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HIGH ORDER NUMERICAL METHODS FOR HIGHLY OSCILLATORY
PROBLEMS
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Abstract. This paper is concerned with the numerical solution of nonlinear Hamiltonian highly oscil-
latory systems of second-order differential equations of a special form. We present numerical methods
of high asymptotic as well as time stepping order based on the modulated Fourier expansion of the
exact solution. In particular we obtain time stepping orders higher than 2 with only a finite energy
assumption on the initial values of the problem. In addition, the stepsize of these new numerical inte-
grators is not restricted by the high frequency of the problem. Furthermore, numerical experiments on
the modified Fermi—Pasta—Ulam problem as well as on a one dimensional model of a diatomic gas with
short-range interaction forces support our investigations.
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1. INTRODUCTION

We consider the numerical discretisation of second-order Hamiltonian differential equations with highly
oscillatory solutions of the special form

i+ 2% = g(x) = —VU(z), (1.1)

0 0
= , with w>1,
0 wl

and a smooth nonlinear potential U. This is a Hamiltonian problem with

with the square block matrix

N 1
H(x, &) = §H96||2+§H9$||2+U($)~ (1.2)
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For the above problem, we will only consider initial values satisfying the bounded energy assumption
1. 2, 1 2
3 12O + 5 220" < E (1.3)

with a constant E independent of the large parameter w.

We decompose the solution = (21, z2) and the nonlinearity g(x) = (g1(z), g2(x)) according to the blocks of
the matrix 2. One thus has a solution with a slowly varying component z; and a rapidly varying one xs.

Due to the presence of fast and slow time scales the numerical discretisation of problems of the form (1.1)
is a difficult task. One of the most efficient integrators for this kind of highly-oscillatory problems are the
trigonometric integrators, see for example the reviews [8,18] and ([16], Chap. XIII) as well as references therein.
Other type of numerical schemes were also proposed in the literature. Let us mention (without being exhaustive)
the following works: the methods based on averaging techniques from [3], see also [4]; the numerical schemes
based on homogenisation from [19]; the multi-scale methods from [22]; the IMEX method from [21], see also the
recent publication [20]; and more recently the energy-preserving schemes from [23]. The order of convergence
in the time stepsize of these numerical integrators is at most two. The main motivation of the present work is
to present and analyse numerical methods for problems (1.1) of higher order of convergence independent of the
frequency imposing only a finite energy assumption on the initial values of the problem (1.1).

For the numerical discretisation of (1.1), we will use a modulated Fourier expansion (MFE), see [6,15]. This
analytical tool basically decomposes the exact solution of our problem into a slowly varying part and into oscil-
latory parts. The first terms of this expansion were already used in [5] to develop efficient geometric numerical
integrators for (1.1). In particular, symmetric and reversible methods based on the MFE were presented in [5]
together with their energy-conservation properties on longtime intervals. However, the order of the methods
proposed in [5] was not examined and extensions of these methods to higher order numerical schemes remain
to be investigated. This is the main objective of the present paper. At this point, it should be noted that one
drawback of the proposed approach is the fact that it may prove difficult to generalise it to more complicated
situations such as the semi-discretisation of nonlinear wave equations for example. This mainly comes from the
fact that a result like Lemma 2.2 (see below) is not available in this situation. A further difficulty is the absence
of a clear separation of the different scales in this situation.

Much in the same spirit as the present work is the series of papers [9-11] on asymptotic-numerical solvers for
differential equations with highly oscillatory coefficients. In these references, the special structure (a MFE in
fact) of the forcing term present in the problem permits to derive efficient numerical methods. Furthermore, the
results from the recent reference [1] are also closely related to the type of problems (1.1) and to the numerical
schemes that we propose. The major difference is that the work [1] deals with a model problem for the nonlinear
Klein—Gordon equation in the nonrelativistic limit regime, in particular the driven force in the differential
equation is a pure power nonlinearity satisfying f(e*¥) = ei*f(y) for all s € R. Let us finally mention the
recent work [12] which uses the first terms of an asymptotic expansion similar to a MFE to derive numerical
schemes for the Klein—-Gordon equation in the nonrelativistic limit regime with smooth initial condition. The
main difference with our approach is that in [12] a partial differential equation (PDE) with a scalar parameter
that induces high oscillations is considered. A complete asymptotic expansion of the solution to this PDE is then
derived. Further, the coefficients of this expansion are given as solutions to PDEs which are independent of this
parameter and thus the numerical time integration of the Klein—Gordon equation can be carried out without step
size restrictions due to this parameter. In the present work, we consider systems of highly oscillatory ordinary
differential equations (ODEs) and obtain nonstiff ODEs for the coefficient functions of the MFE (see Eqs. (2.2)
and (2.3) below). This then allows us to use high order explicit time stepping methods for the solution to the
original problem.

