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LAGRANGIAN APPROACH TO DERIVING ENERGY-PRESERVING
NUMERICAL SCHEMES FOR THE EULER–LAGRANGE PARTIAL

DIFFERENTIAL EQUATIONS ∗

Takaharu Yaguchi
1

Abstract. We propose a Lagrangian approach to deriving energy-preserving finite difference schemes
for the Euler–Lagrange partial differential equations. Noether’s theorem states that the symmetry of
time translation of Lagrangians yields the energy conservation law. We introduce a unique viewpoint on
this theorem: “the symmetry of time translation of Lagrangians derives the Euler–Lagrange equation
and the energy conservation law, simultaneously.” The proposed method is a combination of a discrete
counter part of this statement and the discrete gradient method. It is also shown that the symmetry of
space translation derives momentum-preserving schemes. Finally, we discuss the existence of discrete
local conservation laws.
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1. Introduction

In this paper, we propose a Lagrangian approach to deriving energy-preserving finite difference schemes for
the Euler–Lagrange partial differential equations. Our approach is based on a combination of the symmetry of
time translation of discrete Lagrangians and the discrete gradient method.

For PDEs that enjoy a conservation property, numerical schemes that inherit this property are often advanta-
geous, in that the schemes are fairly stable, and yield qualitatively better numerical solutions in practice. Among
such properties, the energy conservation law and symplecticity have received significant attention. However, the
Zhong–Marsden theorem [71] and the stronger result for B-series methods by Chartier–Faou–Murua [15] show
that an integrator cannot be both energy-preserving and symplectic2. Hence, methods on this subject are mainly
divided into the corresponding two groups. See, for example, [8,21,33,65] for other structure-preserving methods.
In this paper, energy-preserving schemes are of interest.
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Among energy-preserving schemes, application of the discrete gradient method to the Hamiltonian PDEs is
highly successful ([13, 29, 39–41, 57, 63], and references therein). Alternatively, Furihata and Matsuo have de-
veloped the so-called “discrete variational derivative method”, which is a kind of the discrete gradient method
specialized for PDEs ([23–27,52–54,56], and references therein). Another way to obtain energy-preserving meth-
ods is to apply the projection method ([2,3,17,20,30,31,61,62,66,67], and references therein); however, in many
cases, the discrete-gradient-type methods result in qualitatively better solutions.

The discrete-gradient-type methods typically use the Hamiltonian form of equations. These methods have
been mainly developed for ODEs represented in the Hamiltonian form

du

dt
= J(u)∇uH,

where H(u) is a Hamiltonian and J(u) is a skew operator. This equation has the energy conservation law

dH

dt
= 0.

∇̄H(u, v) is said to be a discrete gradient of H if ∇̄H(u, v) satisfies

H(u) − H(v) = ∇̄H(u, v) · (u − v), ∇̄H(u, u) = ∇H(u). (1.1)

Once a discrete gradient is obtained, an energy-preserving numerical scheme is obtained by

U (n+1) − U (n)

Δt
= J̃∇̄H(U (n+1), U (n))

where U (n) is an approximation of u(nΔt) and J̃ is a skew operator that approximates J(u). Because this
scheme typically becomes a system of nonlinear equations, the Newton method is needed. It is straightforward
to show that this scheme maintains the energy conservation property

H(U (n+1)) − H(U (n))
Δt

= 0.

Because the scheme is defined in the same form as the Hamiltonian form of the equation, we say that this
method is based on Hamiltonian mechanics. Thus, the following question naturally arises: “Is it possible to
construct energy-preserving schemes by using the discrete gradient method based on Lagrangian mechanics?”

A natural way to discretize the Euler–Lagrange equation is the application of the principle of least action in
discretized spaces. This approach yields excellent symplectic methods and is widely known as the variational
integrator or discrete mechanics [12,22,37,44,49,50,68,69]. In particular, it is shown that if a carefully designed
adaptive-time-stepping method is applied, a symplectic and energy-preserving method can be constructed [37].
On the other hand, to the best of our knowledge, no unified method exists that uses the discrete gradient
method for deriving energy-preserving schemes based on Lagrangian mechanics. The aim of this paper is to
develop such an approach.

