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CONVERGENCE OF A VARIATIONAL LAGRANGIAN SCHEME
FOR A NONLINEAR DRIFT DIFFUSION EQUATION ∗
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Abstract. We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusion equation
on an interval. The discretization is based on the equation’s gradient flow structure with respect to
the Wasserstein distance. The scheme inherits various properties from the continuous flow, like entropy
monotonicity, mass preservation, metric contraction and minimum/ maximum principles. As the main
result, we give a proof of convergence in the limit of vanishing mesh size under a CFL-type condition.
We also present results from numerical experiments.
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1. Introduction

In this paper, we propose and analyze a particular spatio-temporal discretization of the following nonlinear
initial-boundary value problem on an interval I = [a, b]:

∂tu = P(u)xx + (Vx(x)u)x, ux(t; a) = ux(t; b) = 0, u(0;x) = u0(x) ≥ 0. (1.1)

We are interested in approximating non-negative weak solutions u : [0, T ]× I → R≥0 to (1.1) on arbitrary time
horizonts T > 0. Our assumptions are that

• the nonlinearity P : R≥0 → R is C2-smooth on R>0, and satisfies

P(0) = 0, P′(r) > 0, lim
r↓0

P′(r) <∞, lim
r→∞P′(r) = +∞, s �→ P(1/s) is concave, (1.2)

the prototypical example being the porous medium term P(r) = rm with some m > 1;
• the potential V : I → R is C2-smooth with

Vx(a) = Vx(b) = 0. (1.3)
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Under the given regularity assumptions, there are numerous possibilities to design efficient numerical schemes
for solution of (1.1), e.g., using finite differences. The particular discretization under consideration here is special
insofar as it is based on the representation of (1.1) as a gradient flow, and it inherits certain qualitative features
of that variational structure.

1.1. Gradient flow structure

We summarize some basic facts about the variational formulation of (1.1). The divergence form in combination
with the no-flux boundary conditions and (1.3) implies the conservation of mass∫

I

u(t;x) dx = M :=
∫

I

u0(x) dx > 0 for all t > 0, (1.4)

and we shall consider M as some fixed quantity from now on. The space DM (I) ⊂ L1(I) of bounded and strictly
positive densities u with total mass M can be endowed with the L2-Wasserstein metric W2; the definition and
elementary properties of this metric are reviewed in Section 2 below. Next, introduce the energy functional E
for u ∈ DM (I) by

E(u) =
∫

I

φ(u(x)) dx +
∫

I

u(x)V (x) dx, (1.5)

where the internal energy potential φ : R≥0 → R is an arbitrary second anti-derivative of r �→ P ′(r)/r; see (2.3).
The link between the energy E and equation (1.1) – which has been rigorously established by Otto [18] – is that
solutions to (1.1) form a gradient flow in the energy landscape of E with respect to the metric W2. Further, it
has been observed by McCann [17] that the functional E is (−Λ)-convex along geodesics in W2, with

Λ = max
x∈I

(−Vxx(x)) ≥ 0. (1.6)

Consequently, the gradient flow is (−Λ)-contractive2. Some implications are:

(1) The energy E(u(t)) is monotonically decreasing in t.
(2) Two solutions u, v diverge at most at an exponential rate of Λ w.r.t. W2, i.e.,

W2(u(t), v(t)) ≤ W2(u0, v0)eΛt for all t > 0. (1.7)

(3) There is a unique non-negative and mass preserving global solution for measure valued initial conditions,
i.e., the density u0 in (1.1) can be replaced by an arbitrary non-negative measure on I with mass M .

Below, we discuss in which sense these properties are inherited by our discretization.

1.2. Discretization

Semi-discretization in time of gradient flow equations like (1.1) has become a key tool in existence proofs and
for the rigorous derivation of a priori estimates. The celebrated minimizing movement scheme [1] (also referred
to as JKO [13] or simply implicit Euler scheme) works in the situation at hand as follows: given a time step
τ > 0, one defines inductively – starting from u0

τ = u0 – approximations un
τ of u(nτ) as minimizers in DM (I) of

“penalized energy functionals” Eτ (·, un−1
τ ), given by

Eτ (u, un−1
τ ) =

1
2τ

W2

(
u, un−1

τ

)2
+ E(u). (1.8)

Thanks to the (−Λ)-convexity of E, it follows from the theory developed in [1] that the functions ūτ : [0,∞) →
DM (I) obtained by piecewise constant interpolation in time converge for τ ↓ 0 to the unique weak solution
u : [0,∞) → DM (I) of (1.1).

2Note that (−Λ)-contractivity with Λ > 0 is a weaker property than contractivity of the flow. Indeed, trajectories may diverge,
but not faster than in (1.7).
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Figure 1. A typical density function u ∈ DM
ξ (I) (left) and inverse distribution function X ∈ Xξ.

To obtain a full (spatio-temporal) discretization, we perform the minimization of Eτ not over the entire
set DM (I), but over a submanifold DM

ξ (I) of finite dimension (K − 1) ∈ N. The discretization parameter
ξ = (ξ0, ξ1, . . . , ξK) is an increasing sequence of numbers ξk ∈ [0,M ], with 0 = ξ0 < ξ1 < ξ2 < · · · < ξK = M .
The corresponding submanifold DM

ξ (I) consists of piecewise constant density functions u ∈ DM (I) of the form

u =
K∑

k=1

uk1(xk−1,xk), (1.9)

where the end points xk of the intervals are variable subject to the constraint

a = x0 < x1 < · · · < xK = b,

and the positive weights uk are given in terms of the xk by

(xk − xk−1)uk = δk := ξk − ξk−1 > 0. (1.10)

One may think of δ1 to δK as lumps of mass, each of which is uniformly distributed on its respective interval
(xk−1, xk], see Figure 1. Our Lagrangian scheme is now defined as follows.

Given a discretization Δ = (τ ; ξ) consisting of a time step τ > 0 and a spatial mesh ξ, and an initial
condition u0

Δ ∈ DM
ξ (I), define a discrete solution uΔ = (u0

Δ, u
1
Δ, . . .) inductively by

un
Δ = argmin

u∈DM
ξ (I)

Eτ

(
u, un−1

Δ

)
for n = 1, 2, . . . (1.11)

The seemingly involved definition of the recursion (1.11) leads to a simple and practical numerical scheme,
whose complexity is comparable to that of a standard discretization of (1.1) by finite differences. In addition,
the Lagrangian nature of the scheme admits a geometric interpretation of the solution: the time-dependent end
points xk(t) of the intervals in (1.9) for the transport of mass elements on I. Concerning structure preservation,
we summarize some noteworthy features of this approach:

• The energy E(un
Δ) is monotone in n, and all un

Δ are positive and have the same mass M .
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• Any two discrete solutions uΔ and vΔ on the same grid Δ satisfy the expansion estimate

W2 (un
Δ, v

n
Δ) ≤ (1 − 2Λτ)−n/2W2

(
u0

Δ, v
0
Δ

)
,

which turns into (1.7) in the limit τ ↓ 0. See Section 5.1.
• The scheme is applicable to arbitrary initial data u0 ∈ L1(I) with finite energy. In fact, weak convergence of
u0

Δ to u0 suffices to conclude strong convergence of the discrete solution uΔ in L1([0, T ] × I) to the correct
weak solution u of (1.1). See Theorem 1.1 below.

• Discrete solutions obey a minimum/maximum principle. See Section 5.2.

The choice of DM
ξ (I) originates from an alternative formulation of equation (1.1). Namely, u is a (positive and

classical) solution to (1.1) iff its inverse distribution function X – see Section 2 for its definition – satisfies the
initial-boundary value problem

∂tX = ψ′(Xξ)ξ − Vx ◦ X, X(t; 0) = a, X(t;M) = b, X(0; ξ) = X0(ξ), (1.12)

where ψ : R+ → R is defined by

ψ(s) = sφ
(
s−1

)
for all s > 0. (1.13)

The variational structure of (1.12) is quite apparent: solutions X to (1.12) are gradient flows of the functional

E(X) =
∫ M

0

ψ (Xξ(ξ)) dξ +
∫ M

0

V ◦ X(ξ) dξ (1.14)

with respect to the usual scalar product on L2([0,M ]). In effect, we discretize the L2-gradient flow (1.12) rather
than the W2-gradient flow (1.1), representing X as a linear combination of piecewise linear ansatz functions
with respect to the (time-independent) mesh ξ.

1.3. Convergence result

Our main result is the following.

Theorem 1.1. Let a non-negative initial condition u0 ∈ L1(I) of mass M with E(u0) <∞ be given, and fix a
time horizont T > 0.

Consider a sequence of discretizations Δ(j) = (τ (j); ξ(j)), consisting of time steps τ (j) ↓ 0 and spatial
meshes ξ(j), and an associated sequence of initial conditions u0

Δ(j) ∈ DM
ξ(j)(I). Assume that u0

Δ(j) → u0 weakly

in L1(I), assume that δ(j)k defined from ξ(j) according to (1.10) satisfies maxk(δ(j)k ) ↓ 0, and further assume
that maxk δ

(j)
k /min� δ

(j)
� ≤ ᾱ and that E(u0

Δ(j)) ≤ E, for appropriate j-independent constants ᾱ,E > 0. Finally,
assume that the following inverse CFL condition holds:(

max
k

δ
(j)
k

)2

< 6ψ′′
(

6ᾱe2ΛT

minx u0
Δ(j)

)
τ (j), (1.15)

with ψ defined in (1.13), and with Λ ≥ 0 from (1.6).
The scheme (1.11) produces a sequence of discrete solutions uΔ(j) . Denote by ūΔ(j) : [0,∞) → DM

ξj
(I) the re-

spective interpolants that are piecewise constant in time, see (6.2). Then ūΔ(j) converges strongly in L1([0, T ]× I)
to the unique weak solution u of (1.1).

A comment is due on condition (1.15). Since ψ′′(s) → 0 for s→ ∞, this condition implies that the non-negative
initial datum u0 needs to be approximated by strictly positive data u0

Δ(j) , and the smaller one whishes to choose
the minimal value of u0

Δ(j) , the finer one needs to make the grid ξ(j). Condition (1.15) thus quantifies the
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intuitive requirement that not only the mesh of ξk’s in [0,M ], but also the induced mesh of xk’s in I should
become arbitrarily fine in the limit, uniformly for all times t ∈ [0, T ]. Consequently, our scheme does not allow
to track propagating fronts – like spreading Barenblatt profiles – directly on the discrete level as in [5, 19], but
it is able to approximate these fronts arbitrarily well with strictly positive solutions if the mesh is sufficiently
fine. Note that – thanks to the implicit nature of scheme – we do not need to impose a smallness condition on
the time step. Such a (classical) CFL condition has been used e.g. for the analysis of the explicit Lagrangian
scheme in [12].

