies on the standard inf-sup condition ([18], Chap. I, Cor. 2.4): for a positive constant β̃,

∀q ∈ L2
0(Ω), sup

v∈H1
0 (Ω)d

b(v, q)
‖v‖H1(Ω)d

≥ β̃ ‖q‖L2(Ω). (5.15)

By using this inf-sup condition and combining equation (5.9) with (5.10) and (5.13), we obtain

‖p− ph‖L2(Ω) ≤ β̃−1 sup
v∈H1

0 (Ω)d

〈F,v −Rhv〉 − A(U − Uh,v)
‖v‖H1(Ω)

·

As for Lemma 5.1, we have

〈F,v −Rhv〉 ≤
∑

K∈Th

‖f − µχP (K)uh − ν χF (K) curlωh‖L2(K)d‖v − Rhv‖L2(K)d ,
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So using (5.12) yields

〈F,v −Rhv〉 ≤ c

(
∑

K∈Th

h2
K (‖fh − µχP (K)uh − ν χF (K) curlωh‖2

L2(K)d + ‖f − fh‖L2(K)d)

) 1
2

‖v‖H1(Ω)d .

On the other hand, it follows from the continuity of the form A(·, ·) that

A(U − Uh,v) ≤
(
‖ω − ωh‖H̃(curl,ΩF ) + ‖u− uh‖H(div,Ω)

)
‖v‖H(div,Ω).

Combining all this yields the desired estimate.

We now prove the upper bounds for the two types of indicators.

Proposition 5.4. The following estimate holds for each indicator ηK , K ∈ Th, defined in (5.4)

ηK ≤ c
(
χF (K) ‖ω − ωh‖H̃( curl,K) + χP (K) ‖u− uh‖H(div,K) + h−1

K ‖p− ph‖L2(K) + ‖f − fh‖L2(K)d

)
.

(5.16)

Proof. In equation (5.9), we take v equal to

v =
{ (

fh − µχP (K)uh − ν χF (K) curlωh)ψK on K,
0 elsewhere,

where ψK denotes the bubble function on K equal to the product of the d+1 barycentric coordinates associated
with the vertices of K. This gives

∥
∥
∥
(
fh − µχP (K)uh − ν χF (K) curlωh

)
ψ

1
2
K

∥
∥
∥

2

L2(K)d
≤ A(U − Uh,v) + b(v, p) −

∫

K

(f − fh) · v dx.

We have
A(U − Uh,v) ≤

(
χF (K) ‖ω − ωh‖H̃( curl,K) + χP (K) ‖u− uh‖H(div,K)

)
‖v‖L2(K)d ,

and ∫

K

(f − fh) · v dx ≤ ‖f − fh‖L2(K)d‖v‖L2(K)d .

On the other hand, we write
b(v, p) = b(v, p− ph) + b(v, ph).

Since v is polynomial with degree ≤ d+ 1, we use an inverse inequality to derive

b(v, p− ph) ≤ c h−1
K ‖p− ph‖L2(K)‖v‖L2(K)d .

We also observe that, since both fh − µχP (K)uh − ν χF (K) curlωh and ph are constant on K,

b(v, ph) = −
(
fh − µχP (K)uh − ν χF (K) curlωh)|K ph |K

∫

K

divψK dx = 0.

Combining all this and noting that, since ψK takes its values in [0, 1],

‖v‖L2(K)d ≤ ‖
(
fh − µχP (K)uh − ν χF (K) curlωh

)
ψ

1
2
K‖L2(K)d ,
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we derive

‖
(
fh − µχP (K)uh − ν χF (K) curlωh

)
ψ

1
2
K‖L2(K)d ≤ c

(
χF (K) ‖ω − ωh‖H̃( curl,K)

+ χP (K) ‖u− uh‖H(div,K) + h−1
K ‖p− ph‖L2(K) + ‖f − fh‖L2(K)d

)
.

Finally, by combining this line with the inverse inequality

∀w ∈ P0(K), ‖w‖L2(K) ≤ c ‖wψ
1
2
K‖L2(K),

we obtain the desired estimate.
Proposition 5.5. The following estimate holds for each indicator ηF

K , K ∈ T F
h , defined in (5.5)

ηF
K ≤ c

(
‖ω − ωh‖H̃( curl,∆K) + ‖u− uh‖H(div,∆K)

)
, (5.17)

where ∆K denotes the union of elements of T F
h that share at least an edge (d = 2) or a face (d = 3) with K.

Proof. This estimate relies on the second line of (5.1). Indeed, we note that, for all ϕ in H̃0(curl,ΩF ),

〈G,ϕ〉 =
∑

K∈T F
h

(

−
∫

K

(ωh − curluh) · ϕ dx+
1
2

∑

e∈EK

∫

e

[uh × n]e · ϕ dτ

)

. (5.18)

1) First, we take ϕ equal to

ϕ =
{

(ωh − curluh)ψK on K,
0 elsewhere.

