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Abstract. This work presents a family of stable finite element methods for two- and three-dimensional
linear elasticity models. The weak form posed on the skeleton of the partition is a byproduct of the
primal hybridization of the elasticity problem. The unknowns are the piecewise rigid body modes and
the Lagrange multipliers used to relax the continuity of displacements. They characterize the exact
displacement through a direct sum of rigid body modes and solutions to local elasticity problems with
Neumann boundary conditions driven by the multipliers. The local problems define basis functions
which are in a one-to-one correspondence with the basis of the subspace of Lagrange multipliers used
to discretize the problem. Under the assumption that such a basis is available exactly, we prove that the
underlying method is well posed, and the stress and the displacement are super-convergent in natural
norms driven by (high-order) interpolating multipliers. Also, a local post-processing computation yields
strongly symmetric stress which is in local equilibrium and possesses continuous traction on faces. A
face-based a posteriori estimator is shown to be locally efficient and reliable with respect to the natural
norms of the error. Next, we propose a second level of discretization to approximate the basis functions.
A two-level numerical analysis establishes sufficient conditions under which the well-posedness and
super-convergent properties of the one-level method is preserved.
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1. Introduction

When modeling elasticity in solid mechanics, the quantity of primary interest is often the stress variable,
which should be symmetric and in equilibrium with respect to internal and external forces. Ideally, finite
element methods should preserve those fundamental physical properties. However, very few schemes are able to
do so and still maintain simplicity in terms of the nature and the quantity of the basis functions and degrees of
freedom. A few finite elements satisfying both requirements have been created by either using nested meshes to
approach the stress variable [8], augmented spaces [22, 26], or adopting the same mesh for both displacement
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and stress variables with the price of having to deal with many degrees of freedom [1,5,6]. Recently, a promising
methodology closely related to mimetic methods was proposed in [11].

The common approach taken by researchers has been to relax symmetry, local equilibrium, or conformity.
These options have been actively researched, each with a volume of work dating from the eighties [2, 7, 33] to
the present day [9, 20]. The former idea uses Lagrange multipliers to impose weak symmetry while localizing
problems so that local equilibrium is preserved. In other approaches, strong symmetry is achieved by relaxing
the conformity of the approach, which leads to the loss of local equilibrium.

We present a new family of finite elements that uses a small number of degrees of freedom. The strategy was
introduced for the transport equation in references [3,23,24] and is based on a hybridization scheme [28], which
relaxes the continuity of the displacement on element boundaries using Lagrange multipliers. The next step is
to decompose the displacement space into a direct sum between the space of local rigid body modes and its
orthogonal complement. With such a decomposition we reformulate the original problem in a set of independent,
element-wise elasticity problems plus a coupling global system posed on the skeleton of the partition. The
unknowns are the piecewise rigid body modes and the Lagrange multipliers used to relax the continuity of
displacements. The displacement and stress variables are recovered from them. The local problems are driven
by the Lagrange multipliers, which impose traction boundary conditions on element boundaries. Also, the global
weak form may be interpreted as the mixed formulation of the original elliptic elasticity problem with a modified
right-hand side.

Under the assumption that basis functions are computed exactly, a whole family of stable finite element
methods arises from the choice of interpolating space for the Lagrange multipliers. Face and element degrees of
freedom define the discrete Lagrange multiplier and the rigid body modes, respectively, in association with the
basis functions obtained from the local elasticity problems. The approximation of the stress tensor results from
a simple post-processing of the discrete displacement, with strong symmetry being a natural consequence. This
strategy leads to H(div; Ω) conformity for the stresses, and can be interpreted as a H1-non-conforming well-
posed finite element method. It also preserves local equilibrium and strong symmetry, achieves error optimality
for the stress and the displacement, and may easily incorporate multiscale or high-contrast aspects of the model.

Such a hybrid-mixed strategy shares some similarities (and the same goals) with other approaches as
the Discontinuous Petrov−Galerkin (DPG) method [12, 21] or the Hybrid Discontinuous Galerkin (HDG)
method [17, 29, 32]. However, the primal hybridization of the elasticity model selected as the starting point
in this work as well as the nature of the solution decomposition leads to different global-local family of methods
compared to the ones proposed in the mentioned papers, with fewer degrees of freedom and basis functions.
Recently a DPG method has been also proposed for the elliptic Laplace problem [18] differing from [23] in
its construction and form. When applied to multiscale or heterogeneous material models, the present method
may be seen as a member of the family of multiscale finite element methods [10]. Indeed, it shares a similar
structure and the same goals with the multiscale methods proposed in [4, 16], for instance. Thereby, it has
been called Multiscale Hybrid-Mixed method (MHM for short). Furthermore, the local computations are com-
pletely independent of one another, thereby easily taking advantage of high-performance parallel computing
environments.

The impact of second level discretization on the basis functions is also investigated. We provide a sufficient
condition for the two-level methods to keep the main features of their one-level counterpart. In fact, properties
such as the robustness with respect to the physical coefficients (locking) and local equilibrium are completely
locally expressed in terms of the choice made to approximate the local problems with an immediate impact
in the global method. In this work, we propose a general framework to analyze such two-level methods and
illustrate it using the simplest and cheapest method at the second level, namely, the standard Galerkin method
on classical continuous polynomial spaces applied to the solution of the elasticity model in its primal form. This
natural choice turns out to be enough to preserve most of the properties of the one-level method. It is important
to stress that care should be taken at the second level discretization to preserve some of the nice properties of
the method, in particular H(div; Ω) conformity for the stresses. However, local equilibrium holds in the sense
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of Remark 6.11. We leave both the study of the use of mixed methods in the second level and the important
question of robustness of the proposed method for nearly incompressible materials for forthcoming works.

The main theoretical results of this work are summarized as follows: weak formulation (2.6) and its discrete
version, the face-based MHM method (3.1), are proved to be well-posed in Theorem 4.2. We then present a
best approximation result showing that the error only depends on the quality of the approximation on faces
(Lem. 4.3). This is used to prove that the MHM method provides super-convergent numerical approximations to
the displacement and stress variables in natural norms (Thm. 5.2). Furthermore, an a posteriori error estimator
(see Eqs. (5.4)-(5.6)), established in terms of the jump of the displacement variable on the faces, is shown to
control the natural norms of the displacement and stress variables (Thm. 5.5). The two-level version of the
MHM method (6.4) is shown to be well-posed in Theorem 6.2 under the space compatibility condition (6.6).
We also measure the impact of the second-level discretization, which is related to a consistency error. This is
highlighted in Lemma 6.3. Some local spaces fulfilling the local space compatibility assumption are presented
in (6.15) and analyzed in Lemmas 6.6 and 6.8. Convergence estimates for these are proved in Lemma 6.10.

The paper is outlined as follows: the remainder of this section presents the necessary steps towards hybridiza-
tion. An equivalent global-local form of the hybrid formulation and its variants are left to Section 2, while
statement of the method is in Section 3. Its well-posedness and best approximation properties are addressed
in Section 4. Section 5 is dedicated to a priori and a posteriori error estimates. The two-level version of the
method is presented and analyzed in Section 6. Conclusions follow in Section 7 and some complementary results
in the Appendix.

1.1. Statement and preliminaries

In what follows, let Ω ⊂ Rn, n ∈ {2, 3}, be an open bounded domain with polygonal boundary ∂Ω. We
consider the elliptic problem to find the displacement u : Ω → Rn such that{−divAE(u) = f in Ω,

u = g on ∂Ω,
(1.1)

where g ∈H1/2(∂Ω) and f ∈ L2(Ω) are given functions with values in Rn. As such, problem (1.1) has a unique
solution u ∈ H1(Ω), where the spaces have their usual meaning. The linearized strain tensor is given by the
symmetric part of the gradient

E(u) :=
1
2
(
∇u + ∇Tu), i.e.,

(
E(u)

)
ij

:=
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
·

Above, and throughout the paper, the indices i, j run from 1, . . . , n, even when not explicitly mentioned.
The fourth-order rigidity tensor A acts on the space Rn×nsym of n × n symmetric matrices. If τ ∈ Rn×nsym , then
σ := A τ ∈ Rn×nsym is such that

σij :=
n∑

k,l=1

Aijkl τkl.

The rigidity tensor is quite general, possibly depending on x ∈ Ω and embedding multiple geometrical scales.
However, it satisfies the usual symmetry properties Aijkl = Aklij = Ajikl = Aijlk , and is uniformly positive
definite and bounded, i.e., there exist positive constants cmin and cmax such that

c2
min|τ |2 ≤ A τ : τ ≤ c2

max|τ |2 for all τ ∈ Rn×nsym , (1.2)

for almost every x ∈ Ω. Here, τ : σ :=
∑n
i,j=1 τij σij denotes the inner product between the matrices τ , σ,

and |τ | := (τ : τ)1/2. Finally, for a given matrix σ, the row-wise divergence div σ is defined by (div σ)i :=∑n
j=1 ∂σij/∂xj.
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It follows from (1.1) that the stress tensor σ := AE(u) ∈ H(div; Ω), again with the space taking its usual
meaning. However, instead of working directly with this form of the problem, we adopt the following perspective:
we seek u as the solution of the elliptic elasticity equation in a weaker, broken space which relaxes continuity,
localizes computations, and allows reconstruction of a symmetric stress tensor which preserves equilibrium.
Ultimately, the approach allows for the construction of u and σ using local problems. This feature is particularly
attractive in the presence of heterogeneous coefficients since fine-scale contributions may be upscaled in parallel.

