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ISOPARAMETRIC MIXED FINITE ELEMENT APPROXIMATION OF
EIGENVALUES AND EIGENVECTORS OF 4TH ORDER EIGENVALUE

PROBLEMS WITH VARIABLE COEFFICIENTS
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Abstract. Estimates for the combined effect of boundary approximation and numerical integration
on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with
variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite
element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates
with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field
Ψ = (ψij)1≤i,j≤2 and displacement field ‘u’, have been developed.
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1. Introduction

In all papers [14, 22, 23, 29] on mixed finite element analysis of 4th order eigenvalue problems, it has been
assumed that neither any numerical integration is essential nor any approximation of the boundary is necessary
(since the boundary of the convex domain is a polygonal one in all the cases, the convexity of the domain being
a requirement for the regularity of the solution [18, 21, 24]). But in many situations,we are to consider convex
domains with curved boundary Γ. Then an approximation of the curved boundary and possibly numerical
evaluation of integrals will be essential, but convergence analysis becomes much more complex and complicated.
Even for classical, standard finite element analysis of second order self-adjoint eigenvalue problems in domains
with curved boundary we find the situation as stated in ( [40], p. 254): “· · · In contrast to finite element
analysis of boundary value problems, in the finite element analysis of eigenvalue problems, there does not exist
any abstract error estimate consisting of the sum of three terms (error of interpolation, error of approximation
of the boundary and error of numerical integration) · · · ”. Hence, in such a situation error analysis for each
specific problem can be attempted at and the proofs involved in finding the estimates will be quite complex
and too technical in nature due to these additional complicacies introduced by the boundary approximation
and obligatory use (for example, in the isoparametric case) of numerical integration. In fact, we find only
two papers [25, 40], in which this combined effect of boundary approximation and numerical integration on
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second order self-adjoint eigenvalue approximations using classical isoparametric finite element methods has
been estimated, [5] and [6] being the papers which deal with the effect of only numerical integration on eigenvalue
approximations. But the situation is still worse in the case of isoparametric mixed finite element analysis of
eigenvalue problems, for which error estimates are to be developed again for a specific mixed method formulation
(since abstract results for the isoparametric case do not exist even for source problems) and the proofs for
the estimates will be much more complex and much more technical in nature. Indeed to our knowledge, [8] is
probably the first publication on the estimates for the combined effect of boundary approximation and numerical
integration on the mixed finite element approximation of (simple) eigenvalues and eigenvectors of 4th order
self-adjoint eigenvalue problems with variable/constant coefficients, many proofs in which, as stated earlier,
have remained quite technical in spite of the best efforts of the authors to avoid these technical aspects in some
proofs. The present paper, the results of which were announced in [8] (see also [31]), relies heavily on [10] for
the corresponding source problem ([9] contains error estimates due to polygonal approximation of the curved
boundary along with numerical integration for the same source problem) and also on the results of [4] on the
mixed method scheme (see also [33, 36]) for polygonal domains. For other interesting references on eigenvalue
approximations, we refer to [2, 15]. Finally, the present paper also contains interesting results of numerical
experiments on some problems of practical importance and research interest.

2. The continuous mixed variational eigenvalue problem

Consider the eigenvalue problem: Find λ ∈ R for which ∃ non-null u such that

(PE) : Λu = λ u in Ω, u|Γ = (
∂u

∂n
)|Γ = 0, (2.1)

where (Λu)(x) ≡
2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

∂2

∂xk∂xl
(aijkl

∂2u

∂xi∂xj
)(x) ≡ (aijklu,ij),kl(x) ∀x = (x1, x2) ∈ Ω. (2.2)

(In (2.2) and also in the sequel, Einstein’s summation convention with respect to twice repeated
indices i, j, k, l = 1, 2 has been followed unless stated otherwise).

(A1): Ω is a bounded, open, convex domain with Lipschitz continuous boundary Γ which is piecewise
of Ck- class, k ≥ 3 [1, 21,35,41];

coefficients aijkl = aijkl(x) ∀x = (x1, x2) ∈ ¯̃Ω ⊂ R2,

(A2): Ω̃ being a bounded, open set with boundary Γ̃, which is piecewise of Ck-class, k ≥ 3, such that
Ω̄ = Ω ∪ Γ ⊂ Ω̃

satisfy the following assumptions: ∀i, j, k, l = 1, 2,

(A3): aijkl ∈W 2,∞(Ω̃) ↪→ C1( ¯̃Ω); aijkl ≥ 0; aijkl(x) = aklij(x) = alkij(x) = alkji(x) ∀x ∈ ¯̃Ω;

(A4): ∃α > 0 such that ∀ξ = (ξ11, ξ12, ξ21, ξ22) ∈ R4 with ξ21 = ξ12, aijkl(x)ξijξkl ≥ α‖ξ‖2R4 ∀x ∈ ¯̃Ω.

Then, the corresponding Galerkin Variational Eigenvalue Problem (PE
G) is defined by:

Find λ ∈ R for which ∃ non-null u ∈ H2
0 (Ω) [1, 28] such that

(PE
G) : a(u, v) = λ〈u, v〉0,Ω ∀v ∈ H2

0 (Ω) (2.3)
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where a(u, v) = 〈Λu, v〉0,Ω =
∫

Ω

aijklu,ijv,kl dΩ = a(v, u) ∀u, v ∈ H2
0 (Ω);

∃α0 > 0 such that a(v, v) ≥ α0‖v‖22,Ω ∀v ∈ H2
0 (Ω) [3, 20] 〈u, v〉0,Ω =

∫
Ω

uv dx.

Since a(·, ·) is continuous and H2
0 (Ω)-elliptic, the associated Galerkin Variational (Source) Problem (PG)

defined by: For given f ∈ L2(Ω), find u ∈ H2
0 (Ω) such that

(PG) : a(u, v) = 〈f, v〉0,Ω ∀v ∈ H2
0 (Ω), (2.4)

has a unique solution by Lax-Milgram lemma, and we have:

Theorem 2.1 ( [8]). (PE
G) has a countable non-decreasing system of strictly positive eigenvalues with possibly

finite multiplicities and accumulation point at ∞: i.e. 0 < λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂m ≤ · · · ↑ ∞, and ∃ a system
of eigenpairs (λ̂m, v̂m)∞m=1 such that the eigensystem (v̂m)∞m=1 is a Hilbert basis in (H2

0 (Ω); 〈〈·, ·〉〉a(·,·)) with

〈〈v̂m, v̂n〉〉a(·,·) = a(v̂m, v̂n) = δmn. Moreover, (
√
λ̂mv̂m)∞m=1 is a Hilbert basis in L2(Ω).

Now, defining Hilbert space H of symmetric tensor-valued functions in Ω by:

H = {Φ : Φ = (φij)1≤i,j≤2 with φij = φji ∈ L2(Ω)} with ‖Φ‖2H = ‖Φ‖20,Ω =
2∑

i,j=1

∫
Ω

|φij(x)|2 dx

and new coefficients Aijkl = Aijkl(x) ∀x ∈ ¯̃Ω in terms of coefficients aijkl, the algorithm for which is given
in [4], satisfying the following properties: ∀i, j, k, l = 1, 2

• ∀x ∈ ¯̃Ω, Aijkl(x) = Aklij(x) = Alkij(x) = Alkji(x); (2.5)

•∃α > 0 such thatAijkl(x)ξijξkl ≥ α‖ξ‖2R4 ∀x ∈ ¯̃Ω, ∀ξ = (ξij)i,j=1,2 ∈ R4 with ξ12 = ξ21; (2.6)

• ∀x ∈ ¯̃Ω, ∀ξ = (ξij)i,j=1,2 ∈ R4 with ξ21 = ξ12, ∀ζ = (ζij)i,j=1,2 ∈ R4 with ζ21 = ζ12,

Aijkl(x)aijmn(x)ξmnζkl = ξijζij ; Aijkl(x)aijmn(x)ξmn = ξkl, and (2.7)

(A5): Aijkl ∈W 2,∞(Ω̃) ↪→ C1( ¯̃Ω),

we construct an Auxiliary Continuous Mixed Variational Eigenvalue Problem (QE
AUX) as follows:

Find λ ∈ R for which ∃ non-null (Ψ, u) ∈H×H2
0 (Ω) (i.e. Ψ 6= 0, u 6= 0) such that

(QE
AUX) : A0(Ψ,Φ) + b0(Φ, u) = 0 ∀Φ ∈ H; −b0(Ψ, v) = λ〈u, v〉0,Ω ∀v ∈ H2

0 (Ω). (2.8)

The associated Source Problem (QAUX) in Continuous Mixed Variational Formulation is defined by:
For given f ∈ L2(Ω), find (Ψ, u) ∈ H×H2

0 (Ω) such that:

(QAUX) : A0(Ψ,Φ) + b0(Φ, u) = 0 ∀Φ ∈H; −b0(Ψ, v) = 〈f, v〉0,Ω ∀v ∈ H2
0 (Ω), (2.9)

where A0(·, ·) and b0(·, ·) are continuous bilinear forms defined by:

A0(Ψ,Φ) =
∫
Ω

Aijklψijφkl dx = A0(Φ,Ψ) with |A0(Ψ,Φ)| ≤ M̄0‖Ψ‖H‖Φ‖H for some M̄0 > 0,
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A0(Φ,Φ) ≥ α‖Φ‖2H ∀Φ ∈H and for some α > 0; (2.10)

b0(Φ, v) = −
∫
Ω

φijv,ij d Ω ∀Φ ∈ H ∀v ∈ H2
0 (Ω) with |b0(Φ, v)| ≤ m̄0‖Φ‖H‖v‖2,Ω for some m̄0 > 0,

sup
Φ∈H−{0}

|b0(Φ, v)|
‖Φ‖H

≥ β0‖v‖2,Ω ∀v ∈ H2
0 (Ω) for some β0 > 0. (2.11)

As a consequence of (2.10) and (2.11), (QAUX) has a unique solution (Ψ, u) ∈ H × H2
0 (Ω) [2, 11, 12], and we

define ~T0 : f ∈ L2(Ω) 7→ ~T0f = (S0 f, T0 f) = (Ψ, u) ∈ H×H2
0 (Ω) such that

A0(S0 f,Φ) + b0(Φ, T0 f) = 0 ∀Φ ∈H; −b0(S0 f, v) = 〈f, v〉0,Ω ∀v ∈ H2
0 (Ω), (2.12)

where S0 ∈ L(L2(Ω); H), T0 ∈ L(L2(Ω);H2
0 (Ω)) with

‖S0 f‖0,Ω + ‖T0 f‖2,Ω ≤ C‖f‖0,Ω ∀f ∈ L2(Ω), S0f = Ψ, T0f = u; S0(·) = ((aijklT0(·),kl)1≤i,j≤2. (2.13)

Then, ↪→ ·T0 = T0 ∈ L(L2(Ω);L2(Ω)) ≡ L(L2(Ω)) with ↪→: H2
0 (Ω) −→ L2(Ω) is a compact, positive, symmetric,

linear operator and the eigenvalue problem of T0 ∈ L(L2(Ω)): T0u = µ u is “equivalent” to the eigenvalue
problem (QE

AUX) with µ = 1/λ > 0. Hence, we have:

Theorem 2.2. (QE
AUX) has a countable system of strictly positive, non-decreasing system of eigenvalues with

possibly finite multiplicities and accumulation point at ∞:

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ↑ ∞ with µm = 1/λm ∀m ∈ N, (2.14)

and ∃ eigenpairs (λm; (Ψm, um))∞m=1 of (QE
AUX) : ∀m ∈ N,

A0(Ψm,Φ) + b0(Φ, um) = 0 ∀Φ ∈H; −b0(Ψm, v) = λm〈um, v〉0,Ω ∀v ∈ H2
0 (Ω), (2.15)

(um)∞m=1 being a Hilbert basis in L2(Ω) with Ψm = S0(λmum) = (aijklum,kl)i,j=1,2 ∀m ∈ N (see (2.13)).

Moreover,
(

Ψm√
λm

)∞
m=1

is an orthonormal system in (H, [·, ·]A0(·,·)) with[
Ψm√
λm

,
Ψn√
λn

]
A0(·,·)

= A0

(
Ψm√
λm

,
Ψn√
λn

)
= δmn ∀m,n ∈ N.

As a consequence of (2.10) and (2.11), ∀ fixed v ∈ H2
0 (Ω), there exists a unique σ ∈H such that A0(σ,Φ)+

b0(Φ, v) = 0 ∀Φ ∈ H by virtue of Lax-Milgram lemma and this correspondence defines I : v ∈ H2
0 (Ω) 7→ Iv =

σ ∈ H and we set

E = I(H2
0 (Ω)) = {σ : σ ∈H for which ∃v ∈ H2

0 (Ω) such that Iv = σ} ⊂ H. (2.16)

Proposition 2.1. (i) (E ; [·, ·]A0(·,·)) equipped with inner product [σ, ω]A0(·,·) = A0(σ, ω) ∀σ, ω ∈ E is a Hilbert
space and ∀ eigenpair (λm; (Ψm, um)) of (QE

AUX), Ψm = Ium = S0(λmum), m ∈ N.
(ii) I : (H2

0 (Ω), 〈〈·, ·〉〉a(·,·)) −→ (E ; [·, ·]A0(·,·)) is a linear, continuous bijection with
〈〈v, w〉〉a(·,·) = [Iv, Iw]A0(·,·) = [σ, ω]A0(·,·) = A0(σ, ω), (σ, v), (ω,w) being the linked pairs in E ×H2

0 (Ω).

SetM = E ×H2
0 (Ω) = product space of linked pairs (σ, v) with σ = Iv ∀v ∈ H2

0 (Ω). (2.17)
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Rayleigh quotient characterization of eigenpairs.

To (PE
G) we can associate Rayleigh coefficient R(v) =

a(v, v)
〈v, v〉0,Ω

∀v ∈ H2(Ω)− {0}·

But a(v, v) = 〈〈v, v〉〉a(·,·) = A0(σ, σ) with σ = Iv ∈ E . So ∀v ∈ H2
0 (Ω) with σ = Iv ∈ E , R(v) =

A0(σ, σ)
〈v, v〉0,Ω

·

i.e. R(v) is expressed through a linked pair (σ, v) = (Iv, v) ∈ E × H2
0 (Ω). Hence, it suggests to define

a new Rayleigh quotient <(·, ·) on M ≡ E × H2
0 (Ω) by (see also [14]): <(σ, v) =

A0(σ, σ)
〈v, v〉0,Ω

∀ linked pair

(σ, v) = (Iv, v) ∈ M such that <(σ, v) ≡ R(v) =
a(v, v)
〈v, v〉0,Ω

∀v ∈ H2
0 (Ω) − {0}, for which we can apply various

extrema [2,14,35,37].
Define a p-dimensional subspace Mp (resp. Up) of M (resp. H2

0 (Ω)) by: Mp = Span{(Ψm, um)pm=1};
Up = Span{(um)pm=1}, (λm; (Ψm, um)) ∈ R+ × (E × H2

0 (Ω)), 1 ≤ m ≤ p, being the first ‘p’ eigenpairs of
(QE

AUX) with 0 < λ1 ≤ λ2 ≤ · · · ≤ λp.
Theorem 2.3 (Min-Max Principle, [2, 37]).