The paper is organised as follows. After recalling some results on the MFE in Section 2, we will describe the
construction of the numerical schemes based on the first terms of the modulated Fourier expansion following
the lines of ([16], Sect. XIIL.3.1) and ([5], Chap. 3) in Section 3. In the fourth section, we will derive numerical
schemes of order one, two, three and four for (1.1). In the last section we present numerical experiments on the



HIGH ORDER NUMERICAL METHODS FOR HIGHLY OSCILLATORY PROBLEMS 697

modified Fermi—Pasta—Ulam problem as well as on a one dimensional model of a diatomic gas with short-range
interaction forces.

2. PREPARATORY RESULTS AND BUILDING-BLOCKS FOR HIGH ORDER NUMERICAL SCHEMES

We present two fundamental results from ([16], Chap. XIII) and [6] that we need in order to derive high order
numerical schemes for (1.1). First, let us recall the following result on the modulated Fourier expansion of the
exact solution of (1.1).

Theorem 2.1 (Thm. XIIL5.1 of [16]). Consider a solution x(t) of (1.1) which satisfies the bounded-energy
condition (1.3) and stays in a compact set K for 0 <t <T. Then, the solution admits an expansion

z(t) =yt)+ > e™F(t)+ Ry(t)

0<|k|<N
for arbitrary N > 2, where the remainder term and its derivative are bounded by
Ry(t) =Ow™) and Ry(t)=0w™™) for 0<t<T.

(Remark that one can get slightly sharper bounds for the remainder terms, see the end of the proof of [16],
Thm. XIIL.5.1, for details). The real-valued functions y = (y1,y2) and the complex-valued functions z* = (2F, 25)

together with all their derivatives (up to arbitrary order M ) are bounded by

y1=0(1), 2 =0w™), F=0w"?),
Y2 = O(w_2)7 221 = O(w_l)a

fork=2,...,N—1. Moreover 2= = ¥ for all k. The constants symbolised by the O-notation are independent
of w and t with 0 < t < T but they depend on N, T, on E from (1.3), and on bounds of the derivatives of the
smooth nonlinearity g(x). Finally, the asymptotic expansion

v (t) =yt)+ Y eFik() (2.1)

0<|k|<N
is called the (truncated) modulated Fourier expansion of the exact solution.

In order to find the modulation functions y(t) and z*(¢), one inserts the expansion (2.1) into the differential
equation (1.1), expands the nonlinearity g(z) around the smooth part (yi(¢),0) and compares the coefficients
in front of e'***. This yields a system of nonstiff differential equations for y; (t) and z3(¢) and algebraic relations
for the rest of the modulation functions.
As explained in the proof of (Thm. XIIL5.1 in [16]), the functions y;(¢) and 23(¢) are given by differential
equations of the form
=Y w ' Fu(y, ), i = w 'Fuly,in, z), (2.2)
1>0 1>1

and the remaining modulation functions by algebraic relations

sz = ZW_lel(ylath%)- (23)
1>0

Observe that ys = 29, and that z; ¥ is the complex conjugate of zf , so that also Gi_lk is the complex conjugate
of GZ. For an efficient computation of the functions Fj; and Gfl, we rely on the recurrence relations given by
the following
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Lemma 2.2 (Lem. 2.1 of [6]). The functions Fy and G% defining the nonstiff differential equations (2.2) and
algebraic equations (2.3) satisfy the recurrence relations (for 1 > 0):

Fu = 51(0,1), %:ﬁ > LnLaGY+2k > LG - Si(k,1-2) |,
m4n+j=10—2 m—+j=Il—1
1 1 .
Fy = o | S2(1,1-1)~ > LaFy |, G&::E?:T > LnLnGE+2ik Y LnGh—Sa(k,1-2)).
m+j=l—1 m+n+4j=1—2 m+j=l—1

