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A POSTERIORI ERROR CONTROL FOR THE ALLEN–CAHN PROBLEM:
CIRCUMVENTING GRONWALL’S INEQUALITY
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Abstract. Phase-field models, the simplest of which is Allen–Cahn’s problem, are characterized by a
small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation
techniques, which rely on a posteriori error control. However, their error analysis usually deals with
the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential
dependence on ε−2. Using an energy argument combined with a topological continuation argument
and a spectral estimate, we establish an a posteriori error control result with only a low order polynomial
dependence in ε−1. Our result is applicable to any conforming discretization technique that allows for
a posteriori residual estimation. Residual estimators for an adaptive finite element scheme are derived
to illustrate the theory.
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1. Introduction

Phase-field models, the simplest of which is Allen-Cahn’s problem, describe the evolution of a diffuse phase
boundary, concentrated in a small region of size ε. They naturally call for adaptive mesh discretization tech-
niques, which rely on error control based on a posteriori estimators. However, if Gronwall’s lemma is used
extensively, as is usually done in numerical analysis, the non-monotone nonlinearity used to model phase sepa-
ration leads to error estimates that grow exponentially as ε becomes small. The following paradox arises: the
thinnest the interface region, the worst are the error estimators justifying the use of mesh adaptation!

The problem of the dependence on ε is already fully present in the Allen–Cahn equation [1]:

ε
∂u

∂t
− ε4u +

1
ε
(u3 − u) = 0.

In this paper, we derive new improved a posteriori error estimates for the Allen–Cahn equation, in which the
dependence on ε−1 is no longer exponential, only polynomial. The main ingredient is the use of a spectral
estimate established by de Mottoni and Schatzman [7] and Chen [4]. Our work was inspired by recent results
of Caginalp and Chen [3] and Feng and Prohl [9]. Our result is presented in terms of error control to a
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given tolerance, and is directly applicable to any mesh adaptation strategy that is formulated in terms of
error tolerance. For a posteriori error analysis, we work in the continuous setting, which has two distinctive
advantages. On the one hand, it allows us to present the main argument in a clear analytical way, isolating
the crucial step of the proof, which is based on a topological continuation argument. On the other hand, as we
present it, this procedure could actually be extended to any conforming approximation method, in a transparent
way clearly separated from the method-dependent a posteriori control of the residual.

This paper is organized as follows. In Section 2, we define the functional setting and main lemmas for
the Allen-Cahn problem. We also introduce a finite element discretization, and give a general definition of
the residual, applicable to any conforming method. In Section 3, we will assume that there is an a posteriori
estimation of the residual, and obtain error control criteria under this assumption. The results of Section 3 are
therefore applicable to any conforming method which permits the derivation of a posteriori residual estimators.
In Section 4, residual estimators will be derived for the finite element discretization introduced in Section 2.
Together with the results from Section 3, we will then have a complete a posteriori error control criterion for
a finite element method, which can be directly used for implementing adaptive mesh computations. Some
illustrative simulations are finally presented in Section 5.

2. Setting: Continuous and discrete problems

2.1. Continuous problem

Let Ω ⊂ R
d, d ∈ {1, 2, 3}, be a convex domain and let T be a positive constant. We introduce the short

notation Qt for space-time domains Ω × (0, t), for times t ∈ [0, T ]. Let V be the Sobolev space H1(Ω), and V
′

its dual. We will denote by 〈 .|. 〉 the duality pairing between V
′ and V, by (., .) the L2(Ω) scalar product, and

by ‖.‖ the L2(Ω) norm.
Let us recall an important embedding result from Dautrey and Lions [6] that will be useful later:

Lemma 2.1 (Dautrey-Lions). The following properties are valid.
(1) L2(0, T ; V) ∩H1(0, T ; V′) ⊂ C0(0, T ; L2(Ω));
(2) If v ∈ L2(0, T ; V) ∩H1(0, t; V′), then 〈vt|v 〉 = 1

2
d
dt ‖v‖

2.

Let ε > 0 be a given parameter, which can be thought of as the characteristic width of the transition layer whose
evolution is described by the Allen–Cahn problem. Let u0 ∈ L2(Ω) be given initial data such that u0 ∈ [−1, +1]
a.e. in Ω. Let f : R −→ R be given by s 7→ f(s) = s3 − s. This is the nonlinearity defining the Allen-Cahn
problem:

Problem 2.2 (Allen–Cahn problem). Find u ∈ L2(0, T ; V)∩H1(0, t; V′) such that u|t=0 = u0 and that a.e. in
(0, T ),

ε 〈ut|v 〉 +ε (∇u,∇v) +
1
ε

(f(u), v) = 0, ∀v ∈ V. (1)

It is known that this problem is well posed and admits a unique solution. Furthermore, this solution satisfies a
maximum principle, which is also valid for more complex phase-field models [11].

