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MOVING DIRICHLET BOUNDARY CONDITIONS ∗

Robert Altmann1

Abstract. This paper develops a framework to include Dirichlet boundary conditions on a subset
of the boundary which depends on time. In this model, the boundary conditions are weakly enforced
with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange
multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet
boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of
second order initial-boundary value problems. For the semi-discretization in space, a finite element
scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure
of the underlying PDE, the resulting system is a DAE of index 3.
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1. Introduction

Consider an initial-boundary value problem as it arises in many applications in which a dynamic behavior is
modeled. No matter which particular problem is analyzed, initial and boundary values are needed in order to
obtain a well-posed problem. Although the boundary conditions may depend on time, the part of the boundary
on which they are specified is usually fixed. In this paper, we analyse Dirichlet boundary conditions on a time-
dependent boundary part ΓD(t). A simple example is shown in Figure 1. Therein, an elastic body Ω is coupled
through Dirichlet boundary conditions with a spring damper system, which moves to the right with a given
speed v0.

In a more general framework, the here presented model can be used to couple problems from different
physics or to model flexible multibody systems [18, 28]. Consider for example the pantograph and catenary
dynamics [27] analyzed in [5]. This one-dimensional benchmark problem contains a coupling of partial differential
equations (PDE) and differential-algebraic equations (DAE). The critical part of this model is the contact
between pantograph and catenary to achieve the transmission of electrical energy. In the mentioned model [4,5],
the contact is modeled by unilateral constraints and thus, actually given by inequalities. This can be treated by
slack variables or barrier functions [13]. Then, the contact constraint is given in the form

u(xp(t), t) = g(t).
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Figure 1. Example of a flexible body Ω coupled with a spring damper system along ΓD(t) ⊆
∂Ω. The spring damper system moves to the right with speed v0. In addition, a force F acts
upwards on the spring damper.

Therein, xp(t) is the position of pantograph, g(t) its height, and u the deformation of the wire. Because of
well-known embedding theorems ([16], Chap. 5), point constraints are only well-defined for one-dimensional
problems. But even in this case they lead to numerical instabilities such that the contact constraint is typically
modeled via a regularized point constraint including a regularized delta distribution.

Assume that we model the wire of the catenary in a more detailed way, for example by a two-dimensional
model. In this case, the pantograph has to be in contact with the boundary of the wire. Since the train is
moving with a certain speed, the coupling constraint has the form of a moving Dirichlet boundary condition.
Note that the example in Figure 1 is a strongly simplified model of the pantograph and catenary system. The
spring damper system represents the pantograph which acts with a force F upwards to stay in contact with the
wire.

In the here presented model, the moving Dirichlet boundary conditions are incorporated in form of a weak
constraint via the Lagrange multiplier method [6, 7, 10]. Since the boundary conditions are intended to model
coupling constraints, they should not be included in the ansatz space of the deformation, as suggested in
many PDE text books (e.g. [11], Chap. 5.4). This already accounts for the coupling of flexible bodies through
fixed Dirichlet boundaries since the deformation along the boundary may depend on the motion of adjacent
bodies [29, 30]. This modeling procedure leads to a dynamic, also called transient, saddle point problem. The
structure is then similar to the ansatz used for mortar methods [8].

In this paper, we aim to formulate a framework to incorporate Dirichlet conditions on moving boundary
parts. Since we enforce the boundary conditions as a weak constraint, we require a suitable ansatz space for
the Lagrange multiplier. In order to avoid a time-dependent ansatz space, the model is based on a bi-Lipschitz
transformation of the moving Dirichlet boundary. With this transformation, we can introduce a constraint
operator which satisfies the usual stability condition. This allows to formulate existence results of solutions for
the resulting constrained operator system.

Because of the saddle point structure, capable finite element spaces for the discretization in space lead to
DAEs of (differentiation) index 3. For a definition and a review of the various index concepts of DAEs, we refer
to Chapter 1.2 from [21].

The paper is organized as follows. In Section 2 a time-dependent bi-Lipschitz transformation is introduced,
which maps a fixed interval onto the moving Dirichlet boundary part. With this transformation we can formulate
the constrained operator equations of motion. The section ends with a discussion on the existence of solutions
for second order initial-boundary value problems and in particular for the linear wave equation.

The spatial discretized equations are subject of Section 3. We apply piecewise linear and globally continuous
finite elements combined with edge-bubble functions. Together with a piecewise constant discretization of the
Lagrange multiplier, this yields under certain conditions a stable discretization scheme in the sense of a discrete
inf-sup condition. In Section 4 we close with some concluding remarks.
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Throughout this paper, we write v|∂Ω for the image of the trace operator applied to v ∈ H1(Ω), which has a
well-defined trace ([31], Chap. 2.5). Furthermore, we write A � B if there exists a generic constant c > 0 with
A ≤ cB. This constant is independent of the mesh-size and time. Finally, for an edge E we denote its length
by |E|.

2. Continuous model

Thinking primarily about problems from elastodynamics, we discuss second order initial-boundary value
problems. Nevertheless, the presented method can be applied to first order systems as well. Consider the second
order initial-boundary value problem in operator form

Mü(t) + Du̇(t) + Ku(t) = F(t)

for t ∈ (t0, T ] with initial conditions for u(t0), u̇(t0) and Dirichlet boundary conditions of the form

u(t) = uD(t) on ΓD(t) ⊂ ∂Ω. (2.1)

In the dynamics of elastic media, the operator M includes the density of the investigated material. The operator
K incorporates the stiffness, i.e., a possibly nonlinear material law, and D a viscous damping term. This frame-
work includes the wave equation, vibrating membranes [23] as well as examples from nonconvex elastodynamics
modeling shape memory alloys [15].

As mentioned in the introduction, we include the Dirichlet boundary condition (2.1) on the time-dependent
boundary part ΓD(t) in form of a constraint since uD might be unknown a priori [29]. In operator form, the
Dirichlet boundary condition reads B(t)u(t) = G(t) with the linear operator B(t) defined in Section 2.4 below.
Adding this constraint to the system, we have to introduce a Lagrange multiplier [6]. The derivation of a suitable
ansatz space is subject of the following subsection.

In the sequel, we denote the Sobolev space on a domain D of order α by Hα(D), see [1] for an introduction.
The corresponding norm is denoted by ‖ ·‖α,D. This includes the L2-norm (which equals H0) as well as negative
norms,

‖ · ‖α,Ω := ‖ · ‖Hα(Ω), ‖ · ‖0,Ω := ‖ · ‖L2(Ω), ‖ · ‖−1/2,Γ := ‖ · ‖[H1/2(Γ )]∗ .