Perhaps the main difficulty in developing a Lagrangian approach that derives energy-preserving methods is
finding a natural definition of the discrete energy function. In classical field theory, the energy density functional
is defined by

L − ut
∂L
∂ut

, (1.2)

where L is a Lagrangian density to be considered. However, there are infinitely many ways to discretize ut

in (1.2), and there is no indication which one is the most appropriate.
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Our approach is based on an observation on Noether’s theorem. As is well-known, Noether’s theorem states
that symmetries derive conserved quantities. For example, the conservation of energy is derived from the sym-
metry of time translation. Similarly, the conservation of momentum is derived from the symmetry of space
translation. In this paper, we introduce another viewpoint on this theorem: if a Lagrangian has the symmetry
of time translation, variation with respect to this symmetry derives the Euler–Lagrange equation and the energy
conservation law, simultaneously. Our method is a discrete counterpart of this statement. Because this statement
can be easily derived from the standard proofs of the Noether theorem, our main contribution is to construct
a discrete counter part of this statement and combine it with the discrete gradient method. In our method, we
first discretize the Lagrangian density; then, we define the scheme as an approximation of the Euler–Lagrange
equation that is obtained by evaluation of a difference of action sums with respect to the action of the gen-
erator of the discrete group corresponding to a given symmetry. Schemes derived by using this methodology
automatically inherit the conservation property corresponding to the symmetry used. Thereby, in addition to
deriving energy-preserving schemes, our method also derives other conservative schemes. We are still developing
a general framework for other symmetries; however, we illustrate the idea by deriving momentum-preserving
schemes from the spatial symmetry. In addition, because the Noether theorem also ensures the existence of a
local conservation law [60], our schemes have a discrete analogue of this law.

However, our method ensures the conservation of only the chosen conserved quantity and nothing can be said
on the behaviors of other quantities. Although the numerical test in Section 6 shows that the energy-preserving
scheme for the nonlinear Klein–Gordon equation preserves the discrete momentum and the discrete angular
momentum well, this may not be the case for other equations and other choices of discrete Lagrangian densities.
Hence, the symmetry and conservation law that must be conserved should be carefully selected.

Although the author believes that the above procedure is first pointed out in this paper, several previous
studies have examined relations between symmetries and conservation laws of difference equations in terms of
the discrete Noether theorems. For example, Dorodnitsyn investigated relations between conservation laws and
Lie point symmetries of difference equations [18, 19]. Mansfield et al. introduced a discrete variational complex
on lattices to find conservation laws [35,47]. Logan showed the discrete Noether theorem for the discrete Euler–
Lagrange equations [46]. Energy behaviors of symplectic methods for the Maxwell equation are investigated by
using the Noether theorem in Saitoh [64]. Symmetry also plays a very important role in the work on r-adaptive
moving-mesh methods by Budd and Williams ([4–7,9–11,34], and references therein). We believe that there are
at least two major differences between our approach and the other works:

• we use discrete symmetries, while continuous symmetries are usually adopted in the others, and
• we use the discrete gradient method.

However, there would be some relations between our method and these works, which should be investigated in
future work.

From a practical point of view, it would be noteworthy that our approach naturally derives explicit or linearly
implicit schemes in most cases, while, although some techniques for obtaining linearly implicit schemes have
recently been developed [16,55], the usual application of the discrete gradient method to the Hamiltonian form
yields nonlinearly implicit schemes. This is a desirable feature because it can dramatically reduce computational
costs.

This paper is organized as follows.

• In Section 2, we provide a brief description of our approach. First, we recall the relation between the definition
of the energy function in Lagrangian mechanics and Noether’s theorem. Then we also recall how the energy-
conservation law is obtained from the symmetry of time translation. This observation makes it possible to
say that the symmetry of Lagrangians derives not only the conservation law, but also the Euler–Lagrange
equation, at least formally.

• In Section 3, we introduce the notation used in this paper.
• In Section 4, we explain our unified approach to deriving energy-preserving finite difference schemes in detail.
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• In Section 5, the use of spatial symmetry to derive momentum-preserving schemes is demonstrated. Although
the general framework is not completely developed in this paper, we believe that the same procedure can be
applied with almost arbitrary symmetries in principle.

• In Section 6, as an example, we derive an energy-preserving scheme and a momentum-preserving scheme for
the nonlinear Klein–Gordon equation. In addition, we perform a numerical test in which these schemes are
compared with the Marsden–Patrick–Shkoller scheme.

• In Section 7, a local theory of the proposed approach is presented. It is shown that our schemes also satisfy a
(spatially) local conservation law. This implies that by using appropriate interpolation algorithms, it may be
possible to use different time step sizes on each node. This result may be useful to overcome the constraint
on step sizes due to the CFL condition.

