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MIXED SCHEMES FOR QUAD-CURL EQUATIONSI

Shuo Zhang*

Abstract. In this paper, mixed schemes are presented for two variants of quad-curl equations.
Specifically, stable equivalent mixed formulations for the model problems are presented, which can
be discretized by finite elements of low regularity and of low degree. The regularities of the mixed
formulations and thus equivalently the primal formulations are established, and some finite elements
examples are given which can exploit the regularity of the solutions to an optimal extent.
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1. Introduction

In this paper, we study the boundary value problem of the quad-curl operator of type

(A)


(∇×)4u = f in Ω;

∇ · u = 0 in Ω;

u× n = 0, (∇× u)× n = 0 on ∂Ω,

(1.1)

where divf = 0, and of variant type

(B)

{
(∇×)4u + u = f in Ω;

u× n = 0, (∇× u)× n = 0 on ∂Ω.
(1.2)

For (1.2), it is not necessary that divf = 0. But evidently, divu = 0 when divf = 0.
The quad-curl operator (∇×)4 arises in various sources of applied sciences, like in elasticity, in

magnetohydrodynamics(MHD) and in the inverse electromagnetic scattering theory. In elasticity, the opera-
tor is used to model the effect of the couple stress (cf. [26, 36]); in MHD (cf. [41]), (∇×)4B is involved in
the resistive system where B is the magnetic field as a primary variable, and in the inverse electromagnetic
scattering theory (cf. [5, 6]), (∇×)4 appears in computing the transmission eigenvalue. The operator is also used
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as the principal part of the Electron MHD model; see equation (1.1) of [7]. Some more applications of (∇×)4

can be found in their subsequent works. The divergence free condition and the boundary data as in (1.1) are
generally imposed.

There have been a few works devoted to the discretization of the model problems. For the equation as in
(1.2), two kinds of discretizations are discussed with respect to the primal variational formulation in literature,
including a nonconforming element given by Zheng–Hu–Xu [41], and discretizations by Hong–Hu–Shu–Xu [16]
with standard high order Nédélec’s elements in the framework of discontinuous Galerkin method. Some alterna-
tive approach is to introduce and deal with mixed/order-reduced formulations. As Nédélec’s edge elements have
been well studied for mixed schemes (cf., e.g., [2, 3, 22] for a brief introduction), order reduced discretizations
can be expected for the original problem. It is natural to consider possibly the operator splitting technique
which introduces an intermediate variable and then reduce the original problem to a system of second order
equations. This is the way adopted by Sun [28] for the equation as in (1.1). The associated eigenvalue problem
is also discussed therein. Relevant discussions on mixed finite methods related to the quad-curl operator can
be also found in Monk and Sun [21] and Sun and Xu [29]. Very recently, Brenner–Sun–Sung [4] studies the
quad-curl problem individually in two dimension, and employ Hodge decomposition to decouple the original
fourth order problem to second order problems; also, the multiply-connected characteristic of the domain is
treated therein. Meanwhile, a coupled mixed formulation for quad-curl problem is also introduced in [39] based
on non-orthogonal decompositions. Beyond these discussions, few results are known to us.

The operator (∇×)4 is of fourth order and not completely symmetric; this makes the model problems bear
complicated intrinsic structure. Primarily, the high stiffness effects the property of the problems. Recently,
Nicaise [25] studies the boundary value problem (1.1) and proves that the solution does not always belong to
H3(Ω) on polyhedrons with H−1(Ω) data f , and its H2(Ω) regularity is still open. The snarly stiffness makes
the concentrative construction of finite element functions difficult. Zheng–Hu–Xu [41] studies finite element for
the Sobolev space such that u ∈ H(curl, Ω) and ∇× u ∈ H1(Ω) which is used to discretize the model problem.
Tai and Winther [30] and Neilan [23] discussed finite elements of the Sobolev space such that u ∈ H1(Ω) and
∇× u ∈ H1(Ω); various finite elements of H2 spaces can be found in, e.g., Wang–Shi–Xu [31, 32, 33], Zenǐsek
[37] and Zhang [38]; these methods can be expected to work for the model problems at different occasions. Finite
element spaces with exactly (∇×)2 consistency, however, have been seldom discussed in literature. Moreover,
the structure of these finite element spaces are complicated, which makes designing optimal solvers/multilevel
methods difficult; there has been no discussion along this line. The order-reduced discretisation scheme in [28]
suggests to solve the original problem with existing edge elements; this scheme can be viewed as an analogue of
the Ciarlet–Raviart’s scheme [12] for biharmonic equation in the context of quad-curl problem, and equivalence
can be expected when (∇×)2u ∈ H(curl, Ω). However, the structure of the scheme has not shown friendlier.
The stability analysis was not mentioned in [28], and thus the intrinsic topology is not clear and the convergence
analysis is constructed in quite a technical way. Further, designing optimal solvers/multilevel methods for the
scheme is still an issue.

In this paper, we develop new mixed formulations with a clear and flat structure. By bringing in auxiliary
variables, we present mixed formulations for (A) and (B) which are stable in Babuška-Brezzi’s sense on the
spaces of L2, H(curl) and H1 types. For (A), the divergence free condition makes the problem possess sixth-
order essence. In our approach, the condition is imposed in a dual form; the same technique was used in, e.g.,
Kikuchi [17]. The mixed problems admit routine discretisation with finite element spaces corresponding to L2,
H(curl) and H1 under some mild conditions, and the theoretical convergence analysis can be done in a routine
way. As the structures of the dicsretized L2, H(curl) and H1 spaces have been well-studied, the newly-developed
discretisation scheme can be solved by the aid of existing optimal preconditioners [15, 27, 34, 35]. Moreover, it is
easy to find finite element spaces that are nested on nested grids, algebraically and topologically, with respect to
the mixed formulation; this can bring convenience in designing high-efficiency algorithms. We also establish some
regularity results on convex polyhedrons for the mixed formulations. As the mixed formulations are equivalent
to the primal ones, the regularity of u and ∇×u are established for (A) and (B), and the assumptions adopted
in [41] and [28] are confirmed. Several finite elements are presented to be fit for the regularity.