The first step is to partition the domain Ω with a family of regular meshes {Th}h>0 into elements K, where h
is a characteristic length of Th. The mesh can be very general, composed of heterogeneous element geometries.
Without loss of generality, we shall use here the terminology usually employed for three-dimensional domains.
As such, each element K has a boundary ∂K consisting of faces F , and we collect in Eh the faces associated
with Th. Let ED be the set of faces on ∂Ω, and E0 = Eh \ ED be the set of internal faces. To each F ∈ Eh we
associate a normal n, taking care to ensure this is facing outward on ∂Ω. For each K ∈ Th, we further denote
by nK the outward normal on ∂K, and let nKF := nK |F for each F ⊂ ∂K. Also, the space of displacements V
consists of

V :=
{
v ∈ L2(Ω) : v |K ∈H1(K), K ∈ Th

}
,

and the space of tractions Λ is formed as follows

Λ :=
{
σnK |∂K : σ ∈ H(div; Ω), K ∈ Th

}
.

The definition of the norms for theses spaces is postponed to Section 4. For now, we denote (., .)Th
and (., .)∂Th

the summation of the respective inner (or dual) products, for all K ∈ Th, over the sets K and ∂K, respectively,
namely,

(w,v)Th
:=

∑
K∈Th

∫
K

w · v dx and (μ,v)∂Th
:=

∑
K∈Th

(μ,v)∂K ,

where w, v ∈ V and μ ∈ Λ, and (·, ·)∂K is the dual product involving H−1/2(∂K) and H1/2(∂K) defined as
follows

(μ,v)∂K :=
∫
K

div σ · v dx+
∫
K

σ : ∇v dx.

We consider the hybrid formulation of problem (1.1): find (u, λ) ∈ V ×Λ such that{
(AE(u), E(v))Th

+ (λ,v)∂Th
= (f , v)Th

for all v ∈ V,

(μ,u)∂Th
= (μ, g)∂Ω for all μ ∈ Λ.

(1.3)

In formulation (1.3), the displacement belongs a priori to a larger space than the solution of the original
problem (1.1). However, the space of Lagrange multipliers Λ imposes H1(Ω)-conformity on the solution and
the boundary condition u = g. Also, problem (1.3) has a unique solution (u,λ) ∈ V ×Λ where u ∈H1(Ω) is
also the solution of problem (1.1). Such results are summarized next.

Lemma 1.1. Assume that (u,λ) ∈ V×Λ. Therefore, (u,λ) is the solution of (1.3) if and only if u ∈H1(Ω)
solves (1.1). Furthermore, for all K ∈ Th, it holds

λ = −AE(u)nK on ∂K.

Proof. Following closely the proof of Theorem 1 in [31] the results follow. �
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2. A global-local formulation

Rather than selecting a pair of finite subspaces of V × Λ at this point, we rewrite (1.3) in an equivalent
form which is suitable to reduce the statement to a system of locally- and globally-defined problems. Such an
approach will guide the definition of stable finite subspaces. The key to the approach is the operator-driven
decomposition

V = Vrm ⊕ Ṽ. (2.1)

Here, Vrm is the finite dimensional subspace of V composed of those functions vrm ∈ V such that
(AE(vrm), E(v))Th

= 0 for all v ∈ V, and Ṽ is its L2-orthogonal complement in V. In fact, Vrm is the
space of piecewise rigid body modes, i.e.,

Vrm := {v ∈ V : v|K ∈ Vrm(K), K ∈ Th}, Vrm(K) := {v ∈ V : E(v) |K = 0}.

Using decomposition (2.1), problem (1.3) is equivalent to: find (urm + ũ,λ) ∈ (Vrm ⊕ Ṽ) ×Λ such that{
(λ,vrm)∂Th

= (f ,vrm)Th
for all vrm ∈ Vrm,

(μ,urm + ũ)∂Th
= (μ, g)∂Ω for all μ ∈ Λ,

(2.2)

(AE(ũ), E(ṽ))Th
+ (λ, ṽ)∂Th

= (f , ṽ)Th
for all ṽ ∈ Ṽ. (2.3)

Notice that (2.3) implies that ũ can be computed in each element from f and from λ once the latter is
known. In fact, we find from (2.3) that ũ = T λ+ T̂ f , with T : Λ → Ṽ and T̂ : L2(Ω) → Ṽ being bounded
linear operators (see Lems. A.1 and A.2 in the Appendix) defined, on each K ∈ Th, by(

AE(T μ), E(ṽ)
)
K

= −(μ, ṽ)∂K for all ṽ ∈ Ṽ, (2.4)(
AE(T̂ q), E(ṽ)

)
K

= (q, ṽ)K for all ṽ ∈ Ṽ, (2.5)

for μ ∈ Λ and q ∈ L2(Ω). We substitute this decomposition ũ = T λ+ T̂ f in (2.2) to yield the problem: find
(urm,λ) ∈ Vrm ×Λ such that{

(λ,vrm)∂Th
= (f ,vrm)Th

for all vrm ∈ Vrm,

(μ,urm + T λ)∂Th
= −(μ, T̂ f)∂Th

+ (μ, g)∂Ω for all μ ∈ Λ.
(2.6)

As a result, the weak formulation (1.3) is analogous to the coupled system (2.4) and (2.5) (with μ = λ and
q = f ) and (2.6). We use the unknowns urm and λ of the latter problem to reconstruct the displacement u ∈ V
and the stress tensor σ ∈ H(div; Ω) as follows:

u = urm + T λ+ T̂ f , σ = AE(T λ+ T̂ f). (2.7)

2.1. From hybrid to mixed

Next, we detail the procedure to translate (2.2) into a mixed formulation. To this end, we rewrite (2.4)
and (2.5) in strong form. For that, suppose μ ∈ Λ and define the (unique) rigid body mode Rμ

K ∈ Vrm(K) in
each K ∈ Th by,

(Rμ
K , vrm)K = (μ, vrm)∂K for all vrm ∈ Vrm(K). (2.8)

From problem (2.4), we conclude that T μ is the unique solution of the local elasticity problem (in a distributional
sense) {

−divAE(T μ) = Rμ
K in K,

AE(T μ)nK = −μ on F ⊂ ∂K.
(2.9)
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Following the same procedure, we may also use (2.5) to rewrite{
−divAE(T̂ q) = q − ΠK(q) in K,

AE(T̂ q)nK = 0 on F ⊂ ∂K,
(2.10)

where ΠK(.) is the L2-orthogonal projection onto Vrm(K).
Now, hidden in the statement of the global problem (2.6) is a mixed form of the elliptic problem (1.1). To

highlight this, we use equations (2.8) and (2.9) to first establish that for each vrm ∈ Vrm(K),

(μ,vrm)∂Th
= (Rμ

K ,vrm)Th
= −(div σμ,vrm)Th

, (2.11)

where we defined σμ := AE(T μ), μ ∈ Λ, and used vrm ∈ Vrm(K). Next, we choose (arbitrarily, and without
loss of generality) to lift μ from ∂K into K by using problem (2.4). This choice conveniently yields a form
of (2.6) which is completely defined in terms of integrals on element interiors rather than their boundaries.
From (2.4), (2.11) and (2.5) with the fact T λ+ T̂ f ∈ Ṽ, it holds that(

μ,urm + T λ+ T̂ f
)
∂Th

= −
(
AE(T μ), E(Tλ+ T̂ f)

)
Th

− (div σμ,urm)Th
(2.12)

= − (AE(T λ), E(T μ))Th
− (f , T μ)Th

− (div σμ,urm)Th
.

Finally, we gather (2.11) and (2.12) and substitute them into the global problem (2.6) to propose the following
equivalent weak mixed form: find (λ,urm) ∈ Λ× Vrm such that{

(A−1σλ, σμ)Th
+ (urm,div σμ)Th

= −(f , T μ)Th
− (μ, g)∂Ω for all μ ∈ Λ,

(div σλ,vrm)Th
= −(f ,vrm)Th

for all vrm ∈ Vrm,
(2.13)

where A−1 is the compliance tensor.

3. The Multiscale Hybrid-Mixed (MHM) method

We have not introduced any discretization up to this point, although global problem (2.6) involves the finite-
dimensional space Vrm. Since λ uniquely determines T λ (see (2.4)), it is enough to pick a finite element space
Λh in order to fully discretize problem (2.6). In this case, we find the discrete method: find (urm

h ,λh) ∈ Vrm×Λh
such that {

(λh,vrm)∂Th
= (f ,vrm)Th

for all vrm ∈ Vrm,

(μh,u
rm
h + T λh)∂Th

= −(μh, T̂ f)∂Th
+ (μh, g)∂Ω for all μh ∈ Λh,

(3.1)

where T and T̂ are as in (2.4) and (2.5), respectively. We use the unknowns of this problem to construct
approximations to u and σ given in (2.7), namely,

uh := urm
h + T λh + T̂ f , σh := AE(T λh + T̂ f). (3.2)

Remark 3.1. Observe we may recast the MHM method (3.1) in the same mixed form (2.13), i.e., find
(λh,urm) ∈ Λh × Vrm such that{

(A−1σλh , σμh)Th
+ (urm,div σμh)Th

= −(f , T μh)Th
− (μ, g)∂Ω for all μh ∈ Λh,

(div σλh ,vrm)Th
= −(f ,vrm)Th

for all vrm ∈ Vrm.
(3.3)

Note that the second equation in (3.3) imposes the weak local equilibrium of σλh . Moreover, the stress σh
in (3.2) satisfies the equilibrium equation exactly, almost everywhere, in each element K. Indeed, for each K,
from (3.2) and (2.10),

div σh + f = div
(
AE(T λh + T̂ f)

)
+ f = −Rλh

K + ΠK(f) = 0,

since Rλh

K = ΠK(f ) using (3.1) and (2.8).
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It is instructive to consider T λh in more detail as it plays a central role in (3.1) or (3.3). Suppose {ψi}dim Λh

i=1

is a basis for Λh. We define the set {ηi}dim Λh

i=1 ⊂ Ṽ with ηi := T ψi, and then ηi |K satisfies(
AE(ηi), E(w̃)

)
K

= −
(
ψi n · nK , w̃

)
∂K

for all w̃ ∈ Ṽ, (3.4)

or equivalently, {
−divAE(ηi) = Rψi

K in K,

AE(ηi)n
K = −ψin · nK on F ⊂ ∂K,

(3.5)

where Rψi

K ∈ Vrm satisfies (Rψi

K ,vrm)K = (ψi,v
rm)∂K , for all vrm ∈ Vrm. Taking λh =

∑dim Λh

i=1 βiψi in Λh,
the linearity of (2.4) implies we can uniquely write

T λh =
dim Λh∑
i=1

βi Tψi =
dim Λh∑
i=1

βi ηi.

