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EXPANSION FOR THE SUPERHEATING FIELD IN A SEMI-INFINITE FILM
IN THE WEAK-κ LIMIT

Pierre Del Castillo1

Abstract. Dorsey, Di Bartolo and Dolgert (Di Bartolo et al., 1996; 1997) have constructed asymptotic
matched solutions at order two for the half-space Ginzburg-Landau model, in the weak-κ limit. These

authors deduced a formal expansion for the superheating field in powers of κ
1
2 up to order four, extend-

ing the formula by De Gennes (De Gennes, 1966) and the two terms in Parr’s formula (Parr, 1976). In
this paper, we construct asymptotic matched solutions at all orders leading to a complete expansion

in powers of κ
1
2 for the superheating field.
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1. Introduction

The states of a superconducting material in an exterior magnetic field are described by the Ginzburg-Landau
theory which introduces a functional ε depending in particular on a complex wave function and on the magnetic
potential A. When the sample is a film and the exterior magnetic field is parallel to the surface, the Ginzburg-
Landau model reduces to a one-dimensional problem where the wave function is real (and denoted by F ) and
where the functional is the following:

εd(F,A;h) =
∫ d

2

−d
2

[
1
2
(1 − F (x)2)2 − 1

2
+ κ−2 F ′(x)2 + F (x)2 A(x)2 + (A′(x) − h)2

]
dx, (1.1)

with (F,A) ∈ (
H1

(]− d
2 ,

d
2

[))2
. Here, d is proportional to the thickness of the film, h is proportional to the

exterior magnetic field and κ is the Ginzburg-Landau parameter characterizing the properties of the material.
In this paper, we restrict ourselves to the study of symmetric solutions (f even and A odd) and consider a

new normalization of the functional where εd is replaced by
(
εd − (h2 − 1

2 )d
)
. We then restrict the problem

to the interval
]− d

2 , 0
]
, and translate it to

]
0, d

2

[
. We get formally, by taking the limit d = +∞, the second

functional defined for (F,A) ∈ E∞ := {(F,A) ; (1 − F ) ∈ H1(]0,+∞[), A ∈ H1(]0,+∞[)} by

ε∞(F,A) =
∫ +∞

0

[
κ−2 F ′(x)2 +A′(x)2 +

1
2
(1 − F (x)2)2 + F (x)2 A(x)2

]
dx + 2 hA(0) . (1.2)
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The corresponding Ginzburg-Landau equations expressing the necessary conditions to have local minima are
then

(GL)∞

{−κ−2F ′′ − F + F 3 + F A2 = 0 on R
+,

−A′′ +AF 2 = 0 on R
+,

(1.3)

with the boundary conditions

F ′(0) = 0, A′(0) = h, (1.4)

and

lim
x→+∞F (x) = 1 and lim

x→+∞A(x) = 0. (1.5)

The problem (GL)∞ is called the half-space model and was studied in [12] and [13] where computational
solutions are given.

We consider the set H∞ ⊂ R
+ of the h’s such that there exist solutions of the (GL) system with F > 0. We

know that H∞ is a bounded interval [0, h+) (see [2], Prop. 2.1) and we then introduce the following definition:

Definition 1.1. The superheating field hsh(κ) is defined as the supremum of the interval H∞.

In this paper, we first recall a construction of a formal solution of (GL)∞ obtained by Di Bartolo et al. in [14]
when κ is small. We give a rigorous setting to this construction, introducing formal series.

We first construct a formal solution which is called the outer solution.
Let us introduce the outer variable x′ = κx. We look for an outer solution denoted by (F e, Ae), solving the

system obtained after the scaling x′ = κx in (1.3) and the boundary conditions (1.5). We show that all the
solutions have the form

(
tanh

(
x′+C(κ)√

2

)
, 0

)
, where C(κ) :∼ ∑+∞

i=0 Ciκ
i, Ci ∈ R.

Then, we construct solutions solving the (GL) system and the boundary conditions at zero (1.4), which is
called the inner solution.

We look for an inner solution denoted by (F i, Ai) and defined by

F i ∼
∞∑
0

Fiκ
i, Ai ∼ κ−

1
2Qi :∼ κ−

1
2

∞∑
0

Qiκ
i,

where Fi, and Qi are C∞ functions defined on R+.
The first problem is to match the outer and inner solutions in order to get a good candidate for representing

a global solution. We present a natural notion of matching and we show that it is equivalent to the van Dyke
rule [18]. We prove the following theorem:

Theorem 1.2. There exists a unique pair ((F e, Ae); (F i, Ai)) solution of the (GL) equations, solving formally
the boundary conditions

F i(0, κ) ∼ t, (∂xF
i)(0, κ) ∼ 0, lim

x′→+∞
F e(x′, κ) = 1

for t ∈]0, 1[ fixed, and matched at all orders.

Then, following a procedure proposed by Kaplun (see [15, 18] and [20]), we present an asymptotic matched
solution of (GL)∞ at all orders.

The last part of the paper is devoted to the construction of a formal expansion for the superheating field. We
indicate the dependency of the formal series Ai with respect to the parameter t in the following way: Ai(x; t, κ).
Moreover, we show that (∂xA

i)(0; t, κ) is represented in the form of a formal series in powers of κ
1
2 with
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coefficients in C∞(]0, 1[). Then, considering, by an implicit functions theorem the zeros of t �→ (∂2
t xA

i)(0; t, κ)
on ]0, 1[, we define a notion of maximum of a formal series for which the principal term admits a unique non
degenerate maximum on ]0, 1[. We deduce the following theorem:

Theorem 1.3. The formal series (∂xA
i)(0; t, κ) admits as a function of t a “formal” maximum on ]0, 1[, which

is attained at a unique formal series t(κ) :=
∑+∞

0 tiκ
i with t0 ∈]0, 1[.

This formal maximum is expected to be the candidate for a formal expansion in powers of κ
1
2 for the

superheating field.
The plan of this paper is the following. In Section 2, we recall the formal construction due to Di Bartolo

et al. In Section 3, we prove Theorem 1.2. We deduce the construction of an asymptotic matched solution at
all orders. In Section 4, we prove Theorem 1.3. In Section 5, we discuss a conjecture due to Fink et al. [19].
We note that the obtained formal expansion shows that the conjecture of these authors is false at the level of
formal series.

2. Construction of a formal solution of (GL)∞

In all the following sections, for i = (i0, · · · , in) ∈ N
n+1, we set

|i|0,n := i0 + i1 + · · · + in, |i|1,n := i1 + i2 + · · · + in, |i|2,n := i1 + 2i2 + · · · + nin. (2.1)

2.1. Construction of an outer solution

Let H = A′. We get the new system




−κ−2F ′′ − F + F 3 +A2F = 0 on R
+,

−A′′ +AF 2 = 0 on R
+,

H = A′ on R
+,

(2.2)

with the boundary conditions

F ′(0) = 0, H(0) = h, (2.3)

and

lim
x→+∞F (x) = 1, lim

x→+∞A(x) = 0. (2.4)

We make the scaling x′ = κx in the system (2.2) and set

F e(x′, κ) := F (x, κ), Qe(x′, κ) := A(x, κ), He(x′, κ) := H(x, κ).