(i) Eigensolutions of (QE
AUX) are the stationary points of <(·, ·) onM, the corresponding eigenvalues

being the values of <(·, ·) at these stationary points;
(ii) ∀p ∈ N, λp = min

Sp⊂M
dim(Sp)=p

max
(σ,v)∈Sp

<(σ, v) = max
(σ,v)∈Mp

<(σ, v) = <(Ψp, up). (2.18)

We will need another Rayleigh quotient Q(v) =
〈T0v, v〉0,Ω
〈v, v〉0,Ω

∀v ∈ H2
0 (Ω), where T0 ∈ L(L2(Ω)) is compact,

positive and symmetric. Hence,

Theorem 2.4 (Max-Min Principle, [2, 37]). ∀p ∈ N,

µp = max
S∗p⊂L2(Ω)

dim S∗p=p

min
v∈S∗p

Q(v) = min
v∈Up

Up=Span{(um)pm=1}

Q(v) = Q(up), (2.19)

where (µm, um)pm=1 are the first ‘p’ eigenpairs of T0 corresponding to the first ‘p’ eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µp
of T0, um being the m-th eigenvector of T0 (µm = 1/λm, 1 ≤ m ≤ p).

But (QE
AUX) is not suitable for finite element approximation, since C1-elements are to be used for con-

struction of finite element subspaces of H2
0 (Ω). Hence, we construct a new Continuous Mixed Varia-

tional Eigenvalue Problem (QE), which will be eminently suitable for finite element approximation using
C0-elements as follows:
Find λ ∈ R for which ∃ non-null (Ψ, u) ∈ V ×W such that

(QE) : A(Ψ,Φ) + b(Φ, u) = 0 ∀Φ ∈ V, −b(Ψ, v) = λ〈u, v〉0,Ω ∀v ∈W, (2.20)

where V = {Φ : Φ = (φij)i,j=1,2 ∈H, φij ∈ H1(Ω) ∀i, j = 1, 2} with ‖Φ‖2V = ‖Φ‖21,Ω =
2∑
i=1

2∑
j=1

‖φij‖21,Ω

W ≡ H1
0 (Ω) = {v : v ∈ H1(Ω), v|Γ = 0} with ‖v‖W = ‖v‖1,Ω;

A(·, ·) and b(·, ·) are continuous bilinear forms defined by [4]:

A(Ψ,Φ) = A0(Ψ,Φ) ∀Ψ,Φ ∈ V ⊂ H such that

|A(Ψ,Φ)| ≤M‖Ψ‖V‖Φ‖V for some M > 0; A(Φ,Φ) ≥ α‖Φ‖2H ∀Φ ∈ V, for some α > 0 [4], (2.21)
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b(Φ, v) =
∫
Ω

φij,jv,i dΩ ∀Φ ∈ V ∀v ∈W with b(Φ, v) = b0(Φ, v) ∀Φ ∈ V ∀v ∈ H2
0 (Ω) (2.22)

such that |b(Φ, v)| ≤ m‖Φ‖V‖v‖W , ∀Φ ∈ V,∀v ∈ W and some m > 0; and ∃β > 0 such that
supΦ∈V−{0}

|b(Φ,v)|
‖Φ‖V ≥ β‖v‖W ∀v ∈W ( [4]).

If (λ; (Ψ, u)) ∈ R× (V ×W ) be an eigenpair of (QE), then λ ∈ R+.
Then, the corresponding continuous Mixed Variational Source Problem (Q) [4] is defined by:
For given f ∈ L2(Ω), find (Ψ, u) ∈ V ×W such that

(Q) : A(Ψ,Φ) + b(Φ, u) = 0 ∀Φ ∈ V, −b(Ψ, v) = 〈f, v〉0,Ω ∀v ∈W. (2.23)

Since A(·, ·) is not V-elliptic, (Q) is not well-posed a priori. But we have:

Theorem 2.5 ( [4]). Let (A1–A5) hold. If u ∈ H3(Ω) ∩ H2
0 (Ω) be the solution of the Galerkin Variational

Source Problem (PG) with ψij = aijklu,kl ∈ H1(Ω) ∀i, j = 1, 2 and Ψ = (ψij)1≤i,j≤2, then (Ψ, u) ∈ V ×W is
the unique solution of (Q). Conversely, let (Ψ, u) ∈ V×W be the solution of (Q). Then, u ∈ H2

0 (Ω) and is the
unique solution of (PG) and ψij = aijklu,kl ∀i, j = 1, 2; u,kl = Aijklψij ∀k, l = 1, 2; Ψ = (ψij)1≤i,j≤2.

Hence, under the assumption that the solution u ∈ H2
0 (Ω) of Galerkin Variational Source Problem (PG) in

(2.4) has the additional regularity [18,21,24]:

(A6) : u ∈ H3(Ω) ∩H2
0 (Ω) with ‖u‖3,Ω ≤ C‖f‖0,Ω for some C > 0, (2.24)

the correspondence f ∈ L2(Ω) 7→ (Ψ, u) ∈ V × W with u ∈ H3(Ω) ∩ H2
0 (Ω) defines an operator

~Tf = (Sf, Tf) = (Ψ, u) ∈ V ×W with

A(Sf,Φ) + b(Φ, T f) = 0 ∀Φ ∈ V, −b(Sf, v) = 〈f, v〉0,Ω ∀v ∈W, (2.25)

T : f ∈ L2(Ω) 7→ Tf = u ∈ H3(Ω) ∩H2
0 (Ω), S : f ∈ L2(Ω) 7→ Sf = Ψ = (aijkl(Tf),kl)i,j=1,2 ∈ V, being the

solution component operators with S(·) = (aijkl(T (·)),kl)1≤i,j≤2 and ‖Tf‖1,Ω ≤ C‖f‖0,Ω; ‖Sf‖1,Ω ≤ C‖f‖0,Ω;
‖Sf‖0,Ω + ‖Tf‖1,Ω ≤ C‖f‖0,Ω.

Theorem 2.6 ( [8, 31]). Under (A6), the source problems (Q) and (QAUX) are “equivalent” in the sense that
these have the same solution (Ψ, u) ∈ V ×W with u ∈ H3(Ω) ∩H2

0 (Ω),
ψij = aijklu,kl ∈ H1(Ω) ∀i, j = 1, 2, Ψ = (ψij)1≤i,j≤2 ∈ V ⊂H.

Hence under (A6), ∀f ∈ L2(Ω), Sf = S0f = Ψ ∈ V ⊂ H, T f = T0f = u ∈ H3(Ω) ∩H2
0 (Ω) ⊂ W ⊂ L2(Ω)

and all the results associated with T0 ∈ L(L2(Ω)) and S0 ∈ L(L2(Ω)) will hold for T ∈ L(L2(Ω)) and S ∈
L(L2(Ω); V). Hence, we have the important result:

Theorem 2.7 ( [8]). Under (A6), mixed variational eigenvalue problems (QE) and (QE
AUX) are equivalent in

the sense that both of these eigenvalue problems have the same strictly positive eigenvalues (λm)∞m=1 and the
same eigenpairs (λm; (Ψm, um)) ∈ R+× (V×W ) with um ∈ H3(Ω)∩H2

0 (Ω), (um)∞m=1 being a Hilbert basis in
L2(Ω) and (Ψm/

√
λm)∞m=1 being an orthonormal system in (H, A(·, ·)).

Define a linked pair (σp, χp) =
p∑

m=1

cm(Ψm, um) ∈Mp with σp =
p∑

m=1

cmΨm ∈ V,

χp =
p∑

m=1

cmum ∈ H3(Ω) ∩H2
0 (Ω) cm ∈ R ∀m = 1, 2, · · · , p, where (Ψm, um) ∈ V ×W with

um ∈ H3(Ω) ∩H2
0 (Ω) is an eigenelement of (QE) corresponding to the eigenvalue λm, 0 < λ1 ≤ λ2 ≤ · · ·λp. In
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particular, for cm = 0 ∀m 6= p, cp = 1, σp = Ψp, χp = up. Then, ∀(σp, χp) ∈ Mp with χp ∈ H3(Ω) ∩H2
0 (Ω)

and σp ∈ V, ∃ a unique linked pair (σ∗p, χ∗p) ∈Mp with

χ∗p =
p∑

m=1

λmcmum and σ∗p = Iχ∗p =
p∑

m=1

λmcmΨm (2.26)

such that ~Tχ∗p = (σp, χp) , ~T being the linear operator defined in (2.25).
Examples [8]: I. Biharmonic Eigenvalue Problem is obtained from (2.2) aijkl defined by: aiiii =
1; a1212 = a2121 = a2112 = a1221 = 1/2; aijkl = 0 otherwise, which satisfy (A3–A4) [3], in Ω̃. Then, we
have Λ ≡ ∆∆, for which (A6) holds [4]. (QE) corresponds to H-H-M (Hellan-Hermann-Miyoshi) mixed
method scheme for biharmonic eigenvalue problem [4, 13, 30]. ∀m ∈ N (λm; (Ψm, um)) ∈ R+ × (V ×W ) with
um ∈ H3(Ω) ∩ H2

0 (Ω) and Ψm = (ψmij)i,j=1,2 is an eigenpair of biharmonic eigenvalue problem in H-H-M
mixed method formulation [2, 13,14,22]:∫

Ω

ψmijφijdΩ +
∫
Ω

φij,jum,idx = 0 ∀Φ ∈ V, −
∫
Ω

ψmij,jv,idΩ = λm〈um, v〉0,Ω ∀v ∈W. (2.27)

Remark 2.1. The associated biharmonic source problem corresponds to Stokes problem [34] of fluid mechanics
in stream function-vorticity formulation and also to the bending problem of isotropic elastic plates with flexural
rigidity D = 1, ν = 0 (see (2.32)).

II. Eigenvalue problems associated with the vibration of elastic plates with variable/
constant thickness. (i) In Anisotropic case [4, 27],

aiiii = Dii, a1212 = a1221 = a2121 = a2112 = D66, a1112 = a1211 = a2111 = a1121 = D16,

a1222 = a2122 = a2212 = a2221 = D26, a2211 = a1122 = D12, (2.28)

Dij = Dij(x1, x2) ∀(x1, x2) ∈ ¯̃Ω being rigidities [8, 27] for which (A2–A4) hold, and the anisotropic plate
bending operator Λ is given by:

Λu ≡ (D11u,11 + 2D16u,12 +D12u,22),11 + 2(D16u,11 + 2D66u,12 +D26u,22),12

+ (D12u,11 + 2D26u,12 +D22u,22),22. (2.29)

Then, coefficients Aijkl are defined in terms of Dij ’s [4,9,10] and the corresponding bilinear form A(·, ·) of (QE)
is given by: Ψ,Φ ∈ V,

A(Ψ,Φ) =
∫
Ω

4
|A(x)|

[
{(D22D66 −D2

26)ψ11 + (D16D26 −D12D66)ψ22 + (D12D26 −D16D22)ψ12}φ11

+ {(D16D26 −D12D66)ψ11 + (D11D66 −D2
16)ψ22 + (D16D12 −D11D26)ψ12}φ22

+ {(D12D26 −D16D22)ψ11 + (D16D12 −D11D26)ψ22 + (D11D22 −D2
12)ψ12}φ12

]
dx; (2.30)

where |A(x)| = 4(D11D22D66 −D11D
2
26 −D66D

2
12 −D22D

2
16 +D12D16D26)(x).

(ii) The Orthotropic case [3, 27,38] can be retrieved from the anisotropic case (i) by putting in (2.28)–(2.30),

aiiii = Di; a1122 = a2211 = D12 = ν1D2 = ν2D1;

a1212 = a2121 = a2112 = a1221 = Dτ , aijkl = 0 otherwise, (2.31)
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with Di = Di(x1, x2) and Dτ = Dτ (x1, x2) ∀(x1, x2) ∈ ¯̃Ω, H = D1ν2 + 2Dτ , νi, i = 1, 2 being Poisson’s
coefficients respectively, Di’s and Dτ being rigidities, assumptions (A3–A4) hold [3] and
(iii) the Isotropic case is obtained from the Orthotropic case by putting ν1 = ν2 = ν and D1 = D2 = D in
all formulae (2.31). Then, the orthotropic (resp. isotropic) plate (bending) operator Λ and the corresponding
bilinear form A(·, ·) of (QE) are given by:
Orthotropic Case: Λu ≡ (D1u,11 + ν2D1u,22),11 + 4(Dτu,12),12 + (ν1D2u,11 +D2u,22),22

A(Ψ,Φ) =
∫
Ω

[
1

D1(1− ν1ν2)
(ψ11 − ν1ψ22)φ11 +

1
D2(1− ν1ν2)

(−ν2ψ11 + ψ22)φ22 +
1
Dτ

ψ12φ12

]
dx ∀Ψ,Φ ∈ V.

Isotropic Case: Λu ≡ (D(u,11 + νu,22)),11 + 2(D(1− ν)u,12),12 + (D(νu,11 + u,22)),22.

Then, for D = constant, Λu ≡ D∆∆u, (A6) will hold [18, 21, 24]. (2.32)

A(Ψ,Φ) =
∫
Ω

[
1

D(1− ν2)
(ψ11 − νψ22)φ11 +

1
D(1− ν2)

(−νψ11 + ψ22)φ22 +
2

D(1− ν)
ψ12φ12

]
dx ∀Ψ,Φ ∈ V.

In aniso-/ortho-/isotropic cases (i–iii), ∀ eigenpair (λm; (Ψm, um)) of (QE), um is the deflection mode of the
vibrating plate, Ψm = (ψmij)1≤i,j≤2 is the corresponding bending moment tensor, ψmii being the bending
moment in the xi direction and ψm12 = ψm21, being the twisting moment, i.e.
Anisotropic Case: ψmij = aijklu,kl with aijkl’s defined by (2.28), i, j = 1, 2;
Orthotropic Case: ψm11 = D1(um,11 + ν2um,22); ψm22 = D2(ν1um,11 + um,22), ψm12 = 2Dτum,12;
Isotropic Case: ψm11 = D(um,11 + νum,22), ψm22 = D(νum,11 + um,22), ψm12 = ψm21 = D(1− ν)um,12.

Remark 2.2. In the orthotropic plates with constant thickness, D1 = constant, D2 = constant, H = D1ν2 +
2Dτ = constant and Λu ≡ D1u,1111 + 2Hu,1122 +D2u,2222.

Then, for H =
√
D1D2, Λu ≡ D1u,1111 + 2

√
D1D2u,1122 +D2u,2222 (2.33)

can be reduced to the form (2.32) by introducing a new variable ξ2 = x2(D1/D2)1/4, ξ1 = x1 ( [38], pp. 366–
367), i.e. Λu∗ ≡ D1∆∆u∗ with u∗ = u∗(ξ1, ξ2), ∆ = ∂2

∂ξ21
+ ∂2

∂ξ22
. Hence, (A6) will also hold for (2.33) [18,21,24].

