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STANDARD FINITE ELEMENTS FOR THE NUMERICAL RESOLUTION
OF THE ELLIPTIC MONGE−AMPÈRE EQUATION: ALEKSANDROV

SOLUTIONS

Gerard Awanou1

Abstract. We prove a convergence result for a natural discretization of the Dirichlet problem of the
elliptic Monge−Ampère equation using finite dimensional spaces of piecewise polynomial C1 functions.
Discretizations of the type considered in this paper have been previously analyzed in the case the
equation has a smooth solution and numerous numerical evidence of convergence were given in the case
of non smooth solutions. Our convergence result is valid for non smooth solutions, is given in the setting
of Aleksandrov solutions, and consists in discretizing the equation in a subdomain with the boundary
data used as an approximation of the solution in the remaining part of the domain. Our result gives
a theoretical validation for the use of a non monotone finite element method for the Monge−Ampère
equation.
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1. Introduction

Let Ω ⊂ Rd, d = 2, 3 be a convex domain with polygonal boundary ∂Ω. In this paper we prove a convergence
result for the numerical approximation of solutions to the Dirichlet problem for the Monge−Ampère equation

detD2u = f in Ω, u = g on ∂Ω, (1.1)

by elements of a space Vh of piecewise polynomial functions of some degree k ≥ d which are globally C1. The
expression det D2u should be understood in the sense of Aleksandrov cf. Section 2.5. For a smooth function u,
D2u = ((∂2u)/(∂xi∂xj))i,j=1,...,d is the Hessian of u and f is a given function on Ω satisfying f ∈ C(Ω) with
0 < c0 ≤ f ≤ c1 for constants c0, c1 ∈ R. We assume that g ∈ C(∂Ω) can be extended to a function g̃ ∈ C(Ω)
which is convex on Ω.

Let fm, gm ∈ C∞(Ω) such that 0 < c2 ≤ fm ≤ c3, fm converges uniformly to f on Ω and gm converges
uniformly to g̃ on Ω. See for example [3]. Let um ∈ C(Ω) denote the Aleksandrov solution of the problem

detD2um = fm in Ω, um = gm on∂Ω. (1.2)
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Finally let Ω̃ be a convex polygonal subdomain of Ω. We prove that the problem: find uh ∈ Vh(Ω̃), uh = um

on Ω \ Ω̃ and ∑
K∈Th(Ω̃)

∫
K

(detD2uh − fm)vh dx = 0, ∀vh ∈ Vh(Ω̃) ∩ H1
0 (Ω̃), (1.3)

has a (locally unique) piecewise strictly convex solution uh on Ω̃ which converges uniformly on compact subsets
of Ω̃ to the solution ũ of

detD2ũ = fm in Ω̃, ũ = um on Ω \ Ω̃, (1.4)

which is convex on Ω̃ and continuous up to the boundary of Ω̃.
Here Th(Ω̃) denotes a quasi-uniform triangulation of the domain Ω̃ and Vh(Ω̃) denotes a finite element space

on Ω̃ of piecewise polynomial C1 functions of degree k ≥ d. We make the abuse of notation of writing uh = um

to mean that our approximations are discontinuous on the boundary and that uh coincides with um at the
Lagrange points on ∂Ω̃. For simplicity, we do not indicate the dependence of ũ on m.

A piecewise strictly convex function which is C1 is strictly convex as a consequence of ([27], Thm. 6, p. 1091)
and ([41], Lem. 8.32). Thus our approximations are strictly convex.

1.1. Relevance of the convergence result for practical computations

Problems in affine geometry motivated the study of the Dirichlet problem for the Monge−Ampère equation.
See for example [7] for a numerical study of the Gauss−curvature equation which is a Monge−Ampère type
equation. The Monge−Ampère equation also appears in several applications, e.g. optimal transport and reflector
design, but with the so-called second boundary condition, a term used to indicate that this type of boundary
condition was studied much later than the Dirichlet problem. Formally, the numerical study of the second
boundary condition can be reduced to a sequence of Dirichlet problems using a fixed point algorithm.

Recently, several researchers have used a standard discretization of the type considered in this paper for the
numerical study of the reflector design problem [13]. Even if one uses the same type of discretization for the
Dirichlet problem (1.1), there is not yet a convergence theory. The convergence result of this paper, as stated
above, addresses this issue.

Let δ > 0. It is known, cf. Theorem 2.15, that the Aleksandrov solution um of (1.2) converges uniformly on
compact subsets of Ω to the Aleksandrov solution u of (1.1). We choose m such that |u(x) − um(x)| < δ/2 for
all x ∈ Ω̃. By unicity of the Aleksandrov solution um of (1.2), we have ũ = um in Ω̃. Thus our results give
on each compact subset of Ω̃, |uh(x) − um(x)| < δ/2 for h sufficiently small. The solution u of (1.1) can then
be approximated within a prescribed accuracy by first choosing m and then h sufficiently small. We emphasize
that the solution ũ of (1.4) is not necessarily smooth.

It remains to chose the data to compute the local solution of (1.3). We may assume that |f(x)− fm(x)| < δ,
|g̃(x) − gm(x)| < δ and since um = gm on ∂Ω and um ∈ C(Ω), we may choose Ω̃ such that |um − gm| < δ

on Ω \ Ω̃. Thus, from a practical point of view, for the implementation, we see that one can take Ω̃ = Ω,
fm = f with uh = g on ∂Ω. A similar situation arises in the routine use in the finite element literature of
the approximation of a smooth domain by a polygonal domain. Numerical experiments with the discretization
considered in this paper were given in [2] for both smooth and non smooth solutions. For that reason, they are
not reproduced here. Another possibility, but with results of less accuracy, is to actually implement the method
on a subdomain. This can be easily tested on a code for (1.1) by extending g to a larger domain Ω̂ and using
the restriction of g on ∂Ω̂ as boundary value. For the extension of the framework of this paper to the second
boundary condition, only the choice of fm and Ω̃ is needed. We wish to address this in a separate work.
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1.2. Methodology

The purpose of this section is to explain the need for regularization of the data and the need of a subdomain
for our convergence result. The methodology of this paper may be applied to other settings where one has
numerical evidence of convergence for discretizations of (1.1). The general methodology consists in

1- Prove the convergence and local uniqueness of the solution of the discrete problem (1.3) when (1.1) has
a smooth solution. See [5]. Under the assumption that the discrete problem (1.3) has a solution which is
piecewise strictly convex, prove local uniqueness using the continuity of the eigenvalues of a matrix as a
function of its entries. See Section 6.2.