We get




(F e)′′ − (Qe)2F e + F e − (F e)3 = 0,
κ2 (Qe)′′ −Qe(F e)2 = 0,

He = κ(Qe)′,
(2.5)

where the differentiation is performed with respect to the variable x′.
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Let us introduce the following definition:

Definition 2.1. We call formal outer solution, a triplet (F e, Qe, He) where

F e ∼
∞∑
0

fiκ
i, Qe ∼

∞∑
0

qiκ
i and He ∼

∞∑
0

hiκ
i, (2.6)

are formal solutions in powers of κ of the system (2.5), and whose coefficients verify

f0 → 1, fj → 0, qi → 0, hi → 0, j ∈ N
∗, i ∈ N,

when x′ tends to +∞.

Let us denote by C(κ) the formal series in powers of κ defined by

C(κ) ∼
∞∑

n=0

Cnκ
n, (Cn ∈ R) (2.7)

and let f0 be the function defined on R
+ by

f0(x′) := tanh
(
x′ + C0√

2

)
· (2.8)

We denote by f (n)
0 the derivative at order n of f0.

We can completely describe the outer solutions (see [9] and [14] for a proof).

Proposition 2.2. All formal outer solutions are equal to


F e(x′, κ) ∼ tanh

(
x′ + C(κ)√

2

)
,

Qe(x′, κ) ∼ 0,
He(x′, κ) ∼ 0.

(2.9)

Furthermore, for all n ∈ N
∗, we have

fn =
n∑

m=1

∑
|i|2,n = n
|i|1,n = m

m!
i1! · · · in!

n∏
k=1

(Ck)ik f
(m)
0 , (2.10)

where f0 is defined in (2.8).

Remark 2.3. This solution does not satisfy the condition (F e)′(0, κ) = 0. We will use it for x′ large. Let us
also remark that the Cj (∈ R) are for the moment arbitrary.

2.2. Construction of an inner solution

We want to construct an expansion of F , A, H in powers of κ, such that (F,A,H) is a formal solution of (2.2)
and that F verifies the condition F ′(0, κ) = 0. We hope to use this solution in a neighbourhood of zero.

We know from the De Gennes’ formula (see [11]) that

lim
κ→0

κ
1
2 hsh(κ) = 2−

3
4 . (2.11)
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This equality leads one to look for A of the form

A(x) = κ−
1
2Q(x). (2.12)

If we make the scaling (2.12) in the system (2.2), we get


F ′′ − κQ2F + κ2(F − F 3) = 0,

Q′′ − F 2Q = 0,
κ

1
2H = Q′,

(2.13)

with the boundary conditions

F ′(0) = 0, Q′(0) = κ
1
2h. (2.14)

Let us introduce the following definition:

Definition 2.4. We call a formal inner solution the triplet (F i, Qi, Hi) of formal series in powers of κ, with
C∞ coefficients on R+, such that

(i)

F i ∼
∞∑
0

Fnκ
n, Qi ∼

∞∑
0

Qnκ
n and Hi ∼ κ−

1
2

∞∑
0

Hnκ
n; (2.15)

(ii) (F i, Qi, Hi) is a formal solution of (2.13);
(iii) F i satisfies formally the Neumann condition at zero F ′

n(0) = 0, for all n ∈ N.

If we consider the formal series with real coefficients

A(κ) ∼
∞∑
0

Anκ
n, B(κ) ∼

∞∑
0

Bnκ
n, D(κ) ∼ κ−

1
2

∞∑
0

Dnκ
n,

we say that a formal inner solution has for initial data at zero (A(κ), B(κ), D(κ)), if

F i(0, κ) ∼ A(κ), Qi(0, κ) ∼ B(κ), Hi(0, κ) ∼ D(κ).

In the next sections, we consider formal inner solutions with initial data (A(κ), B(κ), D(κ)).
We introduce for any n ∈ N the following notations:

Ān := (A0, · · · , An), B̄n := (B0, · · · , Bn), and C̄n := (C0, · · · , Cn). (2.16)

As observed in [14], it is rather easy to compute the first terms.
Let us recall that

F0(x;A0) = A0, (2.17)

Q0(x;A0, B0) = B0 exp(−A0x), (2.18)

and

H0(x;A0, B0) = −A0B0 exp(−A0x), (2.19)
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with

0 < A0 < 1 and B0 < 0. (2.20)

Furthermore,

F1(x; Ā1, B0) = A1 − B2
0

4A0
+
B2

0

2
x+

B2
0

4A0
exp(−2A0x), (2.21)

Q1(x; Ā1, B̄1) =
B3

0

16A2
0

exp(−3A0x) +
(
B1 − B3

0

16A2
0

−B0A1x− B3
0

4
x2

)
exp(−A0x), (2.22)

and

H1(x; Ā1, B̄1) =
−3B3

0

16A0
exp (−3A0x) + (−B0A1 −A0B1) exp (−A0x)

+
(

B3
0

16A0
+

(
A0B0A1 +

B3
0

2

)
x+

A0B
3
0

4
x2

)
exp (−A0x). (2.23)

For n ≥ 2, the expression of F ′′
n is given by construction by

F ′′
n = −Fn−2 + In + Jn, (2.24)

where the functions In and Jn represent the coefficient of κn respectively in the expansion of κ2F 3 and of κQ2F .
We have

In =
∑

|i|0,n−2 = 3
|i|2,n−2 = n− 2

3!
i0! · · · in−2!

n−2∏
�=0

F i�

� (2.25)

and

Jn =
∑

�+ |i|2,n−1 = n− 1,
|i|0,n−1 = 2

2!
i0!..in−1!

F�

n−1∏
k=0

Qik

k . (2.26)

The function Qn satisfies the equation

Q′′
n −A2

0Qn =
∑

�+ |i|2,n = n, � ≤ n− 1
|i|0,n = 2

2!
i0! · · · in!

Q�

n∏
k=0

F ik

k . (2.27)

More generally, in [9], we have given the following description of the inner solution in the following proposition:

Proposition 2.5. For all n ≥ 2, the function Fn solution of (2.15) is equal to a sum of products of exponential
polynomials. More precisely,

Fn = F pol
n + ψ(.)Pn(., ψ(.)), (2.28)
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where F pol
n is a polynomial of degree n, Pn a polynomial and ψ(x) = exp(−2A0 x), A0 being defined in (2.20).

Furthermore, for n ≥ 2, Un(x) := Pn(x, 0) is of degree 2n− 2.
For all n ∈ N, the function Qn, defined in (2.15) satisfies

Qn = φ(.)Rn(., φ(.)), (2.29)

where Rn is a polynomial and φ(x) = exp(−A0 x).
Furthermore, the polynomial Vn(x) := Rn(x, 0) is of degree 2n.

In order to match the outer and inner solutions, we can make explicit the dependency of the functions Fn,
Qn and Hn with respect to the constants Ān, B̄n.