2. Noether’s theorem and key idea of proposed approach

In this paper, we propose a Lagrangian approach to deriving energy-preserving numerical schemes. The
governing equation of Lagrangian mechanics is the Euler–Lagrange equation. In infinite dimensional cases, this
equation is the Euler–Lagrange partial differential equation

∂L
∂u

− Dx
∂L
∂ux

− Dt
∂L
∂ut

= 0, (2.1)

where L is a Lagrangian density, and Dx and Dy are the total derivatives [60]. For simplicity, we consider
this equation on a one-dimensional interval [0, L]; however, our approach can be applied to multi-dimensional
problems defined on complicated domains with nonuniform meshes in a straightforward manner. The energy
and the momentum of this equation are defined as∫ L

0

(
ut

∂L
∂ut

− L
)

dx (2.2)

and ∫ L

0

(
−ux

∂L
∂ut

)
dx, (2.3)

respectively (e.g. [1, 28, 42]).
Because we want to take a Lagrangian approach, we should start with giving a discrete Lagrangian density,

and this requires a natural definition of discrete energy for the given discrete Lagrangian density. For example,
because the energy function in Lagrangian mechanics (2.2) contains the term ut∂L/∂ut, we need to discretize
ut to define a discrete energy function. However, because ut can be discretized in infinitely many ways, it is not
obvious which discretization is the natural choice regarding the given discrete Lagrangian.

To naturally introduce discrete energy, first we must recall how this conserved quantity was introduced as
“energy” in classical mechanics. In the classical great textbooks, such as Landau–Lifshitz [42] and Goldstein–
Poole–Safko [28], energy is defined as the conserved quantity that results from time homogeneity. For example,
in Landau–Lifshitz [42], the following is noted:

“Not all integrals of the motion, however, are of equal importance in mechanics. There are some
whose constancy is of profound significance, deriving from the fundamental homogeneity and isotropy of
space and time”.

Next, by using the symmetry of time translation, a quantity, which is an ODE version of (2.2), is shown to
be a first integral. Energy is introduced as this quantity. In addition, momentum is introduced by using the
symmetry of space translation in the same way.

From this viewpoint, it seems natural to define discrete energy by symmetry, or equivalently by the Noether
theorem. Next, we confirm how the energy conservation law stems from the symmetry of time translation of
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Lagrangians. We show this in an elementary manner, because our method is a discrete analogue of it. Indeed,
the following calculation fortunately suggests not only a natural definition of discrete energy, but also a method
to derive a numerical scheme that preserves it.

Let g be the action of the one parameter group

g : R × R
3 → R

3, (δt, (x, t, u)) �→ (x, t + δt, u),

and suppose that a Lagrangian L has the symmetry with respect to this action, i.e., L is independent of t. More
precisely, the prolongation of u with respect to the action g is

ũ(t̃, x̃) = u(t̃ − δt, x), t̃ = t + δt, x̃ = x,

and the symmetry implies that the difference of the action integrals must vanish:

0 =
∫ T

0

∫ L

0

L(x̃, t̃, ũ, ũx̃, ũt̃)dt̃ −
∫ T

0

∫ L

0

L(x, t, u, ux, ut)dt.

The right hand side is rewritten as

=
∫ T

0

∫ L

0

L(x, t + δt, u, ux, ut)dt −
∫ T

0

∫ L

0

L(x, t, u, ux, ut)dt (2.4)

=
∫ T+δt

δt

∫ L

0

L(x, t, u(t − δt, x), ux(t − δt, x), ut(t − δt, x))dt −
∫ T

0

∫ L

0

L(x, t, u, ux, ut)dt. (2.5)

In the following, we often start with this expression to avoid repetition of the above calculation. Multiplication
of 1/δt to (2.5) gives

0 =
1
δt

∫ T+δt

T

∫ L

0

L (x, t, u(t − δt, x), ux(t − δt, x), ut(t − δt, x)) dxdt − 1
δt

∫ δt

0

∫ L

0

L (x, t, u, ux, ut) dxdt

+
1
δt

∫ T

δt

∫ L

0

(L (x, t, u(t − δt, x), ux(t − δt, x), ut(t − δt, x)) − L (x, t, u, ux, ut)) dxdt.

Under the assumption, for simplicity, of the periodic boundary condition, letting δt → 0 gives

→
∫ L

0

Ldx |t=T −
∫ L

0

Ldx |t=0 −
∫ T

0

∫ L

0

(
∂L
∂u

ut +
∂L
∂ux

uxt +
∂L
∂ut

utt

)
dxdt

= −
∫ T

0

∫ L

0

ut

(
∂L
∂u

− Dx
∂L
∂ux

− Dt
∂L
∂ut

)
dxdt (2.6)

+
∫ L

0

(
L − ut

∂L
∂ut

)
dx |t=T −

∫ L

0

(
L − ut

∂L
∂ut

)
dx |t=0 . (2.7)