3. Isoparametric mixed finite element eigenvalue problem (QE
h )

Isoparametric Triangulation τ ISO
h : Let {Pi}Nci=1 be Nc corner points of Γ at which Cm-smoothness (m ≥ 3)

does not hold and {Pj}NhNc be the set of possible additional points suitably chosen on Γ such that νh =
{Pi}Nci=1 ∪ {Pj}Nhj=Nc+1 ⊂ Γ denote the set of boundary vertices of the isoparametric triangulation of Ω̄ under
consideration.
I. τpol

h : Let τpol
h = τ̃bh ∪ τ0

h be the admissible, regular, quasi-uniform triangulation of the closed polygonal
domain Ω̄pol

h = Ωpol
h ∪Γpol

h with vertices {Pi}Nhi=1 into closed triangles T̃ with vertices (ai,T̃ )3
i=1 and the straight

sides (∂T̃i)3
i=1, ∂T̃i = [ai,T̃ , ai+1,T̃ ] (modulo 3) such that Γpol

h = ∪T̃∈τ̃bh ∂T̃1, ∂T̃1 = [a1,T̃ , a2,T̃ ] being the

boundary side ∀T̃ ∈ τ̃bh,

τ̃bh = {T̃ : T̃ ∈ τpol
h is a boundary triangle with single boundary side ∂T̃1}; (3.1)

τ0
h = {T̃ : T̃ ∈ τpol

h is an interior triangle with at most one of its vertices lying on Γ}; (3.2)

II. τexact
h : Keeping all vertices of τpol

h and interior triangles T̃ ∈ τ0
h in (3.2) undisturbed and replacing each

boundary triangle T̃ ∈ τ̃bh by a curved boundary triangle T̄ which is obtained by replacing the straight
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boundary side ∂T̃1 of T̃ ∈ τ̃bh by a part ∂T̄1 of the boundary Γ between the boundary vertices of T̃ ∈ τ̃bh. Let τ̄bh
denote all such curved boundary triangles T̄ . Then, τexact

h = τ̄bh ∪ τ0
h with Ω̄ = ∪T̄∈τexact

h
T̄ and Γ = ∪T̄∈τ̃bh∂T̄1.

III. τ ISO
h : Again, we keep all vertices of τpol

h and interior triangles T̃ ∈ τ0
h undisturbed. ∀ boundary triangle

T̃ ∈ τ̃bh in (3.1), define mid-side points a4,T̃ = (a1,T̃ + a2,T̃ )/2, a5,T̃ = (a2,T̃ + a3,T̃ )/2, a6,T̃ = (a3,T̃ + a1,T̃ )/2.
To a4,T̃ ∈ Γpol

h , we associate the point a∗4,T ∈ Γ as the point of intersection of the perpendicular bisector of ∂T̃1

at a4,T̃ with Γ. Let T̂ be the reference triangle with vertices â1 = (1, 0), â2 = (0, 1), â3 = (0, 0) and mid-side
nodes â4 = (1/2, 1/2), â5 = (0, 1/2), â6 = (1/2, 0), sides ∂T̂i = [âi, âi+1] (modulo 3) 1 ≤ i ≤ 3. Then, with
the help of canonical basis functions (φ̂i)6

i=1 of P2(T̂ ) (i.e. ∀φ̂i ∈ P2(T̂ ), φ̂i(âj) = δij , 1 ≤ i, j ≤ 2), define the
invertible isoparametric mapping by: ∀x̂ ∈ T̂ ,

FT (x̂) =
3∑
i=1

ai,T̃ φ̂i(x̂) +
6∑
i=5

ai,T̃ φ̂i(x̂) + a∗4,T φ̂4(x̂) = x ∈ T = FT (T̂ ), (3.3)

such that FT (âi) = ai,T̃ ∈ T̃ ∈ τ̃bh, 1 ≤ i 6= 4 ≤ 6, FT (â4) = a∗4,T ∈ Γ, FT (∂T̂i) = ∂Ti, 1 ≤ i ≤ 3.
Then, ∀T̃ ∈ τ̃bh in (3.1), we get a curved boundary triangle T = FT (T̂ ) with the single curved boundary side
∂T1 = FT (∂T̂1). Let τbh be all such curved boundary triangles. Then,

τ ISO
h = τbh ∪ τ0

h with τ
0
h defined by (3.2), Ω̄h = ∪T∈τ ISO

h
T, Γh = ∪T∈τbh∂T1 (3.4)

is the Isoparametric Triangulation of Ω̄, Γh being the approximation of the boundary Γ. For other meth-
ods of approximation of boundary Γ, we refer to [7, 41]. Such a τ ISO

h is regular in the sense of [16]. Ωh is not
convex, Ωh 6⊂ Ω, Ω 6⊂ Ωh in general. But by construction, the distance of Γ from Γh tends to 0 as h −→ 0 and
from (A1), ∃Ω̃ with boundary Γ̃, which is piecewise of Ck-class, k ≥ 3, such that Ω̄ ⊂ Ω̃. Hence,

(A7): ∃h0 > 0 such that ∀h ∈]0, h0[, Ω̄h ⊂ Ω̃.

Then, from (A1) and (A7) ∀h ∈]0, h0[, Ω̄h ⊂ Ω̃, Ω̄ ⊂ Ω̃ with (Ω̄h ∪ Ω̄) ⊂ Ω̃ and define

εh = ∪T∈τbh,T̄∈τ̄bh(T int − (T̄ int ∩ T int)) = Ωh − (Ω ∩ Ωh) with meas(εh) = O(h3) [10, 17]; (3.5)

ωh = ∪T̄∈τ̄bh, T∈τbh(T̄ int − (T̄ int ∩ T int)) = Ω− (Ω ∩ Ωh) with meas(ωh) = O(h3) [10, 17], (3.6)

where T int = int(T ), T̄ int = int(T̄ ), τbh ⊂ τ ISO
h , τ̄bh ⊂ τexact

h ∀h ∈]0, h0[ with h0 > 0 .
∀h boundary Γh of Ωh is piecewise of C∞-class, νh being the set of boundary vertices of τ ISO

h at which C∞

smoothness does not hold. For the properties of the invertible FT (resp. F−1
T ) and its Jacobian J(FT ) ∈ P1(T̂ )

with important estimates, we refer to [10,16,17].
We will need extensions to R2 of functions defined in Ωh (resp. Ω).

Theorem 3.1 ( [32,39]). Let D be a bounded, two-dimensional domain with Lipschitz continuous boundary
∂D, which is piecewise of Ck-class, k ≥ 1. Then,
(a) ∃ a continuous, linear extension operator E : Hk(D) −→ Hk(R2), i.e. ∃C > 0 such that

‖Eu‖k,R2 = ‖ũ‖k,R2 ≤ C‖u‖k,D ∀ fixed k ≥ 1 with Eu ↓D= ũ ↓D= u ∈ Hk(D). (3.7)

(b) The operator E is also a linear and bounded extension operator from H(k−i)(D) into H(k−i)(R2), 1 ≤ i ≤ k,
i.e. ∃C > 0 such that ‖Eu‖k−i,R2 = ‖ũ‖k−i,R2 ≤ C‖u‖k−i,D, 1 ≤ i ≤ k, with Eu ↓D= ũ ↓D= u ∈ Hk−i(D), 1 ≤
i ≤ k, and in particular,

‖ũ‖0,R2 ≤ C‖u‖0,D ∀u ∈ L2(D) with ũ ∈ L2(R2). (3.8)
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Boundaries Γh,Γ, Γ̃ of Ωh,Ω and Ω̃ respectively satisfy the smoothness conditions in Theorem 3.1. We can
choose D = Ωh (resp. Ω) and find the corresponding extension ũh = Euh (resp. ũ = Eu ).

Corollary 3.1. For D = Ωh (resp.Ω), let E : Hk(D) −→ Hk(R2), be the continuous linear extension operator
defined in (3.7) and (3.8) and ρ : Hk(R2) −→ Hk(Ω̃) be the continuous, linear restriction operator i.e. ∀ũ ∈
Hk(R2), ‖ρũ‖k,eΩ = ‖ũ‖k,eΩ ≤ C‖ũ‖k,R2 with ũ ↓

eΩ= ũ. (For restriction to Ω̃ of ũ, the same notation ũ

has been used and will be used in the sequel).
Then, ρ · E : Hk(D) −→ Hk(Ω̃) is a continuous, linear extension operator from Hk(D) into Hk(Ω̃), i .e. ∀u ∈
Hk(D), ‖ρ · Eu‖k,eΩ = ‖ũ‖k,eΩ ≤ C‖u‖k,D for some C > 0

and ‖ũ‖k−i,eΩ ≤ C‖u‖k−i,D ∀i = 1, 2, · · · , k. (3.9)

(In (3.7) and (3.9), the same letter C > 0, having different strictly positive values has been
used and this convention of using the same letter C > 0 with different strictly positive values at
different steps will be followed in the sequel unless stated otherwise).
With the help of Theorem 3.1 and Corollary 3.1, we define Ṽ and W̃ as follows:

Ṽ = {Φ̃ : Φ̃ = (φ̃ij)i, j=1, 2; φ̃ij = φ̃ji ∈ H1(Ω̃) such that φ̃ij ↓Ω= φij ∈ H1(Ω),

Φ = (φij)i,j=1,2 ∈ V} with ‖φ̃ij‖1,eΩ ≤ C‖φij‖1, Ω ∀i, j = 1, 2, for some C > 0; (3.10)

W̃ = {χ̃ : χ̃ ∈ H1
0 (Ω̃), χ̃↓

eΩ−Ω = 0 } with ‖χ̃‖
fW

= ‖χ̃‖H1
0(eΩ) = ‖χ‖1,Ω. (3.11)

To every Ω̄h we associate Hilbert spaces V(Ωh) and H1
0 (Ωh) defined by:

V(Ωh) = {Φ : Φ = (φij)i,j=1,2, φij = φji ∈ H1(Ωh) ∀i, j = 1, 2} with ‖Φ‖2V(Ωh) = ‖Φ‖21,Ωh =
2∑
i=1

2∑
j=1

‖φij‖21,Ωh ,

H1
0 (Ωh) = {v : v ∈ H1(Ωh), v|Γh = 0} with ‖v‖H1

0(Ωh) = ‖v‖1,Ωh ,
and define the auxiliary continuous, bilinear forms Ãh(·, ·) and b̃h(·, ·) by:

Ãh(Ψ, Φ) =
∫

Ωh

Aijklψijφkl dx = Ãh(Φ,Ψ) ∀Ψ,Φ ∈ V(Ωh), (3.12)

b̃h(Φ, v) =
∫

Ωh

φij, jv, i dx ∀Φ ∈ V(Ωh) ∀v ∈ H1
0 (Ωh) (3.13)

with |Ãh(Φ,Ψ)| ≤ M̃‖Φ‖0,Ωh‖Ψ‖0,Ωh and |b̃h(Φ, v)| ≤ m̃‖Φ‖1,Ωh‖v‖1,Ωh for some M̃, m̃ > 0.

Quadrature schemes: For φ̂ ∈ C0(T̂ ), the following two quadrature schemes over the reference triangle
T̂ corresponding to i = 0 and 1 will be considered:

∫
T̂

φ̂(x̂) dx̂ ≈
Ni∑
n=1

ŵinφ̂(b̂in) with weights ŵin > 0, b̂in ∈ T̂ , 1 ≤ n ≤ Ni, i = 0, 1 such that (3.14)
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Ê0(p̂) =
∫
T̂

p̂(x̂) dx̂−
N0∑
n=1

ŵ0
np̂(b̂

0
n) = 0 ∀p̂ ∈ P3(T̂ ); Ê1(p̂) =

∫
T̂

p̂(x̂) dx̂−
N1∑
n=1

ŵ1
np̂(b̂

1
n) = 0 ∀p̂ ∈ P6(T̂ ).

Then, ∀T ∈ τ ISO
h , J(FT ) > 0, J(FT ) ∈ P1(T̂ ), ∀φ ∈ C0(T ),

∫
T

φ(x) dx =
∫
T̂

φ̂(x̂)J(FT )(x̂) dx̂ ≈
Ni∑
n=1

win,Tφ(bin,T ) with φ(x) = φ · FT (x̂) = φ̂(x̂), (3.15)

where win,T = ŵinJ(FT )(b̂in) > 0, bin,T = FT (b̂in) ∈ T satisfying the assumption:

(A8): Evaluation points b̂in ∈ T̂ are vertices {âi}3i=1, midside nodes {âi}6i=4 and possibly also interior points
b̂in ∈ int(T̂ ) such that FT (b̂in) = bin,T ∈ T ∩ Ω̄ ∀T ∈ τ ISO

h , 1 ≤ n ≤ Ni, (i = 0, 1).

Then, to each τ ISO
h of Ω̄, we associate the following finite dimensional subspaces:

Xh = {φh : φh ∈ C0(Ω̄h), φh ↓T= φ̂ · F−1
T with φ̂ ∈ P2(T̂ ) ∀T ∈ τ ISO

h } ⊂ H1(Ωh); (3.16)

Vh = {Φh : Φh = (φhij)i, j=1, 2 with φhij = φhji ∈ Xh ∀i, j = 1, 2} ⊂ V(Ωh); (3.17)

Wh = {χh : χh ∈ Xh, χh|Γh = 0} ⊂ H1
0 (Ωh) with ‖χh‖Wh

= ‖χh‖1,Ωh , (3.18)

(in which the essential boundary condition χ|Γ = 0 has been replaced by χh|Γh = 0).
Corresponding to Ãh(·, ·) and b̃h(·, ·) in (3.12) and (3.13) respectively, we define new continuous bilinear forms
ANI
h (·, ·), bNI

h (·, ·) with the help of numerical integration schemes (3.14)–(3.15) satisfying (A8):

∀Ψh,Φh ∈ Vh, ANI
h (Φh, Ψh) =

∑
T∈τ ISO

h

N1∑
n=1

w1
n, T (Aijklφhijψhkl)(b1n, T ) = ANI

h (Ψh, Φh) (3.19)

with |ANI
h (Φh,Ψh)| ≤M0‖Ψh‖0,Ωh‖Φh‖0,Ωh ≤M0‖Ψh‖1,Ωh‖Φh‖0,Ωh for some M0 > 0;

bNI
h (Φh, vh) =

∑
T∈τ ISO

h

N0∑
n=1

w0
n, T (φhij, jvh, i)(b0n, T ) ∀Φh ∈ Vh, ∀vh ∈Wh (3.20)

with |bNI
h (Φh, vh)| ≤ m0‖Φh‖1,Ωh‖vh‖1,Ωh for some m0 > 0. Now, we make the assumption:

(A9): ANI
h (·, ·) in (3.19) (resp. bNI

h (·, ·) in (3.20)) is evaluated using quadrature scheme (3.14)–(3.15)
for i = 1 (resp. i = 0), which is exact for P6(T̂ ) resp. P3(T̂ )).