Proposition 2.6. Let us consider the formal series in powers of κ, with coefficients in R, A(κ), B(κ). Then
there exists a unique formal series in powers of κ, with coefficients in R, D(κ), and a unique inner solution
admitting as initial data (A(κ), B(κ), D(κ)).

For n ≥ 1, Fn(.) depends only on the parameters Ān, B̄n−1, defined in (2.16), and Fn ∈ C∞(R×]0, 1[×R
2n).

Moreover, we have the equality

F pol
n (.; Ān, B̄n−1) = An + P̃n(.; Ān−1, B̄n−1), P̃n ∈ C∞ (

R×]0, 1[×R
2n−1

)
. (2.30)

For n ∈ N, the functions Qn and Hn depends only on 2n+2 parameters, Ān, B̄n. Precisely, for n ≥ 1, we have
the equality

Qn(.; Ān, B̄n) = φ(.)(Bn + R̃n(., φ(.); Ān, B̄n−1), R̃n ∈ C∞ (
R

2×]0, 1[×R
2n

)
. (2.31)

Proof. From (2.17, 2.21, 2.18) and (2.22), we see that the data of A0, B0, A1, B1 determine completely the
functions F0, F1, Q0, Q1, H0 and H1. Furthermore, when n = 1, equations (2.30) and (2.31) are satisfied with

F pol
1 (x; Ā1, B0) = A1 + P̃1(x;A0, B0), with P̃1(x;A0, B0) = − B2

0

4A0
+
B2

0

2
x,

and

R̃1(x, y; Ā1, B̄0) =
B3

0

16A2
0

y3 −
(

B3
0

16A2
0

+B0A1x+
B3

0

4
x2

)
.

Let n ≥ 2. Let us suppose that the proposition is true for i ∈ {0, · · · , n− 1}.
The function Fn is completely determined by (2.24) and the boundary conditions

F ′
n(0) = 0, and Fn(0) = An. (2.32)

From (2.25, 2.26) and by recursion hypothesis, the function In(.) depends only on Ān−2, B̄n−2 and
In ∈ C∞ (

R×]0, 1[×R
2n−3

)
. Moreover, from (2.26) and by recursion hypothesis, the function Jn(.) depends

only on Ān−1, B̄n−1 and Jn ∈ C∞(R×]0, 1[×R
2n−1). According (2.24, 2.25, 2.26) and (2.32), it results that

Fn depends only on Ān, B̄n−1 and Fn ∈ C∞(R×]0, 1[×R
2n+1). From (2.24) and the boundary

conditions (2.32), one gets that the function F pol
n depends only on Ān, B̄n−1. Moreover, we have

F pol
n (., Ān, B̄n−1) ≡ An + P̃n(.; Ān−1, B̄n−1) where P̃n ∈ C∞(R×]0, 1[×R

2n−1). We get (2.30) for all n ∈ N
∗.

From Proposition 2.5, the right-hand side of (2.27) is a sum of exponential polynomials, which tend to 0
when x tends to infinity. Furthermore, from the recursion hypothesis, it only depends on Ān−1 and B̄n−1. As
limx→∞Qn(x) = 0 (see (2.29)), we have the equality

Qn(x) = c1 exp(−A0x) + exp(−A0x)g(x, exp(−A0x)),
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where the function g ∈ C∞(R2×]0, 1[×R
2n). From the boundary condition Qn(0) = Bn, the function Qn is

determined by Ān and B̄n. It is equal to

Qn(x) = exp(−A0x)(Bn + R̃n(x, exp(−A0x))),

where R̃n ∈ C∞(R2×]0, 1[×R
2n).

As Hn = Q′
n and for all n ∈ N, Hn(0) = Dn, the formal series Dn is completely determined by A(κ)

and B(κ).

2.3. Definition of the matching of the inner and outer solution

In order to clarify a more formal matching condition proposed by van Dyke in [18], we introduce the following
definitions:

Definition 2.7. Let κ0 be a positive real and n ∈ N. For all κ ∈]0, κ0], let I(κ) be an interval of R and u(x, κ)
be a function defined on I(κ). We say that

u(x, κ) = O(κn) on I(κ) when κ→ 0,

if there exist C > 0 and κ̃0 > 0 such that

|u(x, κ)| ≤ Cκn, ∀ x ∈ I(κ) and ∀κ ≤ κ̃0.

Definition 2.8. The truncated inner solution at order n is the triplet (F i,(n), Qi,(n), Hi,(n)) defined by F i,(n) :=∑n
0 Fiκ

i, Qi,(n) :=
∑n

0 Qiκ
i, and Hi,(n) := κ−

1
2

∑n
0 Hiκ

i. We denote by F pol,(n) the polynomial part of
F i,(n). The truncated outer solution at order n is the triplet (F e,(n), Qe,(n), He,(n)) defined by F e,(n)(x′;κ) :=∑n

0 fi(x′)κi ; Qe,(n)(x′;κ) :=
∑n

0 qi(x
′)κi and He,(n)(x′;κ) :=

∑n
0 hi(x′)κi.

We introduce the function F̃ e,(n) defined by F̃ e,(n)(x;κ) = F e,(n)(κx;κ).

Definition 2.9. Let n ∈ N, (F i,(n), Qi,(n), Hi,(n)) and (F e,(n), Qe,(n), He,(n)) the triplets of functions introduced
in Definition 2.8. We say that the inner and outer solutions are matched at order n on the interval In(δ1, δ2, κ) :=[
δ1κ

− 1
n+1 , δ2κ

− 1
n+1

]
if and only if

F i,(n)(x, κ) − F e,(n−1)(κx, κ) = O(κn),
Qi,(n)(x, κ) −Qe,(n−1)(κx, κ) = O(κn),
Hi,(n)(x, κ) −He,(n−1)(κx, κ) = O(κn),

(2.33)

in the sense of Definition 2.7.

Proposition 2.10. For all n ∈ N, the formal series Qi and Qe (also Hi and He) are equal modulo O(κn) in
the sense of Definition 2.9.

Proof. Using Proposition 2.5 (see (2.29)), for any j ∈ N, we can show the existence of mj ∈ N such that

Qj = O
(
κ−

mj
n+1

)
. exp

(
−δ1.A0κ

− 1
n+1

)
and Hj = O

(
κ−

mj
n+1

)
. exp

(
−δ1.A0κ

− 1
n+1

)
on In(δ1, δ2, κ).

It results that

Qj = O(κn) and Hj = O(κn) on In(δ1, δ2, κ).
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From Proposition 2.2, Qe ∼ 0 and He ∼ 0. Then, on In(δ1, δ2, κ),

Qi,(n)(x, κ) −Qe,(n−1)(κx, x) = Qi,(n)(x, κ) = O(κn),
Hi,(n)(x, κ) −He,(n−1)(κx, x) = Hi,(n)(x, κ) = O(κn),

in the sense of Definition 2.7.