Lemma 2.3 (Maximum principle). If u0 ∈ [−1, +1] a.e. in Ω, then u ∈ [−1, +1] a.e. in QT .

Hence, for adequate initial data, Problem 2.2 is strictly equivalent to an analogous problem in which f is
replaced by

f̃(s) =




2s + 2, s < −1,
f(s) s ∈ [−1, +1],
2s− 2, s > +1.

(2)

This function f̃ is Lipschitz continuous, with Lipschitz constant Lf = 2. Its first derivative is Lipschitz continu-
ous as well, with Lipschitz constant Lf ′ = 6. For practical purposes, we will always be considering the problem
formulated with this substitute function f̃ , but omit the tilde in the notation.
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To obtain a finer estimate on the error, we will need to use a spectral estimate established by de Mottoni
and Schatzman [7] and Chen [4]:

Lemma 2.4 (Spectral estimate). Let the initial condition u0 have a “compatible profile” with the Allen–Cahn
equation, i.e. already describe bulk phase regions separated by transition zones of width O(ε). Then there exists
a constant λ0 independent of ε such that for all ε > 0, the solution u of Problem 2.2 satisfies

ε ‖∇v‖2
L2(Ω) +

1
ε

(f ′(u)v, v) ≥ −λ0ε ‖v‖2
L2(Ω) . (3)

2.2. Discrete problem

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ] and τn = tn− tn−1 be the time steps, for n = 0, . . . , N .
Let Tn, 0 = 1, . . . , N , be conforming shape-regular meshes on Ω, and let Vn ∈ V be piecewise polynomial (of

at least degree one) finite element spaces on these meshes. We denote by In : V ∩ C0(Ω̄) −→ Vn the Lagrange
interpolation operators into these spaces.

We can define an approximation of the Allen–Cahn problem by the following semi-implicit finite difference
in time, finite element in space numerical scheme:

Problem 2.5 (Discrete problem). Given U0 ∈ V0, find Un ∈ Vn, n = 1, . . . , N , s.t. for n = 1, . . . , N we have

ε

(
Un − InUn−1

τn
, V

)
+ ε (∇Un,∇V ) +

1
ε

(f(InUn−1), V ) +
1
ε

(f ′(InUn−1)(Un − InUn−1), V ) = 0, (4)

for all V in Vn. The last two terms are the linearization of an implicit discretization of f(u); the reason for this
choice is given in Section 5.

Out of the sequence of functions Un defined pointwise in time, we build a function continuous in time by
piecewise P1 interpolation as follows:

U(t) =
t− tn−1

τn
Un +

tn − t

τn
Un−1, t ∈ [tn−1, tn], n = 1, . . . , N. (5)

With this definition, the time derivative of U is a function defined for a.e. t ∈ (0, T ) as

Ut =
Un − Un−1

τn
, t ∈ (tn−1, tn), n = 1, . . . , N. (6)

Notice that U ∈ H1(QT ) ⊂ L2(0, T ; V)∩H1(0, t; V′), so this interpretation of the discrete solution is conforming
with the continuous problem.

2.3. Residual

We define the discrete equation residual r ∈ L2(0, T ; V′) by requiring that for almost every t in (0, T ),

〈r|v 〉 = ε (Ut, v) + ε (∇U,∇v) +
1
ε

(f(U), v) , ∀v ∈ V. (7)

Such a residual can be defined for the solution of the discrete Problem 2.5, or for the solution of any other
conforming approximation of the Continuous problem 2.2. Therefore, the concept of residual r is method
independent.

Throughout Section 3, we will assume that a posteriori residual estimators η0 and η1 can be built, such that∫ T

0

〈r|v 〉 ≤ η0 ‖v‖L2(QT ) + η1 ‖∇v‖L2(QT ) , ∀v ∈ V. (8)

In Section 4, residual estimators will eventually be derived for Discrete problem 2.5.
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3. Error: Coarse and fine estimates

Let e = U − u be the error at a generic time t ∈ (0, T ) and e0 = U0 − u0 be the initial error, where u is the
solution of continuous problem 2.2 satisfying (1) with initial condition u0 ∈ L2(Ω), and U is the solution of a
conforming approximate problem. We assume that the residual of U defined by (7) can be estimated by (8).
By the definition of u, and the assumption that U comes from a conforming discretization, we know that

e ∈ L2(0, T ; V) ∩H1(0, t; V′). (9)

We want to estimate the error ‖e‖L∞(0,T ;L2(Ω)), which makes sense thanks to Lemma 2.1. To this end, we resort
to an energy argument combined with a topological argument, as explained below.