1.4. Related results from the literature

Studies on Lagrangian schemes for (1.1) are widely scattered in the literature. Already MacCamy and
Sokolovsky [16] present a discretization that is almost identical to ours, for (1.1) with P(u) = u2 and V ≡ 0.
Another pioneering work in this direction is the paper by Russo [21], who compares several (semi-)Lagrangian
discretizations in the linear case P(u) = u; extensions to two spatial dimensions are also discussed. Later,
Budd et al. [5] used a moving mesh to capture self-similar solutions of the porous medium equation on the
whole line. The general theme was picked up recently by Carrillo and Moll [7], who define a Lagrangian dis-
cretization of aggregation equations in two space dimensions, based on the reformulation in terms of evolving
diffeomorphisms [10].

The connection between Lagrangian schemes and the gradient flow structure of equation (1.1) was inves-
tigated by Kinderlehrer and Walkington [14] and in a series of unpublished theses [15, 19]. In a recent paper
by Westdickenberg and Wilkening [24], a similar scheme for (1.1) is obtained as a by-product in the process
of designing a structure preserving discretization for the Euler equations. Burger et al. [6] devise a numerical
scheme for (1.1) in dimension two on basis of the gradient flow structure, using the hydrodynamical formulation
of the Wasserstein distance [3] instead of the Lagrangian approach. The Lagrangian approach was adapted to
fourth order equations, namely by Cavalli and Naldi [8] for the Hele-Shaw flow, and by Düring et al. [9] for the
DLSS equation.

In the aforementioned works, numerical schemes are defined and used in experiments; qualitative properties
and convergence are not studied analytically. Some analytical investigations have been carried out by Gosse and
Toscani [12]: for a Lagrangian scheme with explicit time discretization, they prove comparison principles, and
they rigorously discuss stability and consistency. Also, a full discretization of the Keller–Segel model has been
analyzed by Blanchet et al. [4] in view of convergence to equilibrium. However, to the best of our knowledge, a
proof for convergence of discrete to continuous (weak) solutions is not available in the literature.

Finally, a remark is due on an alternative way of proving convergence of the scheme. By use of stability results
for gradient flows [1, 2] and the machinery of Γ -convergence, it seems likely that Theorem 1.1 can be obtained
by exploiting the variational structure more deeply than we do here. In particular, the theory on perturbed
λ-contractive gradient flows developed by Serfaty [22] indicates an alternative route towards the same goal. We
followed the elementary approach based on a priori estimates here, partly in order to avoid heavy machinery,
but mainly with the aim to develop a “stable” concept of proof that generalizes more directly to gradient flows
without convexity properties (like fourth order equations).

1.5. Outline of the paper

Section 2 below summarizes some basic results on inverse distribution functions and convexity in the
Wasserstein metric. In Section 3, we describe in detail the spatial discretization and study the restrictions
of the Wasserstein metric and energy to the DM

ξ (I). The discrete scheme (1.11) is studied in Section 4, and
we derive the Euler–Lagrange equations. Section 5 provides a summary of some qualitative properties of the
discretization, like metric contraction and the minimum/maximum principle. The proof of Theorem 1.1 is given
in Section 6. The paper concludes with the results of various numerical experiments in Section 7, and with a
calculation of the consistency order.
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2. Preliminaries and notations

For an introduction to the theory of optimal transportation, we refer to [23]. A comprehensive theory of
gradient flows in the Wasserstein metric can be found in [1].

2.1. Inverse distribution functions

Throughout the paper, we shall denote by

DM (I) :=
{
u ∈ L1(I) ∩ L∞(I)

∣∣ ess inf
x∈I

u(x) > 0,
∫

I

u(x) dx = M

}
the space of positive density functions of total mass M . For u ∈ DM (I), define its distribution function U : I →
[0,M ] by

U(t;x) =
∫ x

a

u(t; y) dy,

and introduce its inverse function X = U−1 : [0,M ] → I. By our choice of DM (I), the latter is well-defined and
belongs to

X :=
{
X ∈ C0,1([0,M ]; I)

∣∣X(0) = a, X(M) = b, X strictly increasing
}
.

Thanks to the Lipschitz continuity of U and X, we can differentiate the identity U ◦ X(ξ) = ξ at almost every
ξ ∈ [0,M ] and obtain the relation

u(X(ξ))Xξ(ξ) = 1 for a.e. ξ ∈ [0,M ]. (2.1)

The inverse distribution function allows for an explicit representation of the Wasserstein distance in one spatial
dimension.

Lemma 2.1 (see e.g. [23]). Let u0, u1 ∈ DM (I) have inverse distribution functions X0,X1 ∈ X. Then their
Wasserstein distance amounts to

W2(u0, u1) =

(∫ M

0

[X1(ξ) −X0(ξ)]2 dξ

)1/2

, (2.2)

and a minimal geodesic (us)0≤s≤1 connecting u0 to u1 in W2 is given by Xs = sX1 + (1 − s)X0.

2.2. Properties of the energy

Given P : R≥0 → R, let φ : R≥0 → R be a second anti-derivative of r �→ P′(r)/r with φ(0) = 0, and define
ψ : R+ → R by ψ(s) = sφ(1/s).

Proposition 2.2. The function φ is strictly convex and satisfies

P(r) = rφ′(r) − φ(r) for all r ≥ 0. (2.3)

Moreover, ψ(s) → ∞ for s ↓ 0, and ψ′′ is a positive non-increasing function.

Proof. The claims about φ and ψ are direct consequences of the hypotheses in (1.2). By definition, φ′′(r) =
P′(r)/r > 0 for all r > 0, so φ is strictly convex. (2.3) follows by integration of both sides w.r.t. r > 0. It follows
further that

ψ′(s) = φ
(
s−1

)− s−1φ′
(
s−1

)
= −P

(
s−1

)
,

ψ′′(s) = s−2P′ (s−1
)
> 0,

ψ′′′(s) = − d2P
(
s−1

)
/ ds2 ≥ 0,
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so ψ′′ is indeed positive and non-increasing. Finally,

lim
s↓0

ψ(s) = ψ(1) + lim
s↓0

∫ 1

s

P
(
σ−1

)
dσ = ψ(1) + lim

r→∞

∫ r

1

P(ρ)
ρ2

dρ = +∞

since P′(ρ) → ∞ for ρ→ ∞, and hence also P(ρ)/ρ→ ∞. �

Introduce the functionals E on DM (I) and E on X, respectively, by (1.5) and (1.14), then the following result
is an easy consequence of the change of variables x = X(ξ) under the integrals in the definition (1.5).

Lemma 2.3. For every u ∈ DM (I) with inverse distribution function X ∈ X, one has

E(u) = E(X). (2.4)

The convexity of the functional E with respect to the Wasserstein metric is most conveniently studied when
the latter is considered as a functional of X instead of u. Indeed, by Lemma 2.1 above, geodesic interpolation
between u0, u1 ∈ DM (I) corresponds to linear interpolation between X0,X1 ∈ X.

Lemma 2.4. The functional E is bounded from below,

E(X) ≥ E := (b − a)φ
(

M

b− a

)
+M min

x∈I
V (x), (2.5)

and it is (−Λ)-convex on X with the Λ given in (1.6), i.e.,

E
(
(1 − s)X0 + sX1

) ≤ (1 − s)E
(
X0

)
+ sE

(
X1

)
+
Λs(1 − s)

2

∫ M

0

[
X0(ξ) − X1(ξ)

]2
dξ (2.6)

for all X0,X1 ∈ X, and every s ∈ [0, 1].

Proof. Since φ is convex, the lower bound follows by Jensen’s inequality:

E(X) ≥Mψ

(∫ M

0

Xξ(ξ)
dξ
M

)
+
∫ M

0

min
x∈I

V (x) dξ.

By definition of ψ, this yields (2.5). Next, let X0,X1 ∈ X and s ∈ [0, 1] be given. Since ψ : R+ → R is convex by
hypothesis, it follows in particular that∫ M

0

ψ
(
(1 − s)X0

ξ(ξ) + sX1
ξ(ξ)

)
dξ ≤ (1 − s)

∫ M

0

ψ
(
X0

ξ(ξ)
)

dξ + s

∫ M

0

ψ
(
X1

ξ(ξ)
)

dξ.

Further, a Taylor expansion yields

V
(
(1 − s)y + sz

) ≤ (1 − s)V (y) + sV (z) +
Λ

2
s(1 − s)(y − z)2

for arbitrary y, z ∈ I. In combination, this implies inequality (2.6). �

3. Spatial discretization

Inside the space X of inverse distribution functions, we define the finite-dimensional subspace Xξ of those func-
tions, which are piecewise affine with respect to a given partition ξ of [0,M ] into sub-intervals. Correspondingly,
there is a finite-dimensional submanifold DM

ξ (I) of DM (I) consisting of those densities, whose inverse distribu-
tion functions belong to Xξ. Densities in DM

ξ (I) are piecewise constant. Since we shall work simultaneously in
the spaces DM

ξ (I) and Xξ, we need to introduce various notations.
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3.1. Ansatz spaces

A vector ξ = (ξ0, ξ1, . . . , ξK) with entries ξj such that

0 = ξ0 < ξ1 < · · · < ξK = M

defines a partition of [0,M ] into K sub-intervals. We denote the lengths of the intervals by

δk = ξk − ξk−1 for all k = 1, . . . ,K,

and introduce further

δ(ξ) = min
k
δk, δ(ξ) = max

k
δk, α(ξ) =

δ(ξ)
δ(ξ)

· (3.1)

The associated (K − 1)-dimensional reduction of the space X is given by

Xξ :=
{
X ∈ X

∣∣X piecewise affine on each [ξk−1, ξk], for k = 1, . . . ,K
}
.

Functions in Xξ are conveniently represented as linear combinations of theK+1 hat functions θ0 to θK defined by

θm(ξ) =

⎧⎨⎩(ξ − ξm−1)/δm for ξm−1 ≤ ξ ≤ ξm (if m ≥ 1),
(ξm+1 − ξ)/δm+1 for ξm ≤ ξ ≤ ξm+1 (if m ≤ K − 1),
0 otherwise.

More precisely, there is a one-to-one correspondence between functions X ∈ Xξ and vectors in

xξ :=
{
�x = (x1, . . . , xK−1)

∣∣ a < x1 < x2 < · · · < xK−1 < b
} ⊂ IK−1;

this correspondence is established by means of Xξ : xξ → Xξ, with

X = Xξ[�x] =
K∑

k=0

xkθk. (3.2)

Remark 3.1. By definition, �x ∈ xξ has components x1 to xK−1. In (3.2) above and for the rest of the paper,
we shall always use the convention that

x0 = a and xK = b. (3.3)

Also, we introduce in analogy to δ(ξ) the mesh width

δ(�x) = max
k

(xk − xk−1). (3.4)

Occasionally, it will be more convenient to work with vectors �z ∈ R
K
+ of difference quotients: define zξ : xξ → R

K
+

by

�z = (z1, . . . , zK) = zξ[�x] ∈ R
K
+ , with zk =

xk − xk−1

δk
, (3.5)

using again our convention (3.3).
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Finally, we introduce the associated (K−1)-dimensional submanifold DM
ξ (I) := uξ[xξ] ⊂ DM (I) as the image

of the injective map uξ : xξ → DM
ξ (I) with

uξ[�x] =
K∑

k=1

uk1(xk−1,xk], where uk =
ξk − ξk−1

xk − xk−1
· (3.6)

3.2. Representation of the Wasserstein distance

The Wasserstein distance between any two elements of DM
ξ (I) is easy to compute using (2.2).