MIXED SCHEMES FOR QUAD-CURL EQUATIONS 149

The mixed schemes presented can be viewed friendly to users. As only first-order spaces and first-order
operators are going to be discretized, the mixed schemes can be implemented by many popular finite element
packages. It can also be seen that the schemes are flexible on choosing different finite elements corresponding
to the regularity of the respective variables. Besides, it is direct to design optimal solvers for the discretization
schemes. As the stability of the scheme can be proved with respect to the topology of the L2, H(curl) and
H1 spaces, optimal Poisson solver based preconditioner can be constructed in a routine way [15, 27, 35]. We
note that, for the schemes, several additional unknowns are introduced, therefore, compared to existing primal
discretizations, especially ones of DG type like [16], more unknowns and larger-scale discretized systems are
expected to be dealt with. However, the numerical solution of the generated system is an easier task than of the
primal discretizations. Model (A) can be decoupled to several second order problems which are easy to solve.
Even though Model (B) is essentially different from Model (A) since the zero-order term appears and it can
not be decoupled, the five-field problem (4.5) of (B) can be optimally solved in quite a routine way as well. The
application of such mixed formulations is thus not that expensive, though it looks so.

We would emphasize the new variational problems (2.5) (for (A)) and (2.6) (for (B)) are the starting
point of what we are going to do and what we are able to do. These new primal formulations arise from
configurating the essential boundary conditions that should be satisfied by the solutions, and they are different
from traditional ones, like ones discussed in [16, 25] or [28]. The variational formulation (2.6) is similar to the
one used in [41], but the original boundary condition discussed in [41] is different from that of (1.2). The new
variational formulations possess enough capacity for the essential boundary conditions, and make the sequel
analysis smoother. The scheme discussed in the present paper is relevant to the one discussed in the recent
paper [4]. In contrast to the approach in [4] which uses implicitly the Helmholtz decomposition of the source
term (right hand side f), however, our present paper utilize the approach of introducing Lagrangian multipliers.

The remaining of the paper is organised as follows. In Section 2, we present some preliminaries and new
primal formulation of the model problems. We will particularly figure out the appropriate spaces of the model
problem by clarifying the boundary conditions and specify the space whose capacity is fit for the boundary
condition and the variational form. In Section 3, mixed formulations of the model problems are given with
stability analysis. Section 4 is then devoted to the discretizations, including general discussion on the conditions
to be satisfied, and also some specific examples. Finally in Section 5, concluding remarks are given.

2. Model problems: new primal formulations

2.1. Preliminaries: Sobolev spaces

Let Ω ⊂ R3 be a simply connected polyhedral domain with simply connected boundary Γ = ∂Ω, and unit
outward norm vector n. In this paper, we use the bold symbol for a vector in R3. We use L2

(0)(Ω) and Ht
(0)(Ω)

for t = 1, 2, . . . for the standard Lebesque space and Sobolev spaces, and ∇, div and curl for the standard
gradient, div and curl operators. For a vector w = (w1, w2, w3)>, ∇w = (∇w1,∇w2,∇w3). Denote

Ht(curl, Ω) := {v ∈ L2(Ω) := (L2(Ω))3 : curljv ∈ L2(Ω), 1 6 j 6 t}, t = 0, 1, 2, . . . ,

equipped with the inner product (u,v)Ht(curl,Ω) = (u,v) +
∑t
j=1(curlju, curljv), and the corresponding norm

‖ · ‖Ht(curl,Ω). Particularly, H1(curl, Ω) = H(curl, Ω) the usually defined Sobolev space, and ‖ · ‖H(curl,Ω) =
‖ · ‖curl,Ω . Similarly, define

H(curl2, Ω) := {v ∈ L2(Ω) : curlcurlv ∈ L2(Ω)}, (2.1)

equipped with the inner product (u,v)H(curl2,Ω) = (u,v) + (curlcurlu, curlcurlv) and with the correspond-

ing norm. Corresponding to the boundary condition, define H2
0(curl, Ω) := {v ∈ H2(curl, Ω) : v × n =

0 and (curlv) × n = 0 on Γ}. In the sequel, we use ∇× for curl in equations. As usual, denote H(div, Ω) =
{v ∈ L2(Ω) : divv ∈ L2(Ω)}, and H0(div, Ω) = {v ∈ H(div, Ω) : v · n = 0 onΓ}.
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These variational formulations are usually used in literature:

• for (A) (as used in, e.g., [28]): given f with divf = 0, find u ∈ H2
0(curl, Ω) and divu = 0, such that

(∇×∇× u,∇×∇× v) = (f ,v), ∀v ∈ H2
0(curl, Ω); (2.2)

• for (B) (as used in, e.g., [16]): given f , to find u ∈ H2
0(curl, Ω), such that

(∇×∇× u,∇×∇× v) + (u,v) = (f ,v), ∀v ∈ H2
0(curl, Ω). (2.3)

The well-posedness of the variational problems follows from Lemmas 2.1 and 2.3 below.

Lemma 2.1 (Friedrichs inequality, cf. Sect. 11.1.2 of [3]). There exists a constant C, such that it holds for
v ∈ H0(curl, Ω) and divv = 0 that

‖v‖0,Ω 6 C‖∇ × v‖0,Ω . (2.4)

Remark 2.2. ∇H1
0 (Ω) is a closed subspace of H0(curl, Ω), and H0(curl, Ω) = ∇H1

0 (Ω) ⊕⊥ (∇H1
0 (Ω))⊥,

where (∇H1
0 (Ω))⊥ is the orthogonal complement of ∇H1

0 (Ω) in H0(curl, Ω). Moreover, (∇H1
0 (Ω))⊥ = {v ∈

H0(curl, Ω) : div v = 0}.

Lemma 2.3 ([16], Lem. 2.1). H2
0(curl, Ω) is the closure of (C∞0 (Ω))3 in H(curl2, Ω), and

‖∇ × v‖0,Ω 6
1

2
(‖∇ ×∇× v‖0,Ω + ‖v‖0,Ω) on H2

0(curl, Ω).

2.2. New primal formulations

We begin with the fact below.

Lemma 2.4 (Lemma 2.5 of [13]). If Ω ⊂ R3 is bounded, simply connected with Liptschiz-continuous boundary,
then

H1
0(Ω) := (H1

0 (Ω))3 = H0(curl, Ω) ∩H0(div, Ω),

and

(∇u,∇v) = (∇× u,∇× v) + (divu,divv) for u,v ∈ H1
0(Ω).

Define H1
0(curl, Ω) := {v ∈ H0(curl, Ω) : ∇× v ∈ H1

0(Ω)}. Below is a crucial fact.

Lemma 2.5. H1
0(curl, Ω) = H2

0(curl, Ω).