Exactly the same arguments as in the proof of Proposition 5.4 lead to the estimate

‖ωh − curluh‖
L2(K)

d(d−1)
2

≤ c (‖ω − ωh‖
L2(K)

d(d−1)
2

+ h−1
K ‖u− uh‖H(div,K)). (5.19)

2) Second, for any edge e in EK , let K ′ denote the other element of T F
h which contains e. Let Le be a lifting

operator from polynomials defined on e into polynomials defined on K and K ′, which is constructed by affine
transformations from a fixed operator on the reference element. We now take ϕ equal to

ϕ =
{

Le([uh × n]e)ψe on K ∪K ′,
0 elsewhere,

where ψe denotes the bubble function on e, equal to the product of the d barycentric coordinates associated
with the vertices of e. There also standard arguments (see [29], Sect. 1.2) yield

‖ [uh × n]e ‖L2(e)d ≤ c (‖ω − ωh‖
L2(K∪K′)

d(d−1)
2

+ h
− 1

2
e ‖u− uh‖H(div,K∪K′). (5.20)

3) Finally, in dimension d = 3, taking ϕ equal to gradµ in the second line of (5.1) for any function µ of H1
0 (ΩF )

leads to the equation ∫

ΩF

(ω − ωh) · gradµ dx =
1
2

∑

K∈T F
h

∑

e∈EK

∫

e

[ωh · n]e µ dτ.

There also and with the same notation as previously, taking

µ =
{

Le([ωh · n]e)ψe on K ∪K ′,
0 elsewhere,
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gives the estimate
‖ [ωh · n]e ‖L2(e) ≤ c h

− 1
2

e ‖ω − ωh‖
L2(K∪K′)

d(d−1)
2

. (5.21)

The desired estimate follows from (5.19), (5.20) and (5.21).
Estimates (5.8), (5.14), (5.16) and (5.17) are not fully optimal. Indeed, the global error

‖ω − ωh‖H̃( curl,K) + ‖u− uh‖H(div,K) + ‖p− ph‖L2(K),

is up to the terms involving the data bounded by a constant independent of h times the Hilbertian sum of the
indicators 


∑

K∈Th

η2
K +

∑

K∈T F
h

λF
K (ηF

K)2





1
2

,

where λF
h is equal to 1 either in dimension d = 2 or when ΩF is convex in dimension d = 3. However this last

quantity is only bounded by the error times a constant behaving like (minK∈Th
hK)−1. Nevertheless,

1) the lack of optimality when the λF
K are equal to 1 only concerns the error on the pressure (when this

error is zero, the estimates are optimal);
2) exactly the same lack of optimality has been observed in ([8], Sect. 4), in the simpler case of uncoupled

Darcy equations discretized by the Raviart–Thomas element.

6. Some numerical experiments

The numerical tests have been performed with the code freefem++, see [20], in the two-dimensional case.
We work with a different boundary condition on ∂Ω, namely a given pressure, and, in order to do that, we
introduce the modified space

Dh(Ω) =
{
vh ∈ H(div,Ω); ∀K ∈ Th, vh |K ∈ PK

}
,

which contains Dh(Ω) but where the nullity of normal traces on ∂Ω is no longer enforced. For some parameter ε,
we solve the modified problem (with µ = ν = 1 for simplicity)

Find (ωh,uh, ph) in Ch(ΩF ) × Dh(Ω) × Mh(Ω) such that

∀ϕh ∈ Ch(ΩF ), −ε
∫

ΩF

ωh · ϕh dx+
∫

ΩF

ωh · ϕh dx−
∫

ΩF

uh · curlϕh dx = 0,

∀vh ∈ Dh(Ω), ε

∫

Ω

uh(x) · vh(x) dx+
∫

ΩP

uh · vh dx+
∫

ΩF

curlωh · vh dx+ b(vh, ph)

=
∫

∂Ω

(x+ y)(vhx nx + vhy ny) dτ,

∀qh ∈ Mh(Ω), −ε
∫

Ω

ph(x)qh(x) dx+ b(uh, qh) = 0, (6.1)

where vhx and vhy, respectively nx and ny, stand for the components of vh, respectively of n. Indeed, in
comparison with problem (4.3), some regularization terms have been added because the linear system is solved
by a Gauss block-factorization method and the blocks (one block per mesh node) are not invertible otherwise.
We have checked that there is no dependency of the solution upon ε, which is fixed here equal to 10−10.