2.1. Preliminaries

Let Ω ⊂ R
n denote an open, bounded, and connected domain with Lipschitz boundary ∂Ω [9], Chapter I.

We assume that the time-dependent part of the boundary on which we have Dirichlet boundary conditions has
positive measure and is denoted by ΓD(t) ⊂ ∂Ω. Furthermore, we assume that ΓD(t) changes continuously in
time which may include a change of length.

Depending on the underlying initial-boundary value problem, the solution is a time-dependent mapping from
Ω to R

d. Considering the wave equation, we seek for the velocity u(t) : Ω → R, i.e., d = 1. In the case of
elastodynamics, the unknown is the deformation in every space direction and thus, d = n. As search space for
the deformation (respectively velocity) we introduce the space of square integrable functions in d components,
which also have a square integrable weak derivative,

V :=
[
H1(Ω)

]d
.

By V∗ we denote its dual space. In order to shorten notation, we introduce the space

H :=
[
L2(Ω)

]d
.

Note that V ,H,V∗ form a Gelfand triple [34], Chapter 23.4. As a consequence, v ∈ V is embedded in V∗ such
that for all w ∈ V ,

〈v, w〉V∗,V = (v, w)H.
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Therein, 〈·, ·〉V∗,V denotes the duality pairing of V∗,V and (·, ·)H the inner product in H. Furthermore, we have
the continuous embedding [34], Chapter 23.6,{

u ∈ L2(t0, T ;V) | u̇ ∈ L2(t0, T ;V∗)
}
↪→ C([t0, T ];H).

It remains to find a suitable ansatz space of the Lagrange multiplier. If the Dirichlet boundary is independent
of time, the natural ansatz space for the Lagrange multiplier is the dual space of the broken Sobolev space
H1/2(ΓD), see [2, 29]. For a definition of broken Sobolev spaces, we refer to [1]. However, the right choice for
the dynamic case is not clear since a direct adoption would lead to the dual space of H1/2(ΓD(t)) which is
time-dependent. Such a space would cause difficulties in the modeling process and also within the discretization
procedure.

A solution to this problem is the introduction of a bi-Lipschitz transformation which maps a fixed, i.e.,
time-independent, (n − 1)-dimensional domain I with positive Lebesgue measure onto the Dirichlet boundary
ΓD(t). More details on needed assumptions are given in the following subsection. We then define the Lagrange
multiplier on I. For this, we define a Hilbert space Q via its dual space,

Q∗ :=
[
H1/2(I)

]d

.

Remark 2.1. Since Q∗ is densely embedded in [L2(I)]d, the three spaces Q∗, [L2(I)]d,Q form a Gelfand triple.
Thus, the duality pairing of Q∗,Q is densely defined by the L2 inner product on I.

Recall that the Hilbert spaceH1/2(I) contains the traces of H1-functions. Thus, an inner product can be defined
by the inner product in H1 of the solutions of corresponding homogeneous Dirichlet problems ([12], Chap. III.1).
An alternative approach can be found in Chapter I.7.3 from [22].

2.2. Bi-Lipschitz transformation

This section is devoted to the transformation which maps the time-independent (n− 1)-dimensional domain
I onto ΓD(t). Clearly, the transformation has to be time-dependent. We introduce

Φ : [t0, T ]× R
n → R

n (2.2)

and require the following properties. For every t ∈ [t0, T ] we assume Φ(t) : R
n → R

n to be a bi-Lipschitz
transformation, i.e., the function is bijective and Φ(t) as well as Φ−1(t) are Lipschitz continuous. Thus, by
Rademacher’s theorem ([16], Chap. 5.8), Φ(t) and its inverse are differentiable a.e. in R

n. We denote this
derivative by DΦ(t) and assume that it is (w.r.t. a n-dimensional measure) a.e. uniformly bounded in t, i.e.,
there exist constants 0 < cΦ < CΦ <∞ with

cΦ ≤ | detDΦ(t)| ≤ CΦ. (2.3)

Clearly, also | detDΦ−1(t)| is a.e. bounded by the constants C−1
Φ and c−1

Φ . In particular, we assume (2.3) to
hold (w.r.t. a (n− 1)-dimensional measure) a.e. on I.

Remark 2.2. The boundedness of DΦ(t) clearly limits the length evolution of the Dirichlet boundary. This
restriction is necessary since the Dirichlet boundary has to be of positive measure to ensure the well-posedness
of the problem.

Since the Dirichlet boundary ΓD(t) moves continuously with respect to time, we assume that Φ is continuous in
t as well. Recall that we introduce a time-dependent transformation in order to map I onto ΓD(t). Therefore,
we assume that

Φ(t)|I : I → ΓD(t)
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is onto. The last requirement for Φ concerns the inverse image of Ω. Since Φ(t) is bijective, we are able to define
Σ(t) as the domain satisfying

Φ
(
t, Σ(t)

)
= Ω.

For fixed t ∈ [t0, T ], we may also define the Sobolev space on Σ(t), [H1(Σ(t))]d. Since I is mapped onto
ΓD(t) ⊂ ∂Ω and thus I ⊂ ∂Σ(t), the inverse trace theorem ([31], Thm. 2.22) gives a continuous map of the
form

Q∗ →
[
H1

(
Σ(t)

)]d
.

The involved continuity constant depends on the domain Σ(t) and therefore on time.

Assumption 2.3 (Uniform inverse trace constant). Let CinvTr(Σ(t)) denote the continuity constant given by
the inverse trace theorem with respect to Q∗ and [H1(Σ(t))]d. We assume that these constants are uniformly
bounded in t by a constant CinvTr, i.e., for all t ∈ [t0, T ] we have that

CinvTr(Σ(t)) ≤ CinvTr. (2.4)

Remark 2.4. Assumption 2.3 is certainly fulfilled if Σ(t) is independent of t, i.e., the inverse image of Ω under
Φ(t) is a fixed domain. The same is true in the case where Σ(s) and Σ(t) only differ by a translation for all
s, t ∈ [t0, T ].

Theorem 2.5 (Bi-Lipschitz equivalence). Consider two domains Σ, Ω and a bi-Lipschitz transformation Φ
with Φ(Σ) = Ω and Φ(ΓΣ) = ΓΩ for boundary parts ΓΣ ⊆ ∂Σ and ΓΩ ⊆ ∂Ω. Then, the operators

(a) A1 : H1(Ω) → H1(Σ)
u �→ u ◦ Φ,

(b) A1/2 : H1/2(ΓΩ) → H1/2(ΓΣ)
q �→ q ◦ Φ,

and their continuous extension

(c) A−1/2 :
[
H1/2(ΓΩ)

]∗ →
[
H1/2(ΓΣ)

]∗
γ �→ γ ◦ Φ

are bounded and have bounded inverses.