Because the equation is defined by the Euler–Lagrange equation (2.1), it follows that∫ L

0

(
L − ut

∂L
∂ut

)
dx |t=T −

∫ L

0

(
L − ut

∂L
∂ut

)
dx |t=0= 0,

which shows the energy conservation law.
Our approach is based on the following observation. Although we have described the above calculation as an

elementary proof of Noether’s theorem, if we pay close attention to (2.6) and (2.7), it is possible to say that “the
symmetry of time translation of Lagrangians derives the Euler–Lagrange equation and the conserved quantity,
i.e., the energy function, simultaneously.” Therefore if we can perform a similar calculation after discretization,
we will obtain at once a natural definition of discrete energy and a discrete analogue of the Euler–Lagrange
equation that preserves this discrete energy. After introducing some definitions and notation in Section 3, we
will show the feasibility of this idea in Section 4.
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Remark 2.1. The idea presented above can be applied with respect to other symmetries. For example, a similar
calculation with spatial symmetry yields

−
∫ T

0

∫ L

0

ux

(
∂L
∂u

− Dx
∂L
∂ux

− Dy
∂L
∂ut

)
dxdt (2.8)

+
∫ L

0

(
−ux

∂L
∂ut

)
dx |t=T −

∫ L

0

(
−ux

∂L
∂ut

)
dx |t=0= 0, (2.9)

which shows the momentum conservation property. In Section 5, we show that momentum-preserving schemes
can be derived from spatial symmetries with the same approach presented in Section 4.

Remark 2.2. From a technical point of view, we used the chain rule and the integration-by-parts formula to
obtain (2.6) and (2.7). Therefore, to realize our idea presented above, discrete versions of these formulas are
required. Fortunately, such formulas exist. Specifically, we can use the discrete gradient method as a discrete
version of the chain rule and the summation-by-parts formula as that of the integration-by-parts formula. These
techniques are summarized in Section 3. In addition, the discrete gradient method is used as the discrete version
of the chain rule when this method is applied in the standard manner to the Hamiltonian form of equations.

Remark 2.3. It is not our intention to provide an alternative approach of discrete “mechanics.” The aim of
this study is to develop an alternative “technique” to deriving energy-preserving numerical schemes by using
the discrete gradient method. Indeed the above idea is not admissible as a principle of mechanics. It simply
means that “the symmetry of time translation of Lagrangians formally derives the Euler–Lagrange equation
and the conserved quantity.”

3. Notation and definitions

In this section, we summarize the notation and definitions used in this paper.
We discretize space and time by the standard uniform grids with step sizes Δx and Δt. We denote by U

(n)
j

an approximated value of u(nΔt, jΔx). The finite difference operators that approximate the partial differential
operators are denoted by

δ+
t U

(n)
j =

U
(n+1)
j − U

(n)
j

Δt
, δ−t U

(n)
j =

U
(n)
j − U

(n−1)
j

Δt
, δ

〈1〉
t U

(n)
j =

U
(n+1)
j − U

(n−1)
j

2Δt
,

δ+
x U

(n)
j =

U
(n)
j+1 − U

(n)
j

Δx
, δ−x U

(n)
j =

U
(n)
j − U

(n−1)
j−1

Δx
, δ〈1〉x U

(n)
j =

U
(n)
j+1 − U

(n)
j−1

2Δx
,

δ
〈2〉
t U

(n)
j =

U
(n+1)
j − 2U

(n)
j + U

(n−1)
j

(Δt)2
, δ〈2〉x U

(n)
j =

U
(n)
j+1 − 2U

(n)
j + U

(n)
j−1

(Δx)2
·

Corresponding to these operators, the summation-by-parts formulas

Δx
M∑

j=1

U
(n)
j

(
δ+
x V

(n)
j

)
+ Δx

M∑
j=1

V
(n)
j

(
δ−x U

(n)
j

)
= U

(n)
M V

(n)
M+1 − U

(n)
0 V

(n)
1 , (3.1)

Δt

N∑
n=1

U
(n)
j

(
δ+
t V

(n)
j

)
+ Δt

N∑
n=1

V
(n)
j

(
δ−t U

(n)
j

)
= U

(N)
j V

(N+1)
j − U

(0)
j V

(1)
j (3.2)

hold.

Remark 3.1. For simplicity, in this paper, we use only these difference operators; however, other difference op-
erators with higher-order accuracy can be used. The summation-by-parts formula for general difference operators
is available in [46, 59, 70].
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Next, to simplify notation, we define the discrete 1st prolongation of U
(n)
j by

pr(1)d U
(n)
j := (U (n)

j , δ+
x U

(n)
j , δ−x U

(n)
j , δ+

t U
(n)
j , δ−t U

(n)
j ).