It then follows that

uh = urm
h +

dim Λh∑
i=1

βi ηi + T̂ f . (3.6)

In this sense, the method can be seen as a nonconforming method to find an approximation of u in a finite
dimensional subspace of V � H1(Ω). On the other hand, the stress tensor σ is approximated by σh given by:

σh =
dim Λh∑
i=1

βiAE(ηi) + AE(T̂ f) ∈ H(div; Ω), (3.7)

and, then, the method is conforming with respect to the variable σ. Also, the post-processed stress σh is strongly
symmetric.

Note that heterogeneous and/or high-contrast aspects of the media automatically impact the design of the
basis functions as they are driven by the local problems (3.4) (equivalently (3.5)) and the choice of Λh. Also,
embedded interfaces are naturally taken care of by these local problems, which easily accommodate edge-crossing
interfaces thanks to the local boundary conditions. Furthermore, the strategy allows the present methodology
to address multiscale aspects of the solution should they still persist inside of each local problem (2.4)−(2.5)
for T λ and T̂ f . Indeed, the current framework may be used recursively on the elliptic local problem, thereby
incorporating multiple scales into problem (2.6).

For practical purposes, closed formulas are not available in general for Tψi and T̂f . This prevents (3.1)
or (3.3) to be solved exactly, though some cases exist for which exact solutions are known. For instance, observe
that T̂ f = 0 if f ∈ Vrm. Thereby, we propose a two-level methodology such that the functions T λh (e.g.
T ψi) and T̂ f taking part in (3.1) (or (3.3)) are replaced by their locally approximated counterparts Th λh (e.g.
Thψi) and T̂h f .

It is important to note that in either case, method (3.1) (or (3.3)) consists of the same number of degrees
of freedom, with the local approximation appearing as a pre-processing step which is easily parallelized. The
two-level computations may be based on primal Galerkin methods, their mixed counterpart obtained from the
recursive procedure mentioned in the previous paragraphs, or even adopting a classical mixed method [14],
which preserves local H(div;K) conformity. In a broad sense, the two-level MHM method starts by selecting
Th and T̂h, and looking for (λh,urm

h ) in Λh × Vrm as the solution of the following problem{
(λh,vrm)∂Th

= (f ,vrm)Th
for all vrm ∈ Vrm,

(μh,u
rm + Th λ)∂Th

= −(μh, T̂h f )∂Th
+ (μh, g)∂Ω for all μ ∈ Λh.

(3.8)
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It is worth mentioning that the choice of method at local level will impact the qualitative features of the global
method. In Section 6, we detail and analyze a two-level strategy which makes the MHM method effective from
a practical viewpoint. Particularly, we propose a compatibility condition between finite dimensional subspaces
of Ṽ and Λh such that the two-level approach (3.8) preserves the key features of method (3.1) (or (3.3)).

Remark 3.2. We can view the MHM method (3.1) as penalizing jump terms. To see this, we first observe that
given μh ∈ Λh with property μh|F ∈H−1/2(F ) (this space having its usual meaning, see [34] for instance), the
decomposition (μh,u)∂K =

∑
F⊂∂K(μh,u)F , has meaning for all u ∈H1(K). From this, the following identity

holds
(μh,u)∂Th

=
∑
F∈Eh

(μh ⊗ n, �u�)F , (3.9)

where

�v� |F := vK1 |F ⊗ nK1
F + vK2 |F ⊗ nK2

F , (3.10)

and (v ⊗ n)ij = vinj , and vKi indicate the restriction of function v to either of the two elements sharing
F ∈ Eh. Also, upon selecting K1 such that nK1

F = nF , we set

μh |F = μK1
h |F (3.11)

Using identity (3.9) in (3.1), we have that (urm
h ,λh) ∈ Vrm ×Λh satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
F∈Eh

(λh ⊗ n, �vrm�)F = (f ,vrm)Th
for all vrm ∈ Vrm,

∑
F∈Eh

(μh ⊗ n, �urm
h + T λh�)F = −

∑
F∈Eh

(μh ⊗ n, �T̂ f�)F + (μh, g)∂Ω for all μh ∈ Λh,

which emphasizes that the MHM method works as a penalization on jumps.

Summarizing the algorithm for computing an approximation to (1.3), we get:

(i) compute T̂f from (2.5) and the basis {ηi}dim Λh
i=1 from (3.4) as a local, completely parallelizable prepro-

cessing step;
(ii) compute the degrees of freedom of (urm

h ,λh) from (3.1) (or (3.3)), noting that T λh expands in terms of
{ηi}dim Λh

i=1 using the degrees of freedom for λh;
(iii) bring the results together to build the approximated stress σh from (3.7) and the approximated displacement

uh from (3.6).

Recall that for the two-level method (3.8), it is enough to replace T and T̂ by Th and T̂h above, respectively.

4. Well-posedness and best approximation

We preserve conformity by selecting Λh such that

Λrm ⊆ Λh ⊂ Λ. (4.1)

The well-posedness of method (3.1) and its best approximation result rely on the space Λrm. Indeed, a central
result of this section shows (see Thm. 4.2) that Λrm set as

Λrm := {μ ∈ Λ : μ|∂K ∈ Λrm(K), K ∈ Th}, (4.2)

where

Λrm(K) := {vrm|F : vrm ∈ Vrm(K), F ⊂ ∂K},
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ensures that an inf-sup condition between the spaces Λrm and Vrm holds. Henceforth, C represents a positive
constant independent of h which can differ in each occurrence and have a possible dependence on A.

Let us define the bilinear forms a : Λ×Λ→ R and b : Λ× V → R

a(λ,μ) := (μ, T λ)∂Th
, b(μ,v) := (μ,v)∂Th

,

where we recall that the linear operator T is defined in (2.4). It is convenient to rewrite problem (2.6) by adding
both equations and proposing the formulation in the following way: find (λ,urm) ∈ Λ× Vrm such that

B(λ,urm;μ,vrm) = F(μ,vrm) for all (μ,vrm) ∈ Λ× Vrm, (4.3)

where

B(λ,urm;μ,vrm) := a(λ,μ) + b(μ,urm) + b(λ,vrm),

F(μ,vrm) := (f , vrm)Th
− (μ, T̂ f)∂Th

+ (μ, g)∂Ω .

Note that B(., .) is symmetric due to (2.4). Similarly, we rewrite the MHM method (3.1) as: find (λh,urm
h ) ∈

Λh × Vrm such that

B(λh,urm
h ;μh,v

rm) = F(μh,v
rm) for all (μh,v

rm) ∈ Λh × Vrm. (4.4)

Our analysis requires the norm on Λ× Vrm

‖(μ,vrm)‖Λ×V := ‖μ‖Λ + ‖vrm‖V, (4.5)

where each contribution reads (here dΩ stands for the diameter of Ω)

‖μ‖Λ := inf
σ∈H(div;Ω)

σnK=μ on ∂K,K∈Th

‖σ‖div, ‖σ‖2
div :=

∑
K∈Th

(
‖σ‖2

0,K + d2
Ω‖divσ‖2

0,K

)
,

‖v‖2
V :=

∑
K∈Th

(
d−2
Ω ‖v‖2

0,K + ‖E(v)‖2
0,K

)
.

(4.6)

Denote by Π the global L2 projection onto Vrm such that Π |K = ΠK . From standard stability result of
projections and (4.6), it holds for all v ∈ V

‖Π v‖V ≤ ‖v‖V. (4.7)

Also, from trace inequality (A.3), the property Π vrm = vrm and Korn inequality (A.1), we get

‖v − ΠK v‖0,∂K ≤ C h
1/2
K ‖ E(v)‖0,K for all v ∈ V. (4.8)

Before heading to the analysis of the MHM method, we must first characterize the space Λrm defined in (4.2)
through the action of an interpolation operator. To be precise, let us define the local interpolation IK on
functions in L2(∂K) with value in Λrm(K), such that for each F ⊂ ∂K, it holds∫

F

IKμvrmds =
∫
F

μvrmds for all vrm ∈ Vrm(K). (4.9)

Observe that conditions (4.9) imply unisolvence in Λrm(K) and the following local stability result holds

‖IKμ‖0,∂K ≤ ‖μ‖0,∂K . (4.10)



320 C. HARDER ET AL.

The global interpolation I acts on the trace of functions in [H1(Ω)]n×n (with its usual meaning) with values in
Λrm, and is fully defined assuming I|K = IK . To investigate the stability of I in the ‖.‖Λ norm (4.6), we first
observe that from (4.10) and (4.8) we get

b(Iμ,v − Π v) ≤
∑
K∈Th

‖IKμ‖0,∂K‖v − ΠK v‖0,∂K

≤ C
∑
K∈Th

‖μ‖0,∂K h
1/2
K ‖ E(v)‖0,K

≤ C
[ ∑
K∈Th

‖μ‖2
0,∂K hK

]1/2

‖v‖V. (4.11)

In what follows, we make consistent use of the following equivalence of norms (see Lem. A.3 in the Appendix)
√

2
2 Ckorn

‖μ‖Λ ≤ sup
v∈V

b(μ,v)
‖v‖V

≤ ‖μ‖Λ, (4.12)

where Ckorn is a positive constant independent of h. Above and hereafter we lighten the notation and understand
the supremum to be taken over sets excluding the zero function.