3.1. Error equation

Subtracting equation (1) from equation (7), we get a.e. in (0, T )

ε (et, v) + ε (∇e,∇v) +
1
ε

(f(U)− f(u), v) = 〈r|v 〉 , ∀v ∈ V. (10)

Thanks to (9), this is true in particular for v = e. Therefore, using also Lemma 2.1, we get the error equation

ε

2
d
dt

‖e‖2 + ε ‖∇e‖2 +
1
ε

(f(U)− f(u), e) = 〈r|e 〉 , a.e. t ∈ (0, T ). (11)

3.2. Coarse estimate

Integrating (11) in time and using the Lipschitz continuity of f , we obtain for all t ∈ [0, T ]

ε

2
‖e(t)‖2

L2(Ω) + ε ‖∇e‖2
L2(Qt)

≤ ε

2
‖e0‖2L2(Ω) +

Lf

ε
‖e‖2L2(Qt)

+ η0 ‖e‖L2(Qt)
+ η1 ‖∇e‖L2(Qt)

, (12)

where η0 and η1 are residual estimators satisfying (8).
Using Young’s inequality, we can then establish that

‖e(t)‖2
L2(Ω) + ‖∇e‖2L2(Qt)

≤ ‖e0‖2L2(Ω) +
4Lf

ε2
‖e‖2

L2(Qt)
+

η2
0

2Lf
+

η2
1

ε2
, ∀t ∈ [0, T ]. (13)

In particular, one may immediately conclude by Gronwall’s lemma that

‖e‖2
L∞(0,T ;L2(Ω)) ≤

(
‖e0‖2L2(Ω) +

η2
0

2Lf
+

η2
1

ε2

)
exp

(
4Lf

ε2
T

)
. (14)

This is a coarse a posteriori estimate of the error, which is not satisfactory because of the exponential dependence
in ε. However, this estimate is sharp without further assumptions on u, because the Allen–Cahn equation
typically exhibits an exponentially fast initial transient regime for times of order O(ε), until interfaces develop [7].

3.3. Thought experiment

Let’s imagine for a moment that inequality (13) could somehow be replaced by the following inequality:

‖e(t)‖2L2(Ω) ≤ ‖e0‖2
L2(Ω) + η2 +

C

ε2
‖e‖3L2(Qt)

, (15)

where η is some residual estimator, and C a constant independent of ε. The main difference with (13) is the
cubic power in the last term. We will show that this apparently minor difference is in fact really significant.
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Let us now define the time interval

Iθ =
{

t ∈ [0, T ]
∣∣∣ ‖e‖L∞(0,t;L2(Ω)) ≤ θ

}
· (16)

Notice that if a subinterval of [0, T ] is open, closed and non-empty, then it is the full interval [0, T ]. Since by
Lemma 2.1 e ∈ C0(0, T ; L2(Ω)), then the interval Iθ is closed. Furthermore, if we make sure that ‖e0‖L2(Ω) ≤ θ,
then Iθ is non-empty. To conclude that Iθ = [0, T ], it is therefore sufficient to have conditions ensuring that if
t ∈ Iθ then ‖e‖L∞(0,t;L2(Ω)) < θ (for t < T ). Again, this relies on the knowledge that ‖e‖L2(Ω) ∈ C0[0, T ]. Notice
for instance that for t in Iθ,

C

ε2
‖e‖3L2(Qt)

≤ C

ε2
Tθ3.

We want this quantity, as well as the other right-hand terms of (15), to be smaller than a fraction of θ2.
Using (15), we can therefore conclude that the following conditions are sufficient to ensure that the L2(Ω)

norm of the error remains below a tolerance θ up to time T :

θ ≤ ε2

4CT
, (17)

‖e0‖L2(Ω) ≤
θ

2
, (18)

η ≤ θ

2
· (19)

What this tells us is that under a tight restriction on the permitted choice of the tolerance θ (it must be small
enough relative to ε), if both the initial error and the residual estimator are below a fraction of the tolerance,
then the error will be below the tolerance. More precisely, conditions (17)–(19) together with (15) ensure that
if t ∈ Iθ , then ‖e‖2L∞(0,t;L2(Ω)) ≤ 3

4θ2 < θ2, so the interval Iθ is open, closed and non-empty as desired.
Such a result is directly applicable to a mesh adaptation algorithm, where the user wants to set a tolerance for

the error, and guarantee this tolerance by adapting the initial mesh to sufficiently resolve the initial condition,
and the next meshes to sufficiently reduce the computed residual estimators.

Next we will show how the spectral estimate of Lemma 2.4 allows us to infer an inequality somewhat similar
to (15). The real problem is not as nice as a thought experiment, though, and we will loose a couple of orders
in ε in the process.