We call a functional Ld of a 7-tuple (j, n, pr(1)d U
(n)
j ) to R a discrete Lagrangian density and the sum

Sd :=
N∑

n=1

M∑
j=1

Ld(j, n, pr(1)d U
(n)
j )ΔxΔt

the action sum. These definitions are essentially same as those in discrete mechanics [50, 68].
In our method, discrete gradients of discrete Lagrangian densities play an important role, because, as is shown

in (1.1), these provide a discrete analogue of the chain rule that is used to calculate the variation of action sums.
In this paper, discrete gradients of a discrete Lagrangian density are denoted by

∇̄Ld(j, n, V, U) =
((

∂Ld

∂(V, U)

)
,

(
∂Ld

∂(V, U)x,+

)
,

(
∂Ld

∂(V, U)x,−

)
,

(
∂Ld

∂(V, U)t,+

)
,

(
∂Ld

∂(V, U)t,−

))�
. (3.3)

These terms can be arbitrarily chosen as long as the discrete chain rule

Ld(j, n, pr(1)d V
(n)
j ) − Ld(j, n, pr(1)d U

(n)
j ) = ∇̄Ld ·

(
pr(1)d (V (n)

j − U
(n)
j )

)�
holds. A discrete gradient can be obtained in various ways, such as the coordinate increment method [36], the
Furihata method [23] and the average vector field (AVF) method [13,57,63]. For example, the discrete gradient
by the AVF method is given by

∇̄Ld(j, n, V, U) =
∫ 1

0

(∇Ld)(j, n, ξ(pr(1)d V ) + (1 − ξ)(pr(1)d U))dξ,

where

∇Ld =
(

∂Ld

∂U
,

∂Ld

∂(δ+
x U)

,
∂Ld

∂(δ−x U)
,

∂Ld

∂(δ+
t U)

,
∂Ld

∂(δ−t U)

)�
.

In most cases, this method gives the same discrete gradient as that by the Furihata method. In addition, it is
shown in [14] that the AVF method for Hamiltonian ODEs is conjugate-symplectic of order 4.

4. Lagrangian approach to deriving energy-preserving schemes

by using the discrete gradient method

Let gd be the action of the infinite cyclic group

gd : Z × (Z2 × R) → (Z2 × R), (z, (j, n, U)) �→ (j, n − z, U),

and suppose that the given discrete Lagrangian density Ld has the symmetry with respect to this action, that is,

Ld(j, n − z, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j )

for any z ∈ Z. Then, the difference of the action sums yields

1
Δt

⎛
⎝ N∑

n=1

M∑
j=1

Ld(j, n + 1, pr(1)d U
(n)
j )ΔxΔt −

N∑
n=1

M∑
j=1

Ld(j, n, pr(1)d U
(n)
j )ΔxΔt

⎞
⎠ = 0,



1500 T. YAGUCHI

which is a discrete counter part of (2.4). Rearranging this summation, we obtain a discrete analogue of (2.5)

0 =
1

Δt

⎛
⎝N+1∑

n=2

M∑
j=1

Ld(j, n, pr(1)d U
(n−1)
j )ΔxΔt −

N∑
n=1

M∑
j=1

Ld(j, n, pr(1)d U
(n)
j )ΔxΔt

⎞
⎠

and

=
1

Δt

⎛
⎝ N∑

n=2

M∑
j=1

(
Ld(j, n, pr(1)d U

(n−1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

)⎞⎠ΔxΔt

+
M∑

j=1

Ld(j, N + 1, pr(1)d U
(N)
j )Δx −

M∑
j=1

Ld(j, 1, pr(1)d U
(1)
j )Δx

=
1

Δt

⎛
⎝ N∑

n=2

M∑
j=1

(
Ld(j, n, pr(1)d U

(n−1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

)⎞⎠ΔxΔt

+
M∑

j=1

Ld(j, N, pr(1)d U
(N)
j )Δx −

M∑
j=1

Ld(j, 1, pr(1)d U
(1)
j )Δx.

By using the discrete gradient method (3.3), we obtain

=
1

Δt

N∑
n=2

M∑
j=1

∇̄Ld ·
(
pr(1)d (U (n−1)

j − U
(n)
j )

)�
ΔxΔt +

M∑
j=1

Ld(j, N, pr(1)d U
(N)
j )Δx −

M∑
j=1

Ld(j, 1, pr(1)d U
(1)
j )Δx

= −
N∑

n=2

M∑
j=1

{
δ−t U

(n)
j

(
∂Ld

∂(U (n−1)
j , U

(n)
j )

)
+ δ−t δ+

x U
(n)
j

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,+

)

+ δ−t δ−x U
(n)
j

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,−

)
+ δ−t δ+

t U
(n)
j

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)

+ δ−t δ−t U
(n)
j

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,−

)}
ΔxΔt +

M∑
j=1

Ld(j, N, pr(1)d U
(N)
j )Δx −

M∑
j=1

Ld(j, 1, pr(1)d U
(1)
j )Δx.