The sums are over m > 0,n > 0,5 > 0, and we have used the abbreviation

stn= Y o % S DPDRin,0) (G165

m,n>0 o, e f
s(@)+5(8) =k s(e)+5(f) =1
Here, o = (a1,...,am), B = (B1,-..,0n), € = (e1,...,em) as well as f = (f1,..., fn) are multi-indices
with «; # 0, B; arbitrary, e; > 0, f; > 0, and ( i‘e,G'gf) = (G(ll,lel""’G(llz;n’Gg,lfl"“’Gg,nfn)' We use the

abbreviation s(a) = >, a; and similarly for the other multi-indices. We denote by DY* D% g;(y1,0) (G, Ggf)
the mth derivative with respect to the first component and nth derivative with respect to the second component
of gi(y1,0) evaluated at ( %Q,Ggf). Furthermore, the operator L; applied to a smooth function G(y1,71,22) is
defined by

DG -1 ifl=0

= DsG - Fy + DG - F:
LG 2G - Fiu + D3G 2!—1-{0 if>1,

where | > 0 and ﬁj denotes the partial derivative with respect to the jth argument of G(y1,91, 22). Finally, we
note that

G, =0, G =0 fork#0,
Gk, =0, Gk =0 fork# %1,
GE! = 1, Gl =0 forl>1.

Bounds for the functions F; and G can be obtained by ([6], Thm. 2.4). Furthermore, observe that, by trac-
ing the dependence on N in the remainder terms for the asymptotic expansion given by the MFE, one can
obtain exponentially small defect for the MFE, see ([6], Thm. 3.2). These results are however not used in the
construction of the high order numerical methods proposed in the next section.

3. GENERAL CONSTRUCTION OF THE NUMERICAL METHODS AND SOME RESULTS

We propose to solve the truncated nonstiff system of differential equations for the modulation functions y;
and zJ up to asymptotic order N using a standard numerical time stepping scheme, such as an explicit Runge—
Kutta method of higher time stepping order p with a (possibly) large time stepsize. To obtain an approximation
to the solution of the original highly oscillatory problem (1.1), we insert the numerical approximations of y; and
23 into the algebraic equations for the remaining modulation functions and compute the truncated MFE (2.1)
of asymptotic order N.

To summarise, we obtain a numerical integrator of asymptotic order N and time stepping order p for (1.1)
following the flow chart

(1) Truncate the ansatz (2.2) and (2.3) after the O(w™)-terms.

(2) Use the recurrence relations given by the above lemma up to terms of asymptotic order O(w=").
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(3) Solve numerically the nonstiff truncated differential equations (2.2) with an explicit scheme of high time
stepping order p.
(4) Compute the algebraic relations (2.3) and the approximation of the solution of (1.1) using the MFE (2.1).

We would like to point out, that the initial values y1(0),91(0) and 23 (0) for the differential equations (2.2) are
obtained from the conditions

2,(0) = 2(0) and .(0) = &(0).

This yields a nonlinear system of equations, which can be solved by a fixed point iteration as shown in ([16],
Chap. XIIIL.3).

Note, that step (4) of the flow chart is to be understood as a postprocessing, which only needs to be performed
at times, where the solution of the original problem is required. The size of the new system is smaller than
that of the original one. Therefore, in terms of storage, the method is comparable to other methods applied
directly to the original system. However, the right hand side of the new system is more complicated depending
on the nonlinearity and the asymptotic order. If the nonlinear interaction is nonlocal, the computational cost
may grow considerably. It approximately scales with the largest number of directly interacting variables via the
nonlinearity to the power of the asymptotic order times the number of all variables, since the derivatives of the
nonlinearity appearing in the equations for the truncated system yield multilinear forms of the respective order.

We have the following error estimates on compact time intervals for the proposed numerical approximations
of solutions to problem (1.1).

Proposition 3.1. Under the assumptions of Theorem 2.1, if we solve the truncated system for the modulation
functions of asymptotic order N with a numerical time stepping scheme of order p, then the error of the
approximation satisfies (here t, = nh)

x(tn) — yn — Z elhwin zﬁ < Cow™N + CLhP.
0<|k|<N

In addition, the approximation of the time derivative of the solution satisfies

Z(tn) — Un — Z (iszﬁ + sz) efwtn|l < C W™ N 4 @hp,
0<|k|<N

where the approrimation to z%n is obtained by the differential equation for zi and the approzimations to the
remaining modulation functions are computed by differentiation of the algebraic relations. The constants C,
Cy, Cy and Cy do not depend on h or n. Moreover C, and C, do not depend on w.