Proof. Evidently, H1
0(curl, Ω) ⊂ H2

0(curl, Ω). On the other hand, given v ∈ H2
0(curl, Ω), then ∇ × v ∈

H0(div, Ω) as v ∈ H0(curl, Ω); namely, ∇ × v ∈ H0(curl, Ω) ∩ H0(div, Ω) = H1
0(Ω). This completes the

proof.

Evidently, (∇(∇× u),∇(∇× v)) = (∇×∇× u,∇×∇× v) on H1
0(curl, Ω).

Then we establish the variational form of the primal model problems as:

(A′) Given f with divf = 0, find u ∈ H1
0(curl, Ω), div u = 0, such that

(∇(∇× u),∇(∇× v)) = (f ,v), ∀v ∈ H1
0(curl, Ω). (2.5)
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(B′) Given f , find u ∈ H1
0(curl, Ω), such that

(∇(∇× u),∇(∇× v)) + (u,v) = (f ,v), ∀v ∈ H1
0(curl, Ω). (2.6)

The theorem below follows from Lemma 2.5.

Theorem 2.6. The variational problems (A′) and (B′) are well-posed. They are equivalent to (2.2) and (2.3),
respectively.

Remark 2.7. The variational problem on H1
0(curl, Ω) has been discussed in [41], where the boundary condition

is u×n = ∇×u = 0. Here we show that H1
0(curl, Ω) is still the space fit for this simplified boundary condition.

3. Mixed formulation of model problems

In this section, we present mixed problems that are equivalent to (A′) and (B′), thus to (A) and (B),
respectively. The stability and regularity of the mixed problems are given.

3.1. Mixedization of problem (A′)

We start with the observations below.

Lemma 3.1. Given u ∈ H0(curl, Ω) and y ∈ H1
0(Ω), ∇× u = y and divu = 0 if and only if there exists an

σ ∈ H1
0 (Ω), such that


(divy, q) = 0, ∀ q ∈ L2

0(Ω),

(∇σ, s)− (∇× u,∇× s) + (y,∇× s) = 0, ∀ s ∈ H0(curl, Ω),

(u,∇η) = 0, ∀ η ∈ H1
0 (Ω).

(3.1)

Proof. If divu = 0 and ∇× u = y, then (3.1) follow immediately. Indeed, σ = 0.
On the other hand, under the assumption (3.1), divy = 0 by the first equation, and thus there exists a unique

w ∈ (∇H1
0 (Ω))⊥, such that y = ∇×w. By the third equation of (3.1), divu = 0 and u ∈ (∇H1

0 (Ω))⊥. Further,
by the second equation, (∇ ×w,∇ × s) = (∇ × u,∇ × s) for any s ∈ (∇H1

0 (Ω))⊥, and thus u = w, namely
y = ∇× u. The proof is completed.

Now, let u be the solution of (A′) (thus (A)); if we define y := ∇×u, then y ∈ H1
0(Ω). Thus the variational

problem (A′) can be rewritten as: find (u,y) ∈ H0(curl, Ω)×H1
0(Ω), such that, divu = 0, ∇× u = y, and

(∇y,∇z) = (f ,v), (3.2)

for any (v, z) ∈ H0(curl, Ω)×H1
0(Ω), such that divv = 0 and ∇× v = z.

By Lemma 3.1, we can further introduce Lagrangian multipliers p, r, g and a dual Lagrangian multiplier σ,
to rewrite the equation (3.2) to a relaxed formulation. Namely, define

V := H1
0 (Ω)×H0(curl, Ω)×H1

0(Ω)× L2
0(Ω)×H0(curl, Ω)×H1

0 (Ω), (3.3)
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and we consider to find (σ,u,y, p, r, ξ) ∈ V , such that for (τ,v, z, q, s, η) ∈ V ,

(A′′)



(r,∇τ) = 0,

−(∇× r,∇× v) + (∇ξ,v) = (f ,v),

(∇y,∇z) + (p,divz) + (∇× r, z) = 0,

(divy, q) = 0,

(∇σ, s)− (∇× u,∇× s) + (y,∇× s) = 0,

(u,∇η) = 0.

(3.4)

Lemma 3.2. Given f ∈ L2(Ω), Problem (3.4) admits a unique solution. Moreover,

‖σ‖1,Ω + ‖u‖curl,Ω + ‖y‖1,Ω + ‖p‖0,Ω + ‖r‖curl,Ω + ‖ξ‖1,Ω 6 C‖f‖(H0(curl,Ω))′ . (3.5)

Proof. We are going to verify conditions by Brezzi’s theory. Define

a((σ,u,y), (τ,v, z)) := (∇y,∇z), (3.6)

and

b((σ,u,y), (q, s, η)) := (divy, q) + (∇σ, s)− (∇× u,∇× s) + (y,∇× s) + (u,∇η). (3.7)

Then a(·, ·) and b(·, ·) are continuous on [H1
0 (Ω)×H0(curl, Ω)×H1

0(Ω)]2 and [H1
0 (Ω)×H0(curl, Ω)×H1

0(Ω)]×
[L2

0(Ω) × H0(curl, Ω) × H1
0 (Ω)], respectively. Define Z :=

{
(σ,u,y) ∈ [H1

0 (Ω) × H0(curl, Ω) × H1
0(Ω)] :

b((σ,u,y), (q, s, η)) = 0, ∀ (q, s, η) ∈ [L2
0(Ω) ×H0(curl, Ω) × H1

0 (Ω)]
}

. Then it remains for us to verify the

coercivity of a(·, ·) on Z and inf-sup condition: given nonzero (q, s, η) ∈ L2
0(Ω)×H0(curl, Ω)×H1

0 (Ω),

sup
(σ,u,y)∈H1

0 (Ω)×H0(curl,Ω)×H1
0(Ω)\{0}

b((σ,u,y), (q, s, η))

‖σ‖1,Ω + ‖u‖curl,Ω + ‖y‖1,Ω
> C(‖q‖0,Ω + ‖s‖curl,Ω + ‖η‖1,Ω). (3.8)

Given (σ,u,y) ∈ Z, then σ = 0. Since (u,∇η) = 0 for any η ∈ H1
0 (Ω), by Lemma 2.1, we have ‖u‖curl,Ω 6

C‖∇ × u‖0,Ω . As (∇× u,∇× u) = (y,∇× u), we have ‖∇ × u‖0,Ω 6 ‖y‖0,Ω 6 C‖∇y‖0,Ω . This confirms the
coercivity of a(·, ·) on Z.