2- Verify that the numerical method is robust enough to handle the standard tests for non smooth solutions.
In [2], we prove the convergence of iterative methods which preserve weakly convexity and their effectiveness
in capturing a convex solution of (1.3) was illustrated with numerical experiments.

3- Choose m, fm, gm and Ω̃ as specified in Section 1.1.
4- Consider a sequence of smooth uniformly convex domains Ωs increasing to Ω [9], with the property that

Ω̃ ⊂ Ωs for all s, and the problems with smooth solutions [43]

detD2ums = fm in Ωs, ums = gm on ∂Ωs. (1.5)

From Theorem 2.15, ums converges uniformly on Ω̃ to the solution um of (1.2) and hence to ũ as s → ∞.
5- Establish that the discrete approximation ums,h of the smooth function ums, on Ω̃ and with boundary data

ums, converges uniformly to ums on Ω̃ as h → 0. This takes the form of an error estimate with constants
depending on derivatives of ums.

6- Because Ω̃ is an interior domain, interior Schauder estimates allow to get a uniform bound on the derivatives
of ums. In other words, ums,h converges uniformly to ums on compact subsets of Ω̃ at a rate which depends
on Ω̃ but is independent of s.

7- The local equicontinuity of convex functions allows to take a subsequence in s. This gives a convex finite
element function uh which solves the finite element problem (1.3). The approximation uh is shown to converge
uniformly on compact subsets of Ω̃ to the solution ũ of (1.4). Local uniqueness of the discrete solution is a
consequence of the work done in Step 1.

1.3. Possible disadvantages of the approach in this paper

We prove that (1.3) has a strictly convex solution which is locally unique. Even when (1.1) has a smooth
solution, global uniqueness of the discrete approximation has not been addressed in previous work. In the
standard finite difference context, a variational approach presented in [6] allows to select a special discrete
solution. Numerical results reported therein indicate that such an approach is effective when the right hand
side of the Monge−Ampère equation is a sum of Dirac masses. The analysis in [6] uses heavily results on the
existence of local solutions.

The convergence result in the paper uses results available for the approximation of smooth solutions of (1.1)
using standard discretizations. See for example [5]. When (1.1) has a smooth strictly convex solution, these
results say that the discrete problem has a solution for h ≤ h0 where h0 → 0 as a high order Sobolev norm of u
approaches infinity. Thus for example when ||u||Ck+1(Ω) is very big, existence of a discrete solution would hold
for h close to machine precision. And this is just for smooth solutions. The interior Schauder estimates give a
possibly large upper bound on ||ums||Ck+1(Ω̃) as the latter depends on the distance of Ω̃ to Ω. Thus it is not
possible, in this setting, to quantify how small h should be for the existence of ums,h. We recall that ums and
ums,h were introduced in step 5 of the methodology described in Section 1.2.

Results for the numerical approximation of viscosity solutions for (1.1) in the degenerate case f ≥ 0 are stated
in terms of uniform convergence on compact subsets with no quantification of how small h can be. Thus no
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information is given about how small h should be for a reasonable reduction of the error, although in that
setting there is no restriction on the size of h for the existence of a discrete solution.

1.4. Relation with other work

A convergence analysis for a discretization of (1.1) starts with a choice of a notion of weak solution. For an
analysis based on the notion of viscosity solution, we refer to [24] in the finite difference context, and to [23] in the
finite element context for radial solutions with a biharmonic regularization. The discretization proposed in [24] is
a monotone scheme and thus enjoys a discrete maximum principle. One of the advantages of a monotone scheme
is that one can prove existence of a discrete solution with no restriction on the size of the mesh. Nethertheless,
the reader should be aware that there are many non monotone schemes for problems given in the setting of
viscosity solutions e.g. [28]. The lack of a maximum principle for the discretizations analyzed in this paper is
related to the difficulty of proving stability of the discretization for smooth solutions without assuming a bound
on a high order norm of the solution. For that reason, we introduced the theoretical computational domain Ω̃
and fix the parameter m in the regularization of the data.

The weak solution in the viscosity sense is known to be equivalent to the weak solution in the sense of
Aleksandrov for f ∈ C(Ω) and f > 0 on Ω. The arguments of this paper are based on the notion of Aleksandrov
solution. To the best of our knowledge, a proven convergence result for the numerical resolution of (1.1) via
the notion of Aleksandrov solution was only considered in [36] for the two dimensional problem. The approach
in [36] uses geometric arguments and is different from the one taken here.

When the weak smooth solution of (1.1) is a smooth strictly convex function, Böhmer [10] studied C1

approximations and his method has been implemented in [18]. See also [17]. Böhmer’s method requires a
modification of the Argyris space and numerical results in [18] used Newton’s method and did not address some
of the standard test cases for non smooth solutions. In [13], it is shown that with a standard C1 approximation
based on B-splines, Newton’s method coupled with trust region methods is effective for these standard test cases.
Newton’s method was also used in [22] in the vanishing moment methodology. See also [4]. In [5], we analyzed the
discretization (1.3) for C1 approximations and gave numerical evidence of convergence for non smooth solutions
if one uses Lagrange elements and a time marching method. We previously gave the corresponding numerical
results with C1 approximations in [2]. In [34] it is shown that Newton’s method is effective if one uses a mixed
formulation and implement the resulting method in primal form. See [33] for a description of the method for
linear non variational problems. However in all these works, i.e. [4, 5, 10, 13, 18, 22, 34], no proof of convergence
is given in the case the solution of (1.1) is not in H2(Ω).

In this paper, we present a theory which explains why standard discretizations of the type considered in this
paper exhibit numerical convergence for non smooth solutions of the Monge−Ampère equation. The easiest way
to get insight into the problem, is through the approach which consists in regularizing the exact solution [3].
The latter approach is less general in the sense that it does not apply to collocation type discretizations such as
the standard finite difference method. In fact, it is a standard technique in the analysis of Aleksandrov solutions
of the Monge−Ampère equation, e.g. ([19], Lem. 3.1), to regularize the data f , g and take a sequence of smooth
uniformly convex domains approximating the given domain. It is then natural, following principles of compatible
discretization, that a similar approach can be followed for a discretization. Spaces of piecewise polynomials C1

functions can be constructed using Argyris elements, the spline element method [2] or isogeometric analysis.
Regularization of the data has been used in [26]. If one assumes that the domain Ω is smooth and uniformly

convex, we can take Ω̃ = Ω and use global Schauder estimates cf. [43], and a bootstrapping argument, to
implement the compactness argument described in Section 1.2. To address the practical issue of dealing with
curved boundaries, one should use the approach in [12] which consists in a penalization of the boundary condition
and the use of curvilinear coordinates for elements near the boundary. The boundary condition can now be taken
as ũ = gm. The approach of this paper can be easily adapted to explain the numerical results with singular data
presented in [1].
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Without loss of generality, in subsequent papers on the analysis of schemes for (1.1), one may assume that f
and g are smooth. In fact, one can even also assume that the solution is smooth, as the techniques of this paper
can be applied to handle the non smooth case.