Lemma 3.2. Fix a discretization ξ, and let u0, u1 ∈ DM
ξ (I) have representations u0 = uξ[�x0], u1 = uξ[�x1],

with �x0,�x1 ∈ xξ. Then

W2

(
u0, u1

)2
=

(
�x0 − �x1

)T
W

(
�x0 − �x1

)
(3.7)

with the symmetric tridiagonal matrix W = (Wm,k)K−1
m,k=1 ∈ R

(K−1)×(K−1) given by

W =
1
6

⎛⎜⎜⎜⎜⎝
2(δ1 + δ2) δ2 · · · 0 0

δ2 2(δ2 + δ3) · · · 0 0
...

...
. . .

...
...

0 0 · · · 2(δK−2 + δK−1) δK−1

0 0 · · · δK−1 2(δK−1 + δK)

⎞⎟⎟⎟⎟⎠ . (3.8)

Moreover, for every v ∈ R
K−1,

1
6

K−1∑
k=1

(δk + δk+1)v2
k ≤ vT Wv ≤ 1

2

K−1∑
k=1

(δk + δk+1)v2
k. (3.9)

Proof. The first statement of this lemma follows by straight-forward calculations. To prove (3.9), let v ∈ R
K−1

be given and observe that

3vT Wv =
K−1∑
m=1

(δm + δm+1)v2
m +

K−1∑
m=2

δmvmvm−1

= δ1v
2
1 + δKv

2
K−1 +

K−1∑
m=2

δm
(
v2

m + v2
m−1

)
+

K∑
m=1

δmvmvm−1.

From here, (3.9) is immediately deduced using binomial formulas. �

3.3. Representation of the energy

The restriction of the energy E from (2.4) to the subspace Xξ is naturally associated to the functional
Eξ : xξ → R with

Eξ(�x) := E (Xξ[�x]) = E (uξ[�x]) . (3.10)

By straight-forward calculations, one obtains the following more explicit representation.
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Lemma 3.3. For every �x ∈ xξ, we have

Eξ(�x) =
K∑

k=1

δkψ

(
xk − xk−1

δk

)
+
∫ M

0

V (Xξ[�x](ξ)) dξ. (3.11)

Moreover, the (Euclidean) gradient vector ∂�xEξ(�x) =
(
∂xmEξ(�x)

)K−1

m=1
∈ R

K−1 is given by

[
∂�xEξ(�x)

]
m

= −ψ′
(
xm+1 − xm

δm+1

)
+ ψ′

(
xm − xm−1

δm

)
+
∫ M

0

Vx (Xξ[�x](ξ)) θm(ξ) dξ, (3.12)

and the Hessian matrix ∂2
�xEξ(�x) =

(
∂xmxk

Eξ(�x)
)K−1

m,k=1
∈ R

(K−1)×(K−1) is symmetric with

[
∂2

�xEξ (�x)
]
m,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
δm+1

ψ′′
(
xm+1 − xm

δm+1

)
+

1
δm

ψ′′
(
xm − xm−1

δm

)
+
∫ M

0

Vxx (Xξ [�x]) θ2m dξ if m = k,

− 1
δm

ψ′′
(
xm − xm−1

δm

)
+
∫ M

0

Vxx (Xξ [�x]) θmθm−1 dξ if k = m− 1,

0 if 1 ≤ k < m− 1.

(3.13)

Further, the functional Eξ inherits boundedness and convexity from E.

Lemma 3.4. Eξ is bounded from below by E defined in (2.5). Further, it is (−Λ)-convex with respect to the
quadratic structure induced by W, i.e., ∇2

Eξ(�x) + ΛW is positive semi-definite for arbitrary �x0 ∈ xξ. Conse-
quently, (

�x1 − �x0
)T (

∂�xEξ

(
�x1
)− ∂�xEξ

(
�x0
)) ≥ −Λ (

�x1 − �x0
)T

W
(
�x1 − �x0

)
(3.14)

holds for every �x0,�x1 ∈ xξ.

Proof. Boundedness from below is a trivial consequence of (2.5) and the definition of Eξ by restriction of E.
Convexity is a direct consequence of the convexity (2.6) of E, taking into account (3.7), and that Xξ is an affine
map. The estimate (3.14) is obtained by Taylor expansion. �

4. Time-discrete evolution

Throughout this section, we fix a pair Δ = (τ, ξ) of a time step with τ > 0 and a spatial discretization
ξ = (ξ0, . . . , ξK).

4.1. Minimizing movements

To start with, we verify that the procedure (1.11) can be used to define inductively – starting from a
prescribed initial datum u0

Δ ∈ DM
ξ (I) – a discrete solution uΔ := (un

Δ)∞n=0. By definition of DM
ξ (I) as the image

of xξ under uξ, and by (2.2) and (3.10),

un
Δ = uξ [�xn

Δ] (4.1)

establishes a one-to-one correspondence between discrete solutions uΔ and sequences (�xn
Δ)∞n=0, where each

�xn
Δ ∈ xξ is a minimizer in

EΔ

(
�x,�xn−1

Δ

)
:=

1
2τ

(
�x − �xn−1

Δ

)T
W

(
�x − �xn−1

Δ

)
+ Eξ (�x) → min. (4.2)
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Proposition 4.1. Assume that τΛ < 1, with Λ ≥ 0 defined in (1.6), and let u0
Δ = uξ[�x0

Δ] ∈ DM
ξ (I) be given.

Then there are sequences (un
Δ)∞n=0 and (�xn

Δ)∞n=0, related by (4.1), such that un
Δ ∈ DM

ξ (I) is the unique minimizer
of Eτ (·, un−1

Δ ) on DM
ξ (I), and �xn

Δ is the unique minimizer of EΔ(·,�xn−1
Δ ), for every n ∈ N. Moreover, �xn

Δ is the
unique solution in xξ to the system of Euler–Lagrange equations

1
τ
W

(
�x − �xn−1

Δ

)
= −∂�xEξ (�x) , (4.3)

with ∂�xEξ(�x) explicitly given in (3.12).

Proof. It suffices to prove unique solvability of (4.2) for �x ∈ xξ. To this end, observe that

EΔ

(
�x,�xn−1

Δ

)
= Eξ (�x) +

Λ

2
(
�x − �xn−1

Δ

)T
W

(
�x − �xn−1

Δ

)
+

1
2
(
τ−1 − Λ

) (
�x − �xn−1

Δ

)T
W

(
�x − �xn−1

Δ

)
for every �x ∈ xξ. From Lemma 2.4, we know that the sum of the first two terms on the right-hand side constitutes
a convex function in �x ∈ xξ. Since τΛ < 1, and since W is positive definite by Lemma 3.2, the last term is
strictly convex. Thus, EΔ(·,�xn−1

Δ ) possesses at most one critical point in xξ.
To show the existence of a minimizer, let (�x(j))j∈N be a minimizing sequence for EΔ(·,�xn−1) in xξ. Since

each of the K − 1 components x(j)
k belongs to the compact interval I, we may assume without loss of generality

that �x(j) converges to some �x∗ ∈ IK−1. It remains to be proven that �x∗ ∈ xξ. Since (�x(j))j∈N is a minimizing
sequence, EΔ(�x(j),�xn−1) is bounded, and so, for every m ∈ {1, . . . ,K}:

C ≥ 1
2τ

(
�x(j) − �xn−1

Δ

)T

W
(
�x(j) − �xn−1

Δ

)
+

K∑
k=1

δkψ

(
x

(j)
k − x

(j)
k−1

δk

)
+
∫ M

0

V
(
Xξ

[
�x(j)

]
(ξ)

)
dξ

≥ δmψ

(
x

(j)
m − x

(j)
m−1

δm

)
+ (M − δm)ψ

(
b− a− (x(j)

m − x
(j)
m−1)

M − δm

)
+M min

x∈I
V (x).

Since ψ(s) → ∞ for s ↓ 0, this implies that x(j)
m − x

(j)
m−1 ≥ εδm > 0 with some ε > 0 for all j, and thus also

x∗m − x∗m−1 ≥ εδm > 0, implying �x∗ ∈ xξ. By continuity of EΔ(·,�xn−1
Δ ) on xξ, it follows that �x∗ is a minimizer.

Consequently, EΔ(·,�xn−1
Δ ) possesses a unique critical point in xξ, thus the corresponding Euler–Lagrange

equations (4.3) are uniquely solvable. �

4.2. Euler–Lagrange equations for the difference quotients

The analysis that follows will be based primarily on another representation of the system (4.3) of Euler–
Lagrange equations, which is formulated in terms of the difference quotients �zn

Δ = (zn
1 , . . . , z

n
K) introduced

in (3.5):

zn
k =

xn
k − xn

k−1

δk
=

1
un

k

· (4.4)

Introduce quadratic analogues Θ1, . . . , ΘK : [0,M ] → R of the piecewise linear hat functions θ0, . . . , θK as
follows. Let the numbers γ1, . . . , γK ∈ (−1, 1) be defined by γ1 = γK = 0, and

γk =
δk+1 − δk−1

δk+1 + 2δk + δk−1
for k = 2, . . . ,K − 1. (4.5)
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Then the Θk are given by

Θk(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1+γk

2δk−1
(ξ − ξk−2)2 if ξk−2 ≤ ξ ≤ ξk−1,

1−γ2
k

4 (δk+1 + δk + δk−1) − 1
4δk

(2ξ − (ξk + ξk−1) − γkδk)2 if ξk−1 ≤ ξ ≤ ξk,

1−γk

2δk+1
(ξk+1 − ξ)2 if ξk ≤ ξ ≤ ξk+1,

0 otherwise

for k = 2, . . . ,K − 1, and by

Θ1(ξ) =

⎧⎪⎪⎨⎪⎪⎩
1
2 (δ1 + δ2) − 1

2δ1
ξ2 if 0 ≤ ξ ≤ ξ1,

1
2δ2

(ξ2 − ξ)2 if ξ1 ≤ ξ ≤ ξ2,

0 otherwise,

ΘK(ξ) =

⎧⎪⎪⎨⎪⎪⎩
1

2δK−1
(ξ − ξK−2)2 if ξK−2 ≤ ξ ≤ ξK−1,

1
2 (δK + δK−1) − 1

2δK
(M − ξ)2 if ξK−1 ≤ ξ ≤M,

0 otherwise.