Given (q, s, η) ∈ L2
0(Ω) ×H0(curl, Ω) ×H1

0 (Ω), firstly, we decomose s = s1 + s2, such that s1 ∈ ∇H1
0 (Ω),

and s2 ∈ (∇H1
0 (Ω))⊥. Set y to be such that (divy, q) = (q, q) and ‖y‖1,Ω 6 C‖divy‖0,Ω , and σ to be such that

∇σ = s1. Further, u is chosen to be u1 +∇η, such that (u1,∇η) = 0 for any η ∈ H1
0 (Ω) and (y−∇×u1,∇×v) =

(∇× s,∇× v) for any v ∈ H0(curl, Ω). Then

b((σ,u,y), (q, s, η)) = (q, q) + (s1, s1) + (∇ × s2,∇ × s2) + (∇η,∇η) > C(‖q‖20 + ‖s‖2curl,Ω + ‖∇η‖20,Ω),

where we have made use of Lemma 2.1 for s2. Meanwhile, ‖∇σ‖0,Ω = ‖s1‖0,Ω 6 ‖s‖curl,Ω , ‖y‖1,Ω 6 C‖q‖0,Ω ,
and ‖u‖curl,Ω 6 C(‖∇η‖0,Ω + ‖s‖curl,Ω + ‖y‖0,Ω) 6 C(‖∇η‖0,Ω + ‖s‖curl,Ω + ‖q‖0,Ω). This confirms (3.8) and
completes the proof.

Lemma 3.3. The problem (3.4) is equivalent to the variational problem (A′).

Proof. Let (σ,u,y, p, r, ξ) be the solution of (3.4). Then divu = 0, ∇× u = y, and (∇y,∇z) = (f ,v) for any
z ∈ H1

0(Ω) and v ∈ H0(curl, Ω) such that z = curlv. This way, u ∈ H1
0(Ω), and solves (A′). As (A′) admits
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only a unique solution, this confirms simultaneously that the solution of (A′) is part of the solution of (3.4).
The proof is completed.

Lemma 3.4. The problem (3.4) can be decomposed to the three subsystems and solved sequentially:

(1) given f , solve for r ∈ H0(curl, Ω) and ξ ∈ H1
0 (Ω) that{

(∇× r,∇× v)− (∇ξ,v) = −(f ,v), ∀v ∈ H0(curl, Ω)

(∇τ, r) = 0, ∀ τ ∈ H1
0 (Ω);

(3.9)

(2) with r obtained, solve for y ∈ H1
0(Ω) and p ∈ L2

0(Ω) that{
(∇y,∇z) + (p, divz) = −(∇× r, z), ∀ z ∈ H1

0(Ω)

(divy, q) = 0, ∀ q ∈ L2
0(Ω);

(3.10)

(3) with y obtained, solve for u ∈ H0(curl, Ω) and σ ∈ H1
0 (Ω) that{

(∇× u,∇× s)− (∇σ, s) = (y,∇× s), ∀ s ∈ H0(curl, Ω)

(∇η,u) = 0, ∀ η ∈ H1
0 (Ω).

(3.11)

Proof. By the stable Helmholtz decomposition of H0(curl, Ω), we can verify the three subproblems are all
well-posed. The proof follows then.

The theorem below establishes the regularity of the mixed system, and thus the primal form of (A) in forms
(1.1) and (2.2). It confirms the assumption in [28] (p. 190).

Theorem 3.5. Let Ω be a convex polyhedron, and f ∈ (L2(Ω))3 such that divf = 0. Let (σ,u,y, p, r, ξ) be the
solution of (3.4). Then

σ = 0; (3.12)

u ∈ H2(Ω) ∩H0(curl, Ω), ∇× u ∈ H2(Ω); (3.13)

y ∈ H2(Ω) ∩H1
0(Ω); (3.14)

p ∈ H1(Ω) ∩ L2
0(Ω); (3.15)

r ∈ H2(Ω) ∩H0(curl, Ω); (3.16)

ξ = 0. (3.17)

Moreover, if further f ∈ H1(Ω), then ∇× r ∈ H2(Ω).

We postpone the proof of Theorem 3.5 after the technical lemma below. From this point onwards, ., &, and

=∼ respectively denote 6, >, and = up to a constant. The hidden constants depend on the domain, and, when
triangulation is involved, they also depend on the shape-regularity of the triangulation, but they do not depend
on h or any other mesh parameter.

Lemma 3.6. Let Ω be a convex simply connected polyhedron.

(1) (Sects. 3.4 and 3.5 of [13])

H0(div, Ω) ∩H(curl, Ω) ⊂ H1(Ω), and H0(curl, Ω) ∩H(div, Ω) ⊂ H1(Ω).
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(2) (Lem. 3.2 of [10]) For functions z ∈ H(div, Ω)∩H0(curl, Ω) or H0(div, Ω)∩H(curl, Ω) satisfying curlz ∈
H1(Ω) and divz ∈ H1(Ω). Then

z ∈ H2(Ω), and ‖z‖2 . ‖curlz‖1,Ω + ‖divz‖1,Ω .

Proof of Theorem 3.5. By Lemma 3.4, we will show the regularity result by dealing with the subsystems (3.9),
(3.10) and (3.11) sequentially.

Since divf = 0, by (3.9), it holds that ξ = 0, and (∇ × r,∇ × v) = (f ,v) for any v ∈ H0(curl, Ω). Thus
∇×∇× r = f ∈ L2(Ω), namely ∇× r ∈ H(curl, Ω). Also, ∇× r ∈ H0(div, Ω), and thus ∇× r ∈ H(curl, Ω) ∩
H0(div, Ω) ⊂ H1(Ω). Note that by (3.9), divr = 0, thus by Lemma 3.6, r ∈ H2(Ω). This proves (3.16) and
(3.17).

Substitute ∇× r into the system (3.10), standardly we obtain the estimate (3.14) and (3.15). Here we refer
to [24] for the regularity analysis of the 3D Stokes problem.

Further, substitute y into the system (3.11), we obtain σ = 0, divu = 0, u ∈ H1(Ω)∩H0(curl, Ω) and∇×u ∈
H1(Ω). By Lemma 3.6 again, it holds that u ∈ H2(Ω). Moreover, ∇× u = y; this leads to ∇× u ∈ H2(Ω).