Proof.

(a) The proof of the first claim is given in ([25], Chap. 2, Lem. 3.2), see also [19]. We denote the operator
norms by ‖A1‖ and ‖A−1

1 ‖. The corresponding transformation formula is stated in Chapter 3.3, Theorem 2
from [17].

(b) We show the boundedness of A1/2. Note that we can write the operator in terms of A1 and trace operators,

H1/2(ΓΩ) inverse−−−−→
trace

H1(Ω) A1−−→ H1(Σ) trace−−−→ H1/2(ΓΣ).

Then, the boundedness of A1, the trace operator ([31], Thm. 2.21), and the inverse trace operator ([31],
Thm. 2.22), imply

‖A1/2‖ ≤ Ctr(Ω)‖A1‖CinvTr(Σ).

(c) It follows from density arguments that the standard transformation formula on ΓΣ remains true for f ∈
H1/2(ΓΩ), i.e., ∫

ΓΣ

f
(
Φ(x)

)
dx =

∫
ΓΩ=Φ(ΓΣ)

f(y) | detDΦ−1(y)| dy. (2.5)



1864 R. ALTMANN

As an extension of A1/2, the operator A−1/2 is defined for γ ∈ [H1/2(ΓΩ)]∗ as the limit

A−1/2γ = lim
j→∞

A1/2γj

for a sequence {γj} ⊂ H1/2(ΓΩ) with γj → γ in [H1/2(ΓΩ)]∗. By the transformation formula (2.5) and part (b)
of this theorem, we obtain

‖A−1/2γj‖−1/2,ΓΣ
= ‖γj ◦ Φ‖−1/2,ΓΣ

= sup
p∈H1/2(ΓΣ)

∫
ΓΣ

(γj ◦ Φ) · p dx

‖p‖1/2,ΓΣ

≤ ‖A−1
1/2‖ sup

p∈H1/2(ΓΣ)

∫
ΓΣ

(
γj · (p ◦ Φ−1)

)
◦ Φdx

‖p ◦ Φ−1‖1/2,ΓΩ

= ‖A−1
1/2‖ sup

q∈H1/2(ΓΩ)

∫
ΓΣ

(
γj · q

)
◦ Φdx

‖q‖1/2,ΓΩ

= ‖A−1
1/2‖ sup

q∈H1/2(ΓΩ)

∫
ΓΩ

γj · q | detDΦ−1| dy
‖q‖1/2,ΓΩ

= ‖A−1
1/2‖ ‖γj | detDΦ−1|‖−1/2,ΓΩ

≤ ‖A−1
1/2‖ c

−1
Φ ‖γj‖−1/2,ΓΩ

.

Thus, the operator A−1/2 is bounded with constant ‖A−1
1/2‖c

−1
Φ . The boundedness of the inverse operator A−1

−1/2

follows by the same arguments. �

The shown bi-Lipschitz equivalence from Theorem 2.5 is one of the main properties to proof the stability
of the boundary constraint. The definition of the constraint operator and the proof of the inf-sup stability is
subject of the remaining two subsections.

2.3. Continuous inf-sup condition

In order to include the boundary conditions as a weak constraint, we need a bilinear form which is defined
on the moving boundary part ΓD(t). For this, we introduce for t ∈ [t0, T ],

b(·, · ; t) : V ×Q → R.

With v ∈ V , the bilinear form b is densely defined, i.e., for q ∈ [L2(I)]d, by

b(v, q; t) :=
∫

ΓD(t)

v ·
(
q ◦ Φ−1(t)

)
dx. (2.6)

Note that b is well-defined because of part (c) of Theorem 2.5. In the case of a fixed Dirichlet boundary, i.e.,
Φ(t, x) = Φ(x) = x and ΓD(t) = ΓD, the bilinear form b is independent of time and equals the bilinear form
used in that setting [2, 29].

Remark 2.6. We could equivalently define b with the transformation term | detDΦ−1(t)|. This corresponds to
a scaling of the Lagrange multiplier and is used in [3] to model flexible multibody systems.

One important property of the bilinear form b is the so-called inf-sup, LBB, or stability condition ([9],
Chap. III.4). In the fixed boundary case, the inf-sup condition is easy to show with the help of the inverse
trace theorem ([31], Thm. 2.22). The proof uses the fact that the dual of the ansatz space for the Lagrange
multiplier equals the space of traces of V . The situation in the time-dependent case is slightly changed since Q∗

contains the traces of the transformed functions of V . However, the proof of the stability condition of b follows
the same ideas ([31], Lem. 4.7).
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Lemma 2.7 (Inf-sup condition). Let Φ be the time-dependent bi-Lipschitz transformation from (2.2) satisfy-
ing (2.3) and Assumption 2.3. Then, the bilinear form b from (2.6) satisfies an inf-sup condition, i.e., there
exists a positive constant β such that for all t ∈ [t0, T ],

inf
q∈Q

sup
v∈V

b(v, q; t)
‖v‖V‖q‖Q

≥ β > 0.

Proof. Let t ∈ [t0, T ] be arbitrary but fixed and let Σ(t) be the inverse image of Ω under Φ(t). Consider an
arbitrary element q ∈ Q. Since the determinant of DΦ(t) is bounded, it follows that (q | detDΦ(t)|) ∈ Q.
According to the Riesz representation theorem ([31], Thm. 3.3), there exists an element w(t) ∈ Q∗ such that
for all v ∈ Q∗, (

w(t), v
)
Q∗ =

〈
q | detDΦ(t)|, v

〉
Q,Q∗ .

Therein, (·, ·)Q∗ denotes the inner product in Q∗ and 〈·, ·〉Q,Q∗ the duality pairing given by the Gelfand triple
from Remark 2.1. In addition, it holds that ‖w(t)‖Q∗ = ‖q | detDΦ(t)|‖Q. By the inverse trace theorem, there
exists an extension of w(t) on the domain Σ(t). This extension, namely v(t) ∈ [H1(Σ(t))]d, satisfies

v(t)|I = w(t)

and, because of the uniform bound in t by (2.4),

‖v(t)‖1,Σ(t) ≤ CinvTr(Σ(t)) ‖w(t)‖Q∗ ≤ CinvTr ‖w(t)‖Q∗ .