3.4. Fine estimate

To obtain a finer estimate on the error, we will need to use Lemma 2.4. Notice that f(U) − f(u) =∫ e

0

f ′(u + ξ) dξ. Thus, (11) with (3) applied to v = e result in

ε

2
d
dt

‖e‖2L2(Ω) ≤ λ0ε ‖e‖2L2(Ω) +
1
ε

(∫ e

0

(f ′(u)− f ′(u + ξ)) dξ, e

)
+ 〈r|e 〉 , a.e. in (0, T ). (20)

However, ∣∣∣∣
∫ e

0

(f ′(u)− f ′(u + ξ)) dξ

∣∣∣∣ ≤ Lf ′

∫ e

0

ξ dξ =
Lf ′

2
e2, (21)

whence we get
ε

2
d
dt

‖e‖2L2(Ω) ≤ λ0ε ‖e‖2
L2(Ω) +

Lf ′

2ε
‖e‖3L3(Ω) + 〈r|e 〉 , a.e. in (0, T ). (22)

We are close to the assumptions of Section 3.3, but the norm that appears cubed is the L3(Ω) norm, instead of
the L2(Ω) norm. Since the only norm stronger than L2(Ω) at our disposal is the H1(Ω) norm, which is not under
control after using the spectral theorem, we will need to go back to a coarser version of the error inequality to
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gain complete control of the L3(Ω) norm and finally be able to perform an argument similar to the one outlined
in the Section 3.3. The idea is to use interpolation between L2(Ω) and H1(Ω).

By Cauchy–Schwarz inequality, we know that

‖e‖3L3(Ω) ≤ ‖e‖2L4(Ω) ‖e‖L2(Ω) . (23)

For space dimensions d ≤ 4, H1(Ω) is continuously embedded into L4(Ω) (see [2]). Hence, denoting by CS the
Sobolev embedding constant, we deduce

‖e‖3L3(Ω) ≤ CS ‖e‖2H1(Ω) ‖e‖L2(Ω) . (24)

Therefore, integrating (22) in time and using (8), we infer that for all t in [0, T ],

sup
s∈(0,t)

‖e(s)‖2
L2(Ω) ≤ ‖e0‖2

L2(Ω) + 2λ0 ‖e‖2
L2(Qt)

+
Lf ′CS

ε2
‖e‖2L2(0,t;H1(Ω)) ‖e‖L∞(0,t;L2(Ω))

+
2
ε
η0 ‖e‖L2(Qt)

+
2
ε
η1 ‖∇e‖L2(Qt)

.

(25)

Using Young’s inequality twice, with some arbitrary positive number δ,

‖e‖2L∞(0,t;L2(Ω)) ≤ ‖e0‖2
L2(Ω) + 4λ0 ‖e‖2L2(Qt)

+
1

2λ0

(η0

ε

)2

+
Lf ′CST

ε2
‖e‖3L∞(0,t;L2(Ω))

+
(

Lf ′CS

ε2
‖e‖L∞(0,t;L2(Ω)) + δ

)
‖∇e‖2L2(Qt)

+
1
δ

(η1

ε

)2

·
(26)

This last inequality, combined with (13) for the evaluation of ‖∇e‖2L2(Qt)
, gives a finer error estimate than the

evaluation of sups∈(0,t) ‖e(s)‖
2
L2(Ω) from (13). It is finer in the sense that ε−2 ‖e‖2L∞(0,t;L2(Ω)) never appears

by itself, but always multiplied by some other quantity susceptible of being controlled. There is thus hope of
doing better than Gronwall’s inequality, namely using a continuation argument similar to the one presented in
Section 3.3.

3.5. Continuation argument

As in Section 3.3, let
Iθ =

{
t ∈ [0, T ]

∣∣∣ ‖e‖L∞(0,t;L2(Ω)) ≤ θ
}
· (27)

We are again looking for conditions ensuring that if t ∈ Iθ, then ‖e‖L∞(0,t;L2(Ω)) < θ (for t ≤ T ). Then if also
‖e0‖L2(Ω) ≤ θ, the interval Iθ is open, closed and non-empty and therefore equal to the full interval [0, T ]. In
other words, ‖e‖L∞(0,T ;L2(Ω)) ≤ θ, and we thus control the L2 error throughout the time interval [0, T ]. The
main difference with Section 3.3 lies in the sufficient conditions for Iθ to be an open interval.