When f ∈ H1, ∇× r ∈ H2(Ω) by Lemma 3.6. The proof is completed.

Remark 3.7. As σ = ξ = 0 for any f with divf = 0, the system (3.4) can be simplified to: find (u,y, p, r) ∈
V ′′ := (∇H1

0 (Ω))⊥ ×H1
0(Ω)× L2

0(Ω)× (∇H1
0 (Ω))⊥, such that, for any (v, z, q, s) ∈ V ′′,

−(∇× r,∇× v) = (f ,v),

(∇y,∇z) + (p,divz) + (∇× r, z) = 0,

(divy, q) = 0,

−(∇× u,∇× s) + (y,∇× s) = 0.

This new system is equivalent to (3.4), and simpler formally. However, its dicretization needs finite element
space for (∇H1

0 (Ω))⊥, and we will not discuss it much here.

3.2. Mixedization of problem (B′)

We simply repeat the procedure for Problem (A′). Define

U := H1
0 (Ω)×H0(curl, Ω)×H1

0(Ω)×H0(curl, Ω)× L2
0(Ω).

The mixed formulation is to find (σ,u,y, r, p) ∈ U , such that for (τ,v, z, s, q) ∈ U ,

(B′′)



(r,∇τ) = 0,

(u,v)− (∇× r,∇× v) = (f ,v),

(∇y,∇z) + (∇× r, z) + (p, divz) = 0,

(∇σ, s)− (∇× u,∇× s) + (y,∇× s) = 0,

(divy, q) = 0.

(3.18)

Lemma 3.8. Given f ∈ L2(Ω), Problem (3.18) admits a unique solution. Moreover,

‖σ‖1,Ω + ‖u‖curl,Ω + ‖y‖1,Ω + ‖r‖curl,Ω + ‖p‖0,Ω 6 C‖f‖(H0(curl,Ω))′ . (3.19)

Proof. Again, we are going to verify Brezzi’s conditions. Define a((σ,u,y), (τ,v, z)) := (u,v) + (∇y,∇z), and
b((σ,u,y), (s, q)) := (∇σ, s)− (∇×u,∇×s)+(y,∇×s)+(divy, q). The continuity of a(·, ·) and b(·, ·) associated
with U follow immediately.
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Define Z :=
{

(σ,u,y) ∈ H1
0 (Ω) × H0(curl, Ω) × H1

0(Ω) : b((σ,u,y), (s, q)) = 0,∀ (s, q) ∈ H0(curl, Ω) ×

L2
0(Ω)

}
. Given (σ,u,y) ∈ Z, we have σ = 0 and y = ∇× u. Thus the coercivity of a(·, ·) on Z follows.

Given (s, q) ∈ H0(curl, Ω) × L2
0(Ω), decompose s = s1 + s2 with s1 ∈ ∇H1

0 (Ω), and s2 ∈ (∇H1
0 (Ω))⊥. Set

y ∈ H1
0(Ω), such that (divy, q) = (q, q) and ‖y‖1 6 C‖q‖0, ∇σ = s1, and u ∈ (∇H1

0 (Ω))⊥ such that (y −∇×
u,∇× v) = (∇× s,∇× v) for any v ∈ H0(curl, Ω). Then b((σ,u,y), (s, q)) = (s1, s1) + (∇× s,∇× s) + (q, q),
and ‖σ‖1 + ‖u‖curl + ‖y‖1,Ω 6 C(‖s‖curl,Ω + ‖q‖0,Ω). This leads to the inf-sup condition and completes the
proof.

Similar to Lemma 3.3, we can obtain the equivalence result below.

Lemma 3.9. The problem (3.18) is equivalent to the primal problem (B′).

Theorem 3.10. Let Ω be a convex polyhedron and (σ,u,y, r, p) be the solution of (3.18). Then σ = 0, ∇×u ∈
H2(Ω), y ∈ H2(Ω) ∩H1

0(Ω), r ∈ H1(Ω) ∩H0(curl, Ω), ∇ × r ∈ H1(Ω) and p ∈ L2
0(Ω) ∩H1(Ω). Further, if

divf = 0, then u ∈ H2(Ω).

Proof. By the stability of the system and since divr = 0, we obtain r ∈ H1(Ω). As (∇× r,∇× v) = (u− f ,v)
for any v ∈ H0(curl, Ω), we have ∇×∇ × r = u − f , thus ∇× r ∈ H(curl, Ω) ∩H0(div, Ω) ⊂ H1(Ω). Then,
standardly, we obtain y ∈ H2(Ω) ∩H1

0(Ω), and p ∈ H1(Ω) ∩ L2
0(Ω). By the second last line of the system,

σ = 0 and ∇ × u = y; thus ∇ × u ∈ H2(Ω). Further, if divf = 0, then divu = 0; this combined with that
curlu ∈ H1

0(Ω) leads to that u ∈ H2(Ω). The proof is completed.

Remark 3.11. Theorem 3.10 constructs regularity of (B) in forms (1.2) and (3.18). It also confirms the validity
of assumptions in Lemma 3.2 and Theorem 3.12 of [41] by showing that u ∈ H2(Ω) and ∇× u ∈ H2(Ω) when
f ∈ L2(Ω) with divf = 0. This proof can be repeated onto Theorem 3.5. The difference between the two proofs
is that we do not try to decompose (3.18) to subsystems sequentially for Theorem 3.10.

4. Finite element discretizations of the mixed formulations

Given finite element spaces H1
h0 ⊂ H1

0 (Ω), Hh0(curl) ⊂ H0(curl, Ω), H1
h0 ⊂ H1

0(Ω) and L2
h0 ⊂ L2

0(Ω), we
can use them to replace the respective Sobolev spaces in the mixed systems to generate a discretisation scheme.
Particularly, the spaces H1

0 (Ω) and H0(curl, Ω) may appear more than once in the mixed formulation; this

hints us to use different H1,a
h0 and H1,b

h0 and different Ha
h0(curl) and Hb

h0(curl) when convenient. In this section,
we present some conditions of the well-posed-ness of the discretised system, construct generally its convergence
analysis, and give some examples.