Now, to the eigenvalue problem (QE), we associate the Isoparametric Mixed Finite Element Eigenvalue
Problem (QE

h ):
∀h ∈]0, h0[ with h0 > 0, find λh ∈ R for which ∃ non-null (Ψh, uh) ∈ Vh ×Wh such that

(QE
h ) : ANI

h (Ψh, Φh) + bNI
h (Φh, uh) = 0 ∀Φh ∈ Vh, −bNI

h (Ψh, vh) = λh〈uh, vh〉0, Ωh ∀vh ∈Wh, (3.21)



12 P.K. BHATTACHARYYA AND N. NATARAJ

and the associated Isoparametric Mixed Finite Element Source Problem (Qh), which corresponds to
(Q) in (2.23) is defined by: For given f̃ ∈ L2(Ωh), find (Ψh, uh) ∈ Vh ×Wh such that

(Qh) : ANI
h (Ψh, Φh) + bNI

h (Φh, uh) = 0 ∀Φh ∈ Vh, −bNI
h (Ψh, vh) = 〈f̃ , vh〉0, Ωh ∀vh ∈Wh, (3.22)

where 〈f̃ , vh〉0, Ωh =
∫

Ωh

f̃vhdΩh ∀vh ∈Wh with f̃ ∈ L2(Ω̃), f̃ = f̃ ↓Ωh (3.23)

(denoted by the same notation f̃), f̃ being the extension to Ω̃ of f with f̃ = Λũ (see [10]).
Now, based on Theorem 3.1 and Corollary 3.1, we define X̃h, Ṽh and W̃h:

X̃h = {φ̃h : φ̃h ∈ H1(Ω̃), φ̃h ↓Ωh= φh ∈ Xh} with ‖φ̃h‖1,eΩ ≤ C‖φh‖1,Ωh for some C > 0; (3.24)

Ṽh = {Φ̃h : Φ̃h = (φ̃hij)i, j=1, 2 with φ̃hij = φ̃hji ∈ X̃h ∀i, j = 1, 2, Φ̃h ↓Ωh= Φh ∈ Vh} (3.25)

with ‖φ̃hij‖1,eΩ ≤ C‖φhij‖1,Ωh ∀i, j = 1, 2, ‖Φ̃h‖1,eΩ ≤ C‖Φh‖1,Ωh ; (3.26)

W̃h = {χ̃h : χ̃h ∈ H1
0 (Ω̃) with χ̃ ↓

eΩ/Ωh
= 0} with ‖χ̃h‖1,eΩ = ‖χh‖1,Ωh . (3.27)

Theorem 3.2 ( [10]). Let assumptions (A1–A9) hold. Then,

(i) ∃ᾱ0 >, independent of h, such that ANI
h (Φh, Φh) ≥ ᾱ0‖Φh‖20, Ωh ∀Φh ∈ Vh; (3.28)

(ii) ∃β̄0 > 0, independent of h, such that sup
Φh∈Vh−{0}

|bNI
h (Φh, χh)|
‖Φh‖Vh

≥ β̄0‖χh‖1,Ωh ∀χh ∈Wh [10 ]; (3.29)

(iii) The isoparametric mixed finite element source problem (Qh) defined in (3.22) has a unique solution.

Remark 3.1. Vh- ellipticity of ANI
h (·, ·) in (3.28) will hold even if the quadrature scheme (3.14) with i=1

be exact for P4(T̂ ) (instead of P6(T̂ ) in (A9)) (see [10]). But this assumption (A9) will be necessary in
Proposition 4.1 (see Rem. 5.4 for more details).

Hence, we can define ~Th : f̃ ∈ L2(Ωh) 7→ ~Thf̃ = (Shf̃ , Thf̃) = (Ψh, uh) ∈ Vh ×Wh such that

ANI
h (Shf̃ ,Φh) + bNI

h (Φh, Thf̃) = 0 ∀Φh ∈ Vh; −bNI
h (Shf̃ , vh) = 〈f̃ , vh〉0,Ωh ∀vh ∈Wh, (3.30)

where Sh ∈ L(L2(Ωh); Vh) and Th ∈ L(L2(Ωh);Wh) with Shf̃ = Ψh ∈ Vh, Thf̃ = uh ∈ Wh and ‖Shf̃‖0,Ωh +
‖Thf̃‖1,Ωh ≤ C‖f̃‖0,Ωh for some C > 0, independent of h [8].

Theorem 3.3 ( [10]). Let assumptions (A1–A9) hold and (Ψ, u) ∈ V ×W with u ∈ H3(Ω) ∩ H2
0 (Ω) (resp.

(Ψh, uh) ∈ Vh ×Wh) be the unique solution of (Q) (resp. (Qh)).
Let ũ ∈ H3(Ω̃) be an extension to Ω̃ of u ∈ H3(Ω) ∩ H2

0 (Ω) such that ψ̃ij = aijklũ,kl ∈ H1(Ω̃) ∀i, j = 1, 2
with Ψ̃ = (ψ̃ij)1≤i,j≤2 and (Ψ̃, ũ) ∈ Ṽ × W̃ (resp. (Ψ̃h, ũh) ∈ Ṽh × W̃h) be an extension to Ω̃ of (Ψ, u) ∈
V×W (resp. (Ψh, uh) ∈ Vh×Wh). Let f̃ ∈ L2(Ω̃) be an extension to Ω̃ of f ∈ L2(Ω) such that f̃ = Λũ. Then,
∃C > 0, independent of h, such that

‖Ψ̃−Ψh‖0,Ωh ≤ Ch
[
‖ũ‖3,Ω̃ + ‖Ψ̃‖1,Ω̃

]
, ‖ũ− uh‖1,Ωh ≤ Ch

[
‖ũ‖3,Ω̃ + ‖Ψ̃‖1,Ω̃

]
. (3.31)
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Since Wh ⊂ H1
0 (Ωh) ⊂ L2(Ωh), we consider Th ↓Wh

= Th ∈ L(Wh) as the finite dimensional linear operator
on (Wh; 〈·, ·〉0,Ωh) defined by: Th : χh ∈Wh 7→ Thχh = wh ∈Wh such that ∀χh ∈Wh,

ANI
h (Sh χh, Φh) + bNI

h (Φh, Thχh) = 0 ∀Φh ∈ Vh, −bNI
h (Sh χh, vh) = 〈χh, vh〉0, Ωh ∀vh ∈Wh. (3.32)

Then, (µh;uh) ∈ R+ × Wh is an eigenpair of the symmetric, positive-definite operator Th on Wh ⇐⇒
(λh; (Ψh, uh)) ∈ R+ × (Vh × Wh) is an eigenpair of (QE

h ) with λh = 1/µh and Ψh = Sh(λhuh), and we
have:

Theorem 3.4 ( [8]). (QE
h ) has strictly positive, possibly repeated, real eigenvalues: For Nh = dim Wh,

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λNh,h with λk,h = 1/µk,h, 1 ≤ k ≤ Nh, (µ1,h ≥ µ2,h ≥ · · · ≥ µNh,h > 0
being eigenvalues of Th), and ∃ corresponding eigensolutions (Ψm,h, um,h) ∈ Vh × Wh, 1 ≤ m ≤ Nh, of
(QE

h ) i.e. ANI
h (Ψm,h,Φh) + bNI

h (Φh, um,h) = 0 ∀Φh ∈ Vh, −bNI
h (Ψm,h, vh) = λm,h〈um,h, vh〉0,Ωh ∀vh ∈Wh such

that (um,h)Nhm=1 is an orthonormal basis in (Wh, 〈·, ·〉0,Ωh) and
(

Ψm,h√
λm,h

)Nh
m=1

is an orthonormal system in

(Vh, [·, ·]ANI
h (·,·)); i.e. in Vh equipped with inner product [·, ·]ANI

h (·,·).

By virtue of (3.28), applying Lax-Milgram lemma, we can define Ih : vh ∈Wh 7→ Ihvh = σh ∈ Vh such that
ANI
h (Ihvh,Φh) + bNI

h (Φh, vh) = 0 ∀Φh ∈ Vh, and set

Eh = Ih(Wh) = {σh : σh ∈ Vh for which ∃vh ∈Wh such that

ANI
h (σh,Φh) + bNI

h (Φh, vh) = 0 ∀Φh ∈ Vh} = Span
{(

Ψm,h√
λm,h

)Nh
m=1

}
· (3.33)

Then, Ih : (Wh, 〈·, ·〉0,Ωh) −→ (Eh, [·, ·]ANI
h (·,·)) is linear and bijective. Then, (λm,h; (Ψm,h, um,h)) ∈ R+ ×

(Vh ×Wh) is an eigenpair of (QE
h ) =⇒ Ψm,h = Ihum,h, 1 ≤ m ≤ Nh = dim Wh.

Define Nh- dimensional space Mh of linked pairs (σh, vh) = (Ihvh, vh) by: Mh = Eh × Wh. Then,
(Ψm,h, um,h) ∈Mh for 1 ≤ m ≤ Nh.

Rayleigh quotient characterization of approximate eigenvalues.
As in the continuous case, ∀ linked pair (σh, vh) ∈ Mh, we define the new Rayleigh quotient

<h(·, ·) by : <h(σh, vh) =
ANI
h (σh, σh)
〈vh, vh〉0,Ωh

∀(σh, vh) ∈ Mh. (3.34)

Define Up,h = Span{(um,h)pm=1} ⊂Wh, Mp,h = Span{(Ψm,h, um,h)pm=1} ⊂ Mh, (3.35)

where (λm,h, (Ψm,h, um,h))pm=1 are the first ‘p’ eigenpairs of (QE
h ) with 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λp,h with

p ≤ Nh, 〈um,h, un,h〉0,Ωh = δmn,

[
Ψm,h√
λm,h

,
Ψn,h√
λn,h

]
= δmn.

Theorem 3.5 (Min-Max Principle, [2, 37]).

(i) Eigensolutions of (QE
h ) are the stationary points of <h(·, ·) onMh, the corresponding eigenvalues

of (QE
h ) being the values of <h(·, ·) at these stationary points;

(ii) λp,h = min
Sp,h⊂Mh

dimSp,h=p

max
(σh,vh)∈Sp,h

<h(σh, vh) = max
(σh,vh)∈Mp,h

<h(σh, vh) = <h(Ψp,h, up,h) ∀p = 1, 2, · · · , Nh

((λp,h, (Ψp,h, up,h)) being an eigenpair of (QE
h )).
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Since Th ∈ L(Wh) is a symmetric, positive-definite, linear operator, we can define another

Rayleigh quotient Qh(·) by Qh(vh) =
〈Thvh, vh〉0,Ωh
〈vh, vh〉0,Ωh

∀vh ∈Wh. (3.36)

Theorem 3.6 (Max-Min Principle, [2, 37]). For 1 ≤ p ≤ Nh = dimWh,

µp,h = max
S∗
p,h
⊂Wh

dim S∗
p,h

=p

min
vh∈S∗p,h

Qh(vh) = min
vh∈Up,h⊂Wh

Qh(vh) = Qh(up,h), (3.37)

(µp,h; up,h) being the p-th eigenpair of Th with µp,h = 1/λp,h.

For χ∗p ∈ H3(Ω)∩H2
0 (Ω) defined in (2.26), let χ̃∗p ∈ H3(Ω̃) be its extension to Ω̃ and χ̃∗p ↓Ωh be the restriction

to Ωh of χ̃∗p, which will be denoted by the same notation χ̃∗p, such that

‖χ̃∗p‖3,Ωh ≤ C‖χ̃∗p‖3,eΩ ≤ C‖χ
∗
p‖3,Ω for some C > 0 (see (3.9)). (3.38)

Then, ∃ a unique ~Th χ̃
∗
p = (Sh χ̃∗p, Thχ̃∗p) ∈ Vh ×Wh defined by (3.30), i.e.

ANI
h (Shχ̃∗p,Φh) + bNI

h (Φh, Thχ̃∗p) = 0 ∀Φh ∈ Vh; −bNI
h (Shχ̃∗p, vh) = 〈χ̃∗p, vh〉0,Ωh ∀vh ∈Wh. (3.39)

Since from (2.26) ~Tχ∗p = (σp, χp) ∈Mp , it suggests to define a new linear operator
~Πh :Mp −→Mh ⊂ Vh×Wh by: (σp, χp) ∈Mp 7→ ~Πh(σp, χp) = (Π1hσp,Π2hχp) = ~Thχ̃

∗
p = (Shχ̃∗p, Thχ̃

∗
p) such

that Π1hσp = Shχ̃
∗
p, Π2hχp = Thχ̃

∗
p i.e.

ANI
h (Π1hσp,Φh) + bNI

h (Φh,Π2hχp) = 0 ∀Φh ∈ Vh; −bNI
h (Π1hσp, vh) = 〈χ̃∗p, vh〉0,Ωh ∀vh ∈Wh. (3.40)

Then we have: (~Πh · ~T)χ∗p = (~Th ·ρh ·E)χ∗p with ρh(Eχ∗p) = ρhχ̃
∗
p = χ̃∗p ↓Ωh , ~Πh being a linear operator, E (resp.

ρh) being the extension (resp. restriction) operator satisfying (3.38) (see also Cor. 3.1). Applying Theorem 3.3,
we get the following result:

Corollary 3.2. Let assumptions (A1–A9) hold. Let χ̃∗p ∈ H3(Ω̃) be an extension to Ω̃ of χ∗p ∈ H3(Ω)∩H2
0 (Ω)

defined in (2.26) such that (3.38) holds and (σp, χp) ∈Mp with χp ∈ H3(Ω)∩H2
0 (Ω) and ‖χp‖0,Ω = 1 be defined

by:

A(σp,Φ) + b(Φ, χp) = 0 ∀Φ ∈ V; −b(σp, v) = 〈χ∗p, v〉0,Ω ∀v ∈W. (3.41)

Let ~Πh(σp, χp) = (Π1hσp,Π2hχp) ∈Mh ⊂ Vh ×Wh be defined by (3.40).

Then, ∃ C > 0, independent of ‘h’, such that ‖σ̃p −Π1hσp‖0,Ωh ≤ Ch(‖χ̃p‖3,eΩ + ‖σ̃p‖1,eΩ),
‖χ̃p −Π2hχp‖1,Ωh ≤ Ch(‖χ̃p‖3,eΩ + ‖σ̃p‖1,eΩ), (3.42)

where σ̃p ∈ Ṽ (resp. χ̃p ∈ H3(Ω̃)) is the extension to Ω̃ of σp ∈ V (resp. χp ∈ H3(Ω) ∩H2
0 (Ω)).
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4. Error estimates

Here, we shall develop error estimates for the case of simple eigenvalues.

Theorem 4.1. Let assumptions (A1–A9) hold. Let (λp; (Ψp, up)) ∈ R+× (V×W ) with up ∈ H3(Ω)∩H2
0 (Ω)

(resp. (λp,h; (Ψp,h, up,h)) ∈ R+ × (Vh ×Wh)) be an eigenpair of (QE) (resp. (QE
h )), λp (resp. λp,h) being

a simple eigenvalue of (QE) (resp. (QE
h )) and (Ψ̃p, ũp) ∈ Ṽ × H3(Ω̃) (resp.(Ψ̃p,h, ũp,h) ∈ Ṽh × W̃h) be the

extension to Ω̃ of the eigensolution (Ψp, up) of (QE) (resp. (Ψp,h, up,h) of (QE
h )), 1 ≤ p ≤ Nh = dim Wh,

satisfying (3.7)–(3.9). Then, ∃C > 0, independent of ‘h’ and ‘p’, such that

‖ũp − up,h‖1,Ωh ≤ C
[
‖ũp − χh‖1,Ωh + ‖Ψ̃p −Ψp,h‖0,Ωh + sup

Φh∈Vh−{0}

∣∣bNI
h (Φh, χh)− b̃h(Φh, χh)

∣∣
‖Φh‖1,Ωh

+ sup
Φh∈Vh−{0}

∣∣ANI
h (Ψp,h,Φh)− Ãh(Ψp,h,Φh)

∣∣
‖Φh‖1,Ωh

+ sup
Φh∈Vh−{0}

∣∣Ãh(Ψ̃p,Φh)−A(Ψp, Φ̃h)
∣∣

‖Φh‖1,Ωh

+ sup
Φh∈Vh−{0}

∣∣b̃h(Φh, ũp)− b(Φ̃h, up)
∣∣

‖Φh‖1,Ωh

]
∀χh ∈Wh, (Φ̃h ∈ Ṽh with Φ̃h ↓Ωh= Φh ∈ Vh). (4.1)

Proof.