Applying the summation-by-parts formula (3.1) and (3.2), we have

= −
N∑

n=2

M∑
j=1

(
δ−t U

(n)
j

){( ∂Ld

∂(U (n−1)
j , U

(n)
j )

)
− δ−x

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,+

)

− δ+
x

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,−

)
− δ−t

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,−

)}
ΔxΔt

−
N∑

n=2

((
δ−t U

(n)
M+1

)( ∂Ld

∂(U (n−1)
M , U

(n)
M )x,+

)
−
(
δ−t U

(n)
1

)( ∂Ld

∂(U (n−1)
0 , U

(n)
0 )x,+

))
Δt

−
N∑

n=2

((
δ−t U

(n)
M

)( ∂Ld

∂(U (n−1)
M+1 , U

(n)
M+1)x,−

)
−
(
δ−t U

(n)
0

)( ∂Ld

∂(U (n−1)
1 , U

(n)
1 )x,−

))
Δt

−
M∑

j=1

((
δ−t U

(N+1)
j

)( ∂Ld

∂(U (N−1)
j , U

(N)
j )t,+

)
−
(
δ−t U

(2)
j

)( ∂Ld

∂(U (0)
j , U

(1)
j )t,+

))
Δx
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−
M∑

j=1

((
δ−t U

(N)
j

)( ∂Ld

∂(U (N)
j , U

(N+1)
j )t,−

)
−
(
δ−t U

(1)
j

)( ∂Ld

∂(U (1)
j , U

(2)
j )t,−

))
Δx

+
M∑

j=1

Ld(j, N, pr(1)d U
(N)
j )Δx −

M∑
j=1

Ld(j, 1, pr(1)d U
(1)
j )Δx.

Therefore, if we define a scheme by the following discrete analogue of the Euler–Lagrange equation(
∂Ld

∂(U (n−1)
j , U

(n)
j )

)
− δ−x

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,+

)
− δ+

x

(
∂Ld

∂(U (n−1)
j , U

(n)
j )x,−

)

− δ−t

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n−1)
j , U

(n)
j )t,−

)
= 0, (4.1)

we obtain the following discrete energy conservation law.

Theorem 4.1. Suppose that U
(n)
j is a numerical solution of the scheme (4.1) under a boundary condition that

satisfies

(
δ−t U

(n)
M+1

)( ∂Ld

∂(U (n−1)
M , U

(n)
M )x,+

)
+
(
δ−t U

(n)
M

)( ∂Ld

∂(U (n−1)
M+1 , U

(n)
M+1)x,−

)

−
(
δ−t U

(n)
1

)( ∂Ld

∂(U (n−1)
0 , U

(n)
0 )x,+

)
−
(
δ−t U

(n)
0

)( ∂Ld

∂(U (n−1)
1 , U

(n)
1 )x,−

)
= 0.

Then, the following discrete energy conservation law holds:

M∑
j=1

Ld(j, n, pr(1)d U
(n)
j )Δx −

M∑
j=1

((
δ−t U

(n+1)
j

)( ∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)

+
(
δ−t U

(n)
j

)( ∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

))
Δx = const.

Definition 4.2. We call the discrete analogue (4.1) of the Euler–Lagrange equation the (gd, ∇̄)-discrete Euler–
Lagrange equation.

Remark 4.3. There exist some other discrete analogues of the Euler–Lagrange equation. For example, the
most famous one would be the one in discrete mechanics [50, 68], which is called the discrete Euler–Lagrange
equation. We call the one in our approach the (gd, ∇̄)-discrete Euler–Lagrange equation in order to distinguish
it from the others.

Remark 4.4. A major difference between our approach and other studies related to the discrete Noether
theorem is that we use a discrete symmetry to derive numerical schemes, while the others adopt continuous
symmetries. Another difference is that we use the discrete gradient method.