Proof. For the proof of the error bound of the solution itself, we insert the exact truncated MFE and use the
triangle inequality to obtain

w(tn) —yn — 3 2R <la(ty) — o (t) |+ [yt + Y 2R (t)e  — g = Y ket
0<|k|<N 0<|k|<N 0<|k|<N

The first term yields the asymptotic part of the error by Theorem 2.1. For y; and 23 the numerical time
stepping scheme of order p yields approximations y; , and Z%n satisfying y1(tn) — y1,n = O(hP) as well as
23 (tn) — 23, = O(RP). For a sufficiently smooth function g the error of the approximation to the remaining
modulation functions is then at most O(h?). This yields the stated error bound.
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For the error of the derivative of the solution, we obtain

E(tn) —gn — Y (ikwal + 2F)ein
0<|k|<N

< () — @)l + ||9(tn) + Z (iszk(tn) + Zk(tn)) ekt — g, — Z (iszrli + Zﬁ) ot
0<|k|<N 0<|k|<N

To treat the term ikw(z*(t, ) — 2¥), we observe that the modulation functions obtained by the algebraic relations
are of the form w™ times functions of at most order one evaluated at the numerical solutions of the MFE. This
therefore cancels the factor of w and only the error of the time stepping scheme remains. The remaining terms
are treated similarly as in the first part of the proof.

Note that the constants C, and C; do not depend on the time stepsize h or on the number of time steps n, since
they directly stem from the error of the truncated asymptotic expansion. Furthermore, they are independent
of w by the results of Theorem 2.1. The constants C; and C} are independent of the time stepsize h and the
number of time steps n since they are related to the error constant of the numerical method used for the
integration of the nonstiff truncated system. O

Let us observe that the constants C; and @ may dependent on w, but only on inverse powers thereof. These
constants are the usual error constants of the explicit methods we choose to apply to the nonstiff truncated
system. They therefore depend on the coefficients of the numerical method, on the length of the computation
interval, the Lipschitz constant as well as some derivatives (depending on the time stepping order p of the
used method) of the nonlinearity. Since the nonlinearity g of the original problem is assumed to be sufficiently
smooth and independent of w, the nonlinearity of the new systems, which consists of sums of derivatives of g
multiplied with inverse powers of w, only depends weakly on w (i.e. on inverse powers of w). Thus only this
weak dependence enters the constants C; and @. Moreover, the numerical experiments in the following give
evidence that there is indeed no essential dependence of the constants C; and C; on w.

Let us further mention that the proposed numerical methods do not suffer from numerical resonances (when
the product of the stepsize and the large frequency w is close to a nonzero integer multiple of 7). Furthermore,
the proposed schemes (of asymptotic order greater than one) correctly model the slow energy exchange in the
problem, since the evolution of 23, which describes this slow exchange of energy, is present in our numerical
approximation given by the truncated MFE (2.1). This will be illustrated in the numerical experiments presented
in Section 5.3.

Finally, as demonstrated in [5], by carefully selecting the numerical integrators for the time integration of the
nonstiff system (2.2), one can obtain longtime energy-conservation properties of the numerical solutions using
the proposed approach. Such a result for generic integrators is not in the scope of the present work. But, one can
still observe excellent longtime energy-conservation, even in this case, in the numerical experiments presented
below.

4. HIGH ORDER NUMERICAL METHODS

This section presents the nonstiff systems together with their algebraic relations and the corresponding
truncated MFE up to asymptotic order four approximating highly oscillatory problems of the form (1.1). The
derivation directly follows from Lemma 2.2 but is rather tedious, thus we only present the results. Throughout
the remainder of the section we use the abbreviation g; := g;(y1,0) for i = 1,2 for the sake of presentation.

4.1. System of asymptotic order one

In order to obtain an asymptotic approximation of order one for problems of the form (1.1), one needs to
solve the nonstiff system (recall that g, denotes g1(y1,0))

1= g1
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and compute the truncated MFE
() == (11(2),0).
In this case, there are no algebraic relations needed yet. Note, that Theorem 2.1 actually only holds for N > 2.