By the first part of Theorem 2.5, the transformation of v(t) satisfies v̄(t) := v(t)◦Φ−1(t) ∈ V . Thus, we can insert
v̄(t) into the bilinear form b and obtain by a sequence {qj} ⊆ [L2(I)]d with qj → q in Q and the transformation
formula (2.5),

b
(
v̄(t), q; t

)
‖v̄(t)‖V

= lim
j→∞

b
(
v̄(t), qj ; t

)
‖v̄(t)‖V

= lim
j→∞

〈
qj | detDΦ(t)|, v(t)

〉
Q,Q∗

‖v̄(t)‖V

=

〈
q | detDΦ(t)|, v(t)

〉
Q,Q∗

‖v̄(t)‖V
=

〈
q | detDΦ(t)|, w(t)

〉
Q,Q∗

‖v̄(t)‖V
=

‖w(t)‖2
Q∗

‖v̄(t)‖V
·

With the first part of Theorem 2.5 and the inverse trace theorem, the norm of v̄(t) is bounded by

‖v̄(t)‖V � ‖v(t)‖1,Σ(t) ≤ CinvTr‖w(t)‖Q∗ .

Furthermore, we can bound ‖w(t)‖Q∗ from below with (2.3) by

‖w(t)‖Q∗ = ‖q | detDΦ(t)|‖Q ≥ cΦ‖q‖Q.

All together, we yield the time-independent estimate

sup
u∈V

b(u, q; t)
‖u‖V

≥ b(v̄(t), q; t)
‖v̄(t)‖V

� ‖w(t)‖Q∗

CinvTr

≥ cΦ
CinvTr

‖q‖Q. �

2.4. Saddle point formulation

With the bilinear form b from (2.6) we are in the position to enforce the Dirichlet boundary conditions in
a weak form. The needed Lagrange multiplier is defined on the time-independent domain I, as described in
Section 2.1. The weak formulation in operator form reads: find u ∈ L2(t0, T ;V) with sufficiently smooth time
derivatives and λ ∈ L2(t0, T ;Q) such that

Mü(t) + Du̇(t) + Ku(t) + B∗(t)λ(t) = F(t) in V∗, (2.7a)
B(t)u(t) = G(t) in Q∗ (2.7b)
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for a.e. t ∈ [t0, T ] with initial conditions

u(t0) = g ∈ V , (2.7c)
u̇(t0) = h ∈ H. (2.7d)

Therein, F includes the applied forces and G contains the Dirichlet data uD ∈ H2(t0, T ;V) and therefore the
boundary conditions,

G(t) := b(uD, · ; t) ∈ Q∗

The time-dependent operator B(t) : V → Q∗ and its dual B∗(t) : Q → V∗ are defined via the bilinear form b
from (2.6),

B(t)u := b(u, · ; t) ∈ Q∗, B∗(t)λ := b(·, λ; t) ∈ V∗.

Since (2.7) is an operator DAE, i.e., a DAE in an infinite dimensional setting, the initial values have to satisfy a
consistency condition of the form B(t0)g = G(t0). The precise definitions of the operators M, D, and K depend
on the given problem. Note that the time derivatives in (2.7) should be understood in the generalized sense [34],
Chapter 23.5.

An advantage of the formulation (2.7) is the time-independence of the spaces in which the equations are
stated. It remains to show that the operator DAE (2.7) is well-posed in the sense that it is solvable if the
corresponding PDE, constrained by Dirichlet boundary conditions on ΓD(t), is solvable.

Theorem 2.8 (Existence of the Lagrange multiplier). Consider operators M, D, and K with right-hand side
F ∈ L2(t0, T ;V∗). Further, let u ∈ L2(t0, T ;V) be a solution of

Mü(t) + Du̇(t) + Ku(t) = F(t),

where the test functions from V vanish along ΓD(t) at time t, for given initial data g, h and the constraint
u(t) = uD(t) along ΓD(t) for a.e. t ∈ [t0, T ]. If the operators satisfy Mü(t) + Du̇(t) + Ku(t) ∈ V∗ for a.e.
t ∈ [t0, T ], then there exists a unique λ ∈ L2(t0, T ;Q) such that (u, λ) is a solution of (2.7).

Proof. The claim follows directly from the inf-sup condition of Lemma 2.7 together with Theorem III.3.6 from [9]
(see also [2], Thm. 4.11). �

It remains the question of the existence of a solution u. For this, we give a particular existence result for the
linear wave equation with moving Dirichlet conditions.

Example 2.9 (Linear wave equation). Consider the wave equation ü −Δu = f , i.e., M = id, D = 0, and K
corresponds to the Laplacian. Here, we assume that the transformation Φ has a time-independent preimage Σ,
i.e., Φ(t, Σ) = Ω. Besides, we assume Φ(t) and its inverse to be continuously differentiable in t and ∇(det DΦ(t))
to be uniformly bounded from above. Then, there exists a unique solution of (2.7), see Appendix A for a proof.
For a numerical example, for which these assumptions are satisfied, we refer to [3].

3. Semi-discretized model

In this section, we analyse the saddle point formulation (2.7) after a semi-discretization in space. For this,
we restrict ourselves to the two-dimensional case. For the discretization we use finite elements and need to
introduce triangulations of Ω ⊆ R

2 as well as I. In the two-dimensional case, we may assume that I ⊂ R is an
interval. The presented discretization scheme is stable in the sense that it satisfies a discrete inf-sup condition,
which is crucial to ensure stable approximations of the Lagrange multiplier.
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ΓD(t)

ΓD(t)
∂Ω

Figure 2. Illustration of the closure ΓD(t) with respect to the triangulation T .

3.1. Finite element scheme

Let T be a regular triangulation of Ω ⊆ R
2 in the sense of [14], i.e., we exclude hanging nodes. Furthermore,

we assume T to be shape regular ([9], Chap. II.5). By TI we denote a partition of the interval I. The set of
edges of a triangulation or partition is denoted by E(·).

In the sequel, we also need the partition of the moving boundary part which arises from the restriction of T on
ΓD(t). This partition contains all edges of T which have a non-zero intersection with ΓD(t) in a one-dimensional
measure,

TΓ (t) := {E ∈ E(T ) | int(E) ∩ ΓD(t) �= ∅}.

With respect to this partition, we define the ’closure’ of ΓD(t) by

ΓD(t) :=
⋃

E∈E(TΓ (t))

E.

An illustrative picture of the closure is given in Figure 2. Clearly, it holds that ΓD(t) ⊆ ΓD(t) and they are
equal if and only if the endpoints of ΓD(t) are nodes of the triangulation T .

For the discretization in space, we introduce several finite element spaces. The space of piecewise polynomials
of degree one which are globally continuous is denoted by

Sh :=
[
P1(T ) ∩ C(Ω)

]d = span{ϕ1, . . . , ϕn1} ⊂ V .