1.5. Organization of the paper

We organize the paper as follows. In the next section, we introduce some notation, recall the main results
on the convergence of the discretization (1.3) when (1.1) has a smooth solution and the notion of Aleksandrov
solution of (1.1). In Section 3 we give preliminary results on smooth and polygonal exhaustions of the domain.
In Section 4 we give the proof of existence of a convex solution of (1.3). The proof of the convergence of the
discretization is given in Section 5. In Section 6 we prove that our approximations are strictly convex and give
a local uniqueness result. The proof of some technical results are given in Section 6.2.

2. Notation and preliminaries

2.1. General notation

For two subsets S and T of Rd, we use the usual notation d(S, T ) for the distance between them. Moreover,
diam S denotes the diameter of S.

We use the standard notation for the Sobolev spaces W t,p(Ω) with norms ||.||t,p,Ω and semi-norm |.|t,p,Ω. In
particular, Ht(Ω) = W t,2(Ω) and in this case, the norm and semi-norms will be denoted respectively by ||.||t,Ω
and |.|t,Ω. When there is no confusion about the domain Ω, we will omit the subscript Ω in the notation of the
norms and semi-norms. We recall that H1

0 (Ω) is the subspace of H1(Ω) of elements with vanishing trace on ∂Ω.
We make the usual convention of denoting constants by C but will occasionally index some constants. We

assume that the triangulation Th(Ω) of the domain Ω is shape regular in the sense that there is a constant
C > 0 such that for any element K, hK/ρK ≤ C, where hK denotes the diameter of K and ρK the radius of
the largest ball contained in K. We also require the triangulation to be quasi-uniform in the sense that h/hmin

is bounded where h and hmin are the maximum and minimum respectively of {hK , K ∈ Th}.

2.2. Finite dimensional subspaces

We will need the broken Sobolev norms and semi-norms

||v||t,p,h =
( ∑

K∈Th(Ω)

||v||2t,p,K

) 1
2

, 1 ≤ p < ∞

||v||t,∞,h = max
K∈Th(Ω)

||v||t,∞,K ,

with a similar notation for |v|t,p,h.
We let Vh(Ω) denote a finite dimensional space of piecewise polynomial C1(Ω) functions, of local degree

k ≥ d, i.e., Vh is a subspace of
{v ∈ C1(Ω), v|K ∈ Pk, ∀K ∈ Th(Ω)},

and Pk denotes the space of polynomials of degree less than or equal to k. We make the assumption that the
following approximation properties hold:

||v − Πhv||t,p,h ≤ Caph
l+1−t|v|l+1,p, (2.1)

where Πh is a projection operator mapping the Sobolev space W l+1,p(Ω) into Vh, 1 ≤ p ≤ ∞ and 0 ≤ t ≤ l ≤ k.
We require that the constant Cap does not depend on h and v. We also make the assumption that the following
inverse inequality holds

||v||t,p,h ≤ Cinvhl−t+min(0, d
p− d

q )||v||l,q,h, ∀v ∈ Vh, (2.2)

and for 0 ≤ l ≤ t, 1 ≤ p, q ≤ ∞. We require that the constant Cinv be independent of h and v. The approximation
property and inverse estimate assumptions are realized for standard finite element spaces [11].
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2.3. Approximations of smooth solutions of the Monge−Ampère equation

Next, we summarize the results of [2, 5, 10] of estimates for C1 finite element approximations of smooth
solutions of (1.1).

Theorem 2.1. Let Os be a convex polygonal subdomain of Ω with a quasi-uniform triangulation Th(Os). As-
sume that us ∈ C∞(Os) is a strictly convex function which solves

detD2us = fs inOs, us = gs on ∂Os,

with fs, gs ∈ C∞(Os) and fs ≥ C > 0. We consider the problem: find us,h ∈ Vh(Os), us,h = gs on ∂Os and

∑
K∈Th(Os)

∫
K

(detD2us,h − fs)vh dx = 0, ∀vh ∈ Vh(Os) ∩ H1
0 (Os). (2.3)

Problem (2.3) has a (locally unique) piecewise convex solution us,h with

||us − us,h||2,h,Os ≤ Csh
l−1, 2 ≤ l ≤ k,

and the constant Cs is uniformly bounded if ||us||l+1,∞,Os is uniformly bounded.

The result of Theorem 2.1 follows from ([10], Thms. 5.1 and 8.7) and an inverse estimate. Equation (2.3)
differs from (1.3) in the sense that we assume here that us is smooth whereas the solution ũ of (1.4) is not
necessarily smooth.

Corollary 2.2. Under the assumptions (and notation) of Theorem 2.1, the approximate solution us,h converges
uniformly on compact subsets of Os to us as h → 0.

Proof. For each element K ∈ Th(Os), by the embedding of H2(K) into L∞(K), we obtain

||us − us,h||0,∞,K ≤ ||us − us,h||2,K ≤ Csh
l−1||us||l+1,∞,Os .

Therefore
||us − us,h||0,∞,Os ≤ Csh

l−1||us||l+1,∞,Os ,

and the result follows. �

2.4. Interior Schauder estimates

Recall that Ωs ⊂ Ω is a smooth uniformly convex domain. Recall also that the solution of (1.1) is not in
general smooth unless f and g̃ are smooth and Ω is a smooth uniformly convex domain. Thus ||u||C2(Ω) if defined
is not finite in general. We will need estimates which depend on derivatives away from ∂Ωs as we assume that Ω
is a polygonal domain. This is the main reason for introducing the theoretical computational domain Ω̃. Recall
that we make the assumption that

Ω̃ ⊂ Ωs, for all s,

and thus the closure of Ω̃ is a compact subset of Ω. The proof of the following lemma is given in Section 6.2.