Remark 4.5. Our theory ensures the conservation of only one chosen conserved quantity while the other
conserved quantities may or may not be conserved. Indeed, although the AVF method is conjugate-symplectic
of order 4 for Hamiltonian ODEs, this is not necessarily true for this Lagrangian method. Practically, the
numerical test in Section 6 shows that the energy-preserving scheme for the nonlinear Klein–Gordon equation
preserves the discrete momentum and the discrete angular momentum well; however, this may not be the case
for other equations.
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Remark 4.6. The order of accuracy of the schemes is determined as follows:

• the spatial order of accuracy is determined by the accuracy of the discrete Lagrangian density,
• the temporal order of accuracy is determined by the accuracies of the discrete Lagrangian density and the

discrete gradient.

In this paper, for simplicity, we have used the forward and backward difference operators; nevertheless, other
difference operators, such as those of higher-order accuracy and the pseudo-spectral difference operator, can be
used. The summation-by-parts formulas corresponding to general difference operators are available in [46,59,70].
Therefore, high order schemes in the spatial direction are obtained in a straightforward manner. About the
temporal direction, there exist a few results on the discrete gradient of higher order accuracy. One such example
is a high-order generalization of the Gonzalez discrete gradient by Matsuo [27, 51]. This method could be
combined with our method. Another choice could be the collocation method by Hairer [32], which is a higher-
order extension of the AVF method. This method has a conjugate-symplecticity of higher order if the method
is applied to Hamiltonian ODEs.

Remark 4.7. We assume that the spatial indices belong to entire Z. This implies that we also assume that
boundary conditions are imposed by the so-called ghost cell method [43]. In this method, the computational
domain is extended to include additional nodes, which are called ghost nodes or ghost cells, outside the bound-
aries. The boundary condition is imposed by appropriately setting the values on these nodes. For example, the
periodic boundary condition is imposed by setting U

(n)
−1 = U

(n)
M−1, U

(n)
0 = U

(n)
M , U

(n)
M+1 = U

(n)
1 , U

(n)
M+2 = U

(n)
2 ,

etc. As another example, the Neumann boundary condition ux = 0 can be discretized into δ
〈1〉
x U

(n)
0 = 0, which

implies U
(n)
−1 = U

(n)
1 . For more complicated boundary conditions, see [43] and references therein.

5. Symmetry of space translation and momentum-preserving schemes

In this section, we discuss the use of other symmetries. We believe that general divergence symmetries [60]
can be applied in our approach; however, we have not been successful in obtaining a suitable definition of
“discrete divergence symmetry.” Thus, we illustrate the idea by deriving momentum-preserving schemes from
spatial symmetry.

The schemes are obtained in exactly the same way as in the previous section. Suppose that a discrete
Lagrangian density has a symmetry with respect to the action of the infinite cyclic group hd

hd : Z × (Z2 × R) → (Z2 × R), (z, (j, n, U)) �→ (j − z, n, U),

that is,

Ld(j − z, n, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j ).

Then, the difference of the action sums with respect to this symmetry yields

1
Δx

⎛
⎝ N∑

n=1

M∑
j=0

Ld(j + 1, n, pr(1)d U
(n)
j )ΔxΔt −

N∑
n=1

M∑
j=0

Ld(j, n, pr(1)d U
(n)
j )ΔxΔt

⎞
⎠ = 0.
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By performing the same calculations as in the energy-preserving schemes, we obtain

0 = −
N∑

n=1

M∑
j=1

(
δ−x U

(n)
j

){( ∂Ld

∂(U (n)
j−1, U

(n)
j )

)
− δ−x

(
∂Ld

∂(U (n)
j−1, U

(n)
j )x,+

)

− δ+
x

(
∂Ld

∂(U (n)
j−1, U

(n)
j )x,−

)
− δ−t

(
∂Ld

∂(U (n)
j−1, U

(n)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n)
j−1, U

(n)
j )t,−

)}
ΔxΔt

−
N∑

n=1

((
δ−x U

(n)
M+1

)( ∂Ld

∂(U (n)
M−1, U

(n)
M )x,+

)
−
(
δ−x U

(n)
1

)( ∂Ld

∂(U (n)
−1 , U

(n)
0 )x,+

))
Δt

−
N∑

n=1

((
δ−x U

(n)
M

)( ∂Ld

∂(U (n)
M , U

(n)
M+1)x,−

)
−
(
δ−x U

(n)
0

)( ∂Ld

∂(U (n)
0 , U

(n)
1 )x,−

))
Δt

−
M∑

j=1

((
δ−x U

(N+1)
j

)( ∂Ld

∂(U (N)
j−1 , U

(N)
j )t,+

)
−
(
δ−x U

(1)
j

)( ∂Ld

∂(U (0)
j−1, U

(0)
j )t,+

))
Δx

−
M∑

j=1

((
δ−x U

(N)
j

)( ∂Ld

∂(U (N+1)
j−1 , U

(N+1)
j )t,−

)
−
(
δ−x U

(0)
j

)( ∂Ld

∂(U (1)
j−1, U

(1)
j )t,−

))
Δx

+
N∑

n=1

Ld(M, n, pr(1)d U
(n)
M )Δt −

N∑
n=1

Ld(0, n, pr(1)d U
(n)
0 )Δt.