‖ũp − up,h‖1,Ωh ≤ ‖ũp − χh‖1,Ωh + ‖χh − up,h‖1,Ωh ∀χh ∈Wh. (4.2)

From (3.29), ∃ β̄0 > 0, independent of ‘h’ and ‘p’, such that

‖χh − up,h‖1,Ωh ≤
1
β̄0

sup
Φh∈Vh−{0}

|bNI
h (Φh, χh − up,h)|
‖Φh‖1,Ωh

· (4.3)

But bNI
h (Φh, χh − up,h) = b̃h(Φh, χh − ũp) +

[
bNI
h (Φh, χh)− b̃h(Φh, χh)

]
+
[
b̃h(Φh, ũp)− bNI

h (Φh, up,h)
]
.

Now, using (2.20) (resp. (3.21)), we have

|bNI
h (Φh, χh − up,h)| ≤ |b̃h(Φh, χh − ũp)|+ |Ãh(Ψ̃p −Ψp,h,Φh)|+ |bNI

h (Φh, χh)− b̃h(Φh, χh)|
+|Ãh(Ψ̃p,Φh)−A(Ψp, Φ̃h)|+ |ANI

h (Ψp,h,Φh)− Ãh(Ψp,h,Φh)|
+|b̃h(Φh, ũp)− b(Φ̃h, up)| ∀χh ∈Wh (Φ̃h ∈ Ṽh with Φ̃h ↓Ωh∈ Vh). (4.4)

Applying the continuity of Ãh(·, ·) and b̃h(·, ·) in (4.4) and using it in (4.3) and (4.2), (4.1) follows.

Remark 4.1. In (4.1), the third and fourth terms on the right hand side are due to numerical integration and
the fifth and sixth terms appear owing to the approximation of the boundary.

For finding estimates, we will need the following important results.

Lemma 4.1 ( [41]). Let Γ be Lipschitz-continuous curved boundary of the convex domain Ω, which is piecewise
of Ck-class, k ≥ 3. ∀h ∈]0, h0[ with h0 > 0, let τ ISO

h be the quasi-uniform regular isoparametric triangulation of
Ω̄ defined in (3.4) and Ω̃ be the domain satisfying (A2) and (A7). Let εh and ωh be defined by (3.5) and (3.6)
respectively. Then, ∃C > 0, independent of h, such that

(a) ‖ṽ‖0,εh ≤ Ch3/2‖ṽ‖1,eΩ; ‖v‖0,ωh ≤ Ch3/2‖ṽ‖1,eΩ ∀ṽ ∈ H
1(Ω̃) with ṽ ↓Ω= v. (4.5)
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(b) Moreover, if ũ ∈ H3(Ω̃) be the extension to Ω̃ of u ∈ H3(Ω) ∩H2
0 (Ω), we have

‖ũ,i‖0,εh ≤ Ch3|ũ|2,eΩ and ‖u,i‖0,ωh ≤ Ch3|ũ|2,eΩ (i = 1, 2). (4.6)

Inverse inequalities [16]: ∀φh ∈ Xh (resp.Φh ∈ Vh), ∃C > 0,

|φh|1,Ωh ≤ (C/h)‖φh‖0,Ωh (resp. |Φh|1,Ωh ≤ (C/h)‖Φh‖0,Ωh). (4.7)

Now, ∀h ∈]0, h0[ with h0 > 0, we define Xh -interpolation operator Ph : Hs(Ω̃) −→ Xh:

For χ̃ ∈ Hs(Ω̃), s ≥ 2, Phχ̃ ∈ Xh, Phχ̃(ai, T ) = χ̃(ai, T ) = χ(ai, T ), 1 ≤ i ≤ 6, ∀T ∈ τ ISO
h . (4.8)

Then, ‖χ̃−Phχ̃‖r, Ωh ≤ Chs−r|χ̃|s, Ωh (s ≥ 2), and χ̃ ∈ H3(Ω̃), χ̃ ↓Γ= 0 ( resp. χ̃ ↓Γh= 0)

=⇒ Phχ̃ ∈Wh with ‖χ̃−Phχ̃‖r,Ωh ≤ Ch3−r|χ̃|3,Ωh (r = 0, 1) [16]. (4.9)

We have the following results:
• Under (A7–A9). ∀Φ ∈ V(Ωh) ∃ a tensor-valued function Θh ∈ Vh such that b̃h(Φ, χh) = bNI

h (Θh, χh) ∀χh ∈
Wh, and ∃ C > 0, independent of h, such that

‖Φ−Θh‖r,Ωh ≤ Ch1−r‖Φ‖1,Ωh (r = 0, 1) [10]. (4.10)

• Let f̃ be an extension to Ω̃ of f ∈ L2(Ω) with f̃ = Λũ = (aijklũ,kl),ij ∈ L2(Ω̃). Let ũ ∈ H3(Ω̃) be an
extension to Ω̃ of the solution u ∈ H3(Ω) ∩ H2

0 (Ω) of (PG) such that ψ̃ij = aijklũ,kl ∈ H1(Ω̃) ∀i, j = 1, 2
and Ψ̃ = (ψ̃ij)1≤i,j≤2 ∈ Ṽ with ũ ↓Ω= u ∈ H3(Ω) ∩ H2

0 (Ω), Ψ̃ ↓Ω= Ψ ∈ V, Ψ̃ ↓Ωh∈ V(Ωh). Then, for
Ψ̃, ∃Θh ∈ Vh such that bNI

h (Θh, χh) = −〈f̃ , χh〉0,Ωh and

‖Ψ̃−Θh‖r, Ωh ≤ Ch1−r‖Ψ̃‖1, Ωh (r = 0, 1) for some C > 0 [10]. (4.11)

Proposition 4.1. Suppose that (A5) holds i.e. coefficients Aijkl ∈W 2,∞(Ω̃) ∀i, j, k, l = 1, 2. Let assumptions
(A1–A9) hold. Then, ∃C > 0, independent of h, such that ∀Φh, σh ∈ Vh,

|Ãh(Φh, σh)−ANI
h (Φh, σh)| ≤ Ch2‖A‖2,∞,eΩ‖Φh‖0,Ωh‖σh‖0,Ωh (4.12)

where ‖A‖2,∞,eΩ ≥ ‖A‖2,∞,Ωh =
∑

T∈τ ISO
h

2∑
i,j,k,l=1

‖Aijkl‖2,∞,T .

Proof. The proof is similar to that given in [10] for Aijkl ∈W 1,∞(Ω̃).

Remark 4.2. (4.12) gives an estimate of the error due to numerical integration associated with the definition
of ANI

h (·, ·) in (3.19) (see also Rem. 4.1).

Proposition 4.2. Suppose that assumptions (A1–A9) hold. Let (λp; (Ψp, up)) ∈ R+×(V×W ) be an eigenpair
of (QE) corresponding to the simple eigenvalue λp with up ∈ H3(Ω) ∩ H2

0 (Ω), Ψp = (ψpij)1≤i,j≤2, ψpij =
aijklup,kl ∈ H1(Ω) ∀i, j = 1, 2. Let ũp ∈ H3(Ω̃) be the extension to Ω̃ of up ∈ H3(Ω) ∩ H2

0 (Ω) such that
ψ̃pij = aijklũp,kl ∈ H1(Ω̃) ∀i, j = 1, 2, Ψ̃p = (ψ̃pij)1≤i,j≤2 ∈ Ṽ, and let Φ̃h ∈ Ṽh be an extension to Ω̃ of
Φh ∈ Vh defined in (3.25). Then, the following estimates hold:

I.|A(Ψp,Ψp)− Ãh(Ψ̃p, Ψ̃p)| ≤ Ch3‖ũp‖3,eΩ‖Ψ̃p‖1,eΩ; II.|A(Ψp, Φ̃h)− Ãh(Ψ̃p,Φh)| ≤ Ch3‖ũp‖3,eΩ‖Φh‖1,Ωh ;

III.|b(Φ̃h, up)− b̃h(Φh, ũp)| ≤ Ch3‖ũp‖2,eΩ‖Φh‖1,Ωh ; IV.|b̃h(Φh, χh)− bNI
h (Φh, χh)| ≤ Ch2‖Φh‖1,Ωh‖χh‖1,Ωh .
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Following [37], we prepare some new results to be used in the sequel.

Proposition 4.3. Let (σp, χp) ∈ Mp be a linked pair with χp ∈ H3(Ω) ∩ H2
0 (Ω), ‖χp‖0,Ω = 1 and σp ∈ V

be defined by (3.41) and χ̃p ∈ H3(Ω̃) (resp. σ̃p ∈ Ṽ) be extension to Ω̃ of χp (resp. σp). Let ~Πh(σp, χp) =
(Π1hσp,Π2hχp) ∈ Mh ⊂ Vh ×Wh be defined by (3.40) such that the estimates (3.42) hold. Then, ∃h0 ∈]0, 1[
such that ∀h ∈]0, h0[

〈Π2hχp,Π2hχp〉−1
0,Ωh

< (1 + 2 |α̃p,h|), where α̃p,h = ‖χp‖20,ωh − ‖χ̃p‖
2
0,εh + αp,h with (4.13)

αp,h = max
(σp,χp)∈Mp,‖χp‖0,Ω=1

{∣∣∣∣2〈χ̃p, χ̃p −Π2hχp〉0,Ωh − ‖χ̃p −Π2hχp‖20,Ωh
∣∣∣∣} · (4.14)

Proof.

〈Π2hχp,Π2hχp〉0,Ωh = ‖χp‖20,Ω − ‖χp‖20,ωh + ‖χ̃p‖20,εh −
[
2〈χ̃p, χ̃p −Π2hχp〉0,Ωh − ‖χ̃p −Π2hχp‖20,Ωh

]
. (4.15)

Also, from (3.42) and (4.14),

αp,h ≤ Ch max
(σp,χp)∈Mp,‖χp‖0,Ω=1

{
(‖χ̃p‖3,eΩ + ‖σ̃p‖1,eΩ)

[
2 ‖χ̃p‖0,eΩ + h(‖χ̃p‖3,eΩ + ‖σ̃p‖1,eΩ)

]}
−→ 0

as h −→ 0 and ∃h0 ∈]0, 1[ such that ∀h ∈]0, h0[, αp,h < 1/4. (4.16)

Again, from (4.5), we have : ‖χp‖0,ωh ≤ Ch3/2‖χ̃p‖1,eΩ, ‖χ̃p‖0,εh ≤ Ch
3/2‖χ̃p‖1,eΩ ∀χ̃p ∈ H

3(Ω̃) (4.17)

with χp ∈ H3(Ω)∩H2
0 (Ω), ‖χp‖0,Ω = 1 and (σp, χp) ∈ Mp. Then, the right hand sides of these two inequalities

in (4.17) tend to 0 as h −→ 0. Hence, ∃h0 ∈]0, 1[ such that

∀h ∈]0, h0[, ‖χp‖0,ωh < 1/2, ‖χ̃p‖0,εh < 1/
√

2. (4.18)

Thus, ∃h0 ∈]0, 1[ such that ∀h ∈]0, h0[,

0 ≤ ‖χp‖20,ωh < 1/4, 0 ≤ ‖χ̃p‖20,εh < 1/2, 0 ≤ αp,h < 1/4 =⇒ |α̃p,h| < 1/2, and (1 + 2|α̃p,h|) < 2. (4.19)

Thus, from (4.15) and (4.19), ∀h ∈]0, h0[, h0 ∈]0, 1[,
〈Π2hχp,Π2hχp〉0,Ωh ≥ 1− (‖χp‖20,ωh − ‖χ̃p‖

2
0,εh

+ αp,h) ≥ (1− |α̃p,h|) =⇒ 〈Π2hχp,Π2hχp〉−1
0,Ωh

< (1 + 2|α̃p,h|).
(In (4.16), (4.18) and (4.19), the same h0 ∈]0, 1[ has been used to denote different small positive
numbers on ]0, 1[ and this convention of using the same h0 to denote different small numbers on
]0, 1[ at different steps will be followed also in the sequel).

Lemma 4.2. : ∀h ∈ ]0, h0[ with h0 ∈ ]0, 1[ for which (4.19) holds, (i) linear operator ~Πh : Mp −→ ~ΠhMp ⊂
Mh defined by (3.40) is injective, (ii) dim (~ΠhMp) = dimMp = p.

Proof. For (i), we are to show that ~Πh(σp, χp) = (Π1hσp,Π2hχp) = (0, 0) =⇒ (σp, χp) = (0, 0). Assume the
contrary, i.e. ∃(σ̂p, χ̂p) 6= (0, 0) in Mp with χ̂p ∈ H3(Ω) ∩ H2

0 (Ω) and ‖χ̂p‖0,Ω = 1, for which (4.19) holds
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∀h ∈]0, h0[ with h0 > 0, and ~Πh(σ̂p, χ̂p) = (Π1hσ̂p,Π2hχ̂p) = (0, 0) i.e. Π1hσ̂p = 0, Π2hχ̂p = 0 such that˜̂χp ∈ H3(Ω̃) is its extension to Ω̃.

αp,h ≥
{∣∣∣∣2〈˜̂χp, ˜̂χp −Π2hχ̂p >0,Ωh −〈˜̂χp −Π2hχ̂p, ˜̂χp −Π2hχ̂p〉0,Ωh

∣∣∣∣} (see (4.14))

= 1− ‖χ̂p‖20,ωh + ‖˜̂χp‖20,εh (4.20)

with ωh = Ω−(Ω∩Ωh), εh = Ωh−(Ω∩Ωh) =⇒ αp,h+‖χ̂p‖20,ωh−‖˜̂χp‖20,εh ≥ 1, which contradicts the hypothesis
that (4.19) holds: ∀h ∈]0, h0[ with h0 ∈]0, 1[, αp,h + ‖χ̂p‖20,ωh − ‖˜̂χp‖20,εh < 1/2. Hence, our assumption that
∃(σ̂p, χ̂p) 6= (0, 0) is wrong i.e. (σ̂p, χ̂p) = (0, 0) =⇒ Linear operator ~Πh is injective.
(ii) ~Πh is linear and injective from p-dimensional spaceMp onto ~ΠhMp ⊂Mh =⇒ dim(~ΠhMp) = dimMp = p.

Now, first of all, we will prove that limh→0 λp,h = λp, λp (resp. λp,h) being a simple eigenvalue of (QE) (resp.
(QE

h )), and using this, we will find the estimate for ‖ũp − up,h‖0,Ωh in order to find the “optimal” estimate for
|λp − λp,h| and finally, for ‖Ψ̃p − Ψp,h‖0,Ωh and ‖ũp − up,h‖1,Ωh in this order (see also [14]). The proofs are
highly technical in nature. For the sake of brevity, we state the outline of the proof and the final results (for
details of proofs, see [8]).

Theorem 4.2. Let assumptions (A1–A9) and assumptions of Proposition 4.2 hold. Let ~Πh be the bijective
operator defined by (3.40) such that Lemma 4.2 and estimates (3.42) hold ∀h ∈]0, h0[. Then, lim

h→0
λp,h = λp.