4.1. Discretize problem (A′′)

Let H1,a
h0 ×Ha

h0(curl) and H1,b
h0 ×Hb

h0(curl), identical or not, be two finite element subspaces of H1
0 (Ω) ×

H0(curl, Ω), and finite element space H1
h0 × L2

h0 ⊂ H1
0(Ω) × L2

0(Ω). Define Vh := H1,a
h0 ×Ha

h0(curl) ×H1
h0 ×

L2
h0×Hb

h0(curl)×H1,b
h0 , and V ′h := H1,b

h0 ×Hb
h0(curl)×H1

h0×L2
h0×Ha

h0(curl)×H1,a
h0 . The discretized formulation

of (A′) is to find (σh,uh,yh, ph, rh, ξh) ∈ Vh, such that, for any (τh,vh, zh, qh, sh, ηh) ∈ V ′h,

{
a((σh,uh,yh), (τh,vh, zh)) + b((ph, rh, ξh), (τh,vh, zh)) = (f ,vh),

b((σh,uh,yh), (qh, sh, ηh)) = 0,
(4.1)

where a(·, ·) and b(·, ·) follows the definitions (3.6) and (3.7). The system is symmetric indefinite when Vh = V ′h,
and unsymmetric otherwise.
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For the well-posedness of (4.1), we set up some assumptions below.

A1: The exact relation holds: ∇H1,α
h0 = {sh ∈ Hα

h0(curl) : curlsh = 0}, α = a, b.

A2: The discrete Friedrichs inequality holds: ‖sh‖0,Ω 6 C‖∇ × sh‖0,Ω for sh ∈ (∇H1,α
h0 )⊥. Here (∇H1,α

h0 )⊥ is

the orthogonal completion of (∇H1,α
h0 ) in Hα

h0(curl) in L2 inner product, α = a, b.

A3: The inf-sup condition holds: inf
qh∈L2

h0\{0}
sup

zh∈H1
h0\{0}

(divzh, qh)

‖qh‖0,Ω‖zh‖1,Ω
> C.

Remark 4.1. The assumptions A1 and A2 are imposed on the space pair H1,α
h0 and Hα

h0(curl), α = a, b, and
the assumption A3 is imposed on the space pair H1

h0 and L2
h0. This allows us to choose the three space pairs

independently. Given the assumption A3 itself, the system (4.1) can be decomposed to three subproblems and
solved sequentially.

Lemma 4.2. Under the assumptions A1–A3, the problem (4.1) is well-posed.

Proof. When H1,a
h0 = H1,b

h0 and Ha
h0(curl) = Hb

h0(curl), namely Vh = V ′h, the proof is essentially the same as
that of Lemma 3.2; otherwise, we can decompose the system to three subproblems and analyse them one by
one, and the result can be proved. We only emphasize that ‖uh‖curl,Ω 6 C‖yh‖0,Ω . Actually, the problem (4.1)
can be decomposed to the three subsystems and solved sequentially:

(1) given f , solve for rh ∈ Hb
h0(curl) and ξh ∈ H1,b

h0 that{
(∇× rh,∇× vh)− (∇ξh,vh) = −(f ,vh) ∀vh ∈ Hb

h0(curl)

(∇τh, rh) = 0 ∀ τh ∈ H1,b
h0 ;

(4.2)

(2) with r obtained, solve for ϕ ∈ H1
h0 and p ∈ L2

h0 that{
(∇yh,∇zh) + (ph,divzh) = −(∇× rh, zh) ∀ zh ∈ H1

h0

(divyh, qh) = 0 ∀ qh ∈ L2
h0;

(4.3)

(3) with yh obtained, solve for uh ∈ Ha
h0(curl) and σh ∈ H1,a

h0 that{
(∇× uh,∇× sh)− (∇σh, sh) = (yh,∇× sh) ∀ sh ∈ Ha

h0(curl)

(∇yh,uh) = 0 ∀ yh ∈ H1,a
h0 .

(4.4)

All the three subsystems are well-posed. Indeed, (4.2) and (4.4) are well-posed by Assumptions A1 and A2,
and (4.3) is well-posed by Assumption A3. The stability estimate follows immediately.

The convergence of the scheme is surveyed in the lemma below.

Lemma 4.3. Let (σ,u, ϕ, p, r, ξ) and (σh,uh,yh, ph, rh, ξh) be the solutions of (3.4) and (4.1), respectively.
Under the assumptions A1–A3, it holds that

(1) ‖r− rh‖curl,Ω 6 C inf
sh∈Hb

h0(curl)
‖r− sh‖curl,Ω ;

(2) ‖y − yh‖1,Ω + ‖p− ph‖0,Ω
6 C

[
inf

zh∈H1
h0,qh∈L

2
h0

(‖y − zh‖1,Ω + ‖p− qh‖0,Ω) + ‖r− rh‖0,Ω
]
;

(3) ‖u− uh‖curl,Ω 6 C
[

inf
vh∈Ha

h0(curl)
‖u− vh‖curl,Ω + ‖y − yh‖0,Ω

]
;

(4) σh = 0 = σ, ξh = 0 = ξ.
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Proof. Similar to Lemma 3.4, we can decompose (4.1) to three subproblems and solve them sequentially. The
lemma follows directly from the Ceá lemma and the second Strang lemma. We only have to note that, as
divf = 0, it follows that ξ = 0 and σ = 0, and inf

ηh∈H1
h0

‖ξ − ηh‖1,Ω = inf
τh∈H1

h0

‖σ − τh‖1,Ω = 0.

Remark 4.4. By Lemma 4.3, the error ‖σ − σh‖1,Ω + ‖u − uh‖curl,Ω could be comparable to ‖y − yh‖0,Ω .

This implies that when H1,a
h0 and Ha

h0(curl) are chosen appropriately, a higher order convergence rate of u may
be expected. Indeed, for general f (not assuming f ∈ H1(Ω)), that we choose Ha

h0(curl) bigger than Hb
h0(curl)

(meanwhileH1,a
h0 bigger thanH1,b

h0 ) coincides with the higher regularity of u than that of r on convex polyhedrons.

However, if H1,a
h0 6= H1,b

h0 and Vh 6= V ′h, the problem is no longer symmetric, which may bring extra difficulties.
This is why we still discuss the choice Vh = V ′h in many applications like, e.g., eigenvalue computation.

4.2. Discretize problem (B′′)

Let H1
h0 ⊂ H1

0 (Ω), Hh0(curl) ⊂ H0(curl, Ω), H1
h0 ⊂ H1

0(Ω) and L2
h0 ⊂ L2

0(Ω) be respective finite element
spaces. Define

Uh := H1
h0 ×Hh0(curl)×H1

h0 ×Hh0(curl)× L2
h0.