For each k = 2, . . . ,K − 1, the function Θk is supported on [ξk−2, ξk+1], and it satisfies

−(Θk)ξ = (1 − γk)θk − (1 + γk)θk−1. (4.6)

And (Θ1)ξ = −θ1, (ΘK)ξ = θK−1. Next, we define the matrix W̃ = (W̃m,k)K
m,k=1 ∈ R

K×K by

W̃m,k =
∫ ξk

ξk−1

Θm(ξ) dξ. (4.7)

The matrix W̃ essentially plays the same role for the �zn
Δ as W for the �xn

Δ.

Lemma 4.2. The matrix W̃ is tri-diagonal and has entries

W̃m,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6δ

2
m + 1−γm

4 δmδm+1 + 1+γm

4 δmδm−1 if 2 ≤ k = m ≤ K − 1,
1
3δ

2
1 + 1

2δ2δ1 if k = m = 1,
1
3δ

2
K + 1

2δK−1δK if k = m = K,

1+γm

6 δ2m−1 if k = m− 1,
1−γm

6 δ2m+1 if k = m+ 1,

0 otherwise.

(4.8)

Proof. The explicit representation of W̃ is obtained by a tedious, but straight-forward computation that requires
nothing but integration of quadratic polynomials and the use of (4.5). �

Lemma 4.3. For the solution (�xn
Δ)∞n=0 obtained in Proposition 4.1, let (�zn

Δ)∞n=0 be the associated sequence
from (4.4). Then each �zn

Δ satisfies the following system of Euler–Lagrange equations:

1
τ

[
W̃

(
�zn

Δ −�zn−1
Δ

)]
m

= (1 − γm)ψ′ (zn
m+1

)− 2ψ′ (zn
m) + (1 + γm)ψ′ (zn

m−1

)
−

m+1∑
k=m−1

zn
k

∫ ξk

ξk−1

Vxx (Xξ [�xn])Θm dξ (4.9)
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for every m = 2, . . . ,K − 1, and

1
τ

[
W̃

(
�zn

Δ −�zn−1
Δ

)]
1

= ψ′ (zn
2 ) − ψ′ (zn

1 ) −
2∑

k=1

zn
k

∫ ξk

ξk−1

Vxx (Xξ [�xn])Θ1 dξ, (4.10)

1
τ

[
W̃

(
�zn

Δ −�zn−1
Δ

)]
K

= ψ′ (zn
K−1

)− ψ′ (zn
K) −

K∑
k=K−1

zn
k

∫ ξk

ξk−1

Vxx (Xξ [�xn])ΘK dξ. (4.11)

Proof. Fix an index m ∈ {2, . . . ,K−1}. With γm given by (4.5), multiply the mth and the (m−1)th component
of the Euler–Lagrange system (4.3) by 1− γm and 1 + γm, respectively, and substract the latter from the first.
This yields

1
τ

(
1 − γm

6
δm+1x

n
m+1 +

[
1 − γm

3
(δm + δm+1) − 1 + γm

6
δm

]
xn

m

+
[
1 − γm

6
δm−1 − 1 + γm

3
(δm + δm−1)

]
xn

m−1 −
1 + γm

6
δm−1x

n
m−2

)
= (1 − γm)ψ′ (zn

m+1

)− 2ψ′ (zn
m) + (1 + γm)ψ′ (zn

m−1

)
−
∫ M

0

Vx (Xξ [�xn]) [(1 − γm)θm − (1 + γm)θm−1] dξ.

The expression on the left-hand side can be rewritten as

1 − γm

6
δm+1

(
xn

m+1 − xn
m

)
+
[
1 − γm

2
δm+1 +

1 − 3γm

6
δm

]
xn

m

−
[
1 + γm

2
δm−1 +

1 + 3γm

6
δm

]
xn

m−1 +
1 + γm

6
δm−1

(
xn

m−1 − xn
m−1

)
= W̃m,m+1z

n
m+1 + W̃m,mz

n
m + W̃m,m−1z

n
m−1,

where we have used the relation
1 − γm

2
δm+1 +

1 − 3γm

6
δm =

1 + γm

2
δm−1 +

1 + 3γm

6
δm =

1
δm

W̃m,m,

which is a consequence of our definition of γm in (4.5). Thus, we obtain

1
τ

[
W̃

(
�zn

Δ −�zn−1
Δ

)]
m

= (1 − γm)ψ′ (zn
m+1

)− 2ψ′ (zn
m) + (1 + γm)ψ′ (zn

m−1

)
−
∫ M

0

Vx (Xξ [�xn
Δ]) [(1 − γm)θm − (1 + γm)θm−1] dξ. (4.12)

Using property (4.6) of the function Θm, and integrating by parts, we arrive at

−
∫ M

0

Vx (Xξ [�xn
Δ]) [(1 − γm)θm − (1 + γm)θm−1] dξ =

∫ M

0

Vx (Xξ [�xn
Δ]) (Θm)ξ dξ = Vx (Xξ [�xn

Δ]) (Θm)ξ

∣∣∣ξ=M

ξ=0

−
∫ M

0

(Xξ [�xn
Δ])ξ Vxx (Xξ [�xn

Δ])Θm dξ. (4.13)

The boundary terms in the second line vanish, since Θm(0) = Θm(M) = 0. Finally, observe that
(
Xξ[�xn

Δ]
)
ξ
(ξ) =

zk for all ξk−1 < ξ < ξk. Insert the result into (4.12) to arrive at (4.9).
Equations (4.10) and (4.11) are directly obtained from (4.3) for m = 1 and for m = K − 1, respectively, after

an integration by parts like in (4.13). The boundary term vanishes because of hypothesis (1.3). �
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4.3. Energy dissipation

The estimates derived below are at the core of our convergence proof in Section 6. We start with two energy-
type estimates, which are classical in the theory of gradient flows. We recall that un

Δ = uξ[�xn
Δ], and that the

gradient ∂�xEξ is explicitly given in (3.12).

Lemma 4.4. For every N ∈ N,

1
2τ

N∑
n=1

W2

(
un

Δ, u
n−1
Δ

)2 ≤ Eξ

(
u0

Δ

)− Eξ

(
uN

Δ

)
, (4.14)

τ

2

N∑
n=1

[∂�xEξ (�xn
Δ)]T W−1 [∂�xEξ (�xn

Δ)] ≤ Eξ

(
u0

Δ

)− Eξ

(
uN

Δ

)
. (4.15)

Proof. Since un
Δ minimizes EΔ(·, un−1

Δ ), we have in particular EΔ(un
Δ, u

n−1
Δ ) ≤ EΔ(un−1

Δ , un−1
Δ ), which implies

that

1
2τ

W2

(
un

Δ, u
n−1
Δ

)2 ≤ E
(
un−1

Δ

)− E (un
Δ) .

Evaluation of the telescopic sum yields (4.14). For proving (4.15), multiply the system (4.3) of Euler–Lagrange
equations first by (τ/2)W−1, and then by the transpose of (4.3) itself from the left, and sum over n = 1 to
n = N :

τ

2

N∑
n=1

[∂�xEξ (�xn
Δ)]T W−1 [∂�xEξ (�xn

Δ)] =
N∑

n=1

(
1
2τ

(
�xn

Δ − �xn−1
Δ

)T
W

(
�xn

Δ − �xn−1
Δ

))
.

Insert this in (4.14) to obtain (4.15). �

5. Qualitative properties of the discretization

Throughout this section, we fix a space-time discretization Δ = (τ, ξ) and consider a given discrete solution
uΔ = (un

Δ)∞n=0.

5.1. Metric contraction

One of the fundamental properties of our solution scheme is the preservation of the bound (1.7) on the
divergence of solutions.

Proposition 5.1. If vΔ = (vn
Δ)∞n=0 is any other discrete solution, then

W2 (un
Δ, v

n
Δ)2 ≤ (1 − 2Λτ)−nW2

(
u0

Δ, v
0
Δ

)2
(5.1)

for all n ∈ N.

Remark 5.2. Since (1− 2Λτ)n < exp(−2Λnτ) for every n ∈ N, estimate (5.1) is slightly worse for every τ > 0
than the limiting estimate (1.7).

Proof. For �xΔ, �yΔ such that un
Δ = uξ[�xn

Δ], vn
Δ = uξ[�yn

Δ] we know by Proposition 4.1 that

W
(
�xn

Δ − �xn−1
Δ

)
= −τ∂�xEξ (�xn

Δ) and W
(
�yn

Δ − �yn−1
Δ

)
= −τ∂�xEξ (�yn

Δ) .

Substracting these equations, we obtain

W (�xn
Δ − �yn

Δ) + τ (∂�xEξ (�xn
Δ) − ∂�xEξ (�yn

Δ)) = W
(
�xn−1

Δ − �yn−1
Δ

)
. (5.2)
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Multiply (5.2) first by W−1 and then by the transpose of (5.2) itself from the left, and use the positivity of
W−1 – see Lemma 3.2 – to obtain

(�xn
Δ − �yn

Δ)T W (�xn
Δ − �yn

Δ) + 2τ (�xn
Δ − �yn

Δ)T (∂�xEξ (�xn
Δ) − ∂�xEξ (�yn

Δ))

≤ (
�xn−1

Δ − �yn−1
Δ

)T
W

(
�xn−1

Δ − �yn−1
Δ

)
.

Combining this with the convexity property (3.14), we arrive at the recursive relation

(1 − 2Λτ) (�xn
Δ − �yn

Δ)T W (�xn
Δ − �yn

Δ) ≤ (
�xn−1

Δ − �yn−1
Δ

)T
W

(
�xn−1

Δ − �yn−1
Δ

)
.

Iteration of this estimate and application of (3.7) yields (5.1). �

5.2. The maximum and minimum principles

Recall that ψ′′ is a positive and non-increasing function by Lemma 2.3, and recall the definition of α(ξ)
from (3.1).

Proposition 5.3 (Minimum principle). Assume that Λτ < 1/2, and assume further that ξ and τ are related
by the inverse CFL condition

δ(ξ)2 ≤ 6ψ′′ (Z∗
T ) τ, where Z∗

T :=
6α(ξ)e2TΛ

minx u0
Δ

· (5.3)

Then, for every n with nτ ≤ T ,

min
x
un

Δ ≥ e−2nτΛ min
x
u0

Δ. (5.4)

Proof. The minimum principle (5.4) for uΔ is equivalent to a maximum principle for �zΔ. By induction on n, we
prove

Z(n) := max
k

zn
k ≤ (1 − Λτ)−n max

k
z0

k, (5.5)

which is a slightly sharper estimate than (5.4) since (1− τΛ) > e−2τΛ under our assumption τΛ < 1/2. So fix n
with nτ ≤ T and assume that zn−1

k ≤ Z(n−1) for all k. Suppose that Z(n) = zn
m for some m ∈ {2, . . . ,K − 1}.