Proof. From Theorem 3.5,

λp,h = min
Sp,h⊂Mh

dim Sp,h=p

max
(σh,vh)∈Sp,h

[
ANI
h (σh, σh)
〈vh, vh〉0,Ωh

]
≤ max

(σh,vh)∈~ΠhMp

[
ANI
h (σh, σh)
〈vh, vh〉0,Ωh

]
, (4.21)

=⇒ λp,h ≤ max
(σp,χp)∈Mp

‖χp‖0,Ω=1

[
ANI
h (Π1hσp,Π1hσp)
〈Π2hχp,Π2hχp〉0,Ωh

]
, since ~Πh(σp, χp) = (Π1hσp,Π2hχp) ∈ ~ΠhMp. (4.22)

Then ∀h ∈]0, h0[ with some h0 ∈]0, 1[, for (σp, χp) ∈ Mp with ‖χp‖0,Ω = 1,

〈Π2hχp,Π2hχp >
−1
0,Ωh

< 1 + 2 |α̃p,h| < 2 (see (4.13) and (4.19)) (4.23)

ANI
h (Π1hσp,Π1hσp) ≤ A(σp, σp) + |Ãh(σ̃p, σ̃p)−A(σp, σp)|+ |Ãh(Π1hσp,Π1hσp)− Ãh(σ̃p, σ̃p)|

+ |ANI
h (Π1hσp,Π1hσp)− Ãh(Π1hσp,Π1hσp)| with σ̃p ∈ Ṽ, (σp, χp) ∈ Mp, (4.24)

where • A(σp, σp) ≤ max
(σ̄p,χ̄p)∈Mp

‖χ̄p‖0,Ω=1

[
A(σ̄p, σ̄p)
〈χ̄p, χ̄p〉0,Ω

]
= λp for linked pair (σp, χp) ∈Mp ; (4.25)
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•|Ãh(σ̃p, σ̃p)−A(σp, σp)| ≤ Ch3‖σ̃p‖1,Ω̃‖χ̃p‖3,Ω̃; (see (I), Prop. 4.2) (4.26)

•|Ãh(Π1hσp,Π1hσp)− Ãh(σ̃p, σ̃p)| = |Ãh(σ̃p −Π1hσp, σ̃p −Π1hσp)− 2Ãh(σ̃p, σ̃p −Π1hσp)|
≤ Ch(‖σ̃p‖1,eΩ + ‖χ̃p‖3,eΩ)[h(‖σ̃p‖1,eΩ + ‖χ̃p‖3,eΩ) + ‖σ̃p‖0,eΩ] (4.27)

(using continuity of Ãh(·, ·) and (3.42));

• |ANI
h (Π1hσp,Π1hσp)− Ãh(Π1hσp,Π1hσp)| ≤ Ch2‖Ã‖2,∞,eΩ[(1 + h)‖σ̃p‖1,eΩ + h‖χ̃p‖3,eΩ]2, (4.28)

from Proposition 4.1 and ‖Π1hσp‖0,Ωh ≤ ‖σ̃p‖0,Ωh + ‖σ̃p −Π1hσp‖0,Ωh ≤ C[(1 + h)‖σ̃p‖1,eΩ + h‖χ̃p‖3,eΩ].
Hence, from (4.22)–(4.28),

λp,h ≤ max
(σp,χp)∈Mp

‖χp‖0,Ω=1

[
ANI
h (Π1hσp,Π1hσp)
〈Π2hχp,Π2hχp〉0,Ωh

]
≤ λp + 2 max

(σp,χp)∈Mp

‖χp‖0,Ω=1

{|α̃p,h|}λp

+ Ch max
(σp,χp)∈Mp

‖χp‖0,Ω=1

{
(1 + 2 |α̃p,h|)[h2‖σ̃p‖1,eΩ‖χ̃p‖3,eΩ + (‖σ̃p‖1,eΩ + ‖χ̃p‖3,eΩ)

× (h(‖σ̃p‖1,eΩ + ‖χ̃p‖3,eΩ) + ‖σ̃p‖0,eΩ) + ‖Ã‖2,∞,eΩ((1 + h)‖σ̃p‖1,eΩ + h‖χ̃p‖3,eΩ)2]
}

(4.29)

where |α̃p,h| ≤ (‖χp‖20,ωh + ‖χ̃p‖20,εh + αp,h) −→ 0 as h −→ 0 by virtue of (4.16) and (4.17)

=⇒ lim
h→0

max
(σp,χp)∈Mp

‖χp‖0,Ω=1

|α̃p,h| = 0 =⇒ lim
h→0

λp,h ≤ λp. (4.30)

Now, we will show that limh→0 λp,h ≥ λp. Let (µm,h;um,h) ∈ R+ ×Wh be the eigenpairs of Th ∈ L(Wh) with
ũm,h ∈ W̃h ⊂ H1

0 (Ω̃), ũm,h ↓Ωh= um,h. For Up,h = Span{(um,h)pm=1} ⊂ Wh, let Ũp,h = Span{(ũm,h)pm=1} ⊂
W̃h ⊂ H1

0 (Ω̃) be a p-dimensional subspace. Then, vh ∈ Up,h ⇐⇒ ṽh ∈ Ũp,h, and from Theorem 3.6,

µp,h = min
vh∈Up,h

〈Thvh, vh〉0,Ωh
〈vh, vh〉0,Ωh

. Under (A5), T : ṽh ∈ L2(Ω) 7→ T ṽh ∈ H3(Ω)∩H2
0 (Ω) with ‖T ṽh‖3,Ω ≤ C‖ṽh‖0,Ω

and T̃ ṽh ∈ H3(Ω̃) such that ‖T̃ ṽh‖3,eΩ ≤ C‖T ṽh‖3,Ω and T̃ ṽh ↓Ωh∈ H3(Ωh) will be denoted by T̃ ṽh such that

〈Thvh, vh〉0,Ωh = 〈Thvh − T̃ ṽh + T̃ ṽh, vh〉0,Ωh = 〈T̃ ṽh, vh〉0,Ωh + 〈Thvh − T̃ ṽh, vh〉0,Ωh

=⇒ µp,h = min
vh∈Up,h,evh∈eUp,h

[
〈T̃ ṽh, vh〉0,Ωh
〈vh, vh〉0,Ωh

+
〈Thvh − T̃ ṽh, vh〉0,Ωh

〈vh, vh〉0,Ωh

]
≤ min
vh∈Up,h,evh∈eUp,h

[
〈T̃ ṽh, vh〉0,Ωh
〈vh, vh〉0,Ωh

]
+ max
vh∈Up,h,evh∈eUp,h

[
〈Thvh − T̃ ṽh, vh〉0,Ωh

〈vh, vh〉0,Ωh

]
(4.31)

Since ṽh ↓ωh=Ω−(Ω∩Ωh)= 0, 〈T̃ ṽh, vh〉0,Ωh =
∫

Ωh

(T̃ ṽh)vh dx = 〈T ṽh, ṽh〉0,Ω + 〈T̃ ṽh, vh〉0,εh

=⇒ 〈T̃ ṽh, vh〉0,Ωh〈vh, vh〉0,Ωh
=
〈T ṽh, ṽh〉0,Ω
〈vh, vh〉0,Ωh

+
〈T̃ ṽh, vh〉0,εh
〈vh, vh〉0,Ωh

∀vh ∈ Up,h with ṽh ∈ Ũp,h, (4.32)

From (3.8), (4.5) and ‖ṽh‖0,Ω ≤ ‖vh‖0,Ωh ,

‖T̃ ṽh‖0,εh ≤ Ch3/2‖T̃ ṽh‖1,eΩ ≤ Ch
3/2‖T̃ ṽh‖3,eΩ ≤ Ch

3/2‖T ṽh‖3,Ω ≤ Ch3/2‖ṽh‖0,Ω ≤ Ch3/2‖vh‖0,Ωh
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and |〈T̃ ṽh, vh〉0,εh | ≤ ‖T̃ ṽh‖0,εh‖vh‖0,εh ≤ Ch3/2‖vh‖20,Ωh , (4.33)

min
vh∈Up,h,evh∈eUp,h

〈T̃ ṽh, vh〉0,Ωh
〈vh, vh〉0,Ωh

≤ min
evh∈eUp,h⊂L2(Ω)

〈T ṽh, ṽh〉0,Ω
〈ṽh, ṽh〉0,Ω

+ Ch3/2 ≤ µp + Ch3/2

(using ‖ṽh‖0,Ω ≤ ‖vh‖0,Ωh and (4.33) in (4.32)).

Hence, from (4.31), µp,h ≤ µp + Ch3/2 + max
vh∈Up,h with evh∈eUp,h

|〈Thvh − T̃ ṽh, vh〉0,Ωh |
〈vh, vh〉0,Ωh

. (4.34)

But |〈Thvh − T̃ ṽh, vh〉0,Ωh | ≤ ‖Thvh − T̃ ṽh‖0,Ωh‖vh‖0,Ωh , (4.35)

and from Theorem 3.3, ‖Thvh − T̃ ṽh‖0,Ωh ≤ Ch(‖T̃ ṽh‖3,eΩ + ‖S̃ṽh‖1,eΩ). Then, using (3.7)–(3.9),

‖T̃ ṽh‖3,eΩ ≤ C‖T ṽh‖3,Ω ≤ C‖vh‖0,Ωh and ‖S̃ṽh‖1,eΩ ≤ C‖Sṽh‖1,Ω ≤ C‖vh‖0,Ωh
=⇒ |〈Thvh − T̃ ṽh, vh〉0,Ωh | ≤ Ch‖vh‖20,Ωh and from (4.34), µp,h ≤ µp + Ch3/2 + Ch

=⇒ 1
λp,h

− 1
λp
≤ Ch(1 +

√
h) =⇒ limh→0 λp,h ≥ λp, which together with (4.30), gives the result.

Theorem 4.3. Under the assumption that Theorem 4.2 holds and λp (resp. λp,h) is a simple eigenvalue of
(QE) (resp. (QE

h )), ∃C > 0, independent of ‘h’ and ‘p’, such that ∀h ∈]0, h0[ with h0 ∈]0, 1[,

‖ũp − up,h‖0,Ωh ≤ Ch
[
h2‖ũp‖21,eΩ + (‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)×

{
1 + 2

λp
dp

+ (h+ 2)‖ũp‖3,eΩ + h‖Ψ̃p‖1,eΩ
}]
. (4.36)

‖Ψ̃p −Ψp,h‖0,Ωh ≤ Ch
[
(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)

(
1 +

2λp
√

2√
λ1ᾱ0

{
1 + 2

λp
dp

+ (h+ 2)‖ũp‖3,eΩ + h‖Ψ̃p‖1,eΩ
})

+
2
√

2λp√
λ1ᾱ0

h2‖ũp‖21,eΩ

]
+
√

2√
λ1ᾱ0

|λp − λp,h| with parameter dp > 0 defined in (4.41). (4.37)

Proof. Let ~Πh :Mp −→ ~ΠhMp ⊂Mh be defined by (3.40) with σp = Ψp, χp = up and χ̃∗p = λpũp.

Then, choose up,h such that 〈Π2hup, up,h〉0,Ωh > 0. (4.38)

‖ũp − up,h‖0,Ωh ≤ ‖ũp −Π2hup‖0,Ωh +
∥∥Π2hup − 〈Π2hup, up,h〉0,Ωhup,h

∥∥
0,Ωh

+‖〈Π2hup, up,h〉0,Ωhup,h − up,h‖0,Ωh . (4.39)

We are to find estimates only for the second and third terms on the right hand side of (4.39), since (3.42) gives
the estimate for the first term.

Π2hup ∈Wh =⇒ Π2hup =
Nh∑
j=1

〈Π2hup, uj,h〉0,Ωhuj,h with 〈uj,h, uk,h〉0,Ωh = δjk, 1 ≤ j, k ≤ Nh.

From (3.21) and definition of ~Πh(Ψp, up) = (Π1hΨp,Π2hup) in (3.40), we have:

λj,h〈Π2hup, uj,h〉0,Ωh =− bNI
h (Ψj,h,Π2hup) = ANI

h (Π1hΨp,Ψj,h)

=− bNI
h (Π1hΨp, uj,h) = λp〈ũp, uj,h〉0,Ωh with χ̃∗p = λpũp.

=⇒ (λj,h − λp)〈Π2hup, uj,h〉0,Ωh =λp
[
〈ũp, uj,h〉0,Ωh − 〈Π2hup, uj,h〉0,Ωh

]
=⇒ 〈Π2hup, uj,h〉0,Ωh =

λp
(λj,h − λp)

[
〈ũp −Π2hup, uj,h〉0,Ωh

]
(j 6= p). (4.40)
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Since we are considering the case of simple eigenvalues, set 2dp = min{λp − λp−1, λp+1 − λp} > 0. (4.41)

From Theorem 4.2, lim
h→0

λj,h = λj (j 6= p). Hence, ∀h ∈]0, h0[ with some h0 ∈]0, 1[,

|λj,h − λp| ≥ dp =⇒ |〈Π2hup, uj,h〉0,Ωh | ≤
λp
dp
|〈ũp −Π2hup, uj,h〉0,Ωh | ∀j 6= p.

But (uj,h)Nhj=1 is orthonormal in Wh. Then,∥∥Π2hup − 〈Π2hup, up,h〉0,Ωhup,h
∥∥

0,Ωh
=
( Nh∑
j=1
j 6=p

|〈Π2hup, uj,h〉0,Ωh |2
)1/2

≤
(λp
dp

)( Nh∑
j=1
j 6=p

|〈ũp −Π2hup, uj,h〉0,Ωh |2
)1/2 ≤ (λp

dp

)
‖ũp −Π2hup‖0,Ωh ∀h ∈]0, h0[ with h0 > 0. (4.42)

Finally,∥∥〈Π2hup, up,h
〉

0,Ωh
up,h − up,h

∥∥
0,Ωh

=
∣∣ ∥∥〈Π2hup, up,h

〉
0,Ωh

up,h
∥∥

0,Ωh
− 1
∣∣

≤
∣∣ ∥∥〈Π2hup, up,h

〉
0,Ωh

up,h
∥∥

0,Ωh
−
∥∥Π2hup

∥∥
0,Ωh

∣∣+
∣∣ ∥∥Π2hup

∥∥
0,Ωh
− 1
∣∣

≤
∥∥〈Π2hup, up,h

〉
0,Ωh

up,h −Π2hup
∥∥

0,Ωh
+
∣∣ ∥∥Π2hup

∥∥2

0,Ωh
− 1
∣∣.

i .e.
∥∥〈Π2hup, up,h

〉
0,Ωh

up,h − up,h
∥∥

0,Ωh
≤ λp
dp
‖ũp −Π2hup‖0,Ωh +

∣∣‖Π2hup‖20,Ωh − 1
∣∣ (using (4.42)). (4.43)

But
∣∣‖Π2hup‖20,Ωh − 1

∣∣ ≤ ∣∣‖Π2hup‖20,Ωh − ‖ũp‖
2
0,Ωh

∣∣+
∣∣‖ũp‖20,Ωh − ‖up‖20,Ω∣∣

≤
(
‖Π2hup‖0,Ωh + ‖ũp‖0,Ωh

)∣∣‖Π2hup‖0,Ωh − ‖ũp‖0,Ωh
∣∣+ ‖up‖20,ωh + ‖ũp‖20,εh

≤
(
‖Π2hup − ũp‖0,Ωh + 2‖ũp‖0,Ωh

)
‖Π2hup − ũp‖0,Ωh + Ch3‖ũp‖21,eΩ. (4.44)

From (4.43)–(4.44),

‖〈Π2hup, up,h〉0,Ωhup,h − up,h‖0,Ωh

≤ ‖ũp −Π2hup‖0,Ωh
[λp
dp

+ ‖ũp −Π2hup‖0,Ωh + 2‖ũp‖0,Ωh
]

+ Ch3‖ũp‖21,eΩ. (4.45)

Finally, from (4.39), (4.42) and (4.45), we get

‖ũp − up,h‖0,Ωh ≤ ‖ũp −Π2hup‖0,Ωh
[
1 + 2

λp
dp

+ ‖ũp −Π2hup‖0,Ωh + 2‖ũp‖1,eΩ
]

+ Ch3‖ũp‖21,eΩ. (4.46)

Then, using (3.42) with χp = up, σp = Ψp in (4.46), we get the result (4.36).