However, we included this system for the sake of completeness. It will be shown later, that the scaling in w
holds, but the solution does not show the proper energy conservation properties.

4.2. System of asymptotic order two

In order to obtain an asymptotic approximation of order two for problems of the form (1.1), one needs to
solve the nonstiff system (recall that Dsg; denotes the derivative with respect to the second component of g;
evaluated at (y1,0), here i = 1,2)

i1 =g1+ D3g1(23,25 ") + w >Dagiga,
-1
w
= ——Dygozl,
2 % 2927
insert the solution into the algebraic relations

0 -2
Y2 =23 =W 92,

2 =0,
and with this, compute the truncated MFE
z, (1) i= y(t) + @izl (t) 4 e Wiz (1).

4.3. System of asymptotic order three

In order to obtain an asymptotic approximation of order three for problems of the form (1.1), one needs
to solve the nonstiff system (recall that D;g; denotes the derivative with respect to the Ith component of g;
evaluated at (y1,0), here i = 1,2 and I = 1,2)

i = g1+ D3g1 (23,25 ") + w *D2g192, (4.3a)

.1 w! 1 w2 . 1
& = 5 D2g223 + — = D1D2gs (91, 22) - (4.3b)

insert the solution into the algebraic relations

0 -2
Y2 = 29 =W g2,

1 —2 1
21 = —w "Dag12,,

and with this, compute the truncated MFE

4.4. System of asymptotic order four

Finally, in order to obtain an asymptotic approximation of order four for problems of the form (1.1), one
needs to solve the nonstiff system (recall that D;g; denotes the derivative with respect to the [th component
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of g; evaluated at (y1,0), here i = 1,2 and [ = 1,2)

.. _ _ 1 1
i1 =g1+ D3g1 (23,25 ") + w ?Dagigs + ZD391 (23,23, 25", 237")

+w_2{D291D§g2 (23,25 ') + D3g1 (23,25 ', 92) — 2ReD1 Dagy (Dagrz; ', 23) }

.. 1
+w? {D291 (D2g2g2 — D1g2g1 — D3g2 (91.91)) + §D%gl (92 (y2,0) ,92)} ; (4.5a)

g w! 1, w2 .1 w g 1.1 -1
= 7D292,z2 + TDnggg (1, 23) + TDQgg (23,23,25 ")

_3
w

+21

1
{—D192D291221 + D3gs (23, 92) — ZDIDQQQ (91,23)

1 L. 1
—ZD%D292 (91,91, 23) + ZD292 (D29225)} ) (4.5b)
insert the solution into the algebraic relations

y2 =2 =w g2 +w *Diga (2, %)

le — —(A)_2D291Z21 — in_3D1D291 (ylvz%) 1)

-2
2_ Y 2 (1 1)
21 = 3 201 \%2,%2) 5
-2
w
2 _ 2 1.1
Ry = T D3g2 (Zzazz) )

and with this, compute the truncated MFE

ZL'*(t) = y(t) + eiwtzl(t) + efiwtzl (t) + e2iwt22(t) + ef2iwt22(t).

5. NUMERICAL EXPERIMENTS

We conclude this paper with numerical experiments on the modified Fermi—Pasta—Ulam problem and on a
one dimensional model of a diatomic gas in order to illustrate the accuracy as well as the energy conservation
properties of the proposed integrators.

5.1. The modified Fermi—Pasta—Ulam problem

Let us consider the modified Fermi-Pasta-Ulam problem, as described in ([16], Sect. 1.5.1), i.e. with
Hamiltonian

3 3
1 w?
H(p17p27Q17Q2) = 5 Z (piz +p%,2) + 7 ZQ%,Z + U(qlaQ2) )
i=1 i=1

where

1

2
Ulgr, q2) = 1 {(%,1 —q21)* + Z(fh,iﬂ —q2it1 — Qi — q24)" + (@3 + (J2,3)4} .
i=1

The total energy H is exactly conserved and this problem also possesses an almost-invariant, namely the
oscillatory energy

3 3
1 w?
I(p2, q2) = 5 Zp%z Y quz
i=1 i=1
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FIGURE 1. The errors of the numerical approximations using the terms of the MFE up to
asymptotic order N = 3 solved with a Runge-Kutta scheme of time stepping order p = 3
for the modified Fermi—Pasta—Ulam problem is plotted versus the time stepsize (left) and the
parameter w (right). The reference lines have slope 3. In the left picture, the different lines
correspond to different values of w between 10 and 100 growing from top to bottom.