We estimate the integral term in the Euler–Lagrange equation (4.9), using the positivity of the zn
k and that

Θm ≥ 0: [
W̃�zn

]
m

≤
[
W̃�zn−1

]
m

+ τ
(
(1 − γm)ψ′ (zn

m+1

)− 2ψ′ (zn
m) + (1 + γm)ψ′ (zn

m−1

))
+ Λτ

m+1∑
k=m−1

zn
k

∫ ξk

ξk−1

Θm dξ.

Recalling (4.7), we conclude further that

(1 − Λτ)
[
W̃�zn

]
m

≤
[
W̃�zn−1

]
m

+ (1 − γm)τ
(
ψ′ (zn

m+1

)− ψ′ (zn
m)

)
+ (1 + γm)τ

(
ψ′ (zn

m−1

)− ψ′ (zn
m)

)
. (5.6)

Since Z(n) = zn
m ≥ zn

k for all k, and since ψ′′ > 0 is non-increasing, it follows that

ψ′ (zn
m+1

)− ψ′ (zn
m) ≤ −ψ′′

(
Z(n)

) (
zn

m − zn
m+1

)
,

ψ′ (zn
m−1

)− ψ′ (zn
m) ≤ −ψ′′

(
Z(n)

) (
zn

m − zn
m−1

)
. (5.7)
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In particular, these terms are non-positive, and so (5.6) implies

(1 − Λτ)W̃m,mZ
(n) ≤ σmZ

(n−1), with σm = W̃m,m−1 + W̃m,m + W̃m,m+1.

From the explicit form of W̃ in (4.8), we obtain σm ≤ 3α(ξ)W̃m,m, and by means of the induction hypotheses,
we conclude the rough bound

Z(n) ≤ 6α(ξ)Zn−1 ≤ 6α(ξ)(1 − Λτ)−(n−1) max
k

z0
k ≤ Z∗

T . (5.8)

We return to (5.6), insert (5.7), use that ψ′′ is non-increasing, and find after some manipulations:

(1 − Λτ)σmZ
(n) ≤ σmZ

(n−1) + (1 − γm)
(

1 − Λτ

6
δ2m+1 − τψ′′ (Z∗

T )
)(

zn
m − zn

m−1

)
+ (1 + γm)

(
1 − Λτ

6
δ2m−1 − τψ′′ (Z∗

T )
)(

zn
m − zn

m+1

)
.

The inverse CFL condition (5.3) implies non-positivity of the last two terms, so (5.8) refines to

Z(n) ≤ (1 − Λτ)−1Z(n−1) ≤ (1 − Λτ)−n max
k

z0
k.

If the maximum is attained at one of the boundary points, m = 1 or m = K, then a similar calculation can be
carried out using (4.10) or (4.11), respectively, instead of (4.9). �

Similarly to the minimum principle, one obtains the following maximum principle. Notice that the inverse CFL
condition is the same as before, i.e., it involves minx u

0
Δ and not maxx u

0
Δ.

Proposition 5.4 (maximum principle). Let all the hypotheses of Proposition 5.3 hold, and assume – in addition
to (5.3) – that

(1 + λτ)δ(ξ)2 ≤ 6τψ′′(Z∗
T ), where λ := max

x∈I
Vxx ≥ 0.

Then, for every n with nτ ≤ T ,

max
x

un
Δ ≤ e2nτλ max

x
u0

Δ.

We omit the proof, which is very similar to the one given above.

5.3. Regularity

Below, we derive a bound on the time-integrated total variation of the considered discrete solution uΔ which
is independent on the discretization Δ. This bound provides the key a priori estimate for the convergence proof
in the next section. The use of total variation (instead of e.g. Sobolev norms) is natural in our context, since it
can be directly evaluated on the piecewise constant profiles un

Δ.
Recall that the total variation of a function f ∈ L1(I) is given by

{f}TV := sup

{∫ b

a

f(x)ϕ′(x) dx
∣∣∣∣ϕ ∈ Lip(I), ϕ(a) = ϕ(b) = 0, sup

x∈I
|ϕ(x)| ≤ 1

}
. (5.9)

If f is a piecewise constant function, taking values fk on intervals (xk−1, xk], with our usual convention a =
x0 < x1 < · · · < xK = b, then the integral in (5.9) amounts to∫ b

a

f(x)ϕ′(x) dx =
K∑

k=1

[f(x)ϕ(x)]xk−0
x=xk−1+0 =

K−1∑
k=1

(fk − fk+1)ϕ(xk),
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where we have used that ϕ(a) = ϕ(b) = 0. Consequently, for such f , the supremum in (5.9) equals

{f}TV =
K−1∑
k=1

|fk+1 − fk| (5.10)

and is attained for every ϕ ∈ Lip(I) with ϕ(xk) = sgn(fk − fk+1) at k = 1, . . . ,K − 1.

Proposition 5.5. For every N ∈ N,

τ
N∑

n=1

{P (un
Δ)}2

TV ≤ C (Eξ

(
u0

Δ

)
, Nτ

)
, (5.11)

where

C(E, T ) = 2M
[
2(E − E) +MT sup

x∈I
|Vx(x)|2]. (5.12)

Proof. Fix some time index n. Let Xn = Xξ[�xn
Δ] be the inverse distribution function of un

Δ. Further, let �y ∈ R
K−1

with components yk ∈ [−1, 1] be given, and introduce Y : [0,M ] → R by

Y =
K−1∑
k=1

ykθk.

Note that Y does not belong to Xξ, but Y(0) = Y(M) = 0 instead. With y0 = yK = 0,

K−1∑
k=1

[∂�xEξ (�xn
Δ)]k yk =

K−1∑
k=1

(
−ψ

(
xn

k+1 − xn
k

δk+1

)
+ ψ

(
xn

k − xn
k−1

δk

)
+
∫ M

0

Vx (Xn) θk dξ

)
yk

=
K∑

k=1

δkψ

(
xn

k − xn
k−1

δk

)
yk − yk−1

δk
+
∫ M

0

Vx (Xn)
K−1∑
k=1

ykθk dξ

=
∫ M

0

ψ′ (Xn
ξ

)
Yξ dξ +

∫ M

0

Vx (Xn)Y dξ

=
∫ b

a

ψ′
(
Xn

ξ ◦ (Xn)−1
) Yξ ◦ (Xn)−1

Xn
ξ ◦ (Xn)−1 dx+

∫ M

0

Vx (Xn)Y dξ. (5.13)

On one hand, we have by definition of ψ and by (2.1) that

ψ
(
Xn

ξ ◦ (Xn)−1
)

= −P

(
1

Xn
ξ ◦ (Xn)−1

)
= −P (un

Δ) a.e. on I. (5.14)

On the other hand, ϕ := Y ◦ (Xn)−1 is a (piecewise affine) Lipschitz function with

ϕx =
Yξ ◦ (Xn)−1

Xn
ξ ◦ (Xn)−1 · (5.15)

Moreover, by the Cauchy–Schwarz inequality,

−
K−1∑
k=1

[∂�xEξ (�xn
Δ)]k yk ≤ (

�yT W�y
)1/2

(
[∂�xEξ (�xn

Δ)]T W−1 [∂�xEξ (�xn
Δ)]

)1/2

, (5.16)
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and �yT W�y ≤ M by (3.8), and since |yk| ≤ 1. Using (5.14), (5.15), (5.16) and |Y| ≤ 1 in (5.13), we eventually
arrive at ∫ b

a

P (un
Δ)ϕx dx ≤

(
M [∂�xEξ (�xn

Δ)]T W−1 [∂�xEξ (�xn
Δ)]

)1/2

+M sup
x∈I

|Vx(x)|. (5.17)

The function P(un
Δ) is piecewise constant on the intervals (xn

k−1, x
n
k ]. And ϕ is Lipschitz with

sup
x∈I

|ϕ(x)| = sup
ξ∈[0,M ]

|Y(ξ)| = max
k

|yk| ≤ 1, ϕ(a) = Y(0) = 0 = Y(M) = ϕ(b).

Moreover, the values ϕ(xn
k ) = yk can be chosen arbitrarily in [−1, 1] for k = 1, . . . ,K − 1. Thus – recalling our

discussion preceeding Proposition 5.5 – the right-hand side of inequality (5.17) is a bound on {P (un
Δ)}TV. To

obtain (5.11), take the square on both sides, sum the resulting inequalities from n = 1 to n = N , and apply the
energy estimate (4.15). �

6. Convergence

In this section, we prove Theorem 1.1. Let a time horizont T > 0 and an initial condition u0 ∈ L1(I) with
E(u0) <∞ be given. We consider a family Δj = (τj , ξj) of time-space discretizations, with j ∈ N. Accordingly,
we denote by Kj the number of nodes of ξj , and Nj is the smallest integer with τjNj ≥ T . Throughout this
section, we assume all the hypotheses of Theorem 1.1:

• τj ↓ 0 and δ(ξj) ↓ 0 as j → ∞;
• the initial conditions u0

Δj
∈ DM

ξj
(I) converge to u0 weakly in L1(I);

• uniformly in j ∈ N,

α(ξj) ≤ α <∞, E
(
u0

Δj

)
≤ E <∞, δ(ξj)

2 ≤ 6ψ′′
(

6αe2ΛT

minx u0
Δj

)
τj . (6.1)

Denote by (un
Δj

)N
n=0 the corresponding discrete solutions obtained as in Proposition 4.1, and introduce the

time-interpolated functions ūΔj : [0, T ] → DM
ξj

(I) by

ūΔj (t;x) = un
Δj

(x) for all t ∈ ((n− 1)τj , nτj ] ∩ [0, T ]. (6.2)

The following preliminary result plays an important role in the convergence proof.

Lemma 6.1. With the maximal mesh width δ(�x) defined in (3.4), we have

max
n≤Nj

δ
(
�xn

Δj

)
→ 0 as j → ∞. (6.3)

Proof. This is a consequence of the minimum principle and hypothesis (6.1). It follows from the assumption
limr↓0 P′(r) <∞ in (1.2) that

ψ′′
(

e2ΛT

minx u0
Δj

)
≤ C

(
minx u

0
Δj

e2ΛT

)2

for some appropriate constant C. Recalling that (xk − xk−1)uk = δk, Proposition 5.3 thus implies – uniformly
in j and n ≤ Nj – that

δ
(
�xn

Δj

)2

≤
(

δ(ξj)
minx un

Δj

)2

≤ δ(ξj)
2

(
e2ΛT

minx u0
Δj

)2

≤ Cδ(ξj)
2

ψ′′
(

e2ΛT

minx u0
Δj

) ≤ 6Cτj ,

using hypothesis (6.1). Since τj ↓ 0 as j → ∞, this proves the claim. �
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6.1. Compactness

From now on, denote by P(I) the metric space of non-negative measures on I with total mass M , endowed
with the Wasserstein distance W2. The space DM (I) of densities naturally embeds into P(I).