Now, we proceed to prove (4.37). ‖Ψ̃p −Ψp,h‖0,Ωh ≤ ‖Ψ̃p −Π1hΨp‖0,Ωh + ‖Π1hΨp −Ψp,h‖0,Ωh . (4.47)
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From (3.28), ‖Π1hΨp −Ψp,h‖0,Ωh ≤ 1√
ᾱ0

(
ANI
h (Π1hΨp −Ψp,h,Π1hΨp −Ψp,h)

)1/2
=

1√
ᾱ0
‖|Π1hΨp −Ψp,h‖|ANI

h (·,·) . (4.48)

Setting Ψ̂j,h =
Ψj,h√
λj,h

, we get ‖|Π1hΨp −Ψp,h‖|ANI
h (·,·) ≤

∥∥∣∣Π1hΨp −
[
Π1hΨp, Ψ̂p,h

]
ANI
h (·,·)Ψ̂p,h

∥∥∣∣
ANI
h (·,·)

+
∣∣[Π1hΨp, Ψ̂p,h

]
ANI
h (·,·) −

√
λp,h

∣∣, since
[
Ψ̂j,h, Ψ̂p,h

]
ANI
h (·,·) = δjp. (4.49)

But Π1hΨp ∈ Eh =⇒ Π1hΨp =
Nh∑
j=1

[
Π1hΨp, Ψ̂j,h

]
ANI
h

(·,·)Ψ̂j,h with

[
Π1hΨp, Ψ̂j,h

]
ANI
h (·,·) =

1√
λj,h

ANI
h (Π1hΨp,Ψj,h) =

−1√
λj,h

bNI
h (Π1hΨp, uj,h) =

λp√
λj,h
〈ũp, uj,h〉0,Ωh (4.50)

with λpũp = χ̃∗p (using (3.21) and (3.40))

=⇒
[
Π1hΨp, Ψ̂j,h

]
ANI
h (·,·) =

λp√
λj,h

[
〈ũp − up,h, uj,h〉0,Ωh

]
1 ≤ j 6= p ≤ Nh. (4.51)

From Theorem 4.2, lim
h→0

λj,h = λj , 1 ≤ j ≤ Nh =⇒ ∃h0 ∈]0, 1[ such that

λj,h ≥
λ1

2
∀j = 1, 2, · · · , Nh =⇒

√
λj,h ≥

√
λ1

2
. (4.52)

Hence, from (4.51) and (4.52), ∀j 6= p, 1 ≤ j ≤ Nh, ∀h ∈]0, h0[ with h0 ∈]0, 1[,

∣∣[Π1hΨp, Ψ̂j,h

]
ANI
h

(·,·)
∣∣ ≤ λp√ 2

λ1

∣∣〈ũp − up,h, uj,h〉0,Ωh ∣∣

and
∥∥∣∣Π1hΨp −

[
Π1hΨp, Ψ̂p,h

]
ANI
h (·,·)Ψ̂p,h

∣∣∥∥
ANI
h (·,·) =

( Nh∑
j=1
j 6=p

∣∣∥∥[Π1hΨp, Ψ̂j,h

]
ANI
h (·,·)Ψ̂j,h

∣∣∥∥2

ANI
h (·,·)

)1/2

≤
√

2√
λ1

(λp)
( Nh∑
j=1
j 6=p

|〈ũp − up,h, uj,h〉0,Ωh |2
)1/2 ≤ √2√

λ1

(λp)‖ũp − up,h‖0,Ωh (by Bessel′s inequality). (4.53)

Putting j = p in (4.50),
[
Π1hΨp, Ψ̂p,h

]
ANI
h (·,·) =

λp√
λp,h
〈ũp, up,h >0,Ωh .
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Therefore,
∣∣[Π1hΨp, Ψ̂p,h

]
ANI
h (·,·) −

√
λp,h

∣∣ =
1√
λp,h

∣∣λp〈ũp, up,h〉0,Ωh − λp,h∣∣
=

1√
λp,h

∣∣λp〈ũp − up,h, up,h〉0,Ωh + (λp − λp,h)
∣∣

=⇒
∣∣[Π1hΨp, Ψ̂p,h

]
ANI
h (·,·) −

√
λp,h

∣∣ ≤ 1√
λp,h

[
λp‖ũp − up,h‖0,Ωh + |λp − λp,h|

]
≤

√
2
λ1

[
λp‖ũp − up,h‖0,Ωh + |λp − λp,h|

]
(by (4.52)). (4.54)

Finally, from (4.47),(4.48), (4.49), (4.53) and (4.54), we get: ∀h ∈]0, h0[ with h0 ∈]0, 1[,

‖Ψ̃p −Ψp,h‖0,Ωh ≤ ‖Ψ̃p −Π1hΨp‖0,Ωh +
1√
ᾱ0

√
2
λ1

[
2λp‖ũp − up,h‖0,Ωh + |λp − λp,h|

]
. (4.55)

Using the estimates (3.42) and (4.36) for ‖Ψ̃p − Π1hΨp‖0,Ωh and ‖ũp − up,h‖0,Ωh respectively in (4.55), we get
the result (4.37).

Now, we proceed to find the estimate for the term |λp − λp,h| occurring in (4.37).

Theorem 4.4. Under the assumptions that Theorems 4.2 and 4.3 hold and λp (resp. λp,h) is a simple eigen-
value of (QE) (resp. (QE

h )), 1 ≤ p ≤ Nh = dim Wh, ∀h ∈]0, h0[ with h0 ∈]0, 1[, ∃C > 0, independent of ‘h’
and ‘p’ such that

|λp − λp,h| ≤ Ch2

{
(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)

[
λp
(
h2‖ũp‖21,eΩ + (‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)(1 +

2λp
dp

+ (h+ 2)‖ũp‖3,eΩ

+ h‖Ψ̃p‖1,eΩ)
)

+ (h+ 2)‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ
]

+
(
λph‖ũp‖3,eΩ + (h+ 2)‖Ψ̃p‖1,eΩ

)
‖ũp‖3,eΩ

}
= O(h2). (4.56)

Proof. Let ~Πh : Mp −→ ~ΠhMp ⊂ Mh with ~Πh(Ψp, up) = (Π1hΨp,Π2hup) be defined by (3.40) such that
the estimates (3.42) hold, (λp; (Ψp, up)) ∈ R+ × (V ×W )( resp. (λp,h; (Ψp,h, up,h)) ∈ R+ × (Vh ×Wh)) with
up ∈ H3(Ω) ∩H2

0 (Ω), ‖up‖0,Ω = 1 being an eigenpair of (QE)( resp. (QE
h )). We have from (3.40) and (3.21),

bNI
h (Ψp,h,Π2hup) = −λp〈ũp, up,h〉0,Ωh , and from (3.21),

λp − λp,h = λp −
λp〈ũp, up,h〉0,Ωh
〈up,h,Π2hup〉0,Ωh

=
λp

〈up,h,Π2hup〉0,Ωh

[
− 〈ũp −Π2hup, up,h〉0,Ωh

]
(4.57)

with ũp ∈ H3(Ω̃), ũp ↓Ω= up ∈ H3(Ω) ∩H2
0 (Ω).

But − 〈ũp −Π2hup, up,h >0,Ωh= 〈ũp −Π2hup, ũp − up,h〉0,Ωh − 〈ũp −Π2hup, ũp〉0,Ωh . (4.58)

Using (3.40) with χ̃∗p = ũp and (2.20), we have:
−〈ũp −Π2hup, ũp〉0,Ωh = −〈up, up〉0,Ω − 〈ũp, ũp〉0,εh + 〈up, up〉0,ωh − λ−1

p bNI
h (Π1hΨp,Π2hup)

= λ−1
p

[
b̃h(Ψ̃p, ũp)− bNI

h (Π1hΨp,Π2hup)
]

+
[
‖up‖20,ωh − ‖ũp‖

2
0,εh

]
+ λ−1

p

[
b(Ψp, up)− b̃h(Ψ̃p, ũp)

]
. (4.59)
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From (4.57)–(4.59),

λp − λp,h =
1

〈up,h,Π2hup〉0,Ωh

{
λp〈ũp −Π2hup, ũp − up,h〉0,Ωh + λp(‖up‖20,ωh − ‖ũp‖

2
0,εh

)

+
[
b(Ψp, up)− b̃h(Ψ̃p, ũp)

]
+
[
b̃h(Ψ̃p, ũp)− bNI

h (Π1hΨp,Π2hup)
]}
. (4.60)

But b̃h(Ψ̃p, ũp)− bNI
h (Π1hΨp,Π2hup) = b̃h(Ψ̃p −Π1hΨp, ũp − χh) +

[
b̃h(Ψ̃p, χh)− b̃h(Π1hΨp, χh)

]
+
[
b̃h(Π1hΨp, ũp)− bNI

h (Π1hΨp,Π2hup)
]
∀χh ∈Wh. (4.61)

Rewriting one by one the expressions in square brackets in (4.61) using (2.20) and (3.21):

[
b̃h(Ψ̃p, χh)− b̃h(Π1hΨp, χh)

]
=
{
b̃h(Ψ̃p, χh − ũp) + b̃h(Ψ̃p, ũp)− bNI

h (Π1hΨp, χh)

+
[
bNI
h (Π1hΨp, χh)− b̃h(Π1hΨp, χh)

]}
=
{
b̃h(Ψ̃p, χh − ũp) + λp〈ũp, χh − ũp〉0,Ωh +

[
b̃h(Ψ̃p, ũp)− b(Ψp, up)

]
+ λp

[
‖ũp‖20,εh − ‖up‖

2
0,ωh

]
+
[
bNI
h (Π1hΨp, χh)− b̃h(Π1hΨp, χh)

]}
. (4.62)

Let Π̃1hΨp ∈ Ṽh ⊂ Ṽ be an extension to Ω̃ of Π1hΨp ∈ Vh defined in (3.7)–(3.9) with the help of Corollary 3.1.
Then, using (3.21) and (2.20), we have

b̃h(Π1hΨp, ũp)− bNI
h (Π1hΨp,Π2hup) = Ãh(Ψ̃p −Π1hΨp, Ψ̃p −Π1hΨp) +

[
− Ãh(Ψ̃p, Ψ̃p) + Ãh(Π1hΨp, Ψ̃p)

]
+
[
Ãh(Ψ̃p,Π1hΨp)−A(Ψp, Π̃1hΨp)

]
+
[
ANI
h (Π1hΨp,Π1hΨp)− Ãh(Π1hΨp,Π1hΨp)

]
+
[
b̃h(Π1hΨp, ũp)− b(Π̃1hΨp, up)

]
in which (4.63)

[
− Ãh(Ψ̃p, Ψ̃p) + Ãh(Π1hΨp, Ψ̃p)

]
= b̃h(Ψ̃p −Π1hΨp, ũp − χh) +

[
b̃h(Ψ̃p, χh)− b̃h(Π1hΨp, χh)

]
+
[
b(Ψp, up)− b̃h(Ψ̃p, ũp)

]
+
[
b̃h(Π1hΨp, ũp)− b(Π̃1hΨp, up)

]
+
[
A(Ψp,Ψp)− Ãh(Ψ̃p, Ψ̃p)

]
+
[
Ãh(Π1hΨp, Ψ̃p)−A(Π̃1hΨp,Ψp)

]
∀χh ∈Wh (4.64)
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with the term
[
b̃h(Ψ̃p, χh) − b̃h(Π1hΨp, χh)

]
in (4.64) being the same one considered earlier in (4.62). Hence,

substituting (4.62)–(4.64) in (4.61), using it in (4.60) and applying triangular inequality, we have

|λp − λp,h| ≤
1

|〈up,h,Π2hup〉0,Ωh |

{
λp|〈ũp −Π2hup, ũp − up,h〉0,Ωh |+ λp(‖up‖20,ωh + ‖ũp‖20,εh)

+ 2
(∣∣Ãh(Ψ̃p,Π1hΨp)−A(Ψp, Π̃1hΨp)

∣∣+
∣∣b̃h(Ψ̃p −Π1hΨp, ũp − χh)

∣∣+
∣∣b̃h(Π1hΨp, ũp)− b(Π̃1hΨp, up)

∣∣
+
∣∣bhNI(Π1hΨp, χh)− b̃h(Π1hΨp, χh)

∣∣+
∣∣b̃h(Ψ̃p, χh − ũp)

∣∣+ λp
∣∣〈ũp, χh − ũp〉0,Ωh ∣∣)

+
∣∣ANI

h (Π1hΨp,Π1hΨp)− Ãh(Π1hΨp,Π1hΨp)
∣∣+
∣∣A(Ψp,Ψp)− Ãh(Ψ̃p, Ψ̃p)

∣∣
+
∣∣Ã(Ψ̃p −Π1hΨp, Ψ̃p −Π1hΨp)

∣∣} ∀χh ∈Wh (see [8] for details). (4.65)

First of all, we will prove that 〈up,h,Π2hup〉0,Ωh → 1 as h→ 0. In fact,

|〈up, up〉0,Ω − 〈up,h,Π2hup〉0,Ωh | ≤ |
∫

Ω∩Ωh

u2
p − up,hΠ2hup dx|+

∫
ωh

u2
pdx+ |

∫
εh

(up,h)(Π2hup)dx|. (4.66)

But using (4.5),
∫
ωh

u2
pdx = ‖up‖20,ωh ≤ Ch3‖ũp‖21,eΩ → 0 as h→ 0 =⇒ limh→0

∫
ωh

u2
pdx = 0.

|
∫
εh

(up,h)(Π2hup)dx| ≤ ‖up,h‖0,εh‖Π2hup‖0,εh → 0 as h→ 0. (using (4.5) and (4.36))

and |
∫

Ω∩Ωh

(u2
p − up,hΠ2hup)dx| ≤ |

∫
Ω∩Ωh

(u2
p − up.up,h) dx|+ |

∫
Ω∩Ωh

upup,h − up,hΠ2hup dx|

≤ ‖up‖0,Ω∩Ωh‖up − up,h‖0,Ω∩Ωh + ‖up,h‖0,Ω∩Ωh‖up −Π2hup‖0,Ω∩Ωh

≤
[
‖up‖0,Ω‖ũp − up,h‖0,Ωh + ‖up,h‖0,Ωh‖ũp −Π2hup‖0,Ωh

]
→ 0 as h→ 0,

(from (4.36) and (3.42)). Hence, from (4.66),

lim
h→0
|〈up, up〉0,Ω − 〈up,h,Π2hup〉0,Ωh | = 0 =⇒ lim

h→0
〈up,h,Π2hup〉0,Ωh = 1

=⇒ ∃h0 ∈]0, 1[such that ∀h ∈]0, h0[|〈up,h,Π2hup〉0,Ωh | > 1/2

=⇒ 1
|〈up,h,Π2hup〉0,Ωh |

< 2. (4.67)
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Using (3.42) and (4.36), we have

•λp|〈ũp −Π2hup, ũp − up,h〉0,Ωh | ≤ λp‖ũp −Π2hup‖0,Ωh‖ũp − up,h‖0,Ωh

≤ Cλph2

{
(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)

[
h2‖ũp‖21,eΩ + (‖ũp‖3,eΩ

+ ‖Ψ̃p‖1,eΩ)(1 + 2
λp
dp

+ (2 + h)‖ũp‖3,eΩ + h‖Ψ̃p‖1,eΩ)
]}

; (4.68)

•λp(‖ũp‖20,εh + ‖up‖20,ωh) ≤ Cλph3‖ũp‖21,eΩ (using(4.5)); (4.69)