In all the following sections, we introduce the set

Ẽ := {(i, j) ∈ N
2, such that 0 ≤ i ≤ j ≤ n, (i, j) �= (0, n)}·

To specify the conditions of matching for the inner and outer solutions, we use the elementary lemma (see [9]
for a proof):

Lemma 2.11. Let n ∈ N
∗, (δ1, δ2) ∈ R

+ × R
+ and γi,j be a family of reals, where (i, j) ∈ Ẽ. Let S be the

function defined on [0, κ0] × [δ1, δ2] by

S(κ, y) =
∑

(i,j)∈Ẽ

γi,jκ
j− i

n+1 yi + O(κn). (2.34)

The equality

S(κ, y) = 0 on [0, κ0] × [δ1, δ2] (2.35)

implies

γi,j = 0, ∀ (i, j) ∈ Ẽ.

We can then give the conditions of matching modulo O(κn) for the outer and inner solutions. Let us write, for
any j ∈ N

F pol
j (x) =

j∑
i=0

αi,jx
i, (2.36)

and let

βi,j :=
f

(i)
j−i(0)
i!

, (2.37)

where fi is defined in (2.6).

Proposition 2.12. Let n ∈ N. The inner and outer solutions are equal modulo O(κn) if and only if

αi,j = βi,j , ∀ (i, j) ∈ Ẽ. (2.38)

Proof. From Proposition 2.10, the formal series Qi and Qe are equal modulo O(κn).
Let k ∈ {1, · · · , n}. On the interval In(δ1, δ2, κ), from Proposition 2.5 (see (2.28)), for κ small, we have

ψ(x)Pk(x, ψ(x)) = O(κn).
For x ∈ In(δ1, δ2, κ), for κ small, we get the estimate

F i,(n)(x, κ) =
∑

(i,j)∈Ẽ

αi,jκ
jxi + O(κn). (2.39)
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For k ∈ {0, · · · , n−1}, we can make a Taylor expansion of x �→ fk(κx) where the function fk is defined in (2.10)
at the point x = 0. We can then express F e,(n−1)(κx;κ) in the form of

F e,(n−1)(κx;κ) =
n−1∑
k=0

κk
∞∑

i=0

f
(i)
k (0)
i!

κixi.

Let us introduce j = i+ k. We can write

F e,(n−1)(κx;κ) =
∑

j−n+1≤i≤j

βi,jκ
jxi, (2.40)

where βi,j is defined in (2.37). As x ∈ In(δ1, δ2, κ), for (i, j) such that j ≥ n+1 and i ≤ j, we have the estimate

κjxi = O
(
κj− i

n+1

)
= O(κn).

We deduce the estimate

F e,(n−1)(κx, κ) =
∑

(i,j)∈Ẽ

βi,j κ
jxi + O(κn). (2.41)

The estimate F i,(n)(x) − F e,(n−1)(κx) = O(κn) on In(δ1, δ2, κ) is satisfied if and only if
∑

(i,j)∈Ẽ

(αi,j − βi,j)κjxi + O(κn) = 0 on ]0, κ0] × In(δ1, δ2, κ). (2.42)

Then, we can apply Lemma 2.11 to achieve the proof of Proposition 2.12.

Remark 2.13. The van Dyke rule [18] consists in taking the truncated inner solution at order n and the
truncated outer solution at order n − 1, then to make an identification of the coefficients of κjxi for all pairs
(i, j) ∈ Ẽ. We have shown that this procedure is equivalent to Definition 2.9.

3. Matching of the outer and the inner solutions at all orders

3.1. Conditions of matching modulo O(κ�)

Let us consider the formal series F i,∞ defined by

F i,∞(x, κ) :∼
+∞∑
j=0

F pol
j (x)κj , (3.1)

where F pol
j is defined in Proposition 2.5.

From (2.36), we can write (3.1) in the form of

F i,∞(x, κ) ∼
+∞∑
�=0

+∞∑
i=0

αi,i+�x
iκi+�. (3.2)

We set

φ�(x′) :∼
+∞∑
i=0

αi,i+�x
′i. (3.3)
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So, from (3.2), we deduce that

F i,∞(x, κ) ∼
+∞∑
�=0

φ�(κx)κ�.

Let us remark that F i,∞ satisfies formally the equation

−κ−2(F i,∞)
′′ − F i,∞ + (F i,∞)

3
= 0.

Let us introduce

G(x′, κ) ∼
+∞∑
�=0

φ�(x′)κ�, (3.4)

where x′ = κx is the outer variable.
The formal series G satisfies formally the equation

G′′ = −G+G3. (3.5)

To show equalities (2.38), we use the following Lemma (see [9], p. 69 for a proof):

Lemma 3.1. Let S1 and S2 be two formal series in powers of κ whose coefficients are formal series in powers
of x′ with coefficients in R defined by

S1(x′, κ) ∼
+∞∑
0

φi(x′)κi and S2(x′, κ) ∼
+∞∑
0

ψi(x′)κi.

Let us suppose that S1 and S2 satisfy formally the differential equation

y′′(x′) = −y(x′) + y(x′)3. (3.6)

Furthermore, let us suppose that the equalities

φi(0) = ψi(0) and φ′i(0) = ψ′
i(0), ∀ i ∈ N, (3.7)

are satisfied.
Then, for all i ∈ N, we have the equalities

φ
(n)
i (0) = ψ

(n)
i (0), ∀ n ∈ N.

For all i ∈ N, let us suppose that for all Āi+1, with A0 ∈]0, 1[, the system

α0,j = β0,j and α1,j+1 = β1,j+1, for j ∈ {0, · · · , i+ 1}, (3.8)

admits a unique solution with B0 < 0 (this point is the subject of Prop. 3.4).
Then, we can show the following proposition:

Proposition 3.2. For all Ān−1, with A0 ∈]0, 1[, the formal inner and outer solutions are equal modulo O(κn),
if and only if the system of 2n equations with 2n unknowns B̄n−1, C̄n−1 defined by

α0,i = β0,i α1,i+1 = β1,i+1, for i ∈ {0, · · · , n− 1}, (3.9)

admits a unique solution with B0 < 0.
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Proof. Let us consider the formal series F e defined in (2.6) and G defined in (3.4). Let us express F e in the
form of F e ∼ ∑∞

i=0 ψi(x′)κi where (ψi) is the formal series defined by

ψi(x′) :∼
∞∑

j=0

f
(j)
i (0)
j!

(x′)j ∼
∞∑

j=0

βj,i+j(x′)
j
. (3.10)

Hypothesis (3.8) is equivalent to

φi(0) = ψi(0) and φ′i(0) = ψ′
i(0), ∀ i ∈ N.

From Lemma 3.1 applied to the formal series G and F e, we get, for all i ∈ N

φ
(n)
i (0) = ψ

(n)
i (0), ∀ n ∈ N.

Then, using (3.3) and (3.10), it results that

αn,n+i = βn,n+i, ∀ n ∈ N and ∀ i ∈ N.

We deduce that the system (2.38) admits a unique solution.

To show that it is possible to get (3.8), we have to analyze how αi,j and βi,j which are defined in (2.36)
and (2.37), depend on Ai, Bi and Ci.