Next, from (4.12), (4.9), the definition of the norm ‖.‖Λ in (4.6), and (4.11) the operator I is stable as follows

‖Iμ‖Λ ≤ C sup
v∈V

b(Iμ,v)
‖v‖V

≤ C

(
sup
v∈V

b(Iμ, Π v)
‖v‖V

+ sup
v∈V

b(Iμ,v − Π v)
‖v‖V

)

≤ C

⎛⎝sup
v∈V

b(μ, Π v)
‖Π v‖V

+

[ ∑
K∈Th

‖μ‖2
0,∂K hK

]1/2
⎞⎠

≤ C

(
sup
v∈V

b(μ,v)
‖v‖V

+
[ ∑
K∈Th

‖μ‖2
0,∂K hK

]1/2
)

≤ C

⎛⎝‖μ‖Λ +

[ ∑
K∈Th

‖μ‖2
0,∂K hK

]1/2
⎞⎠ . (4.13)

We are ready to prove that the operator associated with the linear form b(., .) is surjective. Hereafter the
domain Ω is assumed to be a simply connected polygon.

Lemma 4.1. Given vrm ∈ Vrm, there exists C such that

C ‖vrm‖V ≤ sup
μrm∈Λrm

b(μrm,vrm)
‖μrm‖Λ

·

Proof. Assume vrm ∈ Vrm. From the assumption on Ω, observe that there exists a symmetric matrix function
σ� ∈ [H1(Ω)]n×n (see [6] for instance) such that

div σ� = vrm and ‖σ�‖1,Ω ≤ C ‖vrm‖0,Ω. (4.14)

Take μ� ∈ Λ such that μ� |∂K := σ� nK |∂K , K ∈ Th. From (4.13), and the definition of norm ‖.‖Λ in (4.6)
and (4.14), and observing that from a scaling argument (cf. [15], p. 111) we get[ ∑

K∈Th

‖μ�‖2
0,∂K hK

]1/2

≤ C ‖μ�‖Λ,
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we arrive at the following result

‖Iμ�‖Λ ≤ C ‖μ�‖Λ ≤ C ‖σ�‖div ≤ C ‖vrm‖V. (4.15)

Next, from (4.14)-(4.15) and (4.9) it holds

dΩ ‖vrm‖V =
(div σ�,vrm)Th

‖vrm‖V
=

(μ�,vrm)∂Th

‖vrm‖V
=

(Iμ�,vrm)∂Th

‖vrm‖V
≤ C

(Iμ�,vrm)∂Th

‖Iμ�‖Λ
,

and the result follows taking the supremum. �

Hereafter, we will make use of the following tensor norm on A

‖A‖ := ess sup
x∈Ω

max
|ξ|=1

(A(x) ξ, ξ)1/2, ξ ∈ Rn×nsym , (4.16)

which from (1.2) satisfies cmin ≤ ‖A‖ ≤ cmax. We are ready to prove the well-posedness result. Observe that the
proof is unchanged for any finite dimensional space Λh ⊂ Λ under the condition (4.1). Therefore, the following
result applies to the MHM formulation (4.4) as well.

Theorem 4.2. Suppose (λ,urm), (μ,vrm) ∈ Λ× Vrm. Then, there exists C such that

B(λ,urm;μ,vrm) ≤ C ‖(λ,urm)‖Λ×V ‖(μ,vrm)‖Λ×V. (4.17)

Moreover, there exists a positive constant β, independent of h, such that

sup
(μ,vrm)∈Λ×Vrm

B(λ,urm;μ,vrm)
‖(μ,vrm)‖Λ×V

≥ β ‖(λ,urm)‖Λ×V for all (λ,urm) ∈ Λ× Vrm. (4.18)

Also,

B(λ,urm; μ,vrm) = 0 for all (λ,urm) ∈ Λ× Vrm =⇒ (μ,vrm) = (0,0), (4.19)

for all (μ,vrm) ∈ Λ× Vrm. We conclude problem (4.3) is well-posed.

Proof. The proof follows closely [3]. First, we prove (4.17). Since by definition a(λ,μ) = b(μ, Tλ), it follows by
the equivalence result (4.12) and Lemma A.1 in the Appendix, and definition of norm (4.5) that

B(λ,urm;μ,vrm) = b(μ, T λ+ urm) + b(λ,vrm)

≤ sup
w∈V

b(μ,w)
‖w‖V

‖T λ+ urm‖V + sup
w∈V

b(λ,w)
‖w‖V

‖vrm‖V

≤ ‖μ‖Λ(‖T λ‖V + ‖urm‖V) + ‖λ‖Λ‖vrm‖V

≤ (C2
korn + π2)cmax

π2c2
min

‖μ‖Λ‖λ‖Λ + ‖μ‖Λ‖urm‖V + ‖λ‖Λ‖vrm‖V,

and (4.17) follows immediately.
Next, we prove a coercivity condition for −a(., .), for which we require the following nullspace

N := {μ ∈ Λ : b(μ,vrm) = 0, ∀vrm ∈ Vrm}· (4.20)
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Assume μ ∈ N and first note that problems (2.4) and (2.11) imply that divAE(T μ) = 0. Using (2.4) and (1.2),
it holds

−a(μ,μ) = (A−1AE(T μ),AE(T μ))Th

≥ 1
cmax

‖AE(T μ)‖2
0,Ω

=
1

cmax
‖AE(T μ)‖2

div

≥ 1
cmax

‖μ‖2
Λ,

since AE(T μ)nK = μ on ∂K for all K ∈ Th. We conclude −a(., .) is coercive on the subspace N . This result,
along with the inf-sup condition for b(., .) from Lemma 4.1, are the requirements of the abstract setting in [3]
(see also [19], p. 101) from which (4.18) and (4.19) hold with a positive constant β independent of h. �

We close this section by showing the MHM method produces the best approximation, where the convergence
of both λh and urm

h is governed by the approximation properties of Λh. Indeed, observe that the accuracy of
urm
h approaching urm depends on how well Λh approximates Λ. In consequence, optimal convergence for uh and

σh given in (3.2) in the natural norms is expected to rely only on the capacity of λ to be optimally interpolated
by λh on faces. This is established in the next lemma.

Lemma 4.3. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (4.4), respectively. Under the assumptions

of Theorem 4.2, it holds that

B(λ− λh,urm − urm
h ;μh,v

rm) = 0 for all (μh,v
rm) ∈ Λh × Vrm. (4.21)

Moreover, there exists C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C inf

μh∈Λh

‖λ− μh‖Λ. (4.22)

Proof. The result (4.21) follows immediately from (4.3) and (4.4). Next, from standard arguments using
Theorem 4.2 and (4.21), there is C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C ‖(λ− μh,urm − vrm)‖Λ×V,

which is valid for all (μh,vrm) ∈ Λh × Vrm. Thereby, selecting (μh,vrm) = (μh,urm) in Λh × Vrm, the result
follows by taking the infimum. �

Observe that the approximate solution fulfills the local equilibrium constraint exactly as shown in the next
result. Hereafter, we shall consistently use the characterization of u and σ, and uh and σh given in (2.7)
and (3.2), respectively.

Corollary 4.4. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (4.4), respectively. The following result

holds

div σh = div σ in Ω. (4.23)

Proof. See Remark 2. �

We shall make use of the assumption that problem (1.1) has smoothing properties in the sense of ([19],
Def. 3.14).
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Lemma 4.5. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (4.4), respectively. Under the assumptions

of Theorem 4.2, it holds

‖σ − σh‖div ≤ C inf
μh∈Λh

‖λ− μh‖Λ, (4.24)

‖u− uh‖0,Ω ≤ C inf
μh∈Λh

‖λ− μh‖Λ. (4.25)

Furthermore, if problem (1.1) has smoothing properties, it holds

‖u− uh‖0,Ω ≤ C h inf
μh∈Λh

‖λ− μh‖Λ, (4.26)

‖urm − urm
h ‖0,Ω ≤ C h inf

μh∈Λh

‖λ− μh‖Λ. (4.27)

Proof. The proof closely follows the one presented in [3] for the Laplace’s equation. We revisit and adapt it
here for sake of clarity. First, Lemma A.1 implies ‖A E(u−uh)‖div ≤ C ‖λ−λh‖Λ so that result (4.24) follows
from (4.22) in Lemma 4.3. Again using Lemma A.1, (2.7) and (3.2), and triangle inequality, we get

‖u− uh‖0,Ω ≤ ‖urm − urm
h ‖0,Ω + C ‖λ− λh‖Λ,

and estimate (4.25) results from Lemma 4.3.
To prove result (4.26), we employ a duality argument. Define

e := u− uh = urm − urm
h + T (λ− λh)

and suppose that (γ,wrm) ∈ Λ× Vrm satisfies

B(μ,vrm;γ,wrm) = (T μ+ vrm, e)Th
for all (μ,vrm) ∈ Λ× Vrm. (4.28)