Validation tests

To validate the numerics we present three tests, according as if ΩF is empty, is the whole domain Ω or is a
non empty part of Ω. In all of them, Ω is a rectangle, we take µ = ν = 1 for simplicity and we work with a
uniform mesh.
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Figure 2. The pressure in Case 1.

Figure 3. The velocity, vorticity and pressure in Case 2.

Case 1. Darcy equations everywhere (ΩF = ∅, ΩP = Ω).
The analytical solution is given by

u(x, y) = (1, 1), p(x, y) = −x− y.

In Figure 2, the iso-level curves of the Darcy (hydrostatic) pressure are presented. So the analytical pressure is
well recaptured (the velocity is not drawn since it coincides with the constant analytical velocity everywhere).

Case 2. Stokes equations everywhere (ΩF = Ω, ΩP = ∅).
The analytical solution is given by

ω(x, y) = y − x, u(x, y) =
(
−1

2
y2,−1

2
x2

)
, p(x, y) = −x− y.

Figure 3 presents, from left to right and from top to bottom, the horizontal velocity, the vertical velocity, the
vorticity, the pressure. There also, the analytical solution is recaptured correctly.
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Figure 4. The velocity, vorticity, pressure and others in Case 3.

Case 3. Coupling Darcy and Stokes equations.
Here, ΩF is the interior of an ellipse. In Figure 4, are presented, from left to right and from top to bottom,

the horizontal velocity, the vertical velocity, the vorticity and the pressure. The last two plots show, on the left,
the continuity of u · n (extended in the whole domain) and, on the right, the streamlines of the flow.

We observe that we recover the analytical solution for the first two cases. We see also in Figure 4 that the
tangential component of the velocity and the normal component of the vorticity are indeed discontinuous.

Mesh adaptation

We still consider Case 3 and perform mesh adaptivity relying on the error indicators defined in (5.4) and (5.5).
The adaptivity strategy is the same as described in ([17], Sect. 20.9), for instance, and relies on the generation
of new, adapted, meshes proposed in ([16], Chap. 21). Figure 5 presents, from left to right and from top to
bottom, the adapted mesh, the horizontal velocity, the vertical velocity, the vorticity, the pressure and the
streamlines of the flow.

Seepage

To illustrate seeping fluids, we consider a cavity problem with a porous bottom layer: the domain Ω is still
a rectangle, the domain ΩP is a quadrilateral on the bottom of the rectangle. The viscosity ν is still equal
to 1 and we consider two cases, one with porosity coefficient µ−1 equal to 100 in Figure 6 and another one
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Figure 5. The adapted mesh and others in Case 3.

with µ−1 equal to 0.01 in Figure 7. In these figures are presented, from left to right and from top to bottom,
the horizontal velocity, the vertical velocity, the vorticity, the pressure and the streamlines of the flow.

Appendix

Let Hh(ΩF ) be the space of functions in L2(ΩF ) such that their restriction to each K in T F
h belongs P1(K).

It can be noted that the traces of such functions do not belong to H
1
2 (Γ) but only to H

1
2−ε(Γ) for all positive ε.

The aim of this appendix is to prove the following estimate: for all ε, 0 < ε < 1
2 , there exists a constant α(ε)

such that

∀µh ∈ H̃h(ΩF ),
∫

Γ

vh · nµh dτ ≤ α(ε) (hΓ
min)−

1
2−ε ‖vh‖L2(ΩP )d‖µh‖H1

h(ΩF ), (A.1)

where ‖ · ‖H1
h(ΩF ) denotes the H1(ΩF ) broken norm associated with the mesh T F

h .
Let EΓ

h denote the set of edges (d = 2) or faces (d = 3) of T F
h that are contained in Γ. For each e in EΓ

h , we
denote by KF

e , respectively KP
e , the element of T F

h , respectively of Th \ T F
h , that contains e. We have

∫

Γ

vh · nµh dτ =
∑

e∈EΓ
h

∫

e

vh · nµh dτ ,
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Figure 6. A seeping fluid (porosity 100).

whence
∫

Γ

vh · nµh dτ ≤
( ∑

e∈EΓ
h

‖vh · n‖2

Hε− 1
2 (e)

) 1
2
( ∑

e∈EΓ
h

‖µh‖2

H
1
2−ε(e)

) 1
2

. (A.2)

We now bound each of the two terms in the right-hand side.
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Figure 7. A seeping fluid (porosity 0.01).