Lemma 3.3. We have the equalities

α0,0 = A0, α1,1 = A1 − B2
0

4A0
and β0,0 = f0(0), β1,1 = f ′

0(0). (3.11)

For i ∈ N
∗, α0,i − Ai and α1,i+1 + B0Bi depend only on Āi−1 and B̄i−1. Moreover, we have α0,i − Ai ∈

C∞(]0, 1[×R
2i−1) and α1,i+1 +B0Bi ∈ C∞(]0, 1[×R

2i−1).
For i ∈ N

∗, β0,i − Cif
′
0(0), and β1,i+1 − Cif

′′
0 (0) depend only on C̄i−1 and belong to C∞(Ri).

Proof. According to (2.17, 2.21, 2.36) and by definition (see (2.37)), we get equalities (3.11).
The real α0,i is equal to the coefficient of x0 in the expression of F pol

i , and from Proposition 2.6, it is equal to
Ai modulo a function depending on Āi−1, B̄i−1 and C∞ (

]0, 1[×R
2i−1

)
. The real α1,i+1 is equal to the coefficient

of x in the expression of F pol
i+1. It is equal to the constant of integration obtained after an integration of the

function F ′′
i+1 with the boundary condition F ′

i+1(0) = 0. According to (2.24, 2.26) and (2.31), the unique
function where the parameter Bi in the expression of F ′′

i+1 appears is 2F0Q0Qi. From (2.31), this term is given
by −B0Bi modulo a function depending on Āi−1, B̄i−1 and belongs to C∞ (

]0, 1[×R
2i−1

)
.

According to (2.10) and (2.37), we get β0,i = Cif
′
0(0) and β1,i+1 = Cif

′′
0 (0) modulo a function depending on

C̄i−1 and belongs to C∞(Ri).

From Lemma 3.3, we can deduce the following proposition:

Proposition 3.4. Let n ∈ N
∗. Let us consider the system of 2n equations with 3n unknowns, Ān−1, B̄n−1, C̄n−1

α0,i = β0,i, α1,i+1 = β1,i+1 for i ∈ {0, · · · , n− 1} · (3.12)

For all Ān−1 ∈ R
n, such that A0 ∈]0, 1[, the system (3.12) admits a unique solution in R

2n such that B0 < 0.
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Proof. The result is true for n = 1. From Lemma 3.3, the system consists in two equations,

A0 = f0(0),
B2

0

2
= f ′

0(0), (3.13)

and can be solved by choosing as principal unknowns B0 and C0. From the hypothesis A0 ∈]0, 1[ and B0 < 0,
the solution of the system (3.13) is unique. According to (2.8), we get

B0 = −2
1
4 (1 −A2

0)
1
2 , C0 =

√
2 tanh−1(A0). (3.14)

Let n ≥ 1. Let us suppose that the result is true for k ∈ {0, · · · , n− 1}, then Ck and Bk can be expressed in a
unique way as a function of A0, · · · , Ak and Bk ∈ C∞ (

]0, 1[×R
k
)

and Ck ∈ C∞ (
]0, 1[×R

k
)
.

From Lemma 3.3 and by hypothesis, the equalities α0,n = β0,n and α1,n+1 = β1,n+1 are equivalent to the
equalities

An = f ′
0(0)Cn + G(Ān−1), G ∈ C∞ (

]0, 1[×R
n−2

)
(3.15)

and

−B0Bn = f ′′
0 (0)Cn + F(Ān−1), F ∈ C∞ (

]0, 1[×R
n−2

)
. (3.16)

From (3.13), we have the equalities

f ′
0(0) =

1√
2
(1 −A2

0) and f ′′
0 (0) = − 1√

2
A0(1 −A2

0). (3.17)

We can then solve the system (3.15, 3.16) by considering Bn and Cn as principal unknowns and A0, · · · , An as
parameters.

From Proposition 3.4, it results that hypothesis (3.8) is verified.

3.2. Formal solutions of the Ginzburg-Landau equation

We say that the inner and outer solutions match at all orders, if they match modulo O(κn), for all n ∈ N.
From Proposition 2.12, we observe that the matching of the outer and inner solutions modulo O(κn+1) implies
their matching modulo O(κn). Propositions 3.2 and 3.4 lead us to introduce the following definition:

Definition 3.5. We call formal solution of the Ginzburg-Landau equations (2.2) with boundary conditions (2.3,
2.4), a pair composed of an inner solution in the sense of Definition 2.4 with initial data (A(κ), B(κ), D(κ)) and
an outer solution in the sense of Definition 2.2, which match at all orders.
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Then, we can express the following theorem:

Theorem 3.6. For all formal series A(κ) :=
+∞∑
i=0

Aiκ
i with A0 ∈]0, 1[, there exists a unique formal solution of

the (GL) system with B0 < 0.

Proof.

Step 1. Existence

We have constructed in Proposition 2.2 a formal outer solution, and in Proposition 2.5 a formal inner solution.
Then we match them at all orders using Proposition 3.2.

Step 2. Uniqueness

From Propositions 2.6 and 3.4, when A(κ) is given with A0 ∈]0, 1[, and if we suppose B0 < 0, B(κ) and C(κ)
are completely determined. From Propositions 2.2 and 2.6, the data of A(κ), B(κ) and D(κ) definite completely
the coefficients of the outer and inner solution, so, by definition of a formal solution, the uniqueness.

In the following sections, using Proposition 3.2, we suppose that the functions Fn(x, Ān, B̄n−1), Qn(x, Ān, B̄n)
and Hn(x, Ān, B̄n) are expressed in terms of the parameters Ai, for i ∈ {0, · · · , n}.

We introduce then the following notations:

F̌n(x; Ān) := Fn(x, Ān, B̄n−1(Ān−1)), Q̌n(x; Ān) := Qn(x, Ān, B̄n(Ān)),
Ȟn(x; Ān) := Hn(x, Ān, B̄n(Ān)).

(3.18)

We denote by F̌ i, Q̌i and Ȟi the formal series

F̌ i :=
∞∑

i=0

F̌n(x; Ān)κi, Q̌i :=
∞∑

i=0

Q̌n(x; Ān)κi and Ȟi := κ−
1
2

∞∑
i=0

Ȟn(x; Ān)κi. (3.19)

We can introduce the particular choice

A0 = t, t ∈]0, 1[ and Ai = 0, ∀ i ∈ N
∗. (3.20)

According to (3.15, 3.16, 3.18) and (3.20), we can set

F̂n(x, t) := F̌n(x; Ān), Q̂n(x, t) := Q̌n(x; Ān) and Ĥn(x, t) := Ȟn(x; Ān). (3.21)

From Theorem 3.6 with the choice (3.20), we get the existence and the uniqueness of a formal solution solving
the boundary condition at zero

F i(0, κ) ∼ t, (∂xF
i)(0, κ) ∼ 0.