By definition of Iθ, ‖e‖L∞(0,t;L2(Ω)) ≤ θ and therefore ‖e‖2L2(Qt)
≤ Tθ2 when t ∈ Iθ. Hence, we infer from

inequalities (13) and (26) that for all t in Iθ,

‖∇e‖2
L2(Qt)

≤ ‖e0‖2L2(Ω) + 4TLf
θ2

ε2
+

η2
0

2Lf
+

η2
1

ε2
(28)

and

‖e‖2
L∞(0,t;L2(Ω)) ≤ ‖e0‖2L2(Ω) +4λ0 ‖e‖L2(Qt)

+
1

2λ0

(η0

ε

)2

+Lf ′CST
θ3

ε2
+
(

Lf ′CS
θ

ε2
+ δ

)
‖∇e‖2L2(Qt)

+
1
δ

(η1

ε

)2

·

(29)
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However, we still need to use Gronwall’s lemma on (29) to handle the second term of its right-hand side, which
we would not be able to control otherwise; this results in the following inequality:

‖e‖2L∞(0,t;L2(Ω)) ≤
(
‖e0‖2L2(Ω) +

1
2λ0

(η0

ε

)2

+ Lf ′CST
θ3

ε2
+
(

Lf ′CS
θ

ε2
+ δ

)
‖∇e‖2L2(Qt)

+
1
δ

(η1

ε

)2
)

e4λ0T .

(30)
Notice that now Gronwall’s lemma did not introduce an exponential dependence on ε, since the spectral
Lemma 2.4 precisely ensures that λ0 is independent of ε.

Following the same line of proof as in Section 3.3, we want to find sufficient conditions on ‖e0‖L2(Ω), η0, η1

and θ such that inequalities (30) and (28) enforce that ‖e‖L∞(0,t;L2(Ω)) ≤ Cθ for some C lower than 1. In the
thought experiment in Section 3.3, θ had to be controlled by ε2, as in condition (17). Now in the real problem,
however, by careful observation of the fourth term of the right-hand side of (30) combined with the second term
of the right-hand side of (28), one should be persuaded that θ must now be controlled by ε4 for the product to
be of order θ2ε0. We therefore impose the condition

θ ≤ Λ0ε
4, (31)

and define

Λ0 =
e−4λ0T

8LfLf ′CSαT
, (32)

where α remains to be chosen later. We also choose

δ =
e−4λ0T

8LfαT
ε2. (33)

This choice of δ, combined with (31), simplifies inequality (30) while keeping δ independent of θ. In fact we
now have

Lf ′CS
θ

ε2
+ δ ≤ e−4λ0T

4LfαT
ε2. (34)

Combining the latter with (30) and (28), we infer that for all t in Iθ,

‖e‖2
L∞(0,t;L2(Ω)) ≤ ‖e0‖2

L2(Ω) e4λ0T

+
e4λ0T

2λ0

(η0

ε

)2

+
1

8Lfα
ε2θ2

+
1

4LfαT
ε2 ‖e0‖2

L2(Ω)

+
θ2

α

+
1

8L2
f αT

ε2η2
0

+
1

4LfαT
η2
1

+ 8LfαT e8λ0T η2
1

ε4
·

(35)

To have a sufficient condition to conclude the argument, we want the first, second, fifth and last terms of the
the right-hand side of the above inequality to be lower than θ2/8, and the remaining terms to be lower than
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θ2/16. This can be achieved by setting α = 8 and then fulfilling the following seven conditions:

‖e0‖L2(Ω) ≤
e−2λ0T

2
√

2
θ ≡ Λ1θ, (36)

η0

ε
≤
√

λ0e−2λ0T

2
θ ≡ Λ2θ, (37)

ε ≤ 2
√

Lf , (38)

ε ‖e0‖L2(Ω) ≤
√

2LfTθ, (39)

εη0 ≤ 2Lf

√
Tθ, (40)

η1 ≤
√

2LfTθ, (41)

η1

ε2
≤ e−4λ0T

16
√

2LfT
θ ≡ Λ3θ. (42)

Notice that for sufficiently small ε, condition (38) is trivial and conditions (39)–(41) are consequences of the
remaining conditions. Therefore, if inequalities (31, 36, 37) and (42) are satisfied, then ‖e(t)‖L2(Ω) ≤ 3θ/4 for
all t in Iθ, and the interval Iθ is open. We can then close the continuation argument and conclude that under
these conditions, Iθ = [0, T ]. This is summarized in the following Theorem.