The discretized mixed formulation is to find (σh,uh,yh, rh, ph) ∈ Uh, such that, for any (τh,vh, zh, sh, qh) ∈ Uh,



(rh,∇τh) = 0

(uh,vh)− (∇× rh,∇× vh) = (f ,vh)

(∇yh,∇zh) + (∇× rh, zh) + (ph,divzh) = 0

(∇σh, sh)− (∇× uh,∇× sh)(yh,∇× sh) = 0

(divyh, qh) = 0.

(4.5)

The two lemmas below are for the stability and the convergence of the scheme.

Lemma 4.5. Under the assumptions A1∼A3, the problem (4.5) is well-posed on Uh.

Lemma 4.6. Let (m,u,y, r, p) and (σh,uh,yh, rh, ph) be the solutions of (3.18) and (4.5), respectively.

(1) σh = 0;
(2) ‖y − yh‖1,Ω + ‖p − ph‖0,Ω 6 C inf

(τh,vh,zh,sh,qh)∈Uh

[‖u − vh‖curl,Ω + ‖y − zh‖1,Ω + ‖r − sh‖curl,Ω + ‖p −

qh‖0,Ω ];
(3) ‖u− uh‖curl,Ω + ‖r− rh‖curl,Ω

6 C
[

inf
vh,sh∈Hh0(curl)

(‖u− vh‖curl,Ω + ‖r− sh‖curl,Ω) + ‖y − yh‖0,Ω
]
.

Proof. The first item follows from A1, and the second follows from the Cea lemma. Note that (σ,u, r) solves
the problem


(r,∇τ) = 0 ∀ τ ∈ H1

0 (Ω)

(u,v)− (∇× r,∇× v) = (f ,v) ∀v ∈ H0(curl, Ω)

(∇σ, s)− (∇× u,∇× s) = −(y,∇× s) ∀ s ∈ H0(curl, Ω),

(4.6)
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and (σh,uh, rh) solves the finite element problem:
(rh,∇τh) = 0 ∀ τh ∈ H1

h0

(uh,vh)− (∇× rh,∇× vh) = (f ,vh) ∀vh ∈ Hh0(curl)

(∇σh, sh)− (∇× uh,∇× sh) = −(yh,∇× sh) ∀ sh ∈ Hh0(curl).

(4.7)

The third item follows from the Ceá lemma and the second Strang lemma.

Lemma 4.6 reveals that the error ‖u − ũh‖curl,Ω + ‖r − r̃h‖curl,Ω can be comparable with ‖y − yh‖0. This
hints us to use some bigger Hh0(curl) to expect higher accuracy of u and r than that of y and p.

4.3. Examples of finite element quartos

Let Ω be subdivided to tetrahedrons which form a grid Th. We impose the shape regularity assumption on
Th. On the grid, finite element spaces can be constructed. We refer to [11, 13, 20] for the context of finite element
methods. We only recall these familiar finite element spaces, k > 1:

• continuous Lagrangian element space of kth degree: subspace of H1(Ω), consist of piecewise kth-degree
polynomials; denoted by W k

h ; W k
h0 = W k

h ∩H1
0 (Ω);

• Nédélec edge element of first family of kth degree [22]: subspace of H(curl, Ω), consist of piecewise poly-
nomials of the form u + v, with u ∈ (Pk−1)3 and v ∈ x× (P̂k−1)3, where Pk−1 is the space of (k − 1)th
degree polynomials, and P̂ 3

k−1 is the space of homogeneous (k − 1)th degree polynomials; denoted by Nk
h;

Nk
h0 = Nk

h ∩H0(curl, Ω).

4.3.1. Examples for problem (A′′)

For problem (A′′), we choose

H1,a
h0 := W 2

h0, Ha
h0(curl) := N2

h0, H1
h0 := (W 2

h0)2,

H1,b
h0 := W 1

h0, Hb
h0(curl) := N1

h0, L2
h0 := W 1

h ∩ L2
0(Ω). (4.8)

The assumptions A1–A3 can be verified. Particularly, A1 and A3 can be found in [3], and A2 can be found
in [1, 14, 18]. Its convergence then follows from Lemma 4.3. We here present a specific estimate on convex
polyhedrons.

Lemma 4.7. Let Ω be a convex polyhedron and divf = 0. Let (σ,u,y, p, r, ξ) and (σh,uh,yh, ph, rh, ξh) be the
solutions of (3.4) and (4.1), respectively. Then

(1) ξh = 0 = ξ and σh = 0 = σ;
(2) ‖r− rh‖curl,Ω 6 Ch(‖r‖1,Ω + ‖∇ × r‖1,Ω) 6 Ch‖f‖0,Ω;
(3) ‖y − yh‖1,Ω + ‖p− ph‖0,Ω

6 Ch(‖y‖2,Ω + ‖p‖1,Ω + ‖r‖1,Ω + ‖∇ × r‖1,Ω) 6 Ch‖f‖0,Ω;
(4) ‖y − yh‖0 6 Ch2‖f‖0,Ω;
(5) ‖u− uh‖curl,Ω 6 C(h2(‖u‖2,Ω + ‖∇ × u‖2,Ω) + ‖y − yh‖0,Ω) 6 Ch2‖f‖0,Ω.

Proof. We only prove the estimate of ‖y−yh‖0,Ω by dual argument, and the remaining follows from Lemma 4.3

directly. Define V̂h := H1,b
h0 ×Hb

h0(curl)×H1
h0 × L2

h0 ×Hb
h0(curl)×H1,b

h0 , and let (σ̂h, ûh, ŷh, p̂h, r̂h, ξ̂h) ∈ V̂h be
such that {

a((σ̂h, ûh, ŷh), (τ̂h, v̂h, ẑh)) + b((p̂h, r̂h, ξ̂h), (τ̂h, v̂h, ẑh)) = (f , v̂h),

b((σ̂h, ûh, ŷh), (q̂h, ŝh, η̂h)) = 0,
(4.9)
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for any (τ̂h, v̂h, ẑh, q̂h, ŝh, η̂h) ∈ V̂h, where a(·, ·) and b(·, ·) follows the definitions (3.6) and (3.7).Then σ̂h = ξ̂h =
0, and (ŷh, p̂h, r̂h) = (yh, ph, rh). Let (σ̃, ũ, ỹ, p̃, r̃, ξ̃) ∈ V be such that, for any (τ,v, ψ, q, s, η) ∈ V ,{

a((σ̃, ũ, ỹ), (η,v, ψ)) + b((p̃, r̃, ξ̃), (τ,v, ψ)) = (y − yh, ψ),

b((σ̃, ũ, ỹ), (q, s, η)) = 0.
(4.10)

Then r̃ = 0, ξ̃ = 0, σ̃ = 0, and, by the same virtue as that of Theorem 3.5,

‖ỹ‖2,Ω + ‖p̃‖1,Ω + ‖ũ‖2,Ω + ‖curlũ‖2,Ω 6 C‖y − yh‖0,Ω .