Lemma A.1. For all ε, 0 < ε < 1
2 , there exists a constant α1(ε) such that, for all e in EΓ

h ,

‖vh · n‖
Hε− 1

2 (e)
≤ α1(ε)h−ε

e ‖vh‖L2(KP
e )d . (A.3)
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Proof. We have

‖vh · n‖
Hε− 1

2 (e)
= sup

ϕ∈H
1
2−ε(e)

∫
e vh · nϕdτ
‖ϕ‖

H
1
2 −ε(e)

· (A.4)

Let ϕ be any function in H
1
2−ε(e). We use an affine transformation F−1 that maps K onto the reference

triangle K̂ and we denote by ê the image of e by this transformation. Then with obvious notation and by
setting ŵh = B−1T

‖B−1‖ v̂h, where B−1T stands for the transposed matrix of B−1 = DF−1, we obtain

∫

e

vh · nϕdτ ≤ c hd−1
e

∫

ê

ŵh · n̂ ϕ̂dτ̂ .

The mapping: ϕ �→ ϕ, where ϕ denotes the extension by zero of ϕ to ∂K̂, is continuous from H
1
2−ε(ê)

into H
1
2−ε(∂K̂) with norm c(ε), and, by the trace theorem, the lifting operator: ϕ �→ ϕ∗ is continuous

from H
1
2−ε(∂K̂) into H1−ε(K̂) and its norm c′ is bounded independently of ε. So, by using the

Bramble–Hilbert inequality, we have

|ϕ̂∗|H1−ε(K̂) ≤ C(ε) |ϕ̂|
H

1
2 −ε(ê)

. (A.5)

On the other hand, we note that, since vh is divergence-free, ŵh also is in the reference coordinates. This yields
∫

ê

ŵh · n̂ ϕ̂dτ̂ =
∫

∂K̂

ŵh · n̂ ϕ̂dτ̂ =
∫

K̂

ŵh · grad ϕ̂
∗
dx̂,

whence, by using the equivalence of norms on finite-dimensional spaces,
∫

ê

ŵh · n̂ ϕ̂dτ̂ ≤ ‖ŵh‖L2(K̂)d |ϕ̂
∗|H1−ε(K̂). (A.6)

Using (A.5) and going back to KP
e , we have

∫

e

vh · nϕdτ ≤ C′(ε) hd−1
e h

− d
2

KP
e
‖vh‖L2(K)d h

1
2−ε− d−1

2
e ‖ϕ‖

H
1
2 −ε(e)

.

Thus the desired result follows from (A.4).

In order to bound the second term in (A.2), we first observe that, on each e in EΓ
h ,

‖µh‖
H

1
2−ε(e)

≤ ‖µh‖
H

1
2 (e)

. (A.7)

So the desired bound follows from the next lemma.

Lemma A.2. There exists a constant α2 such that, for all e in EΓ
h and all µh in Hh(ΩF ),

‖µh‖
H

1
2 (e)

≤ α2 h
− 1

2
e ‖µh‖H1(KF

e ). (A.8)

Proof. Here we use the intrinsic form of the norm of H
1
2 (e), so that, for any constant µe,

‖µh‖
H

1
2 (e)

=
(
‖µh‖2

L2(e) + |µh − µe|2
H

1
2 (e)

) 1
2

.
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By using the mapping that sends the reference element K̂ onto KF
e and denoting by ê the edge or face of K̂

associated with e by this mapping, we have with standard notation

‖µh‖
H

1
2 (e)

≤ c

(
hd−1

e ‖µ̂h‖2
L2(ê) + hd−2

e |µ̂h − µe|2
H

1
2 (ê)

) 1
2

.

Using the trace theorem and the Bramble–Hilbert inequality yields

‖µh‖
H

1
2 (e)

≤ c
(
hd−1

e ‖µ̂h‖2
H1(K̂)

+ hd−2
e |µ̂h|2H1(K̂)

) 1
2
.

Then going back to KF
e gives the desired estimate.

Due to the definition of hΓ
min, estimate (A.1) is a direct consequence of Lemmas A.1 and A.2, together

with (A.2) and (A.7).

Remark A.3. The dependency of α(ε) with respect to ε is only linked to the norm of the extension by zero
from H

1
2−ε(ê) into H

1
2−ε(∂K̂) and it is checked in ([7], Rem. 2.10), that this constant is smaller than c ε−1. So

taking ε equal to | log hΓ
min|−1 leads to the improved estimate, for a constant α∗,

∀µh ∈ Hh(ΩF ),
∫

Γ

vh · nµh dτ ≤ α∗ (hΓ
min)−

1
2 | loghΓ

min| ‖vh‖L2(ΩP )d‖µh‖H1
h(ΩF ). (A.9)
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Institut Aérotechnique, Conservatoire National des Arts et Métiers, France (2002) (submitted).



COUPLING DARCY AND STOKES EQUATIONS FOR POROUS MEDIA WITH CRACKS 35

[16] P.J. Frey and P.-L. George, Maillages, applications aux éléments finis. Hermès, Paris (1999).
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[27] S. Salmon, Développement numérique de la formulation tourbillon–vitesse–pression pour le problème de Stokes. Thesis, Uni-
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