Theorem 3.1 (Error control). Let u be a solution of the Allen–Cahn problem with interface width ε, with an
initial condition u0 that corresponds to developed interfaces, in the sense that the spectral estimate (3) is valid.
Let U be a conforming approximation of u, whose residual can be controlled by a posteriori estimators η0 and
η1 according to (8). Let the ε-independent constants Λ0, . . . ,Λ3 be defined as follows:

Λ0 =
e−4λ0T

8LfLf ′CSαT
, (43)

Λ1 =
e−2λ0T

2
√

2
, (44)

Λ2 =
√

λ0e−2λ0T

2
, (45)

Λ3 =
e−4λ0T

16
√

2LfT
. (46)

For ε sufficiently small, if a tolerance θ is given subject to the constraint

θ ≤ Λ0ε
4, (47)

and the initial error e0 and residual estimators η0 and η1 satisfy the conditions

‖e0‖L2(Ω) ≤ Λ1θ, (48)

η0 ≤ Λ2εθ, (49)

η1 ≤ Λ3ε
2θ, (50)

then

‖e‖L∞(0,T ;L2(Ω)) ≤ θ. (51)
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Remark 3.2 (Comparison between coarse and fine estimates). A consequence of Theorem 3.1 is that if a
tolerance θ is given under constraint (47), then

Λ−1
1 ‖e0‖L2(Ω) + Λ−1

2

η0

ε
+ Λ−1

3

η1

ε2
≤ θ =⇒ ‖e‖L∞(0,T ;L2(Ω)) ≤ θ. (52)

Correspondingly, a consequence of the coarse estimate (14) was that for any given tolerance θ,

(
‖e0‖L2(Ω) + (2Lf)−1/2η0 +

η1

ε

)
exp

(
2Lf

ε2
T

)
≤ θ =⇒ ‖e‖L∞(0,T ;L2(Ω)) ≤ θ. (53)

Therefore we can see that, subject to constraint (47), we have been able to remove an exponential dependence
on ε−2, and replace it by low degree polynomial dependence on ε−1.

3.6. Conclusion

Given a tolerance θ, we can guarantee that the error of a solution of the Numerical Scheme 2.5 with re-
spect to the solution of the Allen–Cahn Problem 2.2 is below this tolerance in the ‖.‖L∞(0,t;L2(Ω)) norm if
conditions (47–50) are fulfilled. These conditions rely only on a posteriori quantities. There is no exponential
dependence on ε. In this section, we assumed that a posteriori residual estimators η0 and η1 could be computed
for a conforming discretization of (1). In the next section, we actually show a way to do this in the case of the
adaptive finite element method (4).

4. Residual estimators

In this section we want to derive an a posteriori estimation of the residual r defined in equation (7), when
the discrete problem is defined by (4) and (5). If t ∈ (tn−1, tn), then for all v ∈ V,

〈r|v 〉 = ε

((
1
τn

+
f ′(InUn−1)

ε2

)
(Un − InUn−1), v

)
+ ε (∇Un,∇v) +

1
ε

(f(InUn−1), v) (54)

+ε (∇(U − Un),∇v) +
1
ε

(f(U)− f(Un), v) (55)

+
ε

τn
(InUn−1 − Un−1, v) (56)

+
1
ε

(f(Un)− f(InUn−1)− f ′(InUn−1) (Un − InUn−1), v) . (57)

In this way we have clearly split the residual in three distinct contributions: a space discretization residual rh

in (54), a time discretization residual rt in (55), and a coarsening residual rc in (56). The linearization residual
rl in (57) is a higher order term that will eventually be neglected. We will now proceed to estimate each of
them separately.

4.1. Space discretization residual

This contribution to the residual is actually described by the operator of the discrete problem extended to
apply to the whole space V. So in particular, in view of (4), it is clear that for t ∈ (tn−1, tn),

〈rh|V 〉 = 0, ∀V ∈ Vn. (58)
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This so-called Galerkin orthogonality is true in particular for V = πnv, the Clément interpolant of an arbitrary
element v of V. Therefore, from the definition of rh and (58), it follows that in t ∈ (tn−1, tn), for all v in V,

〈rh|v 〉 = ε

((
1
τn

+
f ′(InUn−1)

ε2

)
(Un − InUn−1), v − πnv

)

+ ε (∇Un,∇(v − πnv)) +
1
ε

(f(InUn−1), v − πnv) . (59)

To estimate this contribution to the residual, we proceed as for a standard elliptic residual: we split the integrals
in (59) over the elements of the triangulation, and integrate by part on each element, where the finite element
functions are polynomials and therefore infinitely differentiable. Thus, for t ∈ (tn−1, tn),

〈rh|v 〉 =
∑

S∈Tn

(Rn, v − πnv)L2(S) +
∑

γ∈Γn

(Jn, v − πnv)L2(γ) , ∀v ∈ V, (60)

where Γn is the set of all interior edges of the triangulation Tn, and the element residual Rn and the jump
residual Jn are defined respectively by

Rn|S =
(

1
τn

+
f ′(InUn−1)

ε2

)
(Un − InUn−1)− ε(4Un)|S +

1
ε
f(InUn−1), ∀S ∈ Tn, (61)

and

Jn|γ =
[
∂Un

∂ν

]
γ

, ∀γ ∈ Γn. (62)