Thus substituting (τ,v, ψ, q, s, η) = (σ − σ̂h,u− ûh,y − ŷh, p− p̂h, r− r̂h, ξ − ξ̂h) into (4.10), we have

‖y − yh‖20,Ω = a((σ̃, ũ, ỹ), (σ − σ̂h,u− ûh,y − ŷh)) + b((p̃, r̃, ξ̃), (σ − σ̂h,u− ûh,y − ŷh))

+b((σ̃, ũ, ỹ), (p− p̂h, r− r̂h, ξ − ξ̂h)).

Further, for any (τ̂h, v̂h, ẑh, q̂h, ŝh, η̂h) ∈ V̂h, the orthogonality holds that

‖y − yh‖20,Ω = a((σ̃ − τ̂h, ũ− v̂h, ỹ − ẑh), (σ − σ̂h,u− ûh,y − ŷh)) + b((p̃− q̂h, r̃− ŝh, ξ̃ − η̂h),

×(σ − σ̂h,u− ûh,y − ŷh)) + b((σ̃ − τ̂h, ũ− ŝh, ỹ), (p− p̂h, r− r̂h, ξ − ξ̂h)).

Thus

‖y − yh‖20,Ω 6 C(‖σ − σ̂h‖1,Ω + ‖u− ûh‖curl,Ω + ‖y − ŷh‖1,Ω + ‖p− p̂h‖0,Ω + ‖r− r̂h‖curl,Ω)

× inf
(τ̂h,v̂h,ẑh,q̂h,ŝh,η̂h)∈V̂h

(‖σ̃−τ̂h‖1,Ω+‖ũ−v̂h‖curl,Ω+‖ỹ−ẑh‖1,Ω+‖p̃−q̂h‖0,Ω+‖r̃−ŝh‖curl,Ω).

Then by finite element estimate,

‖y − yh‖20,Ω 6 Ch‖f‖0,Ω · h‖y − yh‖0,Ω , (4.11)

which leads to that ‖y − yh‖0,Ω 6 Ch2‖f‖0,Ω . This completes the proof.

Remark 4.8. The convergence analysis in terms of the regularity of the solution follows directly from
Lemma 4.3. We here construct a convergence analysis with respect to ‖f‖0,Ω , which can exploit the regu-
larity of solution functions to a full extent with economical complexity. When further f ∈ H1(Ω), we can set

H1,b
h0 := W 2

h0 and Hb
h0(curl) := N2

h0, and obtain higher accuracy of ‖r− rh‖curl,Ω .

4.3.2. Examples for problem (B′′)

For problem (B′′), we choose

H1
h0 := W 2

h0, Hh0(curl) := N2
h0, H1

h0 := (W 2
h0)2, L2

h0 := W 1
h ∩ L2

0(Ω). (4.12)

The assumptions A1–A3 can be verified. The lemma below is for the convergence.

Lemma 4.9. Let Ω be a convex polyhedron and f ∈ L2(Ω). Let (m,u,y, r, p) and (σh,uh,yh, rh, ph) be the
solutions of (3.18) and (4.5), respectively. Then

(1) σh = 0 = σ;
(2) ‖y − yh‖1,Ω + ‖p− ph‖0,Ω 6 Ch‖f‖0,Ω, ‖y − yh‖0 6 Ch2‖f‖0,Ω;
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(3) ‖r− rh‖curl,Ω + ‖u− uh‖curl,Ω 6 Ch‖f‖0,Ω;
(4) if f ∈ H1(Ω), then ‖u− uh‖curl,Ω + ‖r− rh‖curl,Ω 6 Ch2‖f‖1,Ω.

Proof. Similar to Lemma 4.7, we only have to construct the estimate ‖y − yh‖0,Ω , which can be done by
repeating the dual argument in the proof of Lemma 4.7, and we omit the details here. The proof is completed
by following from Lemma 4.6 directly.

5. Concluding remarks

In this paper, we study the quad curl equations and develop for them friendly mixed schemes. We construct
equivalent mixed formulation of the two variant model problems, which are stable on standard L2, H(curl) and
H1 spaces. Existing finite element quartos that satisfy some quite mild assumptions can then lead to stable
discretisation schemes, and the convergence then follow in a routine way. Regularities are established for the
mixed formulations, and then the primal ones. Some finite element examples which are optimal with respect
to the regularity are given. The newly developed schemes are easy to build, to analyze and to design optimal
solvers for. The schemes can be implemented with various finite element packages. The discussion also shows
some possibility to analyse the model problems under the framework of finite element exterior calculus(cf., e.g.,
[1]). Further discussions on related topics such as adaptive algorithms can be expected.

In constructing of the equivalent formulations, we first configurate the boundary conditions that ∇× u has
to satisfy. Particularly, (∇ × u) · n = 0 is a condition satisfied by the variable ∇ × u essentially. This forces
us to bring H1

0(Ω) which has bigger capacity for boundary conditions into discussion. This partially illustrates
the importance of the boundary condition for the variational problem. Discussions and comparisons can be
extended to problems with other boundary conditions.

As only low-order Sobolev spaces are involved in the mixed forms, it is possible to construct finite element
schemes that are nested algebraically and topologically on nested grids; this will provide convenience in designing
multilevel methods, and can be utilised in practice (cf., e.g., [8, 9, 19, 40]). Beyond the two familiar variants
boundary value problems considered in this paper, in many contexts, second order operators also appear in
the boundary value problem, and parameters of various scales may appear in front of operators of different
orders; see the model problem in [41]. Designing parameter-robust discretisation is interesting and practically
important, and will be discussed in future. Also, we focus ourselves on source problems in the present paper. The
utilisation of the mixed scheme presented in this paper onto eigenvalue computation and analysis, especially in
designing multilevel algorithm (cf. [40]), will be discussed in future.
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