Therein, ϕ1, . . . , ϕn1 denote the standard hat-functions ([9], Chap. II) in d components and therefore a basis of
Sh. Thus, the dimension of Sh equals d times the number of vertices in T , namely n1.

A second finite element space is given by edge-bubble functions as introduced in Chapter 1 from [32]. Here,
we only consider edge-bubble functions on the boundary and in particular only edges which are part of ΓD(t)
at some point in time. Let E1, . . . , Er ∈ E(T ) denote these boundary edges, i.e.,

⋃
t∈[t0,T ]

ΓD(t) =
r⋃

j=1

Ej .

We define the space
Bh := span{ψ1, . . . , ψn2} ⊂ V

where n2 := d ·r and ψ1, . . . , ψn2 denote the standard edge-bubble functions in d components for the r boundary
edges. Note that the dimension n2 of the space Bh is independent of time. We summarize some properties of
edge-bubble functions, which are important for later estimates. Recall that ‖ · ‖0,T and ‖ · ‖0,E denote the
L2-norm on a triangle T and on an edge E, respectively.

Lemma 3.1 (Properties of edge-bubble functions). Let ψE denote the edge-bubble function for a boundary edge
E of length h = |E| and bordering triangle T , as shown in Figure 3. Furthermore, let E be partitioned into two
intervals E1, E2 with α := |E1|/h ≥ 1/2. Then,

(a)
∫

E
ψEdx = 2h/3,

(b) ‖∇ψE‖0,T � h−1/2‖1‖0,E,
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E
T

ψE

Figure 3. Illustration of an edge-bubble function ψE corresponding to a boundary edge E.
The support of ψE is given by the triangle T .

(c)
∫

E1
ψEdx ≥ α

∫
E ψEdx, and

(d)
∫

E2
ψEdx ≤ (1 − α)

∫
E ψEdx.

The involved constant in (b) only depends on interior angles of the triangle T .

Proof. The first two claims are taken from Lemma 2.3.1 of [24]. The third claim follows by an easy calculation
and the last claim follows directly from (c). �

As finite dimensional approximation of the space V , we use a combination of hat-functions and edge-bubble
functions on the boundary,

Vh := Sh ⊕ Bh = span{ϕ1, . . . , ϕn1 , ψ1, . . . , ψn2}.

The dimension of this space is given by n := n1 + n2. The ansatz space of the Lagrange multiplier Q is
approximated by the space of piecewise constant functions on the interval I. For this, we introduce the functions
χi which are constant along one edge of the partition TI and vanish elsewhere. Since these ansatz functions are
in [L2(I)]d, this provides a discontinuous but still conforming discretization,

Qh :=
[
P0(TI)

]d = span{χ1, . . . , χm} ⊂ Q.

The dimension of Qh, namely m, equals d times the number of edges in TI . At this point, we assume m < n.
As semi-discrete finite element approximations of u and λ, we define

uh(t, x) :=
n1∑

j=1

qj(t)ϕj(x) +
n2∑

j=1

qn1+j(t)ψj(x), λh(t, y) :=
m∑

j=1

μj(t)χj(y).

The introduced discretization scheme also determines the positive definite n-by-n mass matrix M , the damping
matrixD, and the stiffness matrixK as discrete representations of the operators M, D, and K, respectively ([20],
Chap. 12). For nonlinear operators, D and K may be replaced by some nonlinear functions. With ϕn1+k := ψk

for k = 1, . . . , n2, the time-dependent m-by-n coupling matrix B(t) is given by

B(t)ji := b(ϕi, χj ; t) =
∫

ΓD(t)

ϕi ·
(
χj ◦ Φ−1(t)

)
dx.

The described semi-discretization in space results in a DAE for the coefficient vectors q = [qj ] and μ = [μj ],

Mq̈(t) +Dq̇(t) +Kq(t) +BT (t)μ(t) = f(t),
B(t)q(t) = g(t). (3.1)

Because of the saddle point structure, the DAE (3.1) has (differentiation) index 3 if the matrix B(t) is of full
rank for all t ∈ [t0, T ]. For a precise definition of the index of a DAE (see [21], Chap. 3.3). Roughly speaking,
the index gives the needed smoothness of the inhomogeneity to guarantee a continuously differentiable solution.

In the following subsection, we present assumptions under which the discretization scheme Vh − Qh fulfills
a discrete inf-sup condition. The importance of this condition is commented in Chapter III.4 from [9]. Such a
condition also implies the full rank property of B(t) for all t ∈ [0, T ].
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3.2. Discrete inf-sup condition

In order to guarantee stability in the sense of a discrete inf-sup condition, the triangulations TΓ (t) and TI

have to be compatible in the sense that the partition of I is not too fine. A more precise formulation is given
in the following assumption. Therein, hI ∈ L2(I) and hΓ ∈ L2(ΓD(t)) denote the piecewise constant functions
which involve the local mesh-sizes, i.e.,

hI |E(x) := |E| for E ⊆ I, hΓ |F (x) := |F | for F ⊆ ΓD(t).

Assumption 3.2 (Compatibility of TΓ (t) and TI). We assume that there exists a constant 0 < ε < 1/4,
independent of t, such that

cΦ
(
hI ◦ Φ−1(t)

)
≥ (3/2 + ε)hΓ (3.2)

is satisfied a.e. on ΓD(t) with constant cΦ from (2.3). The condition ε < 1/4 is just included in order to unify
the computations below.

The assumption states that the mesh-size of TI , transformed to ΓD(t), should be larger than the mesh-size of
T along the moving boundary. In addition TΓ (t) has to be quasi-uniform in the following sense.

Assumption 3.3 (Quasi-uniformity of TΓ (t)). Let κ denote the largest ratio of two adjacent edges in the
partition TΓ (t). Then, we assume that κ ≤ 2.

Remark 3.4. If the triangulation on the boundary TΓ (t) is uniform, i.e., κ = 1, then Assumption 3.2 can be
weakened to cΦ(hI ◦ Φ−1(t)) ≥ (1 + ε)hΓ .

In preparation for the main result of this section, we need to construct for a given function λh ∈ Qh a piecewise
constant function γh ∈ [P0(TΓ (t))]d which is a good approximation of λh ◦ Φ−1(t). The construction of γh is
only necessary for the analysis of the finite element scheme and does not have to be computed in the actual
simulation. To clarify the notation, in the sequel we neglect the time dependence of Φ−1.

3.2.1. Construction of γh

Assume that t ∈ [t0, T ] is arbitrary but fixed. Consider λh ∈ P0(TI) and its transformed analogon λh ◦ Φ−1,
which is also piecewise constant and hence in L2(ΓD(t)). Without relabeling, we extend this function by zero
such that λh ◦ Φ−1 ∈ L2(ΓD(t)). Note that λh ◦ Φ−1 is piecewise constant but not necessarily with respect to
TΓ (t), i.e., λh ◦ Φ−1 �∈ P0(TΓ (t)).