•|A(Ψp, Π̃1hΨp)− Ãh(Ψ̃p,Π1hΨp)| ≤ Ch3‖ũp‖3,eΩ‖Π1hΨp‖1,Ωh (see (II) in Prop. 4.2). (4.70)

Estimate for ‖Π1hΨp‖1,Ωh is given now: ‖Π1hΨp‖1,Ωh ≤ ‖Π1hΨp − Ψ̃p‖1,Ωh + ‖Ψ̃p‖1,Ωh
But from (4.11), for Ψ̃p ∈ Ṽ, ∃(Θh)p ∈ Vh such that ‖Ψ̃p − (Θh)p‖r,Ωh ≤ Ch1−r‖Ψ̃p‖1,eΩ (r = 0, 1) with

‖Ψ̃p −Π1hΨp‖1,Ωh ≤ ‖Π1hΨp − (Θh)p‖1,Ωh + ‖Ψ̃p − (Θh)p‖1,Ωh ≤ C/h‖Π1hΨp − (Θh)p‖0,Ωh + C‖Ψ̃p‖1,eΩ

and ‖Π1hΨp − (Θh)p‖0,Ωh ≤ ‖Π1hΨp − Ψ̃p‖0,Ωh + ‖Ψ̃p − (Θh)p‖0,Ωh . Then, using (3.40),

‖Π1hΨp − (Θh)p‖0,Ωh ≤ Ch(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ),

=⇒ ‖Π1hΨp − Ψ̃p‖1,Ωh ≤ C(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ), ‖Π1hΨp‖1,Ωh ≤ C(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ). (4.71)

Finally from (4.70) and (4.71), we have

• |A(Ψp, Π̃1hΨp)− Ãh(Ψ̃p,Π1hΨp)| ≤ Ch3‖ũp‖3,Ω̃
(
‖ũp‖3,eΩ + ‖Ψp‖1,eΩ

)
. (4.72)

Using the continuity of Ãh(·, ·), b̃h(·, ·), Proposition 4.2, estimates (3.42), (4.5), (4.9), (4.12), (4.37) and (4.71),
we have: For χh = Phũp ∈Wh

• |̃bh(Ψ̃p −Π1hΨp, ũp −Phũp)| ≤ Ch2‖ũp‖3,eΩ(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ); (4.73)

• |̃bh(Π1hΨp, ũp)− b(Π̃1hΨp, up)| ≤ Ch3(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)‖ũp‖2,eΩ; (4.74)

• |bNI
h (Π1hΨp,Phũp)− b̃h(Π1hΨp,Phũp)| ≤ Ch2(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)‖ũp‖3,eΩ; (4.75)

• |̃bh(Ψ̃p,Phũp − ũp)| ≤ Ch2‖Ψ̃p‖1,eΩ‖ũp‖3,eΩ; (4.76)

• λp|〈ũp,Phũp − ũp〉0,Ωh | ≤ Cλph3‖ũp‖23,eΩ; (4.77)

• |A(Ψp,Ψp)− Ãh(Ψ̃p, Ψ̃p)| ≤ Ch3‖ũp‖3,eΩ‖Ψ̃p‖1,eΩ; (4.78)

• |ANI
h (Π1hΨp,Π1hΨp)− Ãh(Π1hΨp,Π1hΨp)| ≤ Ch2(‖ũp‖3,eΩ + ‖Ψp‖1,eΩ)2; (4.79)

• |Ãh(Ψ̃p −Π1hΨp, Ψ̃p −Π1hΨp)| ≤ Ch2(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)2. (4.80)

Then, from (4.65) and the estimates in (4.67)–(4.80), we get the required result: |λp − λp,h| = O(h2).

Theorem 4.5. Under the assumptions that Theorems 4.2, 4.3 and 4.4 hold, and λp (resp. λp,h) is a simple
eigenvalue of (QE) (resp. (QE

h )), 1 ≤ p ≤ Nh = dimWh,

‖Ψ̃p −Ψp,h‖0,Ωh = O(h), ‖ũp − up,h‖1,Ωh = O(h). (4.81)
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Proof. From (4.37) and (4.56), we have

‖Ψ̃p −Ψp,h‖0,Ωh ≤ Ch
([

(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)
(

1 +
2λp
√

2√
λ1 ᾱ0

{
1 + 2

λp
dp

+ (h+ 2)‖ũp‖3,eΩ + h‖Ψ̃p‖1,eΩ
})

+
2
√

2λp√
λ1 ᾱ0

h2‖ũp‖21,eΩ

]
+
√

2√
λ1ᾱ0

h

{
· · ·
})

= O(h) (4.82)

where
{
· · ·
}

denotes the expression within the curly brackets on the right-hand side of (4.56). Putting χh =

Phũp in (4.1), we now find the estimates for the terms on the right-hand side of (4.1).

Indeed, from (4.9), ‖ũp −Phũp‖1,Ωh ≤ Ch2‖ũp‖3,eΩ. (4.83)

Estimate for ‖Ψ̃p −Ψp,h‖0,Ωh is obtained from (4.82). From Proposition 4.2, we have

• sup
Φh∈Vh−{0}

∣∣bNI
h (Φh,Phũp)− b̃h(Φh,Phũp)

∣∣
‖Φh‖1,Ωh

≤ sup
Φh∈Vh−{0}

Ch2‖Φh‖1,Ωh‖Phũp‖1,Ωh
‖Φh‖1,Ωh

≤ Ch2‖ũp‖3,eΩ; (4.84)

• sup
Φh∈Vh−{0}

∣∣Ãh(Ψ̃p,Φh)−A(Ψp, Φ̃h)
∣∣

‖Φh‖1,Ωh
≤ Ch3‖ũp‖3,eΩ (4.85)

• sup
Φh∈Vh−{0}

∣∣ANI
h (Ψp,h,Φh)− Ãh(Ψp,h,Φh)

∣∣
‖Φh‖1,Ωh

≤ sup
Φh∈Vh−{0}

Ch2‖A‖2,∞,eΩ‖Ψp,h‖0,Ωh‖Φh‖0,Ωh
‖Φh‖1,Ωh

(From (4.12))

≤ Ch2(‖Ψ̃p −Ψp,h‖0,Ωh + ‖Ψ̃p‖1,eΩ); (4.86)

• sup
Φh∈Vh−{0}

∣∣b̃h(Φh, ũp)− b(Φ̃h, up)
∣∣

‖Φh‖1,Ωh
≤ sup

Φh∈Vh−{0}

Ch3‖Φh‖1,Ωh‖ũp‖2,eΩ
‖Φh‖1,Ωh

≤ Ch3‖ũp‖2,eΩ. (4.87)

Substituting (4.82)–(4.87) in (4.1) with χh = Phũp ∈Wh, we have

‖ũp − up,h‖1,Ωh ≤ Ch
[
h‖ũp‖3,eΩ + h2‖ũp‖3,eΩ + (1 + h)

([
(‖ũp‖3,eΩ + ‖Ψ̃p‖1,eΩ)

(
1 +

2λp
√

2√
λ1 ᾱ0

{
1

+ 2
λp
dp

(h+ 2)‖ũp‖3,eΩ + h‖Ψ̃p‖1,eΩ
})

+
2
√

2λp√
λ1 ᾱ0

h2‖ũp‖21,eΩ

]
+
√

2√
λ1ᾱ0

h

{
· · ·
})

+ h‖Ψ̃p‖1,eΩ
]
,

where
{
· · ·
}

denotes the expression within the curly brackets on the right-hand side of (4.56), from which the

result follows.
Remark 5.3. As in the case of usual elliptic eigenvalue problems, the exponent of ‘h’ in (4.56) is optimal
in the sense that it is twice the order of convergence for the corresponding source/steady state problem, i.e.
for ‖ũ − uh‖1,Ωh = O(h), ‖Ψ̃ − Ψh‖0,Ωh = O(h) of the corresponding source /steady state problem [10],
|λp − λp,h| = O(h2).
Remark 5.4. In the case of eigenvalue problems, the estimates for simple eigenvalues and corresponding
eigenelements: |λp − λp,h| = O(h2), ‖ũp − up,h‖1,Ωh = O(h) and ‖Ψ̃p −Ψp,h‖0,Ωh = O(h) have been obtained
in (4.56) and (4.81) respectively under the assumptions that
(i) coefficients Aijkl have additional regularity (i.e. Aijkl ∈W 2,∞(Ω̃) ∀i, j, k, l = 1, 2), and
(ii) the quadrature scheme (3.14) with i=1 having higher algebraic degree of accuracy (i.e. exact for P6(T̂ )),
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has been used in the definition (3.19) of ANI
h (·, ·), since the error estimates of the same order i.e. ‖ũ −

uh‖1,Ωh = O(h), ‖Ψ̃ − Ψh‖0,Ωh = O(h) have been obtained in [10] for the corresponding source problem for
(i’) Aijkl ∈ W 1,∞(Ω̃) ∀i, j, k, l = 1, 2 and (i’i’) the quadrature scheme (3.14) with i=1 exact for P4(T̂ ), which
has been used in the definition (3.19) of ANI

h (·, ·) (see Th. 5.2 of [10] ).

But these estimates ‖ũp − up,h‖1,Ωh = O(h), ‖Ψ̃p −Ψp,h‖0,Ωh = O(h) in (4.81) for the eigenvalue problem
(resp. ‖ũ− uh‖1,Ωh = O(h), ‖Ψ̃−Ψh‖0,Ωh = O(h) for the corresponding source problem in [10]) cannot be
improved upon by assuming still more regularity i.e. Aijkl ∈ Wm,∞(Ω̃) with m > 2 (resp. Wm,∞(Ω̃) with
m > 1) and using quadrature scheme (3.14) with i=1 exact for Pm(T̂ ) with m > 6 (resp. Pm(T̂ ) with m > 4)
in the definition (3.19) of ANI

h (·, ·).

5. Numerical examples

In this section, we would consider numerical examples on eigenvalue problems defined in (2.1), the coefficients
aijkl for which satisfy (A1–A2). The convex domains Ω with curved boundary considered are approximated by
a polygonal boundary Γpol

h and a curved boundary Γh constructed with the help of an isoparametric mapping.
The fundamental and a few higher frequencies and mode shapes of a class of orthotropic plates with clamped
boundary conditions are computed and the results obtained are compared with the existing results.
For the plate bending operator Λ, the eigenvalue problem (2.1) is obtained from the equation of motion for the
small transverse displacement UU(x1, x2; t) of the vibrating elastic plate under consideration:

ΛU + ρ
∂2U

∂t2
= 0 ∀((x1, x2); t) ∈ Ω×]0, T ] (5.1)

with U |Γ = 0,
∂U

∂n
|Γ = 0 ∀t ∈]0, T ], ρ being the mass density of the elastic plate per unit area measure of Ω̄,

when free natural vibrations are assumed and the motion is defined by:

U(x1, x2; t) = u(x1, x2)cos ωt, (5.2)

ω being the circular frequency expressed in radians/unit time, i.e. a substitution of (5.2) into (5.1) will yield
(2.1) with λ = ρω2.
In the practical applications (examples considered below), dimensionless coordinates are introduced and instead
of λ = ρω2, some new parameter of convenience which will depend on ρ, ω, characteristic plate size parameter,
flexural rigidity of the plate etc will be introduced and will still be denoted by the same notation λ by
giving its new definition without deduction,for which we refer to [26].

• For constant coefficients Aijkl (or equivalently aijkl), which will be considered in the examples, introducing
suitable canonical bases {Φih}3N1

i=1 in Vh and {χih}N0
i=1 in Wh, the isoparametric mixed finite element eigenvalue

problem (QE
h ) can be reduced to the following problem in matrix form (see [31] for details):

Find (λh; (α;β)) = (λh; (α1, α2, α3, β)) ∈ R+ × R3 N1+N0 such that

c11[A]α1 + c12[A]α2 + c13[A]α3 + [B1]β = 0

c12[A]α1 + c22[A]α2 + c23[A]α3 + [B2]β = 0

c13[A]α1 + c23[A]α2 + c33[A]α3 + [B3]β = 0 (5.3)

[B1]tα1 + [B2]tα2 + [B3]tα3 = λh [M ] β
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where [A]N1×N1 is a symmetric, positive-definite matrix of order N1 [31]; cij ∈ R with c12 = 0, c23 = 0 for
the class of Orthotropic Plates considered in the examples,

αi ∈ RN1 , β ∈ RN0 such that Ψh =
3N1∑
j=1

αjΦ
j
h, uh =

N0∑
j=1

βjχ
j
h with α1 = (αj)N1

j=1, α2 = (αj)2 N1
j=N1+1,

α3 = (αj)3N1
j=2 N1+1, β = (βi)N0

i=1, [Bi]N1×N0 is a rectangular matrix of size N1 × N0 with its transpose
denoted by [Bi]t; [M ]N0×N0 is the symmetric, positive-definite global mass matrix of order N0 ×N0 got after
assembling the element mass matrices [MT ].

Then, α1, α2, α3 can be eliminated from the first, second and third equations in (5.3) and substituting the
expressions for αi in the fourth equation in (5.3), we get

[K]N0×N0 β = λh [M ]N0×N0 β, (5.4)

where [K] is the symmetric, positive-definite, global stiffness matrix of order N0 ×N0.
Solving (5.4) for (λh; β), we can find αi using the expression used in the elimination of αi, 1 ≤ i ≤ 3.

• (5.4) has been solved by Subspace Iteration Method, although Lanczos method can also be efficiently used.

Example: Clamped Orthotropic Elliptic Plate Problem. The coefficients aijkl for the orthotropic
case are:

aiiii = Dii; a1122 = a2211 = D12 = ν1D22 = ν2D11;
a1212 = a2121 = a2112 = a1221 = Dt, aijkl = 0 otherwise, (5.5)

where Dii =
Eit

3

12(1− ν1ν2)
(i = 1, 2)

Dt =
Gh3

12
> 0, H = ν2D1 + 2Dt

G =
E1E2

E1 + (1 + 2ν1)E2
> 0, E1ν2 = E2ν1,

Ei and νi are Young’s moduli and Poisson’s coefficients respectively, t(x1, x2) being the thickness function.
We consider the following cases where the Poisson’s coefficient ν1 = 1/3 and the flexural rigidities are given by:

Case I: D12/D22 = 1/3, D11/D22 = 1
Case II: D12/D22 = 1/3, D11/D22 = 1/3
Case III: D12/D22 = 1, D11/D22 = 1
Case IV: D12/D22 = 1, D11/D22 = 1/3 .

The eigenvalue problem (2.1) with λ2 = ωa2
√
ρ t/D22 corresponding to the natural vibrations of the clamped

orthotropic elliptic plate with b/a = 0.5, ‘a’ being the semi-major axis and ‘b’ being the semi-minor axis
is considered. The first few eigenvalues and the corresponding eigenvectors for both polygonal and curved ap-
proximations have been computed and only the eigenvalues, which are compared with those given in [19], are
shown in Tables I–IV below.
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Table 1. Case I: D12/D22 = 1/3, D11/D22 = 1, ν = 1/3, b/a = 0.5.

Table 2. Case II: D12/D22 = 1/3, D11/D22 = 1/3, ν = 1/3, b/a = 0.5.

Table 3. Case III: D12/D22 = 1, D11/D22 = 1, ν = 1/3, b/a = 0.5.
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Table 4. Case IV: D12/D22 = 1, D11/D22 = 1/3, ν = 1/3, b/a = 0.5.
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