The problem of finding such a (γ,wrm) is the adjoint problem of(4.3) with homogeneous Dirichlet bound-
ary condition prescribed on ∂Ω, and the right-hand side rewritten using (2.4) and (2.5). Furthermore, define
(γrm,wrm

h ) ∈ Λrm × Vrm by the finite-dimensional adjoint problem

B(μrm,vrm;γrm,wrm
h ) = (T μrm + vrm, e)Th

, for all (μrm,vrm) ∈ Λrm × Vrm. (4.29)

Both (4.28) and (4.29) have unique solutions by Theorem 4.2 and the symmetry of the problem statements.
Under the assumption that problem (1.1) has smoothing properties, we observe that the solution w := wrm +
T γ + T̂e has extra regularity since e ∈ L2(Ω), and there is a positive constant C (depending only on Ω) such
that ‖w‖2,Ω ≤ C

cmin
‖e‖0,Ω. From this, Lemma 4.3, and the interpolation estimate (5.3) we find

inf
μrm∈Λrm

‖γ − μrm‖Λ ≤ C h ‖w‖2,Ω,

and we then use (4.22) to show

‖(γ − γrm,wrm −wrm
h )‖Λ×V ≤ C h‖w‖2,Ω ≤ C

cmin
h ‖e‖0,Ω.

Therefore, by (4.28), the consistency result of Lemma 4.3, the continuity result of Theorem 4.2, and the best
approximation result of Lemma 4.3, we find

‖e‖2
0,Ω = (e, e)Th

= (T (λ− λh) + (urm − urm
h ), e)Th

= B(λ− λh,urm − urm
h ;γ,wrm)

= B(λ− λh,urm − urm
h ;γ − γrm,wrm −wrm

h )
≤ C ‖(λ− λh,urm − urm

h )‖Λ×V‖(γ − γrm,wrm −wrm
h )‖Λ×V

≤ C h inf
μh∈Λh

‖λ− μh‖Λ‖e‖0,Ω,
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which establishes (4.26). As for (4.27), using the triangle inequality, the local inequality (A.2) and Lemma A.1,
it holds

‖urm − urm
h ‖0,Ω ≤ ‖u− uh‖0,Ω + C h ‖λ− λh‖Λ,

and the result follows from (4.26) and Lemma 4.3. �

5. Convergence results

5.1. A priori estimates

Note that the result in Lemma 4.3 holds for any discrete space Λh under the assumption Λrm ⊂ Λh. As
such, method (4.4) achieves optimal convergence rates for any finite element subspace Λh with known best
approximation properties. To illustrate, we use the polynomial space Λl

Λh ≡ Λl :=
{
μ ∈ Λ : μ |F ∈ [Pl(F )]n, F ∈ Eh

}
, (5.1)

where Pl(F ), l ≥ 1, stands for the space of piecewise polynomials of degree less than or equal to l on F , and
μ |F was defined in (3.11). We closely follow the proof of a result in [30] to show that Λl has the desired
approximation properties.

Lemma 5.1. Suppose w ∈Hm+1(Ω) with 1 ≤ m ≤ l+1 and l ≥ 0, and let μ ∈ Λ be such that μ := E(w)n |F
for each F ∈ Eh. There exists C such that

inf
μl∈Λl

‖μ− μl‖Λ ≤ C hm‖w‖m+1,Ω, (5.2)

where Λl is given in (5.1). Moreover, it holds

inf
μrm∈Λrm

‖μ− μrm‖Λ ≤ C h ‖w‖2,Ω. (5.3)

Proof. Assume w ∈ Hm+1(Ω), set μ = E(w)n |F for each F ∈ Eh and denote by Π l the orthogonal projector
in L2(F ) upon [Pl(F )]n, l ≥ 0. Defining μl := Π l μ, using the regularity of the mesh, and following closely the
proof of Lemma 9 in [30] for each component of w, and for each K ∈ Th, we get

(μ− μl,v)∂K ≤ C hmK |w|m+1,K |v|1,K for all v ∈H1(K).

Summing up over K ∈ Th it holds

b(μ− μl,v) = (μ− μl,v)∂Th
≤ C hm|w|m+1,Ω |v|1,Th

≤ C hm‖w‖m+1,Ω ‖v‖V,

which immediately leads to

sup
v∈V

b(μ− μl, v)
‖v‖V

≤ C hm‖w‖m+1,Ω.

The result (5.2) follows using the equivalence of norms in Lemma A.3, and (5.3) follows using that Λ0 ⊂ Λrm

and (5.2). �

With the choice of Λl in (5.1), we are then ready to present rates of convergence.
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Theorem 5.2. Let (λ,urm) ∈ Λ × Vrm and (λl,urm
h ) ∈ Λl × Vrm be the exact and the approximate solution

of (2.6) and (4.4), respectively, where Λl is given in (5.1). Assuming u ∈Hm+1(Ω), there exist C such that

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C hm ‖u‖m+1,Ω,

‖u− uh‖0,Ω + ‖σ − σh‖div ≤ C hm ‖u‖m+1,Ω.

Furthermore, if problem (1.1) has smoothing properties, the following estimates hold

‖urm − urm
h ‖0,Ω + ‖u− uh‖0,Ω ≤ C hm+1 ‖u‖m+1,Ω,

where 1 ≤ m ≤ l + 1 and l ≥ 1 is the degree of polynomial functions in Λl.

Proof. The results follow using Lemmas 4.3, 4.5 and 5.1. �

Remark 5.3. Estimates in Theorem 5.2 point out that the errors in the natural norms for the displacement
and the stress are super-convergent. For instance, if one adopts linear polynomial interpolation (l = 1) on
faces to approximate the Lagrange multiplier, then Theorem 5.2 shows that ‖∇(u − uh)‖0,Th

= O(h2) and
‖u− uh‖0,Ω = O(h3).

Remark 5.4. At this point, it is interesting to count the number of local degrees of freedom necessary to
approximate the variables using the space Vrm(K) × Λl(K) in the case of a simplicial mesh, where Λl(K)
stands for the space of functions in Λl restricted to K. First, dim Vrm(K) =

(
n+1
n−1

)
, where we recall that

n ∈ {2, 3} is the dimension of Ω. Now, on a particular face, there are n
(
l+n−1
n−1

)
degrees of freedom for Λl(K) if

l ≥ 1. Therefore, since there are n+1 faces belonging to K, dim Λl(K) = n(n+1)
(
l+n−1
n−1

)
, for l ≥ 1. Therefore,

the total number of local degrees of freedom is(
n + 1
n − 1

)[
1 + 2

(
l + n − 1

n − 1

)]
, l ≥ 1.

As for the simplest element, i.e., the pair of spaces Vrm(K) ×Λrm(K), the total number of local degrees of
freedom is (

n + 1
n − 1

)
(n + 2) .

As such, there are 12 degrees of freedom total in 2D, while in the 3D case there are 30 degrees of freedom
per element. Also, Theorem 5.2 holds (with m = 1) if one replaces Λl by Λrm from Lemmas 4.3 and 4.5, and
from (5.3).

5.2. A posteriori estimates

Now, we turn to a posteriori error estimates. With the definition of uh given in (3.2), we propose the residual
on faces as follows

rF :=

⎧⎨⎩
1
2

�uh�, F ∈ E0

g − uh, F ∈ ED,
(5.4)

where we recall �.� is given in (3.10), and we set

ηF :=
cmin

h
1/2
F

‖rF ‖0,F . (5.5)
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The estimator η is given by

η :=

[ ∑
K∈Th

η2
K

]1/2

with η2
K :=

∑
F⊂∂K

η2
F . (5.6)

It will be also useful to adopt the following norm on H(div; Ω)

‖σ‖2
div,h :=

∑
K∈Th

(
‖σ‖2

0,K + h2
K‖divσ‖2

0,K

)
, (5.7)

and the local norm

‖v‖2
V,ωF

:=
∑
K∈ωF

(
h−2
K ‖v‖2

0,K + ‖E(v)‖2
0,K

)
, (5.8)

where ωF corresponds to the set of elements sharing the face F ∈ Eh. We are ready to establish the following
a posteriori error estimate.

Theorem 5.5. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (4.4), respectively. Then, there exist

positive constants C1 and C2, independent of h, such that

cmin‖u− uh‖V + ‖σ − σh‖div,h ≤ C1 η,

ηF ≤ C2 cmin‖u− uh‖V,ωF .

Moreover, if we suppose smoothing properties, there exists C such that

cmin

(
1
h
‖u− uh‖0,Ω + ‖ E(u− uh)‖0,Th

)
+ ‖σ − σh‖div,h ≤ C η.

Proof. We shall adapt the technique proposed in [3]. To first establish the lower bound, we use the definition
of B(., .) and follow closely ([3], Thm. 5.2) (in its vectorial version), to get

B(λ− λh,urm − urm
h ;μ,vrm) = B(λ− λh,urm − urm

h ;μ,0)
= (μ,u− uh)∂Th

= −(μ,uh)∂Th
+ (μ, g)∂ΩD

≤ C ‖μ‖Λ η.

We therefore find from Lemma A.1 and Theorem 4.2 that

cmin‖u− uh‖V + ‖σ − σh‖div,h ≤ C ‖(λ− λh,urm − urm
h )‖Λ×V

≤ C sup
(μ,vrm)∈Λ×Vrm

B(λ− λh,urm − urm
h ;μ,vrm)

‖(μ,vrm)‖Λ×V

≤ C η.