From (2.12, 2.15, 3.20) and (3.21), we have the equality

Hi(0; t, κ) := κ−
1
2

∞∑
n=0

Ĥn(0, t)κn. (3.22)
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3.3. Construction of a Matched Asymptotic Solutions

Generally speaking, when we have matched the inner and outer solutions modulo O(κn), we can hope to
construct an approximate solution denoted by (fvd,(n), Avd,(n)), proceeding in the following way. For fvd,(n),
we consider the function obtained by adding the function F i,(n+1) to the function F̃ e,(n), and subtracting from
this sum the polynomial part of F i,(n+1), denoted F pol,(n+1). This rule was used by Di Bartolo et al. in [14]
to construct an approximate solution of (GL)∞. The formal solution Ãe(x′;κ) vanishes (see Prop. 2.2), and we
take for Avd,(n), the function Avd,(n) = κ−

1
2

∑n
0 Qiκ

i.
Let us introduce the following definition:

Definition 3.7. Let n ∈ N
∗. We call asymptotic matched solution of (GL)∞ at order n, a pair

(
fvd,(n), Avd,(n)

)
defined by

fvd,(n)(x;κ) = F̃ e,(n)(x;κ) + F i,(n+1)(x;κ) − F pol,(n+1)(x;κ), (3.23)

where F̃ e,(n)(x;κ), F i,(n+1)(x;κ), and F pol,(n+1)(x;κ) are introduced in Definition 2.8, and

Avd,(n)(x, κ) = κ−
1
2

n∑
0

Qi(x)κi, (3.24)

where Qi is defined in (2.29).

Let us remark that the asymptotic matched solution fvd,(n) satisfies the Neumann condition at zero.

Lemma 3.8. The function fvd,(n) defined in (3.23) satisfies the Neumann condition at zero

(
fvd,(n)

)′
(0) = 0.

Proof. For all i ∈ N, we have F ′
i (0) = 0. So, we get the equality

(
F i,n+1

)′
(0) = 0.

Furthermore
(
F pol,n+1

)′
(0) =

n+1∑
j=1

α1,j , where α1,j is defined in (2.36). We deduce the equality

(
fvd,(n)

)′
(0) = (F e,n)′ (0) +

(
F i,n+1

)′
(0) − (

F pol,n+1
)′

(0) =
n∑

j=0

f ′
j(0)κj+1 −

n+1∑
j=1

α1,jκ
j . (3.25)

Moreover, from Proposition 2.12, α1,j+1 = β1,j+1 = f ′
j(0) for all j ∈ {0, · · · , n}.

Remark 3.9. In [10], using the pair
(
fvd,(1), Avd,(1)

)
suitably modified, we have constructed a subsolution of

(GL)∞, leading to two terms in the lower bound for the superheating field. Using the asymptotic matched
solution at order n presented in Definition 3.7, we can hope to construct a subsolution of the (GL) equations
leading to n terms in the lower bound for the superheating field. Moreover, constructing a supersolution by a
similar method, we hope to get a localization of solutions of (GL)∞. We hope to come back to these points in
a further publication.
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4. Construction of a formal expansion in powers of κ
1
2

for the superheating field

The aim of this section is to determine a formal expansion for the superheating field introduced in
Definition 1.1. We want to maximize with respect to t ∈]0, 1[ the formal series φ(t, κ) introduced in (3.22).
This notion of “maximum” is defined in a formal sense which will be specified in the following sections. This
problem of maximization of this formal series was not solved in general in [14].

4.1. Maximization of a formal series

Let us consider f a C∞ real function. In the following section, DT (f) represents the Taylor expansion of f
at the point x = 0,

DT (f)(x) :∼
∞∑

i=0

f (i)(0)
i!

xi. (4.1)

We consider in the following sections formal series with coefficients in C∞(]0, 1[), defined by

φ(t, κ) ∼ κ−
1
2

∞∑
0

φi(t)κi. (4.2)

We suppose that φ0 admits a unique maximum achieved at the point t0 ∈]0, 1[. Moreover, it satisfies

φ′0(t0) = 0 and φ′′0 (t0) < 0. (4.3)

In order to define the notion of maximum in the formal series (4.2), let us recall a lemma due to Borel.

Lemma 4.1. Let φ be a formal series with C∞ coefficients on ]0, 1[ defined by φ(t, κ) ∼ κ−
1
2

∑∞
0 φi(t)κi. Then,

there exists a C∞ function ψ defined on ]0, 1[×]−κ0, κ0[, such that the expansion in Taylor series of κ �→ ψ(., κ)
at the point κ = 0 of ψ coincides with φ.

A function solving the conclusion of Lemma 4.1 is called a representative in the formal series φ. To define
the maximum in the formal series (4.2), it results from the implicit functions theorem the following lemma:

Lemma 4.2. Let φ̄1 be a representative of φ. Let us suppose that φ̄1 admits in ]0, 1[ a unique maximum on t0,
which is non degenerate

∂φ̄1

∂t
(t0, 0) = 0 and

∂2φ̄1

∂t2
(t0, 0) < 0. (4.4)

Then, there exists a positive real, κ0, such that, for all |κ| ≤ κ0, the mapping t �→ φ̄1(t, κ) admits a maximum
t1(κ) on ]0, 1[ such that t1(0) = t0. Furthermore, on ] − κ0, κ0[, the mapping κ �→ t1(κ) is C∞.

Let φ̄2 be another representative of φ and let t2(κ) be a maximum of t→ φ̄2(t, .) such that t2(0) = t0. Then

DT (t1) ∼ DT (t2), (4.5)

where DT is defined in (4.1).

We can define the maximum in the formal series defined in (4.2) and solving hypothesis (4.3) by using
Lemmas 4.1 and 4.2.
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Definition 4.3. Let φ be a formal series in powers of κ with coefficients in C∞(]0, 1[) defined by

φ(t, κ) ∼ κ−
1
2

∞∑
0

φi(t)κi,

and solving (4.3). Let φ̄ be a representative of φ.
We say that the formal series φ achieved its maximum on ]0, 1[ in the unique formal series defined by the

Taylor expansion at the point κ = 0 of the function t1(κ) defined in Lemma 4.2 (see (4.5)).

Then, we can express the following proposition:

Proposition 4.4. The formal series Hi(0; t, κ) defined in (3.22) admits, as function of t, a unique formal
maximum on ]0, 1[.

Proof. From (2.19, 3.14, 3.20) and (3.21), the principal part of the series Hi(0; t, κ) is equal to

Ĥ0(0, t) = 2
1
4 t(1 − t2)

1
2 .

This function admits a unique maximum on ]0, 1[ which is achieved at the point t = 1√
2
. Furthermore, this

maximum is non degenerate. Then, the formal series φ admits a unique formal maximum on ]0, 1[ in the sense
of Definition 4.3.

Remark 4.5. To this maximum corresponds a formal expansion in powers of κ
1
2 for the superheating field hsh(κ).

But, using this method, we cannot explicitly compute the coefficients in the formal series obtained in
Proposition 4.4.