Using the standard error estimates for Clément interpolation [5], we can therefore conclude that for t ∈ (tn−1, tn)

〈rh|v 〉 ≤ CCl

(
‖hRn‖L2(Ω) +

∥∥∥h1/2Jn

∥∥∥
L2(Tn)

)
‖∇v‖L2(Ω) , ∀v ∈ V, (63)

where CCl is a constant from the interpolation estimate depending only on the maximum number of neighbours
a simplex can have in Tn. This constant is independent of the mesh size h in the case of shape-regular meshes,
e.g. adaptive meshes obtained by a bisection algorithm as in the finite element package ALBERT [12].

Remark 4.1. We stress that the mesh-dependent weights in (63) correspond to the correct scaling for the
gradient ∇e of the error and not for e! Since ∇e does not appear explicitly in (51), we conclude that (63) is
suboptimal. For linear parabolic problems, it is possible to restore the expected order via elliptic reconstruc-
tion [10]. The situation is much more subtle for nonlinear parabolic problems, and even more extreme if they
are singularly perturbed. We refer to Section 5, where this statement is corroborated by simulations.

4.2. Time discretization residual

It is straightforward that for t ∈ (tn−1, tn),

〈rt|v 〉 ≤ ε ‖∇ (Un − Un−1)‖L2(Ω) ‖∇v‖L2(Ω) +
Lf

ε
‖Un − Un−1‖L2(Ω) ‖v‖L2(Ω) , ∀v ∈ V. (64)

4.3. Coarsening residual

It is also straightforward that for t ∈ (tn−1, tn),

〈rc|v 〉 = (rc, v) ≤ ε

τn
‖Un−1 − InUn−1‖L2(Ω) ‖v‖L2(Ω) , ∀v ∈ V. (65)
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4.4. Linearization residual

By Taylor’s expansion,

|f(Un)− f(InUn−1)− f ′(InUn−1) (Un − InUn−1)| ≤
Lf ′

2
|Un − InUn−1|2 , (66)

so

|f(Un)− f(InUn−1)− f ′(InUn−1) (Un − InUn−1)| ≤ Lf ′ |Un − Un−1|2 + Lf ′ |Un−1 − InUn−1|2 . (67)

When the time-steps are small enough, these higher order terms are much smaller than the corresponding
lower-order terms already present in the time residual rt and coarsening residual rc. We can therefore neglect
them, and the linearization residual rl will not be taken into account.

4.5. Residual estimators

Putting all estimators together, we conclude that for a.e. t ∈ (0, T ), inequality (8) holds, with η0 = ηt
0 + ηc

0

and η1 = ηh
1 + ηt

1, where

ηh
1 = CCl


 N∑

n=1

τn


∑

S∈Tn

‖hRn‖2L2(S) +
∑

γ∈Γn

∥∥∥h1/2Jn

∥∥∥2

L2(γ)






1/2

(68)

ηt
1 = ε

(
N∑

n=1

τn ‖∇ (Un − Un−1)‖2
L2(Ω)

)1/2

(69)

ηt
0 =

Lf

ε

(
N∑

n=1

τn ‖Un − Un−1‖2
L2(Ω)

)1/2

(70)

ηc
0 = ε

(
N∑

n=1

τ−1
n ‖Un−1 − InUn−1‖2L2(Ω)

)1/2

. (71)

According to Theorem 3.1, control of these residual estimators via (49) and (50), for sufficiently low tolerance θ
and initial error e0, will ensure that the L2(Ω) error of the adaptive finite element approximation remains below
the tolerance θ throughout the simulation.

5. Numerical experiments

We have implemented numerical simulations of the Allen–Cahn problem using the adaptive finite element
package ALBERT [12]. In ALBERT, an initial simplicial macro-mesh is refined by successive bisections of its
elements. It can later also be coarsened, by operations of junction of two elements which initially constituted
a single element. The refining and coarsening algorithms ensure that the mesh remains conforming at every
computation of each timestep of the solution. We have chosen ALBERT’s error equidistribution strategy for
mesh adaptation, i.e. both refinement and coarsening of the successive meshes based on residual estimators
(68) and (71). For the following tests, we have however kept fixed time steps, since we are inclined to believe
(and the tests have verified) that for the Allen–Cahn problem, fixed time-step computations lead to errors of
the same order of magnitude at each time step (whereas a fixed mesh clearly does not yield the same order of
magnitude of error for each element).