Lemma 2.3. Let ums solve (1.5). We have the uniform interior Schauder estimates

||ums||Ck+1(Ω̃) ≤ Cm,

where Cm depends only on m, d, c2, ||fm||Ck(Ω), Ω̃ and d(Ω̃, ∂Ω).
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2.5. The Aleksandrov solution

In this part of the section, we recall the notion of Aleksandrov solution of (1.1) and state several results that
will be needed in our analysis. We follow the presentation in [29] to which we refer for further details.

Let Ω be an open subset of Rd. Given a real valued convex function v defined on Ω, the normal mapping
of v, or subdifferential of v, is a set-valued mapping Nv from Ω to the set of subsets of R

d such that for any
x0 ∈ Ω,

Nv(x0) = { q ∈ R
d : v(x) ≥ v(x0) + q · (x − x0), for all x ∈ Ω }.

Given E ⊂ Ω, we define Nv(E) = ∪x∈ENv(x) and denote by |E| the Lebesgue measure of E when the latter is
measurable.

If v is a convex continuous function on Ω, the class

S = {E ⊂ Ω, Nv(E) is Lebesgue measurable},

is a Borel σ-algebra and the set function M [v] : S → R defined by

M [v](E) = |Nv(E)|,

is a measure, finite on compact sets, called the Monge−Ampère measure associated with the function v.
We are now in a position to define generalized solutions of the Monge−Ampère equation. Let the domain Ω

be open and convex. Given a Borel measure μ on Ω, a convex function v ∈ C(Ω) is an Aleksandrov solution of

detD2v = μ,

if the associated Monge−Ampère measure M [v] is equal to μ. If μ is absolutely continuous with respect to the
Lebesgue measure and with density f , i.e.

μ(B) =
∫

B

f dx, for any Borel setB,

we identify μ with f . We have

Theorem 2.4 ([31] Thm. 1.1). Let Ω be a bounded convex domain of Rd. Assume f ∈ L1(Ω) and g ∈ C(∂Ω)
can be extended to a function g̃ ∈ C(Ω) which is convex in Ω. Then the Monge−Ampère equation (1.1) has a
unique convex Aleksandrov solution in C(Ω).

Remark 2.5. The assumption that g ∈ C(∂Ω) can be extended to a convex function g̃ ∈ C(Ω) can be removed
if the domain Ω is uniformly convex, [29].

We recall that for a convex function v in C2(Ω), the Monge−Ampère measure M [v] associated with v is
given by:

M [v](E) =
∫

E

detD2v(x) dx,

for all Borel sets E ⊂ Ω.

Lemma 2.6. Let v ∈ W 2,d(Ω) be a piecewise C2 convex function such that detD2v ≥ 0 a.e. Then M [v](E) =∫
E

detD2v(x) dx for all Borel sets E ⊂ Ω.

The proof of the above lemma is given in Section 6.2.
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Definition 2.7. A sequence μm of Borel measures is said to converge weakly to a Borel measure μ if and only if∫
Ω

p(x) dμm →
∫

Ω

p(x) dμ,

for every continuous function p with compact support in Ω.

For the special case of absolutely continuous measures μm with density am with respect to the Lebesgue measure,
we have

Definition 2.8. Let am, a ≥ 0 be given functions. We say that am converges weakly to a as measures if and
only if ∫

Ω

amp dx →
∫

Ω

ap dx,

for all continuous functions p with compact support in Ω.

We have the following weak continuity result of Monge−Ampère measures with respect to local uniform con-
vergence.

Lemma 2.9 (Lem. 1.2.3 [29]). Let um be a sequence of convex functions in Ω such that um → u uniformly on
compact subsets of Ω. Then the associated Monge−Ampère measures M [um] tend to M [u] weakly.

Remark 2.10. It follows that if um is a sequence of C2(Ω) convex functions such that um → u uniformly on
compact subsets of Ω, with u solving (1.1), then detD2um converges weakly to f as measures.

We will often use the following lemma, the proof of which is given in Section 6.2.

Lemma 2.11. Let uj denote a uniformly bounded sequence of convex functions on a convex domain Ω. Then
the sequence uj is locally uniformly equicontinuous and thus has a pointwise convergent subsequence.

2.6. Approximations by solutions on subdomains

For a function b defined on ∂Ω, we denote by b∗ its convex envelope, i.e. the supremum of all convex functions
below b. If b can be extended to a continuous convex function on Ω, then b∗ = b on ∂Ω.

Following [39], we define a notion of convergence for functions defined on different subdomains. Recall that
Ω ⊂ Rd is bounded and convex. For a function z : Ω → R, its upper graph Z is given by

Z := { (x, xd+1) ∈ Ω × R, xd+1 ≥ z(x) }.

For a function b : ∂Ω → R, its upper graph is given by

B := { (x, xd+1) ∈ ∂Ω × R, xd+1 ≥ b(x) }.

Definition 2.12. We say that z = b on ∂Ω if

B = Z ∩ (∂Ω × R).

Definition 2.13. The Hausdorff distance between two nonempty subsets K and H of R
d is defined as

max{ sup[d(x, K), x ∈ H ], sup[d(x, H), x ∈ K] }.
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Let Ωs ⊂ Ω be a sequence of convex domains and let zs : Ωs → R be a sequence of convex functions on Ωs.
We write zs → z if the upper graphs Zs converge in the Hausdorff distance to the upper graph Z of z. Similarly,
for a sequence bs : ∂Ωs → R, we say that bs → b if the corresponding upper graphs converge in the Hausdorff
distance.

Finally, let as : Ωs → R and a : Ω → R. We write as → a if the as are uniformly bounded and as converges
to a uniformly on compact subsets of Ω.

To summarize, in Proposition 2.14 below, for a sequence of convex functions on Ωs or for their restriction
to ∂Ωs, the convergence is convergence of the corresponding upper graphs in the Hausdorff distance whereas
for the data as we use uniform convergence on compact subsets.

We have

Proposition 2.14 (Prop. 2.4 of [39]). Let zs : Ωs → R be convex such that

detD2zs = as in Ωs, zs = bs on ∂Ωs.

If
zs → z, as → a, bs → b,

then
detD2z = a in Ω, z = b∗ on ∂Ω,

where b∗ denotes the convex envelope of b on ∂Ω. In particular if b can be extended to a continuous convex
function on Ω, z = b on ∂Ω.

We state an approximation result for Monge−Ampère equations which follows from ([39], Prop. 2.6). A
detailed proof is given in Section 6.2.