The following weak convergence result is a well-known consequence of the energy estimate (4.14).

Proposition 6.2. Every subsequence of (ūΔj )j∈N contains a sub-subsequence that converges uniformly w.r.t.
t ∈ [0, T ] in W2 to a limit curve u∗ ∈ C1/2([0, T ];P(I)).

For a proof, see [1], Proposition 3.3.1. In essence, one shows that (4.14) yields a j-uniform control on the modulus
of Hölder-1/2 continuity of the ūΔj , which allows to invoke the Arzelà–Ascoli theorem.

A stronger compactness result is needed for the convergence proof.

Proposition 6.3. Every subsequence of (ūΔj )j∈N contains a sub-subsequence such that the respective ūΔj con-
verge to some u∗, and the P(ūΔj ) converge to P(u∗), both strongly in L1([0, T ]× I).

The proof of this proposition is an application of the Aubin-Lions compactness principle. Specifically, we use:

Theorem 6.4 (Adapted from Theorem 2 in [20]). Assume that:

(1) There is a normal coercive integrand F : L1(I) → [0,∞], i.e., F is measurable, lower semi-continuous and
has compact sublevels in L1(I), for which the following is true:

sup
j∈N

∫ T

0

F
(
ūΔj (t)

)
dt <∞. (6.4)

(2) The ūΔj are integral equicontinuous with respect to W2,

lim
h↓0

sup
j∈N

∫ T−h

0

W2

(
ūΔj (t+ h), ūΔj (t)

)
dt = 0. (6.5)

Then the sequence (ūΔj )j∈N is relatively compact in L1([0, T ]× I).

Let F : L1(I) → R∪{+∞} be given by F(u) = {P(u)}2
TV – possibly +∞ – if u is non-negative with

∫
I
u(x) dx =

M , and by +∞ otherwise.

Lemma 6.5. F is lower semi-continuous and has relatively compact sublevels.

Proof of Lemma 6.5. Let Ac := F−1((−∞; c]) ⊂ L1(I) be a sublevel of F. By [11], Theorem 1.19, the set
Bc := {P(u) |u ∈ Ac} is relatively compact in L1(I); here we use that our domain I is an interval, so that
{P(u)}2

TV ≤ c and
∫

I
u(x) dx = M induce a uniform bound on the BV-norm of P(u). Thus, if (u�) is a sequence

in Ac, converging to u0 in L1(I), then also (P(u�)) converges to P(u0) in L1(I). By lower semi-continuity of the
total variation {·}TV ([11], Thm. 1.9), the lower semi-continuity of F follows.

To conclude compactness of Ac, it suffices to prove that the mapping u �→ P(u) is L1(I)-continuously in-
vertible. For that, let a sequence (f�)�∈N in Bc be given, which converges to some f0 in L1(I). Since the map
r �→ P(r) is strictly increasing, positive, and continuous with superlinear growth it possesses a strictly increas-
ing, positive and continuous inverse with sublinear growth. Hence, there are a uniquely determined sequence of
functions u� ∈ Ac such that P(u�) = f� for all � ∈ N, and a unique u0 ∈ Ac with P(u0) = f0. We wish to show
that u� converges to u0 in L1(I). By standard arguments, we can assume without loss of generality that the
f� converge to f0 pointwise a.e. By continuous invertibility of r �→ P(r), the uj converge to u0 pointwise a.e.
Moreover, by construction,

sup
�∈N

∫ b

a

P(u�(x)) dx = sup
�∈N

∫ b

a

f�(x) dx <∞,

so we can invoke Vitali’s theorem – recall the superlinear growth of P – to conclude strong convergence of u�

to u0. �
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Proof of Proposition 6.3. It suffices to show that every subsequence of (ūΔj )j∈N contains a sub-subsequence
which is relatively compact. In view of Proposition 6.2, we may thus assume – without loss of generality – that
(ūΔj )j∈N converges uniformly w.r.t. t ∈ [0, T ] in P(I) to a curve u∗ ∈ C1/2([0, T ];P(I)). The verification of (6.5)
then becomes an easy exercise, which is left to the reader. And estimate (6.4) is a direct consequence of the
regularity estimate (5.11).

Thus Theorem 6.4 applies and provides relative compactness of (ūΔj )j∈N in L1([0, T ] × I). Since L1-
convergence implies weak convergence, it actually follows that ūΔj converges to u∗ in L1([0, T ] × I). Without
loss of generality, we may even assume that ūΔj converges to u∗ a.e. on [0, T ] × I. By continuity of P, also
P(ūΔj ) converges to P(u∗) a.e. on [0, T ]× I. Further, (5.10) implies

∫ T

0

∫
I

P
(
ūΔj (t;x)

)2 dxdt ≤ 2(b− a)τ
Nj∑

n=1

[
P
(

M

b− a

)2

+
{
P
(
ūn

Δj

)}2

TV

]
,

which is j-uniformly bounded because of the regularity estimate (5.11). By the growth property of P, we can
invoke Vitali’s theorem to conclude that P(ūΔj ) tends to P(u∗) in L1([0, T ] × I). �

6.2. Weak formulation

Combining the compactness results from Propositions 6.2 and 6.3, we know that every subsequence of (Δj)j∈N

contains a sub-subsequence for which ūΔj converges to some limit

u∗ ∈ C1/2([0, T ];P(I)) ∩ L1([0, T ] × I),

uniformly w.r.t. t ∈ [0, T ] in P(I), and strongly in L1([0, T ] × I); finally, also P(ūΔj ) converges to P(u∗) in
L1([0, T ] × I). To simplify notations, we denote that sub-subsequence simply by (ūΔ), bearing in mind that
Δ = Δj . In this subsection, we prove that every such limit u∗ is a weak solution to the initial value problem (1.1).

Proposition 6.6. u∗ satisfies the weak formulation∫ T

0

∫
I

u∗∂tϕdxdt =
∫ T

0

∫
I

u∗Vx∂xϕdxdt−
∫ T

0

∫
I

P(u∗)∂xxϕdxdt (6.6)

for all test functions ϕ from

D :=
{
ϕ ∈ C∞([0, T ] × I)

∣∣ suppϕ ⊂ (0, T )× I, ϕx(t; a) = ϕx(t; b) = 0 f.a. t ∈ [0, T ]
}
. (6.7)

Moreover, u∗ attains the initial datum u0 weakly-� as t ↓ 0.

Remark 6.7. Since weak solutions to (1.1) are unique (this follows, e.g., by metric contraction of the gradient
flow), we conclude a posteriori that the entire sequence (uΔj )j∈N converges to the solution u∗.

Remark 6.8. By our definition (6.7) of test functions, the weak formulation (6.6) automatically induces ho-
mogeneous Neumann boundary conditions on u.

The weak formulation (6.6) is obtained in the limit j → ∞ from a certain fully discrete variant of the weak
formulation. The latter is derived by studying suitable variations of the minimizers un

Δj
. In order to discuss this

perturbation, let ρ ∈ C∞(I) with ρx(a) = ρx(b) = 0 be given, and let κ > 0 be such that

|ρx(x)| ≤ κ, |ρxx(x)| ≤ κ, |ρxxx(x)| ≤ κ for all x ∈ I. (6.8)

Further, fix j ∈ N and also n ∈ N. We shall omit the index j in the following.
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Introduce the functionals A : X → R and Aξ : xξ → R by

A(X) =
∫ M

0

ρ(X) dξ and Aξ(�x) = A(Xξ[�x]).

The derivative of Aξ is given by

[
∂�xAξ(�x)

]
k

=
∫ M

0

ρx

(
Xξ[�x]

)
θk dξ for k = 1, . . . ,K − 1.

The variations we study are those induced by the gradient vector field �v := W−1∂�xAξ, i.e.,

W�v(�x) = ∂�xAξ(�x). (6.9)

This vector field has a nice asymptotic expansion.

Lemma 6.9. For every �x ∈ xξ, define �ρx(�x) ∈ R
K−1 by

�ρx(�x) =
(
ρx(x1), ρx(x2), . . . , ρx(xK−1)

)
. (6.10)

Then the residual vector ν = �v(�x) − �ρx(�x) satisfies

νT Wν ≤ Cκ2α(ξ)Mδ(�x)2, (6.11)

with κ defined in (6.8) and some universal constant C.

Proof. We start by estimating

μ := Wν = W
(
�v(�x) − �ρx[�x]

)
= ∂�xAξ(�x) − W �ρx[�x].

By definition of Xξ[�x] and a Taylor expansion of ρx, we have

ρx (Xξ[�x](ξ)) = ρx(xm) + ρxx(x̂)(xm − xm−1)θm−1(ξ) (6.12)

= ρx(xm−1) + ρxx(x̌)(xm − xm−1)θm(ξ) (6.13)

for all ξ ∈ [ξm−1, ξm], where x̂, x̌ ∈ I denote suitable intermediate values, depending on ξ. Multiply (6.12) by θm,
multiply (6.13) by θm−1, and sum these up to obtain, recalling (6.8), that

ρx (Xξ[�x](ξ)) = ρx(xm)θm(ξ) + ρx(xm−1)θm−1(ξ) +Rm(ξ), with |Rm(ξ)| ≤ κδ(�x). (6.14)

Since any component of W is given by Wk,j =
∫ M

0
θkθj dξ, we calculate

μk =
∫ ξk+1

ξk−1

⎛⎝ρx (Xξ[�x]) −
k+1∑

j=k−1

ρx(xj)θj

⎞⎠ θk dξ.

Substitute (6.14) into the integral to obtain

|μk| ≤ C1κ(δk + δk+1)δ(�x)

for every k = 1, . . . ,K − 1, with some universal constant C1. Recalling the lower estimate on W in (3.9), it
follows for ν = W−1μ that

νT Wν = μT W−1μ ≤ 6
δ(ξ)

K−1∑
k=1

μ2
k ≤

(
6C2

1κ
2

δ(ξ)

K−1∑
k=1

(δk+1 + δk)2
)
δ(�x)2 ≤ 24C2

1κ
2α(ξ)Mδ(�x)2,

proving our claim (6.11). �
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Lemma 6.10. With κ satisfying (6.8), the following estimate holds:

1
τ

(
Aξ (�xn

Δ) − Aξ

(
�xn−1

Δ

)) ≤ −∂�xEξ (�xn
Δ)T �ρx (�xn

Δ) (6.15)

+
κ

2τ
(
�xn

Δ − �xn−1
Δ

)T
W

(
�xn

Δ − �xn−1
Δ

)
(6.16)

+ C (Mα(ξ))1/2 κ
(
∂�xEξ (�xn

Δ)T W−1∂�xEξ (�xn
Δ)

)1/2

δ (�xn
Δ) . (6.17)

Proof. A Taylor expansion of ρ yields for arbitrary X,X′ ∈ X:

A(X′) ≥ A(X) +
∫ M

0

ρx(X) · (X′ − X) dξ − κ

2

∫ M

0

(X′ − X)2 dξ.