Proposition 3.5. Under Assumption 3.2 or the weaker condition of Remark 3.4, the piecewise constant func-
tion λh ◦ Φ−1 can only take two different values on an edge E ∈ E(TΓ (t)).

Proof. Suppose that λh ◦ Φ−1 has more than two values on E. Then, there exists an edge F ∈ E(TI) with
Φ(F ) ⊂ E and |Φ(F )| < |E|. Equation (2.3) then implies that for x ∈ Φ(F ),

cΦ
(
hI ◦ Φ−1

)
(x) = cΦ|F | ≤ |Φ(F )| < |E| = hΓ (x)

which is a contradiction to Assumption 3.2 as well as Remark 3.4. �

We define the approximation of λh ◦ Φ−1 in P0(TΓ (t)) edge-wise. For this, consider an edge E ∈ E(TΓ (t)) with
a partition E = E1 ∪E2 such that

λh ◦ Φ−1|E(x) =

{
α for x ∈ E1,

β for x ∈ E2.
(3.3)
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Such a partition always exists because of Proposition 3.5. If λh ◦Φ−1 is constant on E, then E2 vanishes. With
the help of this decomposition, we define γh ∈ P0(TΓ (t)) by

γh|E :=

{
α if |E1| ≥ |E2|,
β otherwise.

(3.4)

Before we show that γh is a reasonable approximation of λh ◦Φ−1, we define weighted norms of L2(ΓD(t)) and
L2(ΓD(t)),

‖ · ‖2
h :=

∑
E∈E(TΓ (t))

hE ‖ · ‖2
L2(E∩ΓD(t)), ‖ · ‖2

h,Γ̄ :=
∑

E∈E(TΓ (t))

hE ‖ · ‖2
L2(E).

The approximation property of the constructed function γh in (3.4) is given in the following lemma.

Lemma 3.6 (Approximation property of γh). Let ψE denote the edge-bubble function for an edge E and con-
sider λh ∈ P0(TI) as well as Assumptions 3.2 and 3.3. Then, the corresponding function γh ∈ P0(TΓ (t)) defined
in (3.4) satisfies

∑
E∈E(TΓ (t))

hE

∫
E∩ΓD(t)

(
λh ◦ Φ−1

)
· γhψE dx ≥ ε

4

∑
E∈E(TΓ (t))

hE

∫
E

γ2
hψE dx (3.5a)

and

‖λh ◦ Φ−1‖h ≤
√

3 ‖γh‖h,Γ̄ . (3.5b)

Proof. Recall that 0 < ε < 1/4 and that hE = |E| denotes the length of an edge E. With the partition of E as
in (3.3), we distinguish two types of edges:

type 1: λh ◦ Φ−1 is constant along E, i.e., E = E1,
type 2: λh ◦ Φ−1 takes two different values, i.e., |E2| �= 0 and |E1| ≥ hE/2.

Consider an arbitrary edge E ∈ E(TΓ (t)) with E ⊆ ΓD(t). If E is of first type, then

hE

∫
E

(
λh ◦ Φ−1

)
· γhψE dx = hE

∫
E

γ2
hψE dx. (3.6)

If E is of second type, we obtain with parts (c) and (d) of Lemma 3.1 and Young’s inequality 2ab ≤ σa2+b2/σ
for σ > 0 ([16], Appendix B) that

hE

∫
E

(
λh ◦ Φ−1

)
· γhψE dx = hE

∫
E1

α2ψE dx+ hE

∫
E2

αβψE dx

≥ hE

2

∫
E

α2ψE dx− hE

2σ

∫
E2

α2ψE dx− hEσ

2

∫
E2

β2ψE dx

≥ hE

4

(
2 − 1

σ

) ∫
E

γ2
hψE dx− hFσκ

2

4

∫
F

γ2
hψF dx.

Thereby, F denotes the edge adjacent of E2 as shown in Figure 4. With the choice σ = 1/(κ− ε), we obtain an
estimate of the form

hE

∫
E

(
λh ◦ Φ−1

)
· γhψE dx ≥ c1(ε)hE

∫
E

γ2
hψE dx− c2(ε)hF

∫
F

γ2
hψF dx. (3.7)
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E1 E2

D E F

Figure 4. An edge E, partitioned into E1 and E2, with neighboring edges D and F as in the
proof of Lemma 3.6.

Because of Assumption 3.3, the constants c1 and c2 satisfy

c1(ε) =
1
4

(2 − κ+ ε) ≥ ε

4
, c2(ε) =

κ2

4(κ− ε)
·

For an edge E with E �⊆ ΓD(t), i.e., an edge with only one neighbor in ΓD(t) (recall Fig. 2), it holds that∫
E∩ΓD(t)

(
λh ◦ Φ−1

)
· γhψE dx ≥ 1

2

∫
E

γ2
hψE dx.

We are now in the position to sum up all contributions which gives

∑
E∈E(TΓ (t))

hE

∫
E∩ΓD(t)

(
λh ◦ Φ−1

)
· γhψE dx ≥

∑
E∈E(TΓ (t))

cEhE

∫
E

γ2
hψE dx.

It remains to show cE ≥ ε/4 for all edges E ∈ E(TΓ (t)). Because of (3.2), negative contributions can only arise
for edges of first type. Thus, it holds that cE ≥ c1(ε) ≥ ε/4 for edges E of second type or E �⊆ ΓD(t). If E is
of first type, we distinguish two cases: First, there is only one negative contribution coming from a neighboring
edge in form of (3.7). Then, with (3.6) we obtain the estimate

cE = 1 − c2(ε) = 1 − 1
4

κ2

κ− ε
≥ 1 − 1

2 − ε
>

3
7
·

In the second case, we have two negative terms for the edge E, i.e., there are negative contributions from
both neighboring edges. We show that (3.2) then locally implies a stricter bound on κ. Let D and F denote the
neighboring edges of E as illustrated in Figure 4 (here with E = E1) and D2, F2 the adjacent parts, respectively.
The restriction of the mesh-size (3.2) implies |D2| ≤ |D|/2 = hD/2 and |F2| ≤ |F |/2 = hF /2. Locally, the largest
ratio of two adjacent edges is given by the maximum of the ratios hD/hE and hF /hE. We assume w.l.o.g. that
hD ≥ hF and thus, obtain the local edge ratio κE := hD/hE. Then, Assumption 3.2 implies(

3/2 + ε
)
κEhE =

(
3/2 + ε

)
hD < cΦ(hI ◦ Φ)|D2 ≤ |D2| + |E| + |F2| ≤ (1 + κE)hE .