To perform numerical error convergence tests, we have imposed as an exact solution a propagating front,
with which to compare the numerical solution by adding an extra artificial source term to the right hand side
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Table 1. ε = 0.08.

i θ #DOFs max
t

min
x

h Nτ e OC

0 4.00e+01 19 3.12e-02 250 1.30e-01 —
1 2.00e+01 33 1.56e-02 500 5.30e-02 1.30
2 1.00e+01 60 7.81e-03 1000 1.33e-02 2.00
3 5.00e+00 108 3.91e-03 2000 3.38e-03 1.97
4 2.50e+00 209 1.95e-03 4000 9.68e-04 1.80
5 1.25e+00 269 1.95e-03 8000 1.96e-04 2.30
6 6.25e-01 530 9.77e-04 16000 4.80e-05 2.03

of the Allen–Cahn equation: we have imposed the solution

û(x, t) = tanh
(

x1 − 0.6t− 0.2
ε
√

2

)
,

thus requiring the extra source term

ĝ(x, t) =
0.6
ε
√

2

(
û2(x, t) − 1

)
,

which is just a convenient way of writing ∂û/∂t. The imposed solution û verifies exactly the stationary Allen–
Cahn equation for all t, which is an indication that it satisfies the “profile across the interface” required by
Lemma 2.4.

Before presenting numerical results, let us mention that our earlier numerical tests have shown us that an
explicit time discretization for the nonlinearity f leads to largely dominant error from time discretization. It
seems that the speed of the front is not captured well. To reach a similar error as from space discretization,
millions of time steps are needed even for relatively large values of ε. In contrast, the linearization approach that
we later adopted (see (4)) leads to much better resolution of the interface speed and thus a much smaller time
discretization error, making the use of reasonable time step sizes possible, as demonstrated in the numerical
examples. Notice that the theory is essentially the same with or without linearization, or even with a fully
implicit scheme. It is the numerical experiments that convinced us that the linearized implicit approach gives
us the best of two worlds: reasonable time discretization error and linear discrete equation.

We now present a table of numerical results for the L∞(0, T ; L2(Ω)) error between the numerical solution
U of numerical scheme (4) with added source term ĝ and the exact solution û, for different values of ε and
space dimension d = 1. We have decreased the space error tolerance θ linearly with the timestep τ , with ratios
experimentally chosen for each value of ε in order to get efficient convergence results. We denote by Nτ the
number of timesteps in the time interval [0, T ]. Important characteristics of the adaptively refined mesh are the
average number of degrees of freedom throughout a computation (#DOFs), as well as the maximum in time of
the minimal mesh element size (maxt minx h), which is a characteristic of the resolution of the transition zone.
The solution itself is characterized by its error e = ‖U − û‖L∞(0,T ;L2(Ω)). Finally, the quantity we are most
interested in is the experimental order of convergence

OC =
ln ei − ln ei−1

ln θi − ln θi−1
,

where i is an index for the successive tests; see Tables 1–3.
We also summarize the numerical results with graphics of the error as a function of the tolerance in log-log

scale. In Figure 1, we can observe that the error does not decrease linearly with the tolerance, as would be
expected if our error control was optimal, but quadratically. This can be explained by the fact that the space
residual estimator we use is linear in the local mesh size h, whereas it is a priori expected that the L2 error
should decrease in fact as h2. Therefore, our numerical experiments show that the theoretical results of this
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Table 2. ε = 0.04.

i θ #DOFs max
t

min
x

h Nτ e OC

0 4.00e+01 38 7.81e-03 1000 4.90e-02 —
1 2.00e+01 68 3.91e-03 2000 1.96e-02 1.32
2 1.00e+01 130 3.91e-03 4000 4.74e-03 2.05
3 5.00e+00 253 1.95e-03 8000 1.34e-03 1.83
4 2.50e+00 499 1.95e-03 16000 3.26e-04 2.04
5 1.25e+00 990 9.77e-04 32000 7.90e-05 2.05
6 6.25e-01 1972 9.77e-04 64000 1.86e-05 2.08

Table 3. ε = 0.02

i θ #DOFs max
t

min
x

h Nτ e OC

0 4.00e+01 114 3.91e-03 4000 4.93e-02 —
1 2.00e+01 146 1.95e-03 8000 6.46e-03 2.93
2 1.00e+01 285 1.95e-03 16000 1.53e-03 2.08
3 5.00e+00 561 9.77e-04 32000 4.29e-04 1.83
4 2.50e+00 1114 9.77e-04 64000 1.04e-04 2.04
5 1.25e+00 2219 4.88e-04 128000 2.58e-05 2.01

paper are not optimal with respect to the numerical parameters; this is consistent with Remark 4.1, and is
due to the energy argument. We conjecture that an optimal space residual estimator could be obtained using
a duality technique, but nonstandard though if one seeks to remain rigorous throughout the derivation of the
result [8].
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Figure 1. Error reduction.
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