Theorem 2.15. Let Ωs be a sequence of convex domains increasing to Ω, i.e. Ωs ⊂ Ωs+1 ⊂ Ω and
d(∂Ωs, ∂Ω) → 0 as s → ∞. Assume that zs ∈ C(Ωs) is a sequence of convex functions solving

detD2zs = a in Ωs, zs = b on ∂Ωs,

with a ≥ 0, a ∈ C(Ω). Assume that b ∈ C(Ω) and is convex on Ω.
Then zs converges (up to a subsequence) uniformly on compact subsets of Ω to the unique convex solution z of

detD2z = a in Ω, z = b on ∂Ω.

Remark 2.16. If vs is a sequence of convex functions which converge on Ω to a convex function v with
upper graph V , we can extend v canonically to the boundary by taking the function on ∂Ω with upper graph
V ∩ (∂Ω × R).

2.7. A characterization of weak convergence of measures

The result we now give is well-known but we give a proof in Section 6.2 for completeness.
Let Cb(Ω) denote the space of bounded continuous functions on Ω. We have

Lemma 2.17. Let am, a ∈ Cb(Ω), am, a ≥ 0 for m = 0, 1, . . . Assume that the sequence am is uniformly bounded
on Ω and that am converges weakly to a as measures and let p ∈ H1

0 (Ω). We have∫
Ω

amp dx →
∫

Ω

ap dx,

as m → ∞.



716 GERARD AWANOU

2.8. Useful facts about convex functions

It is known that the pointwise limit of a sequence of convex functions is convex. Also, every pointwise
convergent sequence of convex functions converges uniformly on compact subsets. See for example ([8], Rem. 1
p. 129).

3. Smooth and polygonal exhaustions of the domain

It is known from [9] for example that there exists a sequence of smooth uniformly convex domains Ωs

increasing to Ω, i.e. Ωs ⊂ Ωs+1 ⊂ Ω and d(∂Ωs, ∂Ω) → 0 as s → ∞. An explicit construction of the sequence
Ωs in the special case Ω = (0, 1)2 can be found in [42].

Recall that fm and gm are C∞(Ω) functions such that 0 < c2 ≤ fm ≤ c3, fm → f and gm → g̃ uniformly on Ω.
Thus the sequences fm and gm are uniformly bounded on Ω. The sequences fm and gm may be constructed
by extending the given functions to a slightly larger domain preserving the property f ≥ C > 0 for some
constant C and apply a standard mollification. See [3] for a different procedure. By [15], the problem (1.5) has
a unique convex solution ums ∈ C∞(Ωs). By Theorem 2.15, as s → ∞, the sequence ums converges uniformly
on compact subsets of Ω to the unique convex solution um ∈ C(Ω) of problem (1.2). Moreover, the solution um

of (1.2) converges uniformly on compact subsets of Ω to the unique convex solution u of (1.1).
Recall that Ω̃ is a convex polygonal subdomain of Ω with a quasi-uniform triangulation Th(Ω̃). We let δ > 0

be a fixed parameter and chose m and Ω̃ such that |f(x)−fm(x)| < δ, |g̃(x)−gm(x)| < δ and |u(x)−um(x)| < δ

for all x ∈ Ω̃. Without loss of generality we may assume that Ω̃ ⊂ Ωs for all s.
We have

Theorem 3.1. There exists a convex function uh ∈ Vh(Ω̃) which is uniformly bounded on compact subsets of Ω̃

uniformly in h. The function uh satisfies uh = um on ∂Ω̃ and is obtained as the limit of a subsequence in s of
the convex solution ums,h in Vh(Ω̃) of the problem:

∑
K∈Th

∫
K∩Ω̃

(det D2ums,h − fm)vh dx = 0, ∀vh ∈ Vh(Ω̃) ∩ H1
0 (Ω̃), (3.1)

with ums,h = ums on ∂Ω̃.

Proof. Since ums is smooth on Ωs, Theorem 2.1 yields a solution to problem (3.1). The latter is convex on Ω̃

as a C1 piecewise convex function, (cf. [16], Sect. 5). Given a compact subset K of Ω̃, we have

||ums − ums,h||0,∞,K ≤ ||ums − ums,h||0,∞,Ω̃ ≤ C||ums||k+1,∞,Ω̃ hk−1. (3.2)

since Ω̃ ⊂ Ωs. By the interior Schauder estimates Lemma 2.3, the sequence in s of convex functions ums,h is
uniformly bounded on compact subsets, and hence by Lemma 2.11 has a convergent subsequence also denoted
by ums,h which converges to a function uh. The function uh is convex as the pointwise limit of convex functions
and the convergence is uniform on compact subsets.

Next, we note that for a fixed h, ums,h is a piecewise polynomial in the variable x of fixed degree k and
convergence of polynomials is equivalent to convergence of their coefficients. Thus uh is a piecewise polynomial
of degree k. Moreover, the continuity conditions on ums,h are linear equations involving its coefficients. Thus
uh has the same continuity property as ums,h. In other words uh ∈ Vh(Ω̃).

Finally, since ums converges uniformly on compact subsets to um as s → ∞, we have on ∂Ω̃, uh = um as ∂Ω̃
is by construction a compact subset of Ω.

As a consequence of the interior Schauder estimates, uh is uniformly bounded on compact subsets of Ω̃
uniformly in h. �

The goal of the next two sections is to prove that the function uh given by Theorem 3.1 solves problem (1.3).
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4. Solvability of the discrete problems

The goal of this section is to prove that (1.3) has a solution. Then problem (3.1) can be written∫
Ω̃

(detD2ums,h − fm)vh dx = 0, ∀vh ∈ Vh(Ω̃) ∩ H1
0 (Ω̃). (4.1)

To see that the left hand side of the above equation is well defined, we note that ums,h is a piecewise polynomial
C1 function and is thus in W 2,d(Ω̃). As a consequence det D2ums,h ∈ L1(Ω̃) and since vh ∈ L∞(Ω̃), this gives
the result.

Recall that the discrete solution ums,h being piecewise convex and C1 is convex on Ω̃, (cf. [16], Sect. 5). We
define

fms,h = detD2ums,h.

By Lemma 2.6, we can then view ums,h ∈ W 2,d(Ω̃) as the solution (in the sense of Aleksandrov) of the
Monge−Ampère equation

detD2ums,h = fms,h in Ω̃.

By Lemma 2.9, detD2umsl,h → detD2uh weakly as measures for a subsequence sl → ∞. Then by Lemma 2.17
we get for v ∈ Vh(Ω̃) ∩ H1

0 (Ω̃), ∫
Ω̃

(detD2umsl,h)v dx →
∫

Ω̃

(detD2uh)v dx. (4.2)

It remains to prove that as l → ∞ ∫
Ω̃

(detD2umsl,h)v dx →
∫

Ω̃

fmv dx.