Thus, κE < 2/(1 + 2ε) which leads to

cE = 1 − 2c2(ε) = 1 − 1
2

κ2
E

κE − ε
≥ 1 − 2

(1 + 2ε)(2 − ε− 2ε2)
≥ ε

4
·

In total, this yields the stated estimate (3.5a).
For the second claim (3.5b), consider an arbitrary edge E ∈ E(TΓ (t)). If λh ◦ Φ−1 is constant along E, then

‖λh ◦ Φ−1‖L2(E) = ‖γh‖L2(E). Otherwise, we distinguish between the cases E ⊆ ΓD(t) and E �⊆ ΓD(t). In the
first case, we have (w.l.o.g. |E2| ≤ |E1|)

‖λh ◦ Φ−1‖2
L2(E) =

∫
E1

α2 dx+
∫

E2

β2 dx ≤
∫

E

α2 dx+
κ

2

∫
F

β2 dx ≤ ‖γh‖2
L2(E∪F ).
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Therein, F denotes the neighboring edge of E on which γh takes the value β. For a boundary edge, γh either
equals the value of λh ◦ Φ−1,

‖λh ◦ Φ−1‖2
L2(E∩ΓD(t)) = ‖γh‖2

L2(E∩ΓD(t)) ≤ ‖γh‖2
L2(E)

or vanishes along E. Then, again with neighboring edge F ,

‖λh ◦ Φ−1‖2
L2(E∩ΓD(t)) ≤ ‖γh‖2

L2(E∪F ).

The summation over all edges finally proves the claim. �

3.2.2. Proof of the discrete inf-sup condition

With the approximation γh from (3.4) in hand, we are able to proof the stability condition of the discretization
scheme Vh −Qh introduced in Section 3.1.

Theorem 3.7 (Discrete inf-sup condition). Under Assumptions 2.3, 3.2 and 3.3, the bilinear form b from (2.6)
satisfies a discrete inf-sup condition w.r.t. the discrete spaces Vh and Qh, i.e., there exists a positive constant
βdisc(ε), independent of the mesh-sizes and time, with

inf
λh∈Qh

sup
vh∈Vh

b(vh, λh; t)
‖vh‖V‖λh‖Q

≥ βdisc(ε) > 0.

Proof. The proof basically works as for a fixed Dirichlet boundary ([24], Thm. 2.3.7). Nevertheless, the involved
transformation requires several adjustments such that we give the details here.

Consider an arbitrary λh ∈ Qh with ‖λh‖−1/2,I = 1. As in [24], we show the existence of constants c1, c2, c3,
which may depend on ε but not on the mesh-size or time, such that

(i) sup
vh∈Vh

b(vh, λh; t)
‖vh‖V

≥ c1‖λh ◦ Φ−1(t)‖h, (ii) sup
vh∈Vh

b(vh, λh; t)
‖vh‖V

≥ c2 − c3‖λh ◦ Φ−1(t)‖h.

Since ‖ · ‖h ≥ 0, the claim then follows from

sup
vh∈Vh

b(vh, λh; t)
‖vh‖V

≥ max
(
c1‖λh ◦ Φ−1(t)‖h, c2 − c3‖λh ◦ Φ−1(t)‖h

)
≥ c1c2
c1 + c2

·

In the proof we use generic constants which are independent of the mesh-size and time. Furthermore, we neglect
the time-dependence of variables.

Proof of (i). As described at the beginning of this subsection, λh ◦ Φ−1 can be extended by zero to a piecewise
constant function on ΓD(t). In addition, γh ∈ [P0(TΓ (t))]d denotes the function defined componentwise as
in (3.4). We define uh ∈ Bh ⊂ Vh by

uh :=
∑

E∈E(TΓ (t))

hE · γh|E · ψE

with edge-bubble function ψE . Inserting uh into the bilinear form b, by Lemma 3.6 we obtain

b(uh, λh; t) =
∫

ΓD(t)

uh ·
(
λh ◦ Φ−1

)
dx

=
∑

E∈E(TΓ (t))

hE

∫
E∩ΓD(t)

γh · ψE ·
(
λh ◦ Φ−1(t)

)
dx

≥ ε

4

∑
E∈E(TΓ (t))

hE

∫
E

γ2
h · ψE dx =

ε

6

∑
E∈E(TΓ (t))

hE

∫
E

γ2
h dx =

ε

6
‖γh‖2

h,Γ̄ . (3.8)
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In the following, we use part (b) of Lemma 3.1. For a boundary edge E we denote the adjacent triangle by TE.
By a Poincaré–Friedrichs inequality (e.g. [26] for convex domains), the H1-norm of uh is bounded by

‖uh‖2
V � ‖∇uh‖2

0,Ω =
∑

E∈E(TΓ (t))

h2
E ‖∇(γhψE)‖2

0,TE
�

∑
E∈E(TΓ (t))

hE ‖γh‖2
0,E = ‖γh‖2

h,Γ̄ . (3.9)

Together with the estimates (3.8) and (3.9), Lemma 3.6 yields

sup
vh∈Vh

b(vh, λh; t)
‖vh‖V

≥ b(uh, λh; t)
‖uh‖V

≥ ε

6

‖γh‖2
h,Γ̄

‖uh‖V
� ε ‖γh‖h,Γ̄ � ε ‖λh ◦ Φ−1‖h.

Proof of (ii): Note that Theorem 2.5 implies λh ◦ Φ−1 ∈ [H1/2(ΓD(t))∗]d and

1 = ‖λh‖−1/2,I ≤ ‖A−1/2‖ ‖λh ◦ Φ−1‖−1/2,ΓD(t).

Thus, the norm of λh ◦ Φ−1 is bounded from below. By the definition of the dual norm, there exists a q̂ ∈
[H1/2(ΓD(t))]d with ‖q̂‖1/2,ΓD(t) = 1 such that

1
2‖A−1/2‖

≤ 1
2
‖λh ◦ Φ−1‖−1/2,ΓD(t) ≤

∫
ΓD(t)

q̂ ·
(
λh ◦ Φ−1

)
dx. (3.10)

The rest of the proof then follows the lines of Theorem 2.3.7 from [24], using the weak solution of the Poisson
equation with q̂ as Dirichlet data. Finally, standard stability estimates yield with constants only depending on
the minimal interior angle of the triangulation and ‖A−1/2‖,

sup
vh∈Vh

b(vh, λh; t)
‖vh‖V

≥ b(ũh, λh; t)
‖ũh‖V

� c2 − c3‖λh ◦ Φ−1‖h. �

Remark 3.8 (Extension to the 3-dimensional case). The extension of the given stability result to domains
Ω ⊂ R

3 seems possible since the underlying work [24] is valid in three dimensions. Nevertheless, the involved
transformation causes several difficulties. The main difficulty is the absence of Proposition 3.5 in three dimen-
sions. In this case, the number of different values one obtains on a boundary triangle may be arbitrary high,
depending on the interior angles of the triangulation of I.