4.2. Existence of a formal expansion for the superheating field

In [9], in order to compute the coefficients in the formal superheating field, we have presented another way for
defining the maximum in the formal series given in (4.2) and (4.3). Let us explain this method. By hypothesis,
the functions φi are smooth, then we can make a Taylor expansion at the point A0 ∈]0, 1[ of the function φi(t),
for all i ∈ N. Then, we can substitute for t the formal series A(κ) :∼ ∑∞

0 Aiκ
i, expand it in powers of κ, reorder

the expression obtained in powers of κ. Then, the resulting formal series φ is expressed in the form of

φ(A(κ), κ) ∼
∞∑
0

Dn(Ān)κn, (4.6)

where

D0(A0) := φ0(A0), (4.7)

and, for n ≥ 1,

Dn(Ān) :=
∑

�+|i|2,n=n

1
i1! · · · in!

φ
(|i|1,n)
� (A0)

n∏
k=1

Ak
ik . (4.8)
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The function Dn has the following property:

Lemma 4.6. For n ∈ N
∗, let Dn be the function defined in (4.7) and (4.8).

We have the equalities

D2n−1(Ā2n−1) =
n−1∑
k=0

∂D2k

∂Ak
(Ā2k)A2n−1−k + g(A0, · · · , An−1), (4.9)

D2n(Ā2n) =
n−1∑
k=0

∂D2k

∂Ak
(Ā2k)A2n−k + L(A0, · · · , An), (4.10)

where g ∈ C∞(]0, 1[×R
n−1) and L ∈ C∞(]0, 1[×R

n).

Furthermore, L is a polynomial of degree two in An and the coefficient of A2
n is equal to

φ′′0 (A0)
2

.

Proof. From (4.8), we have the equalities

D1(Ā1) = φ′0(A0)A1 + φ1(A0) (4.11)

and

D2(Ā2) = φ′0(A0)A2 +
φ′′0
2

(A0)A2
1 + φ′1(A0)A1 + φ2(A0). (4.12)

From (4.7), D0(A0) := φ0(A0). Then, equalities (4.9) and (4.10) are verified for n = 1, with

g(A0) = φ1(A0)

and

L(A0, A1) =
φ′′0
2

(A0)A2
1 + φ′1(A0)A1 + φ2(A0).

Let us suppose that (4.9) and (4.10) are true for k ∈ {1, · · · , n}, n ≥ 1.
Let (�, i) = (�, i1, · · · , ij, · · · , i2n+1) ∈ N × N

2n+1 such that �+ |i|2,2n+1 = 2n+ 1. According to (4.8), let us
remark that, for A0 ∈]0, 1[, D2n+1(Ā2n+1) is polynomial in A1, · · · , An.

Let j ∈ {n + 2, · · · , 2n + 1} and let us suppose ij = 1. Then, for k �= j, k ∈ {n, · · · , 2n + 1}, ik = 0.
From (4.8), it results that D2n+1(Ā2n+1) can be written in the form of

D2n+1(Ā2n+1) =
2n+1∑

j=n+2

ρjAj + g(A0, · · · , An+1), (4.13)

where ρj depends only on Ān−1 and the function g is defined as the function obtained replacing the condition
�+ |i|2,n = n in (4.8) with �+ |i|2,n = 2n+ 1.

Let us remark that, for j ∈ {n+2, · · · , 2n+1}, the coefficient of Aj in D2n+1(Ā2n+1) is equal to the coefficient
of Aj−1 in D2n(Ā2n). Then, by the recursion argument, for j ∈ {n+ 2, · · · , 2n+ 1},

ρj =
∂D4n+2−2j

∂A2n+1−j
· (4.14)
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Let us denote by ρn+1 the coefficient of An+1 in D2n+1(Ā2n+1). Let (�, i) ∈ N ×N
2n such that �+ |i|2,2n = 2n.

If in ≥ 1, ik = 0 for k > n. From (4.8), the expression where An appears in D2n(Ā2n) is equal to

φ
(2)
0 (A0)

A2
n

2
+


 ∑

�+|i|2,n−1=n

1
i1! · · · in−1!

φ
(|i|1,n−1+1)
� (A0)

n−1∏
k=1

Aik

k


An. (4.15)

According to (4.8), the coefficient of An+1 in D2n+1 is equal to the derivate of the expression (4.15) with respect
to An. We deduce the equality

ρn+1 =
∂D2n

∂An
(Ā2n). (4.16)

From (4.13, 4.14) and (4.16) we get (4.9).
Moreover, we have the equality

D2n+2(Ā2n+2) =
2n+2∑

j=n+2

ρ̃jAj + L(A0, · · · , An+1),

where L is obtained replacing the condition �+ |i|2,n = n with �+ |i|2,n+1 = 2n+ 2 in (4.8). For j ≥ n+ 2, the
coefficient of Aj in D2n+2(Ā2n+2) is equal to the coefficient of Aj−1 in D2n+1(Ā2n+1).

Thus, we have

ρ̃j =
∂D4n+4−2j

∂A2n+2−j
·

Let us observe that L is a polynomial of degree 2 in An+1, and the coefficient of A2
n+1 is equal to

φ
(2)
0 (A0)

2
.

Let us consider the system of equations for Ā2n ∈]0, 1[×R
2n

∂D2k

∂Ak
(Ā2k) = 0, for k ∈ {0, · · · , n} · (4.17)

We denote by S the set of the solutions of the system (4.17).

Proposition 4.7. The set S is a manifold of dimension n.
Let Ā2n ∈ S and Ā2n+1 = (Ā2n, A2n+1), (A2n+1 ∈ R). Then, D2n+1(Ā2n+1) is independent of

(An+1, · · · , A2n+1).
Let Ā2n ∈ S and Ā2n+2 = (Ā2n, A2n+1, A2n+2), (A2n+1, A2n+2) ∈ R

2. Then, D2n+2(Ā2n+2) is a polynomial
of degree 2 in An+1, independent of (An+2, · · · , A2n+2), and the coefficient of A2

n+1 is negative.

Proof. Let us suppose n = 0. By construction (see (4.7)), D0(A0) := φ0(A0). Then, from hypothesis (4.3), the
function D0 admits a unique maximum on ]0, 1[ achieved in A0 = t0.

For n ≥ 0, let us suppose that the system (4.17) admits a solution, and let us consider this solution Ā2n. Let
us consider the system (4.17) for k ∈ {0, · · · , n+ 1}.

From (4.9) and by recursion, D2n+1(Ā2n+1) is equal to g(A0, · · · , An). Its does not depend on (An+1, · · · ,
A2n+1).

From Lemma 4.6 (see (4.10)), and the recursion argument, we observe that for all (Ā2n, A2n+1, A2n+2),
D2n+2(Ā2n+2) is equal to L(A0, · · · , An+1), where L is a polynomial of degree 2 in An+1 whose the coefficient
is negative. Then, for all (Ā2n, A2n+1, A2n+2) ∈ S × R

2, the equation ∂D2n+2
∂An+1

(Ā2n+2) = 0 is equivalent to the
equation ∂L

∂An+1
(Ān+1) = 0 and admits a unique solution on R, independent of (An+2, · · · , A2n+2).
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The set S′ of the solution of the system (4.17) for k ∈ {0, · · · , n+ 1} is a manifold of dimension n+ 1 and,
for all Ā2n+2 = (Ā2n, A2n+1, A2n+2), Ā2n ∈ S, D2n+2(Ā2n+2) is a polynomial of degree 2 in An+1, independent
of (An+2, · · · , A2n+2).