Indeed, this quantity is nearly preserved over times that are exponentially long in the high frequency w along the
exact solution of the modified Fermi-Pasta—Ulam problem [6]. The initial values for the second order differential
equation (1.1) (using the notations ¢ = (q1,¢2) = (x1,22) = = and similarly for the momenta p) obtained with
the above Hamiltonian function are given by

@11(0) =1, p11(0) =1, ¢21(0) =1/w, p2:1(0)=1
and zero for the remaining ones. These initial values satisfy the bounded energy assumption (1.3).

5.2. Numerical study of the asymptotic and time stepping order

In order to demonstrate the behaviour of the error of our numerical method, we exemplary consider the
system (4.3) of asymptotic order N = 3 for the modified Fermi-Pasta—Ulam problem and solve it with an
explicit Runge-Kutta method of time stepping order p = 3. For different values of w we compute the solution
up to time Tenq = 1 for varying time stepsizes h and measure the relative errors at T,nq using a high resolution
simulation of the original system (1.1) solved with the Stormer—Verlet scheme as reference solution. In the left
part of Figure 1, the error is plotted versus the time stepsize h. It shows third order convergence in the time
stepsize up to the point, where the asymptotic error dominates. Note that the error curves are almost identical
for the different values of w before the saturation occurs. Therefore, the pre-asymptotic convergence in the time
stepsize, namely the constant C, is indeed independent of w. In the right part of Figure 1 the error is plotted
against the values of w always computed with time stepsizes small enough, that the error is dominated by the

asymptotic part. We again observe the predicted scaling in w™!.

5.3. Numerical study of the energy conservation

Next, we use the numerical approximations to the solution z,(t) of the truncated systems of asymptotic
order N from one to four to compute the total energy H — 0.8 (for a better display), the oscillatory energy
I together with its components on the time interval [0,100] for a fixed (large) time stepsize h = 1072, The
nonstiff differential equations are all solved with an explicit Runge—Kutta scheme of time stepping order p = 3.
The results are shown in Figure 2 along with the energies computed by the Stormer—Verlet method applied to
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F1GURE 2. Exchange of energy between stiff springs for the modified Fermi—Pasta—Ulam prob-
lem solved using the MFE with different asymptotic orders and the Stérmer—Verlet method.
Blue: total energy H —0.8. Red: oscillatory energy I. Shades of green: components of oscillatory

energy I;. (In color online)
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Long time simulation for MFE with N =4 and p =4

I ”‘Nmt\m'“‘

F1GURE 3. Exchange of energy between stiff springs for the modified Fermi—Pasta—Ulam prob-
lem on a long time interval solved with the method of asymptotic order N = 4 and time
stepping order p = 4. Blue: total energy H — 0.8. Red: oscillatory energy I. Shades of green:
components of oscillatory energy I;. (In color online)

the original system (1.1) with a small stepsize h = 10~*. One can observe that the modelling of the exchange
of energy gets better by increasing the number of modulation functions present in the method, namely the
asymptotic order N.

A numerical experiment with the same parameters as above but on a much longer time interval [0, 10 000]
is presented in Figure 3. Excellent energy preservation is observed for the numerical solution of the truncated
system (4.5) of asymptotic order N = 4 solved with an explicit Runge-Kutta method of time stepping order
p=4.

To conclude this subsection, we compute the maximum error of the total energy H given in (1.2) on the
interval [0,100] as a function of hw for a fixed stepsize h = 0.02. Figure 4 (left column) displays the results for
our method of asymptotic as well as time stepping order N = p = 3 and the trigonometric integrator ([17] and
method (D) in ([16], Chap. XIII))