This is essentially what is proved in the next theorem.

Theorem 4.1. Let Vh(Ω̃) denote a finite dimensional space of C1 functions satisfying the assumptions of
approximation property and inverse estimates of Section 2.2. Then problem (1.3) has a convex solution uh.

Proof. Given v ∈ Vh(Ω̃)∩H1
0 (Ω̃), let vl be a sequence of infinitely differentiable functions with compact support

in Ω̃ such that ||vl − v||1,2 → 0 as l → ∞. We have by definition of fms,h∫
Ω̃

(detD2umsl,h)v dx =
∫

Ω̃

fmsl,hv dx. (4.3)

We have ∫
Ω̃

fmsl,hv dx =
∫

Ω̃

fmsl,h(v − vl) dx +
∫

Ω̃

fmsl,h(vl − Πh(vl)) dx

+
∫

Ω̃

fmsl,hΠh(vl) dx,

and thus by (4.1) ∫
Ω̃

fmsl,hv dx =
∫

Ω̃

fmsl,h(v − vl) dx +
∫

Ω̃

fmsl,h(vl − Πh(vl)) dx

+
∫

Ω̃

fmΠh(vl) dx

=
∫

Ω̃

(fmsl,h − fm)(v − vl) dx

+
∫

Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx +
∫

Ω̃

fmv dx. (4.4)
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By the inverse estimate (2.2)

|| detD2ums,h||0,∞,Ω̃ ≤ C||ums,h||d2,∞,Ω̃

≤ Ch−2d||ums,h||d0,∞,Ω̃
.

Hence by Lemma 2.3
|| detD2ums,h||0,∞,Ω̃ ≤ Ch, (4.5)

for a constant Ch which depends on h but is independent of s.
Since fm is uniformly bounded on Ω, it follows from (4.5)∣∣∣∣

∫
Ω̃

(fmsl,h − fm)(v − vl) dx

∣∣∣∣ ≤ C||v − vl||1,2 → 0 as l → ∞. (4.6)

Finally, since v ∈ Vh(Ω̃), we have Πh(v) = v and hence∫
Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx =
∫

Ω̃

(fmsl,h − fm)(vl − v) dx

+
∫

Ω̃

(fmsl,h − fm)(Πh(v − vl)) dx.

By Schwarz inequality, (4.5) and (2.1)∣∣∣∣
∫

Ω̃

(fmsl,h − fm)(Πh(v − vl)) dx

∣∣∣∣ ≤ Ch||Πh(v − vl)||0,2 ≤ Ch||v − vl||1,2 → 0 as l → ∞.

Arguing again as in (4.6), it follows that∫
Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx → 0 as l → ∞. (4.7)

We conclude by (4.2)–(4.7) that as l → ∞∫
Ω̃

(detD2umsl,h)v dx →
∫

Ω̃

fmv dx.

By the unicity of the limit ∫
Ω̃

(detD2uh)v dx =
∫

Ω̃

fmv dx.

That is, the limit uh solves (1.3). The existence of a solution to (1.3) is proved. �

5. Convergence of the discretization

We have

Theorem 5.1. Under the assumptions set forth in the introduction, the convex solution uh of problem 1.3
(given by Thm. 4.1) converges uniformly on compact subsets of Ω̃, as h → 0, to the solution ũ of (1.4) which
is convex on Ω̃ and continuous up to the boundary.

Proof. We recall from Theorem 3.1 that the function uh is uniformly bounded on compact subsets of Ω̃. It
follows from Lemma 2.11 that there exists a subsequence uhl

which converges pointwise to a convex function v.
The latter is continuous on Ω̃ as it is locally finite. Moreover the convergence is uniform on compact subsets
of Ω̃.
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Recall also from Theorem 3.1 that uh is obtained as a subsequence in s of the approximations ums,h of smooth
solutions ums which converge to um uniformly on compact subsets of Ω.

Let K be a compact subset of Ω̃. There exists a subsequence um,sl,h which converges uniformly to uh on K.
By the uniform convergence of ums to um on K, we may assume that um,sl

converges uniformly to um on K.
Let now ε > 0. Since uhl

converges uniformly on K to v, ∃l0 such that ∀l ≥ l0 |uhl
(x) − v(x)| < ε/6 for all

x ∈ K.
There exists l1 ≥ 0 such that for all l ≥ max{ l0, l1 }, |umsl,hl

(x) − uhl
(x)| < ε/6 for all x ∈ K.

Moreover, there exists l2 ≥ 0 such that for all l ≥ max{ l0, l1, l2 }, |umsl
(x) − um(x)| < ε/6 for all x ∈ K.

Similarly to (3.2), we have on K, |ums,hl
(x)− ums(x)| ≤ Cmhl for all x ∈ K. We recall that the constant Cm

is independent of s but depends also on Ω̃.
We conclude that for l ≥ max{ l0, l1, l2 }, |um(x) − v(x)| < ε/2 + Chl for all x ∈ K. We therefore have for all

ε > 0 |um(x) − v(x)| < ε. We conclude that um = v on K.
Since uh = um on ∂Ω̃, it follows that v = um on ∂Ω̃. This proves that um = v on Ω̃.
The limit um being unique, we conclude that uh converges uniformly on compact subsets of Ω̃ to ũ. �

6. Piecewise strict convexity and local uniqueness

The proof of convergence of the time marching iterative methods for solving (1.3) given in [2,5] requires the
discrete solution to be piecewise strictly convex and locally unique. These results are given in this section. We
make the abuse of notation of denoting by D2wh the piecewise Hessian of wh ∈ Vh(Ω̃). Let λ1(D2wh) denotes
the smallest eigenvalue of D2wh.

6.1. Strict convexity of the discrete solution

Theorem 6.1. For k ≥ 2(d+1) the C1 solution uh of (1.3) is piecewise strictly convex and thus strictly convex.

Proof. Assume that detD2uh (computed piecewise) is non zero on a set of non zero Lebesgue measure. Then
since detD2uh is a piecewise polynomial, it must vanish identically on an element K0. Let v denote the unique
polynomial of degree d + 1 which vanishes identically on all faces of K0 and with average 1 on K0. We denote
as well by v its extension by 0 on all other elements. Then v > 0 in K0 and v2 ∈ Vh(Ω̃) ∩ H1

0 (Ω̃) and thus∫
Ω̃

fmv2 dx =
∫

K0

fmv2 dx > 0.