From Proposition 4.7, we can maximize successively every coefficient of κn in the formal series φ. This
procedure can be shown to be equivalent to the procedure exposed in Section 4.1.

Then, as suggested by Di Bartolo et al. in [14], we can obtain a formal expansion for the superheating field
at all orders.

For all i ∈ N, for t ∈]0, 1[, we set

φi(t) := Ĥi(0, t), (4.18)

where Ĥi(0, t) is introduced in (3.21).

Proposition 4.8. Let us consider Ȟi(0, Āi) introduced in (3.19).
For all i ∈ N, we have the equality

Ȟi(0, Āi) = Di(Āi). (4.19)

Proof. Let us remark from (3.15) and (3.16), that if we assume (3.20), for all i ∈ N and t ∈]0, 1[, Bi ∈ C∞(]0, 1[).
For x ∈ R

+ and t ∈]0, 1[, from Proposition 2.6, the mappings defined in (3.21) are C∞ on R
+×]0, 1[. We can

make a Taylor expansion in series at the point A0 ∈]0, 1[ of these mappings. Let us replace t by
∑∞

0 Ajκ
j and

order the expression obtained in powers of κ and sum on n. We denote by F̃ i, Q̃i and H̃i the obtained formals
series.

By constructions in the formal series F̃ i, Q̃i and H̃i, we have the equalities

F̃ i(0, κ) ∼ A(κ), Q̃i(0, κ) ∼ B(κ) and H̃i(0, κ) ∼ D(κ).

Furthermore, the triplet (F̃ i, Q̃i, H̃i) is a formal solution of the system of Ginzburg-Landau. By uniqueness of
the inner solution with initial conditions (A(κ), B(κ), D(κ)), and using Proposition 2.6, we have the equalities

F̃ i ∼ F̌ i, Q̃i ∼ Q̌i and H̃i ∼ Ȟi,

where the formal series F̌ i, Q̌i, Ȟi are defined in (3.19). In particular, we get (4.19).

To conclude, we can express the following theorem:

Theorem 4.9. Let Hi be the formal series defined by

Hi :=
∞∑

n=0

Ȟn(0, Ān)κn, (4.20)

where Ȟn(0, Ān) is introduced in (3.19).
The formal series Hi admits a unique “formal” maximum on ]0, 1[ obtained maximizing successively every

coefficient of κn in (4.20).

Proof. The function Ȟ0(0;A0) = 2
1
4A0(1−A2

0)
1
2 introduced in (3.21) admits a unique maximum on ]0, 1[ at the

point A0 = 1√
2
. We set

h0 := Ȟ0

(
0;

1√
2

)
·
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Moreover, from Propositions 4.7 and 4.8, the set S of the solutions of the system

∂Ȟ2k

∂Ak
(0; Ā2k) = 0, for k ∈ {0, · · · , n}, (4.21)

is a manifold of R
n.

For Ā2n ∈ S and Ā2n+1 := (Ā2n, A2n+1), (A2n+1 ∈ R), we set

h2n := Ȟ2n(0, Ā2n), (4.22)

h2n+1 = Ȟ2n+1(0; Ā2n+1). (4.23)

Then, we can introduce the following definition:

Definition 4.10. We call “formal” superheating field, the formal maximum of the series defined in (3.22) and
we denote it by hsh,f (κ). More precisely,

hsh,f(κ) := κ−
1
2

+∞∑
i=0

hiκ
i,

where the reals hi are defined in (4.22) and (4.23).

Remark 4.11. Practically, we have used the software Maple� to compute the coefficients in the formal expan-
sion for the superheating field (see [9]). We proceed following the method which leads us to prove Theorem 4.9.
We have recovered the results obtained by Di Bartolo et al. in [14] and shown that the numerical computation
procedure is efficient (we mathematically prove that we never divide by 0 in the procedure).

5. On a conjecture due to H.J. Fink, D.S. McLachlan and B. Rothberg-Bibby

In [19], Fink et al. have conjectured that when h is equal to the superheating field, the solution (fκ, Aκ) of
(GL)∞ satisfies

−Aκ(0)
A′

κ(0)
=

√
2.

When κ is small, let us look if the conjecture is true in a formal point of view. We have determined in the
previous sections a formal expansion of A′

κ(0) and Aκ(0) in powers of κ
1
2 . When h is equal to the superheating

field, we have the equalities (see [14])

Q0(0) = −2−
1
4 and Q′

0(0) = 2−
3
4 . (5.1)

Then, at the first order, we have the equality

−Q0(0)
Q′

0(0)
=

√
2.

But, at the second order, we have (see [14])

Q1(0) = − 9
16

2
1
4 and Q′

1(0) =
15
64

2
3
4 .



992 P. DEL CASTILLO

Then, we have the equality

−Q1(0)
Q′

1(0)
=

6
5

√
2.

The conjecture is false at the second order and we get

−Aκ(0)
A′

κ(0)
=

√
2 +

3
16
κ+ O (

κ2
)
.

When κ is large, from a formal construction due to Chapman [8] (see also [16]), which is analogous to the
Di Bartolo et al. construction [14], the solution satisfies, at the “formal” superheating field

Aκ(0) = −1 +
D√
2
κ−

2
3 + O

(
κ−

4
3

)
,

A′
κ(0) =

1√
2

+ O
(
κ−

4
3

)
.

The constant D can be estimated as approximately −0, 3. Then, when κ is large, we have

−Aκ(0)
A′

κ(0)
=

√
2 −Dκ−

2
3 + O

(
κ−

4
3

)
.

The conjecture is false in this case. It is not a mathematical proof because the expansions are formal, but this
strongly suggests that the conjecture is false.

6. Open problems

Theorem 4.9 leads one to express the following conjecture:

Conjecture 6.1. Let hsh(κ) be the superheating field, introduced in Definition 1.1.
For all n ∈ N, there exists κ0 such that, for all κ ≤ κ0, we have the asymptotic expansion

κ
1
2hsh(κ) :=

n∑
i=0

hiκ
i + o(κn), (6.1)

where the reals hi are defined in (4.22) and (4.23).

The expansions obtained in Section 2 lead us to conjecture the following result:

Conjecture 6.2. At the superheating field, there exists κ0 such that, for all κ ≤ κ0, we have the asymptotic
expansion

−Aκ(0)
A′

κ(0)
=

√
2 +

3
16
κ+ O (

κ2
)
. (6.2)
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113–125; Transl. Soviet Phys. JETP 7 (1958) 78–87.

[14] Di Bartolo, T. Dorsey and J. Dolgert, Superheating fields of superconductors: Asymptotic analysis and numerical results.
Phys. Rev. B 53 (1996); Erratum. Phys. Rev. B 56 (1997).

[15] W. Eckhaus, Matched asymptotic expansions and singular perturbations. North-Holland, Math. Studies 6 (1973).
[16] B. Helffer and F. Weissler, On a family of solutions of the second Painlevé equation related to superconductivity. European J.
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