ZTpnt1 — 2cos (h)xy, + o1 = hQ&T/g@xn) (5.1)

with filter functions ¥(£) = sinc?(¢/2) and &(¢) = sinc(€)(1 + 1/3sin?(£/2)), where sinc(¢) = sin(£)/€. No
resonances are observed for the numerical integrator based on the MFE except in the regime hw close to zero.
But this regime is not of interest in the present article. Similar results are obtained for the maximum error of
the oscillatory energy I along numerical solutions given by the proposed methods in the left column of Figure 4.
Finally, we would like to comment on the fact that particular choices of the filter functions present in (5.1)
could also lead to trigonometric integrators that do not suffer from resonances in the oscillatory and/or the
total energy of the problem as seen in the last two rows of Figure 4. These plots were obtained using method
(E) in ([16], Chap. XIII), that is with filter functions ¥(£) = sinc?(¢) and @(¢) = 1 and method (G) in [14],
that is with filter functions ¥(¢) = sinc®(¢) and &(¢) = sinc(¢). Similar results are also obtained with the
modified trigonometric integrators presented in [20]. To make this comparison with the trigonometric methods
even clearer, we also present these errors in a logarithmic scale in Figure 5.

5.4. Runtime comparison

Finally, we show some runtime comparisons in Figure 6. To that end, we solve the modified Fermi—Pasta—
Ulam problem with w = 500 on the time interval [0,10] with the trigonometric method (E) as well as the
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Energy error for MFE with N =3, p =3 and h = 0.02

Deviation of oscillatory energy for MFE with N =3, p =3 and h = 0.02

T T T T T T T T
0.2 0.2 B
0.1 0.1} b
. . . . |
0 W 2m 3 4n 0 7" 2 3 4m
hw hw
Energy error for trigonometric method (D) with & = 0.02 Deviation of oscillatory energy for trigonometric method (D) with h = 0.02
T
T T
0.2 0.2} 4
0.1} 01l ]
O h | | S R .
0 77 2 3T 4m 0 " 21 3T 4m
hw hw
Energy error trigonometric method (E) with = 0.02 Deviation of oscillatory energy for trigonometric method (E) with h = 0.02
T T
T T T T
0.2 0.2} 4
0.1} 01l ]
/MK ) v ) . ) /L
0 77 2 3T 4m 0 " 2 3T 4m
hw hw

Energy error for trigonometric method (G) with 2 = 0.02

Deviation of oscillatory energy for trigonometric method (G) with k = 0.02

0.2

0.1}

|

0.2} i

hw

FIGURE 4. Maximum error of the total energy H (left) and maximum deviation of the oscillatory
energy I (right) on the interval [0,100] for MFE with N = p = 3 and trigonometric methods

(D), (E) and (G).
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Energy error, h = 0.02 Deviation of oscillatory energy, h = 0.02

T T
— MFE
— trigonometric method (D) | |
—— trigonometric method (E) |
—— trigonometric method (G) |

1o~ — MFE
] 10-6 | —— trigonometric method (D) | |
E —— trigonometric method (E) | 1
r — trigonometric method (G)
C | | | ! 1 10-7 il [
0 m 2m 3 4m 0 T 27 3 4m
hw hw

FIGURE 5. Maximum error of the total energy H (left) and maximum deviation of the oscillatory
energy I (right) on the interval [0,100] for MFE with N = p = 3 and trigonometric methods
(D), (E) and (G) in logarithmic scale.

w = 500 on the interval [0, 10]

1005 . T — T :

E ——MFE N =2,p=4 1

1071 —~MFEN =3,p=4 E

i —+ MFEN =4, p=4 1

10 E —+— trigonometric method (E) |7

1073 y

£ 1074 ]

o S E|

= 8 ]

© 1075 E

1075 | .

10-7F .

1078 F

10—97 L L L - I
1072 10-1 10° 10! 102

computing time in sec.

FIGURE 6. Runtime comparison between the MFE-based methods with N = 2,3,4 and p = 4
and the trigonometric method (E).