4. Conclusion

We have introduced a theoretical and numerical applicable framework to include Dirichlet boundary condi-
tions on moving boundary parts. By initiating a time-dependent bi-Lipschitz transformation, we were able to
formulate the dynamical system as a saddle point problem within time-independent ansatz spaces. One of the
assumptions on the transformation is the boundedness of its derivative which causes a limitation of the length
evolution of the boundary. Although the proofs work with the transformation of the entire domain, for practical
computations it suffices to transform the Dirichlet boundary. Because of the saddle point structure, the key for
the analysis of the continuous as well as the semi-discrete model is the verified inf-sup condition.

We have presented a spatial discretization scheme which is stable under some compatibility and quasi-
uniformity condition. The compatibility assumption is necessary to ensure that the number of constraints along
the boundary is not larger than the number of degrees of freedom.

Possible fields of application include flexible multibody dynamics. In this context, Dirichlet boundary con-
ditions may be used as dynamic coupling conditions. In order to stay within this framework, the coupling
surfaces have to be known beforehand. This gives the main difference between this model and nonlinear contact
problems. However, the framework is not restricted to model interconnections of flexible bodies. The presented
model also allows to couple different kinds of physics.
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Appendix A. Proof of Example 2.9

The idea of the proof is to rewrite (2.7) such that a transformation by Φ leads to a fixed Dirichlet boundary
problem. As a consequence, the transformed operator K̄ will be time-dependent. The stated result then follows
from the general framework in Chapter V from [33]. In this part, we often neglect the time-dependence of the
variables.

As a first step, we reformulate (2.7) with the operator B̂(t) : V → Q∗, which is defined by

〈B̂(t)u, q〉Q∗,Q := b̂(u, q; t) :=
∫

ΓD(t)

u ·
(
q ◦ Φ−1(t)

)
| detDΦ−1(t)| dx.

To obtain an equivalent system, we have to adjust the right-hand side G and λ, respectively. Therefore, we
introduce 〈Ĝ(t), q〉 := b̂(uD, q; t) and define λ̂ ∈ L2(t0, T ;Q) by the one-to-one relation

λ̂ ◦ Φ−1 | detDΦ−1| = λ ◦ Φ−1.

Thus, system (2.7) has a solution (u, λ) if and only if there exists a solution of

ü(t) + Ku(t) + B̂∗(t)λ̂(t) = F(t) in V∗, (A.1a)

B̂(t)u(t) = Ĝ(t) in Q∗ (A.1b)

with the same initial values.

In the second step, we transform the equations by Φ. For this, we use the variational formulation of (A.1).
The transformation formula applied to (A.1b) then yields∫

I

(u ◦ Φ)q dx = 〈Ĝ(t), q〉 for all q ∈ Q.

Introducing ϕ(t) := | detDΦ(t)|, which is bounded away from zero by (2.3), we obtain the equivalent equation∫
I

(u ◦ Φ ϕ1/2)qϕ−1/2 dx = 〈Ĝ(t), qϕ−1/2ϕ1/2〉 =: 〈Ḡ(t), qϕ−1/2〉 for all q ∈ Q. (A.2)

Defining q̄ := qϕ−1/2 ∈ Q, we can equivalently test equation (A.2) for all q̄ ∈ Q instead of q ∈ Q. Recall that Σ
denotes the preimage of Ω under Φ, i.e., Φ(t, Σ) = Ω. Then, setting a(t) := u(t)◦Φ(t)ϕ1/2(t) ∈ VΣ := [H1(Σ)]d

(by Thm. 2.5), we obtain the equation∫
I

a(t) q̄ dx = 〈Ḡ(t), q̄〉 for all q̄ ∈ Q

or, equivalently, in operator form with the time-independent trace operator B̄ : VΣ → Q∗,

B̄a(t) = Ḡ(t) in Q∗. (A.3)

The transformation formula applied to the variational formulation of (A.1a) yields

d2

dt2
(
u ◦ Φ ϕ1/2, v ◦ Φ ϕ1/2

)
Σ

+ 〈Ku, v〉 +
∫

I

v ◦ Φ λ̂dx = 〈F(t), v〉 for all v ∈ V .

Because of Theorem 2.5 and (2.3), the functions w := (v ◦Φ) ϕ1/2 satisfy w ∈ VΣ . The bi-Lipschitz equivalence
allows to test the equation with functions w ∈ VΣ instead of v ∈ V . Since we test with all functions in VΣ , we
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may assume that the test functions are independent of t. By a rescaling of λ̂, which we denote by λ̄, and the
introduction of a new right-hand side F̄ , we obtain the equivalent equation

d2

dt2
(
a(t), w

)
Σ

+ 〈K̄(t)a(t), w〉 + 〈B̄w, λ̄〉 = 〈F̄(t), w〉 for all w ∈ VΣ ,

or, as operator equation,

ä(t) + K̄(t)a(t) + B̄∗λ̄(t) = F̄(t) in V∗
Σ . (A.4)

Therein, the symmetric and time-dependent operator K̄(t) : VΣ → V∗
Σ is defined by〈

K̄(t)a,w
〉
V∗

Σ,VΣ

:=
〈
K

(
(aϕ−1/2) ◦ Φ−1

)
, (wϕ−1/2) ◦ Φ−1

〉
V∗,V .

Since we have only used the transformation Φ and a rescaling by the bounded function ϕ, system (2.7) has a
solution (u, λ) if and only if there exists a solution (a, λ̄) of (A.3)–(A.4).

In the last step we show that system (A.3)–(A.4) has a unique solution. Since the trace operator B̄ satisfies
an inf-sup condition, by Theorem III.3.6 from [9], it is sufficient to show that the operator equation

ä(t) + K̄a(t) = F̄(t) in (VΣ,I)∗

has a unique solution a ∈ L2(t0, T ;VΣ,I). Thereby, VΣ,I denotes the subspace of VΣ with vanishing boundary
values along I ⊂ ∂Σ. The in Example 2.9 assumed smoothness of the transformation Φ implies that the time-
dependent operator K̄ fits in the framework of Chapter V from [33]. Thus, the existence of a unique solution
follows by [33], Theorem 29.1.
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