With X = Xξ[�xn
Δ] and X′ = Xξ[�xn−1

Δ ], we obtain

1
τ

(
Aξ (�xn

Δ) − Aξ

(
�xn−1

Δ

)) ≤ −
K−1∑
m=1

(
1
τ

[
�xn

Δ − �xn−1
Δ

]
m

∫ M

0

ρx (Xξ [�xn
Δ]) θm dξ

)
+

κ

2τ
(
�xn

Δ − �xn−1
Δ

)T
W

(
�xn

Δ − �xn−1
Δ

)
.

Using the definition (6.9) of �v, the symmetry WT = W, and the Euler–Lagrange equations (4.3), the sum can
be rewritten as

K−1∑
m=1

1
τ

[
�xn

Δ − �xn−1
Δ

]
m

[∂�xAξ (�xn
Δ)]m =

1
τ

(
�xn

Δ − �xn−1
Δ

)T
W�v (�xn

Δ) = ∂�xEξ (�xn
Δ)T �v (�xn

Δ) .

With the notations introduced in Lemma 6.9, we obtain further

∂�xEξ (�xn
Δ)T �v (�xn

Δ) = ∂�xEξ (�xn
Δ)T �ρx (�xn

Δ) + ∂�xEξ (�xn
Δ)T νn

Δ

≤ ∂�xEξ (�xn
Δ)T

�ρx (�xn
Δ) +

(
∂�xEξ (�xn

Δ)T W−1∂�xEξ (�xn
Δ)

)1/2 (
(νn

Δ)T Wνn
Δ

)1/2

,

where the Cauchy–Schwarz inequality has been applied in the last step. The claim (6.15) now follows directly
from the estimate (6.11). �

Lemma 6.11. For every �x ∈ xξ,

Aξ(�x) =
∫

I

ρ(x)uξ[�x](x) dx, (6.18)

∂�xEξ(�x)T �ρx(�x) = −
∫

I

P (uξ[�x](x)) ρxx(x̂) dx+
∫

I

Vx(x)ρx(x̌)uξ[�x](x) dx, (6.19)

where x̂, x̌ ∈ I are x-dependent quantities satisfying

|x̂− x|, |x̌− x| < δ(�x).

Proof. Relation (6.18) is a direct consequence of∫ ξk

ξk−1

ρ
(
xkθk + xk−1θk−1

)
dξ =

∫ xk

xk−1

ρ(x)
δk

xk − xk−1
dx,
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which follows by a change of variables x = xkθk(ξ) + xk−1θk−1(ξ). To prove (6.19), first observe that (3.12)
implies

∂�xEξ(�x)T �ρx(�x) = −
K−1∑
k=1

[
ψ′

(
xk+1 − xk

δk+1

)
− ψ′

(
xk − xk−1

δk

)]
ρx(xk)

+
∫ M

0

Vx (Xξ[�x])
K−1∑
k=1

ρx(xk)θk dξ.

We consider both terms on the right hand side separately. Using that ψ′(1/r) = −P (r) and that ρx(x0) =
ρx(xK), we see that the first equals to

K∑
k=1

ψ′
(
xk − xk−1

δk

)
(ρx(xk) − ρx(xk−1)) = −

K∑
k=1

∫ xk

xk−1

P
(

δk
xk − xk−1

)
ρxx(x̂k) dx,

with a suitable x̂k ∈ (xk−1, xk) by the intermediate value theorem. For the second term, we perform a change
of variables:∫ ξk

ξk−1

Vx

(
xkθk + xk−1θk−1

)(
ρx(xk)θk + ρx(xk−1)θk−1

)
dξ =

∫ xk

xk−1

Vx(x)ρx(x̌)
δk

xk − xk−1
dx,

with some x-dependent intermediate value x̌ ∈ (xk−1, xk). Summation over k = 1, . . . ,K provides (6.19). �

Lemma 6.12. Let ϑ ∈ C∞
c (0, T ) be a non-negative test function of compact support in (0, T ). Then∫ T

0

∫
I

ϑ′(t)ρ(x)u∗(t;x) dxdt ≤
∫ T

0

∫
I

ϑ(t) [−P (u∗)ρxx + Vxρxu] dxdt. (6.20)

Proof. Multiply inequality (6.15)–(6.17) by τϑ(nτ) ≥ 0, and sum over n = 1, . . . , Nτ . On the left-hand side, it
follows by means of (6.18) that

τ

Nτ∑
n=1

ϑ(nτ)
Aξ (�xn

Δ) − Aξ

(
�xn−1

Δ

)
τ

= −τ
Nτ−1∑
n=0

ϑ((n+ 1)τ) − ϑ(nτ)
τ

Aξ (�xn
Δ)

= −
∫ T

0

∫
I

ϑ̂′τ (t)ρ(x)ūΔ(t;x) dxdt,

where the sequence of piecewise constant functions ϑ̂′τ converge to ϑ′ uniformly on [0, T ]. The strong convergence
of ūΔ to u∗ in L1 is sufficient to pass to the limit j → ∞.

On the right-hand side, the first term can be rewritten using (6.19):

τ

Nτ∑
n=1

ϑ(nτ)
(
∂�xEξ(�xn

Δ)T �ρx(�xn
Δ)

)
=

∫ T

0

ϑ̄τ (t)
∫

I

[−P (ūΔ)ρxx(x̂) + Vx(x)ρx(x̌)ūΔ] dxdt,

where, for (n− 1)τ < t ≤ nτ , we know that |x− x̂|, |x− x̌| < δ(�xn
Δ). The convergence (6.3) implies that ρxx(x̂)

and ρx(x̌) converge to their respective limits ρxx(x) and ρx(x) uniformly in x ∈ I. Likewise, the piecewise
constant interpolants ϑ̄τ converge to ϑ uniformly on [0, T ]. The strong convergence of ūΔ and of P (ūΔ) to their
respective limits u∗ and P (u∗) in L1([0, T ]× I) thus suffices to pass to the limit with the integral.

Finally we observe that the remainder terms, resulting from (6.16) and (6.17), vanish in the limit j → ∞.
This is an easy consequence of (6.1), (6.3) and of the estimates (4.14) and (4.15). �
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Proof of Proposition 6.6. First, observe that inequality (6.20) is actually an equality, since ρ can be replaced
by −ρ everywhere. Next, recall that functions ϕ of the type ϕ(t, x) = ϑ(t)ρ(x), where ϑ ∈ C∞

c (0, T ) is non-
negative, and ρ ∈ C∞(I) satisfies ρx(a) = ρx(b) = 0, are dense in the set D of test functions. Thus, the weak
formulation (6.6) holds for all ϕ ∈ D.

It remains to prove that the solution attains the initial datum u0 weakly-� as t ↓ 0. However, this is a trivial
consequence of the Hölder regularity of u∗ ∈ C1/2([0, T ];P(I)), of the uniform convergence of (ūΔj )j∈N to u∗
w.r.t. t ∈ [0, T ] in P(I), and of the approximation of u0 by u0

Δj
. �

7. Numerical results and proof of consistency

7.1. Implementation

7.1.1. Choice of the initial condition

The numerical scheme is phrased in Lagrangian coordinates: the discretization ξ = (ξ0, ξ1, . . . , ξK) of the
reference domain [0,M ] is fixed, whereas the corresponding grid points �xn = (xn

1 , . . . , x
n
K−1) ∈ xξ on the

interval I evolve in (discrete) time. In the numerical experiments that follows, our choice for the discretization
of the initial condition is to use an equidistant grid �x0 with K vertices on I,

x0
k = a+ k(b− a)/K,

and an accordingly adapted mesh ξ on [0,M ], with

ξk = U0(x0
k), where U0(x) =

∫ x

a

u0(y) dy for all x ∈ I

is the initial datum’s distribution function. This discretization has the property that∫ x0
k

x0
k−1

u0(x) dx =
∫ x0

k

x0
k−1

u0
Δ(x) dx for all k = 1, . . . ,K.

7.1.2. Time stepping

Each (time) step in the numerical scheme consists of solving the system (4.3) of Euler–Lagrange equations.
In practice, this is done with a damped Newton method, which guarantees that the constraint �xn

Δ ∈ xξ – i.e.,
that a < xn

1 < · · · < xn
K−1 < b – is propagated from the n − 1st to the nth iterate. To be more precise, recall

that

∂�xEξ,τ (�x) =
1
τ

W(�x − �xn−1
Δ ) + ∂�xEξ(�x)

is the functional whose unique root in xξ defines the nth time iterate �xn
Δ, and that

∂2
�xEξ,τ (�x) =

1
τ

W + ∂2
�xEξ(�x)

is its Jacobian. Given �xn−1
Δ , we calculate �xn

Δ by means of the following algorithm:

�x := �xn−1
Δ ;

repeat

d�x := − (
∂2

�xEξ,τ (�x)
)−1

∂�xEξ,τ (�x);
while �x + d�x /∈ xξ d�x := 0.5 d�x; end;

�x := �x + d�x;
until ‖ d�x‖l1 < tol and ‖∂�xEξ,τ (�x)‖l1 < tol;
�xn

Δ := �x.
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In our experiments, we use tol = 10−8. For the evaluation of ∂�xEξ,τ (�x) above, an explicit expression for the
integrals

∂xm

(∫ M

0

V ◦ Xξ[�x] dξ

)
=

∫ M

0

Vx ◦ Xξ[�x]θm(ξ) dξ

is needed, see (3.12). Denoting by V an anti-derivative of V , one finds∫ ξm

ξm−1

Vx ◦ Xξ[�x]θm(ξ) dξ =
δm

xm − xm−1

∫ xm

xm−1

Vx(x)
x− xm−1

xm − xm−1
dx

=
δm

xm − xm−1

(
V (xm) − V(xm) − V(xm−1)

xm − xm−1

)
,

and analogously for the integral from ξm to ξm+1. In combination, we obtain

∂xk

∫ M

0

V ◦ Xξ [�x] (ξ) dξ =
−δk

(xk − xk−1)2
(V(xk) − V(xk−1)) +

δk−1

(xk+1 − xk)2
(V(xk+1) − V(xk))

+ V (xk)
(

δk
xk − xk−1

− δk+1

xk+1 − xk

)
.