On the other hand ∫
Ω̃

fmv2 dx =
∑

K∈Th

∫
K∩Ω̃

(detD2uh)v2 dx =
∫

K0

(det D2uh)v2 dx = 0,

since detD2uh = 0 on K0. Contradiction. We therefore have detD2uh > 0 a.e. in Ω̃. �

Let x0 ∈ Ω̃. If necessary, by identifying uh with uh + ε|x − x0|2, where ε is taken to be close to machine
precision, we may assume that the solution uh is strictly convex.

6.2. Uniqueness of the discrete solution

Theorem 6.2. Let uh be a C1 strictly convex solution of (1.3). Then uh is locally unique.

Proof. Define Bρ(uh) = {wh ∈ Vh, ||wh − uh||2,∞ ≤ ρ }. Then since λ1(D2uh) ≥ c00, by the continuity of the
eigenvalues of a matrix as a function of its entries, wh is strictly convex for ρ sufficiently small and ρ independent
of h.
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Let then uh and vh be two solutions of (1.3) in Bρ(uh). By the mean value theorem, see for example [2], we
have for wh ∈ Vh(Ω̃) ∩ H1

0 (Ω̃)

0 =
∫

Ω̃

(detD2uh − detD2vh)wh dx

= −
∫ 1

0

{∫
Ω̃

[(cof(1 − t)D2vh + tD2uh)(Duh − Dvh)] · Dwh dx

}
dt.

For each t ∈ [0, 1], (1 − t)vh + tuh ∈ Bρ(uh) and is therefore strictly convex, that is

[(cof(1 − t)D2vh + tD2uh)D(vh − uh)] · D(vh − uh) ≥ C||vh − uh||2, C > 0.

Since uh = vh = um on ∂Ω̃, we have vh − uh = 0 on ∂Ω̃ and so integrating both sides, and using wh = vh − uh,
we obtain |vh − uh|1 = 0. Therefore uh = vh. �

Remark 6.3. Our assumption 0 < c0 ≤ f ≤ c1 is not restrictive. That is, we consider the degenerate case
f ≥ 0 and the case of unbounded f .

For M > 0, if one defines fM by:

fM (x) = f(x) for f(x) ≤ M, and fM (x) = 0 otherwise,

we showed in [3] how the Aleksandrov solution of (1.1) is a limit of solutions of Monge−Ampère equations with
right hand side fM and boundary data g.

On the other hand, the constant c0 may be assumed to be close to machine precision. Moreover, in the case f
bounded with f ≥ 0, for ε > 0, it is a simple consequence of ([31], Lem. 5.1) that solutions of Monge−Ampère
equations with right hand side f + ε and boundary data g converge uniformly on compact subsets to the
Aleksandrov solution of (1.1) as ε → 0.

Appendix A.

We give in this section the proof of some technical results.

Proof of Lemma 2.3. In the homogeneous case, i.e. for gm = 0, the result can be inferred from [14]. (see also [20],
Thm. 2.16).

In the non homogeneous case, it seems that the only genuine interior Schauder estimates for (1.5), with
constant depending only on the diameter of the compact subset K ⊂ Ωs and not on Ωs is to rely on the
corresponding result for the complex Monge−Ampère equation in ([21], Thm. 4). See also the corresponding
A.M.S. Mathematical Review. For the convenience of the reader, we finish the proof with a brief introduction
to the complex Monge−Ampère equation.

It follows from ([21], Thm. 4) that
||ums||C2(Ω̃) ≤ Cm,

where Cm depends only on m, d, c2, ||fm||C1(Ω) and d(Ω̃, ∂Ω). The estimate for higher order derivatives follows
from standard elliptic regularity arguments. For example differentiating the equation one time, and taking into
account the smoothness of fm and the C2 estimate, one obtains a second order linear equation which, because
of the strict convexity of the solution ums, is uniformly elliptic on compact subsets of Ω and with solution a
first derivative of u. The interior Schauder estimates for uniformly elliptic linear equations ([25], Thm. 6.2) then
applies to give the desired estimate for the third derivatives. Repeating this process is known as a bootstrapping
argument.

Let us illustrate the technique with the two dimensional Monge−Ampère equation

uxxuyy − u2
xy = f(x, y),
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where we use another standard notation for derivatives for simplicity. Put v = ux. Differentiating with respect
to x, we get the second order equation

uyyvxx + uxxvyy − 2uxyvxy = fx.

By the strict convexity of u, the equation is uniformly elliptic and hence

||v||C2(Ω̃) ≤ C,

with C depending on maxΩ v, ||fx||C1(Ω), Ω̃, d(Ω̃, ∂Ω), the smallest eigenvalue of D2u and a bound on the C2,α

norm of u. The latter bound implies an upper bound on the eigenvalues of D2u, and since detD2u = f ≤ C,
we obtain a positive lower bound for the smallest eigenvalue of D2u. A similar argument applies to uy and thus
||u||C3(Ω̃) ≤ C, with C depending only on ||f||C2(Ω), Ω̃ and d(Ω̃, ∂Ω).

We finish with a brief introduction to the complex Monge−Ampère equation. First the domain Ω ⊂ R
d is

identified with a convex domain of Cd. Let now u be a strictly convex smooth solution and put zi = xi +√
−1 yi, i = 1, . . . , d. We can then view u as a function of z defined by u(z) = u(x). Same for f and g. The

complex Monge−Ampère equation is given by

det
(

∂2u

∂zi∂zj

)
i,j=1,...,d

= f in Ω

u = g on ∂Ω, (A.1)

where

∂u

∂zi
=

1
2

(
∂u

∂xi
−
√
−1

∂u

∂yi

)
∂u

∂zj
=

1
2

(
∂u

∂xj
+
√
−1

∂u

∂yi

)
·

This clearly reduces to (1.1) for real-valued functions defined on a convex domain of Rn. The analogue of convex
solution is a plurisubharmonic function, i.e. a function for which the Hessian matrix in (A.1) is positive. �

Proof of Lemma 2.6. Since v ∈ W 2,d(Ω), by Hölder’s inequality, detD2v ∈ L1(Ω) and thus defines an absolutely
continuous finite measure given by

M̂ [v](E) =
∫

E

detD2v(x) dx,

and we recall that v is convex. We will use a comparison principle ([37], Thm. 5.1) which permits in general to
compare a convex function w with a W 2,d function v when M [w] is comparable to M̂ [v]. It is stated in [37] for
a strictly convex domain, but the result also holds for a domain not necessarily strictly convex as a consequence
of Theorem 2.4. Let thus w be the Aleksandrov solution of

M [w] = M̂ [v] in Ω, w = v on ∂Ω.