Now, we prove the upper bound. Let μ∗ ∈ Λ such that μ∗ |F = rF and μ∗ |F ′ = 0 for all F ′ �= F ∈ E0, hence
we get

‖rF ‖2
0,F = 2 (rF , �u− uh�)F ≤ 2 ‖rF ‖0,F‖�u− uh�‖0,F .
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Therefore, using the triangle inequality and trace inequality (A.3), and the mesh regularity it holds

‖rF ‖0,F ≤ 2 ‖�u− uh�‖0,F

≤ C
∑
K∈ωF

[
h−1
K ‖u− uh‖2

0,K + hK‖ E(u− uh)‖2
0,K

]1/2
≤ C h

1/2
F ‖u− uh‖V,ωF .

As for F ∈ ED, we observe that ‖rF ‖0,F ≤ ‖u− uh‖0,F and, then, the above estimate also holds following an
analogous argument. The last result follows from Lemma 4.5 and following closely the arguments presented in
([3], Cor. 5.3) (in its vectorial version). �

6. Two-level analysis

We establish first in this section the conditions under which the two-level version of the MHM method (3.8)
remains well-posed and keeps its best approximation property. There is a great deal of flexibility in the choice
of the local finite dimensional spaces and in the second-level numerical method. Here, we keep the two-level
approach as simple as possible, and select a conforming second-level finite dimensional space Ṽh(K) ⊂ Ṽ(K),
where Ṽ(K) stands for the functions in Ṽ restricted to K ∈ Th, and define

Ṽh := ⊕K∈Th
Ṽh(K) ⊂ Ṽ.

We include the impact of the second-level discretization in the MHM method by replacing the bilinear form
a(·, ·) in (4.3) with

ah(μh,λh) := (μh, Th λh)∂Th
, (6.1)

where Th : Λ→ Ṽh is such that Thμh |K satisfies

(AE(Thμh), E(ṽh))K = −(μh, ṽh)∂K for all ṽh ∈ Ṽh, (6.2)

and (μ, T̂ f)∂Th
is replaced by (μ, T̂h f)∂Th

, where T̂h : L2(Ω) → Ṽh is such that T̂h q |K satisfies

(AE(T̂h q), E(ṽh))K = (q, ṽh)K for all ṽh ∈ Ṽh. (6.3)

The problems above are the standard Galerkin method set over Ṽh restricted to each K ∈ Th. The goal is to
approximate the solutions of elliptic problems (2.4)−(2.5).

The corresponding two-level MHM method reads: find (λh,urm
h ) ∈ Λh × Vrm such that

Bh(λh,urm
h ;μh,v

rm) = Fh(μh,v
rm) for all (μh,v

rm) ∈ Λh × Vrm, (6.4)

where

Bh(λ,urm;μ,vrm) := ah(λ,μ) + b(μ,urm) + b(λ,vrm),

Fh(μ,vrm) := (f , vrm)Th
− (μ, T̂h f)∂Th

+ (μ, gD)∂Ω.

Observe that the invertibility of the matrix associated with Bh(·, ·) comes down to invertibility of the symmetric
form ah(., .) on the nullspace

Nh := N ∩Λh, (6.5)

where N is given in (4.20) and Λh satisfies (4.1) (we have already dealt with the other constituents in the
previous analysis). Such a result will be achieved by showing the form −ah(., .) is coercive on Nh with respect
to the norm ‖.‖Λ. Overall, this relies on the choice of the space Ṽh. A sufficient condition for Ṽh is proposed
in the next lemma.
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Lemma 6.1. Let ah(·, ·) be given in (6.1), and assume that it holds

μh ∈ Nh, (μh, ṽh)∂K = 0 for all ṽh ∈ Ṽh and K ∈ Th ⇒ μh = 0. (6.6)

Then, there exists C such that

−ah(μh,μh) ≥ C ‖μh‖2
Λ for all μh ∈ Nh. (6.7)

Proof. First notice that (6.6) implies Th is injective on Nh. In fact, if Th μh = 0, then from (6.2) it holds,
for all K ∈ Th,

0 = (AE(Thμh), E(ṽh))K = −(μh, ṽh)∂K for all vh ∈ Ṽh,

and from (6.6) we get μh = 0. As a result, dim Nh = dim Th(Nh), where Th(Nh) ⊂ Ṽh is the image of
Th restricted to functions in Nh, and ‖Thμh‖V turns out to be a norm over the space Nh. To establish the
aforementioned coercivity result, we first prove that such a result holds with respect to the norm ‖Thμh‖V. In
fact, let λh = μh ∈ Nh in (6.1). Using (6.2), there is C such that

−ah(μh,μh) = −(μh, Thμh)∂Th

= (AE(Thμh), E(Thμh))Th

≥ cmin‖ E(Thμh)‖2
0,Th

≥ C cmin‖Thμh‖2
V, (6.8)

where we used the Korn’s inequality. Next, observe that from (6.6) there exits a C such that

sup
ṽh∈Ṽh

(μh, ṽh)∂Th

‖ṽh‖V
≥ C sup

ṽ∈Ṽ

(μh, ṽ)∂Th

‖ṽ‖V
for all μh ∈ Nh, (6.9)

as the left-hand side above turns out to be a norm over Nh. The independence of C with respect to h follows
from a standard scaling argument (see [15], p. 111, for instance). Inequality (6.9) is also found in ([30], Lem. 10)
with minor differences but used for a different purpose. Now, from (6.9) and since ‖ṽ‖V ≤ ‖v‖V for all v ∈ V,
and recalling that b(·, ·) = (·, ·)∂Th

, we get from (4.12) that

sup
ṽh∈Ṽh

(μh, ṽh)∂Th

‖ṽh‖V
≥ C sup

v∈V

(μh,v)∂Th

‖v‖V
≥ C ‖μh‖Λ for all μh ∈ Nh.

The previous inequality, (6.2) and the Cauchy−Schwarz’s inequality together imply,

C ‖μh‖Λ ≤ sup
ṽh∈Ṽh

(μh, ṽh)∂Th

‖ṽh‖V

= sup
ṽh∈Ṽh

− (AE(Th μh), E(ṽh))Th

‖ṽh‖V

≤ C cmax‖Thμh‖V.

We conclude that, for μh ∈ Nh, there exists a positive constant C such that

‖μh‖Λ ≤ C cmax ‖Thμh‖V, (6.10)

and consequently, we arrive at the required result for ah(., .), i.e.,

−ah(μh,μh) ≥ C
cmin

cmax
‖μh‖2

Λ for all μh ∈ Nh. �
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Notice that the operators Th and T̂h are bounded, e.g., there are constants C such that

‖Thμ‖V ≤ C ‖μ‖Λ and ‖T̂h q‖V ≤ C ‖q‖0,Ω for all μ ∈ Λ, q ∈ L2(Ω). (6.11)

The inequality for Th follows from (A.2), (6.2) and Lemma A.3, and for T̂h from (A.2), (6.3) and
Cauchy−Schwarz’s inequality. Now, using (6.11) and Lemma 6.1, and following the proof of Theorem 4.2,
we conclude the well-posedness of the two-level MHM method (6.4) in the next theorem.

Theorem 6.2. Suppose (λh,urm), (μh,vrm) ∈ Λh × Vrm. Then, there exists C such that

Bh(λh,urm;μh,v
rm) ≤ C ‖(λh,urm)‖Λ×V ‖(μh,vrm)‖Λ×V. (6.12)

Moreover, assuming that (6.6) holds, there exists a positive constant α, independent of h, such that

sup
(μh,v

rm)∈Λh×Vrm

Bh(λh,urm;μh,v
rm)

‖(μh,vrm)‖Λ×V
≥ α ‖(λh,urm)‖Λ×V, (6.13)

for all (λh,urm) ∈ Λh × Vrm. Hence, problem (6.4) is well-posed.

Now, let us quantify the impact of the two-level approach on approximation results. To this end, observe that
the two-level discretization impacts the consistency of MHM method (3.1). This can be measured through the
following best approximation result, which is an incarnation of the first Strang’s lemma.

Lemma 6.3. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (6.4), respectively. It holds that there

exists C such that

‖(λ− λh,urm − urm
h )‖Λ×V ≤ C

(
inf

μh∈Λh

‖λ− μh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
.

Proof. Choose arbitrary μh ∈ Λh. By (4.12) and (4.17), for all (γh,w
rm) ∈ Λh × Vrm, there is a constant C

such that

Bh(μh − λh,urm − urm
h ;γh,w

rm) = Bh(μh,u
rm;γh,w

rm) − Fh(γh,w
rm)

= Bh(μh,u
rm;γh,w

rm) + (F(γh,w
rm) − Fh(γh,w

rm)) − F(γh,w
rm)

= (γh, (Th − T )μh − (T̂h − T̂ )f)Th
+ B(μh − λ, 0;γh,w

rm)

≤ (‖(Th − T )μh + (T̂h − T̂ )f‖V + C ‖μh − λ‖Λ)‖(γh,wrm)‖Λ×V

≤ (‖(Th − T ) (λ− μh)‖V + ‖(Th − T )λ+ (T̂h − T̂ )f‖V

+ C ‖μh − λ‖Λ)‖(γh,wrm)‖Λ×V

≤ (‖(Th − T )λ+ (T̂h − T̂ )f‖V + C ‖μh − λ‖Λ)‖(γh,wrm)‖Λ×V,

where we used the stability result for T and Th from Lemma A.1 and (6.11), respectively. Therefore, from (6.13),
we get

‖(μh − λh,urm
h − urm)‖Λ×V ≤ 1

α

(
‖(T − Th)λ+ (T̂ − T̂h)f‖V + C ‖λ− μh‖Λ

)
,

and from the triangle inequality

‖(λ− λh,urm − urm
h )‖Λ×V ≤ ‖(λ− μh,0)‖Λ×V + ‖(μh − λh,urm − urm

h )‖Λ×V

the result follows. �
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Hereafter, we shall use the characterization of u and σ given in (2.7), and uh, σh redefined by

uh := urm
h + Th λh + T̂h f , σh = AE(Th λh + T̂h f), (6.14)

where (urm
h ,λh) ∈ Vrm ×Λh is the solution of (6.4). A similar best approximation result of Lemma 6.3 is also

available adopting natural norms. This is presented next.