A similar expression is available for the respective contribution to the Hessian ∂2
�xEξ,τ :

∂xm∂xk

(∫ M

0

V ◦ Xξ [�x] dξ

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2δk

(xk−xk−1)3
(V(xk) − V(xk−1)) + 2δk+1

(xk+1−xk)3 (V(xk+1) − V(xk))

−2V (xk)
(

δk

(xk−xk−1)2
+ δk+1

(xk+1−xk)2

)
− Vx

(
δk

(xk−xk−1)2
− δ+1k

(xk+1−xk)2

)
, m = k

− 2δk

(xk−xk−1)3
(V(xk) − V(xk−1)) + δk

(xk−xk−1)2
(V (xk) + V (xk−1)) , m = k − 1

0, otherwise.

7.2. Numerical experiments and convergence

The following numerical experiments are performed for the porous medium equation with quadratic
nonlinearity,

∂tu = (u2)xx + (Vxu)x,

on the interval I = [−1, 1]. For the potential V , we choose

V (x) = − 1
π

cos(πx),

and as initial datum, we take the following function of unit mass M = 1:

u0(x) = C
(− cos(2πx) + 1.5

)(
(x+ 0.5)4 + 1

)
with C =

240 − 280π2 + 423π4

80π4
· (7.1)

7.2.1. Reference solution

Our numerical reference resolution is calculated with K = 5000 spatial grid points and a time step size
τ = 10−2. Figure 2/left shows snapshots of the reference solution’s spatial density after the first couple of time
steps. One observes the typical behaviour for nonlinear drift diffusion equations: on a very short time scale,
diffusion reduces the extrema of the initial mass distribution; subsequently, the drift dominates and transports
the mass towards the equilibrium (dotted line) on a longer time scale. Figure 2/right displays the corresponding
particle trajectories in the Lagrangian picture, i.e., how the points xn

k move with (discrete) time n for fixed k.
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Figure 2. Left: evolution of the (reference) solution uΔ with initial condition (7.1) at times
t = 0, τ, . . . , 20τ = 0.2, with time step τ = 10−2 and K = 5000 grid points. The dotted line
shows the stationary solution. Right: associated particle trajectories.
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Figure 3. Numerical error analysis with fixed time step τ = 10−2, using K =
25, 50, 100, 200, 400, 800, 1600 grid points. Left: evolution of the L1-error ‖ūΔ(t)− uref(t)‖L1(I).
Right: order of convergence at terminal time T = 0.2.

7.2.2. Fixed τ

In a first series of experiments, we fix the time step τ = 10−2 and vary the number of spatial grid points K.
In Figure 3/left, the corresponding L1-distances to the reference solution uref obtained in 7.2.1 above are shown
as a function of time. Note that the counter-intuitive dramatic decay of the error for small times is explained by
the strong contractivity of the nonlinear diffusion in L1 in a neighborhood of the initial condition. Figure 3/right
shows the L1-errors at T = 0.2. The observed convergence rate is of order K−1.

7.2.3. Fixed parabolic mesh ratio

Next, we study the decay of the L1-error under mutual refinement of space and time. As it is standard in
numerical experiments on parabolic equations, we fix the parabolic mesh ratio K2τ . The value of this ratio is
chosen such that the inverse CFL condition is satisfied in every experiment. In Figure 4/left, the error is plotted
at the fixed terminal time T = 0.2 for various choices of τ . The observed order of convergence is

√
τ , which is

in agreement with the result of experiment 7.2.2.

7.2.4. Weakly convergent initial datum

In order to illustrate that it sufficies to approximate the original initial condition u0 by its discretizations u0
Δ

just weakly in L1(I), we use perturbed discrete initial data u0
Δ,ε that are biased by high-frequency oscillations
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Figure 4. Left: numerical error analysis with fixed parabolic mesh ratio K2τ ≈ 0.257, analyz-
ing the L1-error ‖ūΔ(T )− uref(T )‖L1(I) at terminal time T = 0.2 using τ = 5× 10−5, 10−4, 5×
10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1. Right: initial condition u0

Δ,ε with high frequency
perturbation.

of fixed amplitude 0.1, as indicated in Figure 4/right. As expected, the perturbation becomes almost invisible
already after the first time step, and the discrete solution uΔ,ε is indistinguishable from the one computed with
unperturbed initial conditions u0

Δ.

7.2.5. A discontinuous initial datum

For the last two series of experiments, we change the initial condition u0. This first series is carried out with
the discontinuous inital datum

u0(x) =

{
0.1, if |x| > 0.75 or |x| < 0.25,

0.9, otherwise.
(7.2)

Similar to experiment 7.2.2, we fix τ = 10−2 and vary the number of grid points K. Figure 5/right displays the
corresponding L1-error over the time interval t ∈ [0, 0.8]. In contrast to experiment 7.2.2, the approximation
error is zero initially, since the step function u0 can be discretized exactly. However, the error jumps to a positive
value (that is of the same order as the initial error in experiment 7.2.2) in the first time step. Afterwards, the
qualitative behaviour is very similar to that in experiment 7.2.2. The observed order of convergence (at T = 0.2)
is again K−1.

7.2.6. A non-positive initial datum

For this last series of experiment, we consider the initial condition

u0(x) = (− cos(2πx) + 1.5)
(
(x+ 0.5)4 + 1

)×{−(x− 0.5)(x+ 0.5) |x| ≤ 0.5

0 |x| > 0.5
, (7.3)

which vanishes outside of the subinterval [−0.5, 0.5] ⊂ I. The numerical scheme is not directly applicable to u0,
but to any of its strictly positive approximations u0 + ε, see Figure 6/left. The qualitative numerical results at
T = 0.6 for various choices of ε > 0 are given in Figure 6/right.

7.3. Order of consistency

The experimental observations that the discrete solutions seem to approximate the reference solution with
an error of order Kτ can be supported theoretically by the following consistency consideration.
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Figure 5. Left: evolution of the solution uΔ with initial condition (7.2) at times t = 0,
τ, . . . , 40τ = 0.2, with time step τ = 5×10−3 and K = 5000 grid points. Right: numerical error
analysis for discrete solutions with the discontinuous initial datum from (7.2), using a fixed
time step τ = 10−2 and varying K = 25, 50, 100, 200, 400, 800, 1600.
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Figure 6. The merely non-negative initial condition u0 from (7.3) is approximated by strictly
positive data u0 + ε. Left: discrete initial profiles for ε = 10−1, 10−2, 10−3, 10−4, 10−5. Right:
qualitative behaviour of corresponding discrete solutions at T = 0.6, using τ = 10−3, K = 200.

Assume that X : [0, T ] × [0,M ] → I is a smooth solution of (1.12). Consider a discretization Δ = (τ ; ξ)
that is equidistant w.r.t. ξ, i.e., ξk = Mk/K with some K ∈ N for all k = 0, 1, 2, . . . ,K, and consequently
δ := δ1 = · · · = δK .

From X, we define a discrete “pseudo-solution” �xΔ by restriction, i.e., xn
k := X(nτ, kδ). We are going to show

that �xΔ satisfies the discrete evolution equation (4.3) up to an error of order δ(O(τ) + O(δ2)). To this end, we
perform a Taylor expansion of X around a fixed point p := (nτ, kδ) w.r.t. ξ:

xn
k±1 = X(p) ± δXξ(p) +

δ2

2
Xξξ(p) ± δ3

6
Xξξξ(p) + O(δ4).
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For the diffusion term, we find

ψ′
(
xn

k±1 − xn
k

δ

)
= ψ′ (Xξ(p)) ± δ

2
ψ′′ (Xξ(p))Xξξ(p)

+
δ2

2

(
1
3
ψ′′ (X(p)) Xξξξ(p) +

1
4
ψ′′′ (X(p)) Xξξ(p)2

)
+ O (

δ3
)
,

so that

ψ′
(
xn

k+1 − xn
k

δ

)
− ψ′

(
xn

k − xn
k−1

δ

)
= δψ′′ (Xξ(p))Xξξ(p) + O (

δ3
)
.

For the drift term, we obtain∫ (k±1)δ

kδ

Vx (Xξ[�xΔ](ξ)) θk(ξ) dξ = ±δ
∫ 1

0

Vx

(
(1 − s)xn

k + sxn
k±1

)
(1 − s) ds

= ±δ
∫ 1

0

[
Vx (X(p)) ± sδVxx (X(p))Xξ(p) + O (

δ2
)]

(1 − s) ds

= ± δ
2
Vx (X(p)) +

δ2

6
Vxx (X(p))Xξ(p) + O (

δ3
)
,

so that ∫ (k+1)δ

(k−1)δ

Vx (Xξ[�xΔ](ξ)) θk(ξ) dξ = δVx (X(p)) + O (
δ3
)
.

In combination,

[∂�xEξ (�x)]k = δ
(
ψ′ (Xξ(p))ξ + Vx (X(p)) + O (

δ2
))
. (7.4)

Moreover, we have

[W�xn
Δ]k =

δ

6
xn

k−1 +
2δ
3
xn

k +
δ

6
xn

k+1 = δX(p) + O (
δ3
)
,

and likewise [
W�xn−1

Δ

]
k

= δX(p′) + O (
δ3
)
,

where p′ = ((n− 1)τ, kδ). Finally, using

X(p) − X(p′) = τXt(p) + O (
τ2
)
,

we obtain the relation
1
τ

[
W

(
�xn

Δ − �xn−1
Δ

)]
k

= δ
(
Xt(p) + O (

δ2
)

+ O(τ)
)
. (7.5)

Using the continuous evolution equation (1.12) in (7.5) and (7.4) leads to

1
τ

[
W

(
�xn

Δ − �xn−1
Δ

)]
k

= − [∂�xEξ (�x)]k + δ
(O(τ) + O (

δ2
))
.

for all admissible k and n.
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[20] R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann.
Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431.

[21] G. Russo, Deterministic diffusion of particles. Commun. Pure Appl. Math. 43 (1990) 697–733.

[22] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst.
31 (2011) 1427-1451.

[23] C. Villani, Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI (2003).

[24] M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of
isentropic Euler equations. ESAIM: M2AN 44 (2010) 133–166.

http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf
http://sfb611.iam.uni-bonn.de/uploads/150-komplett.pdf

	Introduction
	Gradient flow structure
	Discretization
	Convergence result
	Related results from the literature
	Outline of the paper

	Preliminaries and notations
	Inverse distribution functions
	Properties of the energy

	Spatial discretization
	Ansatz spaces
	Representation of the Wasserstein distance
	Representation of the energy

	Time-discrete evolution
	Minimizing movements
	Euler--Lagrange equations for the difference quotients
	Energy dissipation

	Qualitative properties of the discretization
	Metric contraction
	The maximum and minimum principles
	Regularity

	Convergence
	Compactness
	Weak formulation

	Numerical results and proof of consistency
	Implementation
	Choice of the initial condition
	Time stepping

	Numerical experiments and convergence
	Reference solution
	Fixed 
	Fixed parabolic mesh ratio
	Weakly convergent initial datum
	A discontinuous initial datum
	A non-positive initial datum

	Order of consistency

	References