MFE-based methods of asymptotic order N = 2, 3,4 using an explicit Runge-Kutta method of time stepping
order p = 4. Each method uses a constant time stepsize and is applied several times for different time stepsizes
along its corresponding curves (h = 27* MFE N =2:k=1,...,7 MFEN =3: k=1,...,9, MFE N = 4:
k=1,...,8, Trigonometric: k = 2,...,15). For the reference solution we solved the original highly oscillatory
system with the trigonometric method (E) using a very fine time stepsize hyef = 2716,

It can be seen that if the time stepsize is chosen such that the time stepping error matches the asymptotic
error there is some potential in the MFE methods to beat the trigonometric method, which is the state of the
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F1GURE 7. The errors of the numerical approximations using the terms of the MFE up to
asymptotic order N = 4 solved with a Runge-Kutta scheme of time stepping order p = 4 for
the diatomic model using a Lennard-Jones potential is plotted versus the time stepsize (left)
and the parameter w (middle). The reference lines have slope 4. In the left picture, the different
lines correspond to different values of w between 100 and 1000 growing from top to bottom.
Asymptotic orders for the MFE systems with N = 2,3,4 (right).

art numerical scheme for this kind of problem. Note that a further reduction of the time stepsize is inefficient,
since the error is dominated by the asymptotic error and thus cannot be improved any more.

From Figure 6 it can also be observed, that the method with asymptotic order N = 3 is the most efficient
choice, since the system to solve is hardly more complicated than the system for the method of asymptotic order
N = 2 where the latter lacks accuracy.

5.5. One dimensional model of a diatomic gas with short-range interaction forces

Our next example describes a one dimensional model of a diatomic gas with short-range interaction forces,
see [2,5]. The Hamiltonian for four diatomic molecules reads

3

2
1
H(l’,g,p,ﬂ') = EZ (pl2 +7r12 +W2C12) +ZU('TI +Cl —T-1 — Cl—l)v
=1 =1

where the fixed end particles satisfies xg = (5 = (3 = 0 and xz3 = 12. We further consider a Lennard—Jones
potential U(s) = s7'2 — 576, As initial values, we choose = (4,4 + 2'/%), ¢ = (1/w,1/100000), p = (0,1.1)
and ™ = (1.2,0.1).

We first consider the various errors of the proposed numerical methods. To do this, we consider the MFE
system of asymptotic order N = 4 for the above problem and solve it with an explicit Runge-Kutta method of
time stepping order p = 4. For different values of w we compute the solution up to time Ti,q = 1 for varying
time stepsizes h and measure the relative errors at To,q using a high resolution simulation of the original
system (1.1) solved with the Stormer—Verlet scheme with a stepsize her = 1076 as reference solution. The
expected convergence rates from Proposition 3.1 can be observed in Figure 7 (left and middle pictures). Next,
in order to observe the asymptotic orders of the numerical methods presented in the previous section, we solve
the MFE systems for N = 2,3 and N = 4. The corresponding orders of convergence can be observed in the
right picture of Figure 7.
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MFE with N =2 and p=4 MFE with N =4 and p=4
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FiGURE 8. Time evolution of the different energies present in the diatomic model with a
Lennard—Jones potential solved using the MFE with different asymptotic orders and the
Stormer—Verlet method. Blue: total energy H. Red: oscillatory energy I. Shades of green: com-
ponents of oscillatory energy I;. (In color online)

Finally, we plot the different energies present in this diatomic gas model along the numerical solutions given
by the proposed numerical methods using a time stepsize h = 1072. The reference energies are given by the
Stérmer—Verlet method with stepsize hef = 1075, One can observe in Figure 8 that also for this example the
exchange of energies, the conservation of the total and the almost-conservation of the oscillatory energy is very
well described by the MFE methods.

6. CONCLUSION AND FURTHER RESEARCH

Using a modulated Fourier expansion, we have derived high order numerical algorithms for the time discreti-
sation of second-order differential equations with highly oscillatory solutions. To do this, only a finite energy
assumption on the initial values of the problem as well as smoothness of the nonlinearity present in the equa-
tion were used. Furthermore, these new numerical methods do not suffer from stepsize restrictions imposed by
the high frequency of the problem. Finally, our convergence results and the main properties of these new high
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order numerical methods were illustrated on the modified Fermi—-Pasta—Ulam problem and on a model of a
diatomic gas.

We would like to mention that the techniques presented here could be used to derive high order numerical
methods for the discretisation of highly-oscillatory systems with multiple frequencies (as those studied in [7])
or for the numerical discretisation of Hamiltonian PDEs (using the MFE presented in [13] for example). This
is however not an easy task (if possible at all). Indeed, the main challenges that need to be overcome are

(i) The absence of a clear separation of the different scales in such problems as opposed to problems of the
form (1.1) as studied in the present publication.
(ii) The absence of a result such as Lemma 2.2 for such problems.

We will investigate these questions in the future.
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