Corollary 6.4. Let (λ,urm) and (λh,urm
h ) be the solutions of (4.3) and (6.4), respectively. There is a constant

C such that

‖u− uh‖V ≤ C

(
inf

μh∈Λh

‖λ− μh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
.

Furthermore, if problem (1.1) has smoothing properties, it holds

‖u− uh‖0,Ω ≤ C h

(
inf

μh∈Λh

‖λ− μh‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
.

Proof. Observing that

e = u− uh = urm − urm
h + (T − Th)λ+ Th (λ− λh) + (T̂ − T̂h)f ,

the proof then follows using the stability of Th in (6.11) and Lemma 6.3 for the estimate in the ‖.‖V norm. As
for the estimate in the L2 norm, we follows the same lines as the proof of Lemma 4.5. �

Remark 6.5. Another option to approximate the functions T λh (e.g. T ψi) and T̂ f locally is to
rewrite (2.4)−(2.5) in their mixed form and adopt a well-established mixed method to solve them. In this
case, the increased complexity could be offset by a precise stress tensor σh in H(div; Ω) post-processed from the
two-level primal variable (6.14) or an improvement in the robustness of the MHM method in the incompressible
limiting case. This alternative deserves further investigation and will be addressed in the future.

6.1. Selecting Ṽh

Here we propose a two-dimensional family of spaces Ṽh that fulfills (6.6), defined by

Ṽh :=
{
vh ∈ Ṽ : vh |K ∈ [Sk(K)]2, K ∈ Th

}
, (6.15)

where Sk(K) := Pk(K) or Qk(K), and Qk(K) stands for the space of tensor polynomial function of order k
at most in K ∈ Th. Note that it is based on a single element, and requires no further discretization of each
element. It can be seen as a p-method at the second level.

Let Λh ≡ Λl be given in (5.1). Clearly, if k ≤ l then condition (6.6) cannot occur since p k = dim Sk(K) ≤
p dim Pl(F ) = p (l + 1), where p = 3 or p = 4 if Sk(K) = Pk(K) or Qk(K), respectively. The following result
establishes the compatibility condition between the degrees l and k such that the condition (6.6) holds.

Lemma 6.6. Assume that l ≥ 0. Then, if k satisfies{
k ≥ l + 1 if l is even,

k ≥ l + 2 if l is odd,
(6.16)

when Sk(K) = Pk(K) or k ≥ l + 2 when Sk(K) = Qk(K), then (6.6) holds.
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Proof. Assume that k ≥ l + 1 with l ≥ 0, and take μh ∈ Nh such that, for all ṽh ∈ Ṽh, it holds (μh, ṽh)∂K =
0 for all K ∈ Th. Observe that this condition corresponds to the assumption that each component μih of
μh ∈ Nh satisfies

(μih, v
i
h)∂K = 0 for all K ∈ Th and i = 1, 2, (6.17)

where vih is the i-component of vh ∈ Vh. Now, from Lemmas 4 and 7 in [30] μih vanishes if and only if vih ∈ Pk(K),
with k satisfying (6.16), or if vih ∈ Qk(K) with k ≥ l + 2, and the result follows. �
Remark 6.7. In the case that l is odd or Sk(K) = Qk(K), Lemma 6.6 points out that the minimal interpolation,
namely polynomial functions of degree k = l+1, cannot be adopted to approximate second-level solutions. In [30],
Lemmas 4 and 7, it has been shown that the local space of non-trivial polynomial functions μih satisfying (6.17) is
one dimensional with basis of degree l in both cases. As a result, Ṽh(K) enhanced with a polynomial function of
degree l+2 (resp. l+2 or l+3 depending whether l is even or odd) in each element K ∈ Th when Sk(K) = Pk(K)
(resp. Qk(K)), hereafter denoted by bK , leads condition (6.17) to be fulfilled (see [30], Lems. 6 and 8, for details).

We may take advantage of the characterization of the non-trivial functions satisfying (6.17) given in the
previous remark to decrease the computational cost involved in solving the second level problem. This is accom-
plished by making the minimal interpolation choice (i.e. k = l + 1) available for the odd case if Sk(K) = Pk(K)
and for the case Sk(K) = Qk(K).

To this end, we redefine the operator Th given in (6.2). Let us denote by BK the one-dimensional local space
generated through the function bK . The desired result is presented next using that

∑
K∈Th

[BK ]2 ∩ Ṽh = {0}.
Lemma 6.8. Let k = l+1 with l ≥ 0. Assume either Sk(K) = Qk(K) or Sk(K) = Pk(K) and l is odd. Redefine
Th : Λ→ Ṽh replacing (6.2) by

(AE(Th λh), E(ṽh))K + (AE(P Th λh), E(ṽh))K

= −(λh, ṽh)∂K − (AE(P̂ λh), E(ṽh))K for all ṽh ∈ Ṽh,
(6.18)

where P : Ṽh →
∑
K∈Th

[BK ]2 and P̂ : Λh →
∑
K∈Th

[BK ]2 are such that, given ṽh ∈ Ṽh and μh ∈ Λh, they
satisfy respectively,

(AE(P ṽh), E(bK ei))K = −(AE(ṽh), E(bK ei))K

(AE(P̂ μh), E(bK ei))K = −(μh, bK ei)∂K i = 1, 2,
(6.19)

and bK ∈ BK and ei is the canonical basis in R2. Hence, Th is an injective operator when restricted to Nh.

Proof. From [30] we have that T̄h : Nh → Ṽh ⊕
∑
K∈Th

[BK ]2 satisfying

(AE(T̄h λh), E(w̃h))K = −(λh, w̃h)∂K for all w̃h ∈ Ṽh ⊕
∑
K∈Th

[BK ]2 (6.20)

is injective. Using the (unique) decomposition

T̄h λh = ũkh + ũbh,

with ũkh ∈ Ṽh and ũbh ∈
∑

K∈Th
[BK ]2, we observe that (6.20) is completely equivalent to the following system{

(AE(ũkh), E(ṽh))K + (AE(ũbh), E(ṽh))K = −(λh, ṽh)∂K for all ṽh ∈ Ṽh

(AE(ũkh), E(bK ei))K + (AE(ũbh), E(bK ei))K = −(λh, bK ei)∂K for bK ∈ BK .
(6.21)

Observe that the second equation leads to the following characterization

ũbh = P ũkh + P̂λh,

where P and P̂ are given in (6.19). To obtain the desired result, we substitute it into the first equation in (6.21)
and define Th λh := ũkh. �
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Remark 6.9. Clearly, assumption (6.6) also holds if one adopts piecewise polynomial spaces constructed on
top of a sub-mesh in place of (6.15) (under the same constraint between the degrees l and k). Such an option
becomes attractive in the case of highly heterogenous material problems since the basis functions naturally
upscale the multi-scale features of the media into the numerical solution. This viewpoint makes the MHM
method a member of the multi-scale finite element family [25].

6.2. Error estimates

Now, let us turn to the second-level discretization from the viewpoint of convergence. We shall demonstrate
results assuming Ṽh ⊂ Ṽ is given by (6.15) (where the order of the approximating polynomial is k). From these
choices it is well known that, assuming T μ+ T̂ q ∈Hm+1(Ω), 1 ≤ m ≤ k, the Galerkin method adopted locally
to define the global operators Th and T̂h delivers the following interpolation errors

‖(T − Th)μ+ (T̂ − T̂h) q‖V ≤ C hm ‖T μ+ T̂ q‖m+1,

‖(T − Th)μ+ (T̂ − T̂h) q‖0,Ω ≤ C hm+1 ‖T μ+ T̂ q‖m+1.
(6.22)

As such, using the estimates above, we are ready to present the convergence of the MHM method with a two-level
discretization which adopts space (6.15).

Lemma 6.10. Let (λ,urm) ∈ Λ×Vrm and (λl,urm
h ) ∈ Λl×Vrm be the solutions of (2.6) and (6.4), respectively.