Since M [w] ≥ M̂ [v] and w ≤ v on ∂Ω, we have w ≤ v in Ω by ([37], Thm. 5.1).
Next, we claim that M̂ [v] ≤ M [v]. For a Borel set E ⊂ Ω, E is the disjoint union of ∪K∈Th

E ∩
◦
K and

∪K∈Th
E ∩ ∂K. Moreover, the number of elements K ∈ Th is countable. Thus

M [v](E) = M [v]
(
∪K∈Th

E ∩
◦
K

)
+ M [v]

(
∪K∈Th

E ∩ ∂K

)

≥ M [v]
(
∪K∈Th

E ∩
◦
K

)
=

∑
K∈Th

M [v](E ∩
◦

K).
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By assumption v is piecewise C2 and thus

M [v](E) ≥
∑

K∈Th

∫
E∩

◦
K

detD2v(x) dx

=
∑

K∈Th

∫
E∩K

detD2v(x) dx =
∫

E

detD2v(x) dx = M̂ [v](E),

since detD2v ∈ L1(Ω).
We have M [w] ≤ M̂ [v] ≤ M [v] and w ≥ v on ∂Ω. Thus by the comparison principle ([29], Thm. 1.4.6), we

have w ≥ v in Ω. We conclude that w = v and since M [w] = detD2v, i.e. M [w] has density detD2v, this proves
the result. �

Proof of Lemma 2.11. For pj ∈ ∂uj(x) and x ∈ Ω, we have by ([29], Lem. 3.2.1)

|pj | ≤
|uj(x)|

d(x, ∂Ω)
≤ C

d(x, ∂Ω)
,

for a constant C independent of j. Arguing as in the proof of ([29], Lem. 1.1.6), it follows that the sequence uj

is uniformly Lipschitz and hence equicontinuous on compact subsets of Ω. By the Arzela−Ascoli theorem, ([38],
p. 179), we conclude that the result holds. �

Proof of Theorem 2.15. By convexity of zs (see [35], Thm. 3.4.7), we have

zs(x) ≤ max
x∈Ωs

b ≤ max
x∈Ω

b ≤ C, ∀x ∈ Ωs,

for a constant C > 0.
Let now C denote the minimum of b on ∂Ωs. We may assume that C is independent of s since by assumption

b ∈ C(Ω). Since zs = bs on ∂Ωs, we have zs−C ≥ 0 on ∂Ωs. Either zs(x)−C ≥ 0 for x ∈ Ωs, or by Aleksandrov’s
maximum principle ([37], Lem. 3.5 or [30], Prop. 6.15),

(−(zs(x) − C))n ≤ cn(diamΩs)n−1d(x, ∂Ωs)
∫

Ωs

a dx,

where cn is a constant which depends only on n. We recall that a ∈ C(Ω). It follows that the sequence zs is
bounded below on Ωs.

By Lemma 2.11, the sequence zs being bounded has a pointwise convergent subsequence, also denoted by zs,
to a limit function z. But since zs is a sequence of convex functions on Ωs, and Ωs increases to Ω, the limit
function z is a convex function on Ω and the convergence is uniform on compact subsets of Ω. Let us first
assume that zs has a subsequence, also denoted zs, such that the corresponding upper graphs converge in the
Hausdorff distance, i.e. zs → z. Then by Proposition 2.14, or ([39], Prop. 2.4), we have

detD2z = a inΩ, z = b on∂Ω.

To complete the proof, it remains to show that zs has a subsequence such that zs → z. We define

Vs = { (x, xd+1) ∈ Ω × R, xd+1 ≥ zs(x) },

the epigraph of the convex function zs. It is known that V s is a closed convex set. Let C ≥ 0 such that
|zs(x)| ≤ C for all s and x ∈ Ωs. Put

B = { (x, xd+1) ∈ Ω × R, |xd+1| ≤ C}.
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Thus V s∩B is a nonempty compact convex subset of Rd+1, i.e. a convex body in the terminology of [40]. By the
Blaschke selection theorem ([40], Thm. 1.8.7), there exists a subsequence also denoted V s ∩ B which converges
in the Hausdorff distance to a convex set K.

By ([40], Thm. 1.8.7-a), each (x, r) ∈ K is the limit of a sequence (xs, rs) in V s ∩ B. Since the sequence zs

is bounded from below, we conclude that

{ r ∈ R, (x, r) ∈ K },

has a lower bound for all x ∈ Ω. Note that the sequence xs converges to an element of Ω. Thus the lower bound
function of K, i.e. the function ẑ(x) defined by

ẑ(x) = inf{ r ∈ R, (x, r) ∈ K },

is well defined on Ω. By ([32], Thm. 1.3.1), ẑ defines a convex function and if we denote by V̂ its epigraph,
K = V̂ ∩ B. We conclude that V s converges to V̂ in the Hausdorff distance, i.e. zs → ẑ. We now prove that
ẑ = z on Ω.

For x ∈ Ω, let (x, rs) in V s ∩ B such that (x, rs) → (x, r). We have rs ≥ zs(x). If necessary, by taking a
subsequence, we get r ≥ z(x) and thus by the definition of ẑ(x), we obtain ẑ(x) ≥ z(x). On the other hand
(x, zs(x)) ∈ V s ∩B and so by ([40], Thm. 1.8.7-b), (x, z(x)) ∈ K. It follows that ẑ(x) ≤ z(x) and this concludes
the proof. �

Proof of Lemma 2.17. Since p ∈ H1
0 (Ω), there exists a sequence pl of infinitely differentiable functions with

compact support in Ω such that ||pl − p||1,2 → 0 as l → ∞. We have∫
Ω

(am − a)p dx =
∫

Ω

(am − a)(p − pl) dx +
∫

Ω

(am − a)pl dx.

By assumption
∫

Ω(am − a)pl dx → 0 as m → ∞. Moreover, since Ω is bounded and ||am||0,∞ ≤ C for all m, we
have ∣∣∣∣

∫
Ω

(am − a)(p − pl) dx

∣∣∣∣ ≤ ||am − a||0,∞

∣∣∣∣
∫

Ω

p − pl dx

∣∣∣∣
≤ C(||am||0,∞ + ||a||0,∞)||p − pl||0,2

≤ C||p − pl||0,2 → 0 as l → ∞.

This concludes the proof. �
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