Assuming Λl and Ṽh satisfy the conditions in (6.6) and u ∈Hm+1(Ω), then for 1 ≤ m ≤ l + 1 ≤ k with l ≥ 1,
it holds that there exist C such that

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C hm ‖u‖m+1 (6.23)

‖u− uh‖V ≤ C hm ‖u‖m+1. (6.24)

Furthermore, if problem (1.1) has smoothing properties, there exists C such that

‖u− uh‖0,Ω ≤ C hm+1 ‖u‖m+1. (6.25)

Proof. From Lemma 6.3, the Cauchy−Schwarz and Poincaré inequalities we get

‖(λ− λl,urm − urm
h )‖Λ×V ≤ C

(
inf

μl∈Λl

‖λ− μl‖Λ + ‖(T − Th)λ+ (T̂ − T̂h)f‖V

)
≤ C hm

(
‖u‖m+1 + ‖Tλ+ T̂f‖m+1

)
≤ C hm ‖u‖m+1,

where we used (6.22) and ‖Tλ+ T̂f‖m+1 ≤ ‖u‖m+1 since urm ∈ Vrm is V-orthogonal to Tλ+ T̂f . The last
two results follow analogously from Corollary 6.4. �

Remark 6.11. Note that the proposed two-level method (6.4) preserves some of the main features of its one-
level counterpart, like the well-posedness, the super-convergence of the error and local equilibrium. For the
latter, for all K ∈ Th, it holds from (6.4) that the approximate two-level traction λh satisfies∫

∂K

λh v
rm =

∫
K

f vrm for all vrm ∈ Vrm.

Strict conformity in H(div; Ω) and optimal error estimates to the stress σh (post-processed from displace-
ment (6.14)) in the H(div; Ω) norm should be expected only if a mixed finite element method is adopted to
approximate local problems. This will be addressed in the future.
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7. Conclusion

We proposed a new family of H(div; Ω) conforming and stable finite elements for the linear elasticity equation.
The simplest member of this family has, per element, 12 degrees of freedom in 2D and 30 in 3D in total,
respectively. Also interesting is that the approximate stress tensor preserves the local equilibrium property as
well as the strong symmetry using a simple post-processing of the primal variable. Our analysis provided super-
convergent a priori error estimates in natural norms and a face-based a posteriori estimator. For the latter, we
proved that reliability and efficiency hold.

Element-wise elasticity problems with prescribed traction on faces drove basis functions. First, the numerical
analysis was done using existence of unique solutions of these problems. Next, we used this “optimal” con-
text to highlight how a second-level discretization influences well-posedness and consistency of the method.
In particular, a two-level analysis showed the conditions under which the two-level MHM methods preserve
super-convergent error estimates. As a result, the solutions presented high-order precision even with simple,
one-element discretizations at the second level.

It is worth mentioning that the computation of completely independent local problems for the basis functions
is embedded in the upscaling procedure, so their solutions may be naturally obtained within parallel compu-
tational environments. This is particularly attractive when precisely handling large elasticity problems with
heterogeneous coefficients on coarse meshes.

The important question of robustness of the MHM method for the incompressible limit case was left open.
We observed that such a feature is tightly attached to the choice of the second-level numerical method. For
instance, basis functions obtained from mixed finite element methods are expected to yield locking-free two-level
MHM methods.

Appendix A.

Throughout this work, we need some auxiliary results such as the optimal local Poincaré inequality (on convex
domains) [27] and the following second Korn’s inequality: for ṽ ∈ Ṽ it holds (see [14] for instance)

‖ṽ‖0,K ≤ hK
π

‖∇ṽ‖0,K and ‖∇ṽ‖0,K ≤ Ckorn ‖ E(ṽ)‖0,K , (A.1)

where Ckorn is a positive constant independent of h. Combining both previous inequalities, we arrive at

‖ṽ‖0,K ≤ Ckorn
hK
π

‖ E(ṽ)‖0,K . (A.2)

Also, combining the classical Korn’s inequality [13] with a local trace inequality it follows that: Given v ∈
H1(K), we obtain

‖v‖0,∂K ≤ C

(
1

hK
‖v‖2

0,K + hK‖ E(v)‖2
0,K

)1/2

, (A.3)

and using (A.2) and (A.3) it holds
‖ṽ‖0,∂K ≤ C h

1/2
K ‖ E(ṽ)‖0,K , (A.4)

for ṽ ∈ Ṽ. We shall make extensive use of the following value

κ :=
cmax

cmin
· (A.5)

Next, we prove some of the auxiliary results which are used in previous sections.

Lemma A.1. Let μ ∈ Λ and define T : Λ → Ṽ as in (2.4), i.e., for each K ∈ Th, T μ ∈ Ṽ is the unique
solution of

(A E(T μ), E(w))K = − (μ, w)∂K for all w ∈ Ṽ.
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Then, T is a bounded linear operator satisfying the following bounds

‖A E(T μ)‖div ≤ max
{

κ

π

√
2C2

korn + π2,
√

2
}

‖μ‖Λ, (A.6)

‖T μ‖V ≤ (C2
korn + π2)κ
π2cmin

‖μ‖Λ. (A.7)

Proof. First, the problem has a unique solution if and only if −divAE(T μ) = Rμ ∈ Vrm from (2.9), where

(Rμ,vrm)Th
=

∑
K∈Th

(μ,vrm)∂K .

By definition (4.6) of ‖.‖div, integrating by parts and the fact div(AE(T μ)) |K ∈ Vrm(K) we arrive at

‖A E(T μ)‖2
div ≤

∑
K∈Th

(μ,−cmax T μ+ d2
Ω div(A E(T μ)))∂K ,

where we used (1.2). Therefore, since −cmax T μ+d2
Ω div(A E(T μ)) ∈ V, it follows by the local inequality (A.2)

and the fact div(A E(T μ))|K ∈ Vrm(K),

‖A E(T μ)‖2
div ≤ sup

v∈V

b(μ,v)
‖v‖V

[ ∑
K∈Th

(
d−2
Ω ‖cmaxT μ+ d2

Ωdiv(A E(T μ))‖2
0,K + ‖cmax E(T μ)‖2

0,K

)]1/2

≤ sup
v∈V

b(μ,v)
‖v‖V

[ ∑
K∈Th

(
2 d−2

Ω c2
max‖T μ‖2

0,K + 2 d2
Ω‖div(A E(T μ))‖2

0,K + c2
max‖ E(T μ)‖2

0,K

)]1/2

≤ sup
v∈V

b(μ,v)
‖v‖V

[ ∑
K∈Th

(
(2C2

korn + π2) c2
max

π2 c2
min

‖A E(T μ)‖2
0,K + 2 d2

Ω‖div(A E(T μ))‖2
0,K

)]1/2

.

Then, using definition of κ in (A.5), we get

‖A E(T μ)‖div ≤ Ckorn

√
2κ sup

v∈V

b(μ,v)
‖v‖V

· (A.8)

Now, choose arbitrary v ∈ V, and suppose that σ ∈ H(div; Ω) satisfies the property σnK |∂K = μ for μ ∈ Λ.
It follows by Green’s theorem and the Cauchy−Schwarz’s inequality that∑

K∈Th

(μ,v)∂K =
∑
K∈Th

(σnK ,v)∂K

=
∑
K∈Th

[(div σ,v)K + (σ, E(v))K ]

≤
∑
K∈Th

[
dΩ ‖div σ‖0,K d−1

Ω ‖v‖0,K + ‖σ‖0,K‖ E(v)‖0,K

]
≤ ‖σ‖div‖v‖V .

Then, by definition of supremum, it follows that

sup
v∈V

b(μ,v)
‖v‖V

= sup
v∈V

(μ,v)∂Th

‖v‖V
≤ ‖σ‖div.
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Since σ was arbitrarily taken, the above inequality and definition of infimum imply

sup
v∈V

b(μ,v)
‖v‖V

≤ ‖μ‖Λ, (A.9)

and result (A.6) follows immediately replacing the result above in (A.8). The bound (A.7) follows from Korn’s
inequality (A.2). �

Lemma A.2. Let q ∈ L2(Ω) and define T̂ : L2(Ω) → V as in (2.5), i.e., for each K ∈ Th, T̂ q ∈ Ṽ is the
unique solution of

(A E(T̂ q), E(w))K = (q,w)K for all w ∈ Ṽ. (A.10)

Then, T̂ is a bounded linear operator satisfying the following bounds

‖A E(T̂ ) q‖div ≤ max {Ckorn, 1}
√

2 dΩ κ ‖q − Π q‖0,Ω, (A.11)

‖T̂ q‖V ≤ max {Ckorn, 1} 2 dΩ κ

cmin
‖q − Π q‖0,Ω. (A.12)

Proof. First, we establish (A.11). Note that (1.2), the fact T̂ q ∈ Ṽ, and the Cauchy−Schwarz and the local
inequality (A.2), and hK ≤ dΩ imply

‖A E(T̂ q)‖2
0,K ≤ ‖A‖(A E(T̂ q), E(T̂ q))K

≤ cmax (q, T̂ q)K

= cmax (q − ΠK q, T̂ q)K

≤ cmax ‖q − ΠK q‖0,K‖T̂ q‖0,K

≤ Ckorn
κ

π
dΩ ‖q − ΠK q‖0,K‖A E(T̂ q)‖0,K .

Therefore, from (2.10) and by definition (4.6) of ‖.‖div, and observing that 1 ≤ κ, we get

‖A E(T̂ q)‖2
div =

∑
K∈Th

[
‖A E(T̂ q)‖2

0,K + d2
Ω ‖q − ΠK q‖2

0,K

]
≤ 2 d2

Ω max
{(

Ckorn
κ

π

)2

, 1
}

‖q − Π q‖2
0,Ω,

from which the bound (A.11) follows immediately. The bound (A.12) follows using the local Poincaré’s inequal-
ity (A.1) and the result (A.11). �

Lemma A.3. Suppose μ ∈ Λ. It follows that

√
2

2 Ckorn
‖μ‖Λ ≤ sup

v∈V

b(μ,v)
‖v‖V

≤ ‖μ‖Λ.

Proof. Choose arbitrary μ ∈ Λ. The left-hand side bound follows from equation (A.8) (with A as the identity
matrix). The right-hand bound is inequality (A.9) in the proof of Lemma A.1. �
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