Thus, if we define the scheme by(
∂Ld

∂(U (n)
j−1, U

(n)
j )

)
− δ−x

(
∂Ld

∂(U (n)
j−1, U

(n)
j )x,+

)
− δ+

x

(
∂Ld

∂(U (n)
j−1, U

(n)
j )x,−

)

− δ−t

(
∂Ld

∂(U (n)
j−1, U

(n)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n)
j−1, U

(n)
j )t,−

)
= 0, (5.1)

which we call the (hd, ∇̄)-discrete Euler–Lagrange equation, we have the following discrete momentum conser-
vation law:

Theorem 5.1. Suppose that U
(n)
j is a numerical solution of the scheme (5.1) under a boundary condition that

satisfies

Ld(M, n, pr(1)d U
(n)
M ) −

(
δ−x U

(n)
M+1

)( ∂Ld

∂(U (n)
M−1, U

(n)
M )x,+

)
−
(
δ−x U

(n)
M

)( ∂Ld

∂(U (n)
M , U

(n)
M+1)x,−

)

= Ld(0, n, pr(1)d U
(n)
0 ) −

(
δ−x U

(n)
1

)( ∂Ld

∂(U (n)
−1 , U

(n)
0 )x,+

)
−
(
δ−x U

(n)
0

)( ∂Ld

∂(U (n)
0 , U

(n)
1 )x,−

)
.

Then the following discrete momentum conservation law holds:

M∑
j=1

((
δ−x U

(n+1)
j

)( ∂Ld

∂(U (n)
j−1, U

(n)
j )t,+

)
+
(
δ−x U

(n)
j

)( ∂Ld

∂(U (n+1)
j−1 , U

(n+1)
j )t,−

))
Δx = const.

6. Numerical example

In this section, we present an energy-preserving scheme and a momentum-preserving scheme for the nonlinear
Klein–Gordon equation and perform a numerical comparison with the Marsden–Patrick–Shkoller scheme.
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We derive an energy-preserving scheme for the nonlinear Klein–Gordon equation

utt − uxx = φ′(u), u(t, x + L) = u(t, x) (6.1)

whose Lagrangian density is

L(x, t, u, ux, ut) = −1
2
u2

t +
1
2
u2

x − φ(u). (6.2)

The Lagrangian density of the nonlinear Klein–Gordon equation has the time and spatial symmetries, and hence
the energy function

E(t) =
∫ L

0

(
1
2
u2

t +
1
2
u2

x − φ(u)
)

dx

and the momentum function

M(t) =
∫ L

0

uxutdx

are conserved.
We introduce a discrete Lagrangian density for this equation by

Ld(j, n, pr(1)d U
(n)
j ) = −1

4

(
(δ+

t U
(n)
j )2 + (δ−t U

(n)
j )2

)
+

1
4

(
(δ+

x U
(n)
j )2 + (δ−x U

(n)
j )2

)
− φ(U (n)

j ).

This discrete Lagrangian has the symmetry of time translation

Ld(j, n + 1, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j ).

If the AVF method [57,63], or equivalently the Furihata method [23], is employed as the discrete gradient, the
procedure shown in Section 4 yields the following (gd, ∇̄)-discrete Euler–Lagrange equation

δ−t δ
〈1〉
t U

(n)
j − δ〈2〉x

(
U

(n)
j + U

(n−1)
j

2

)
−
∫ 1

0

φ′(ξU (n)
j + (1 − ξ)U (n−1)

j )dξ = 0. (6.3)

This scheme has the following discrete energy conservation law

M∑
j=1

(
(δ〈1〉t U

(n)
j )2 + Ld(j, n, pr(1)d U

(n)
j )

)
Δx = const.,

if the boundary condition satisfies

−1
4

[
(δ+

x (U (n)
M + U

(n−1)
M ))(δ−t (U (n)

M+1 + U
(n)
M ))

]
+

1
4

[
(δ+

x (U (n)
0 + U

(n−1)
0 ))(δ−t (U (n)

1 + U
(n)
0 ))

]
= 0.

Remark 6.1. This scheme is identical to the energy-preserving explicit scheme by Furihata [25]; however, the
scheme in [25] is derived in a different manner.

Similarly, by using the spatial symmetry, we get the (hd, ∇̄)-discrete Euler–Lagrange equation

δ
〈2〉
t

(
U

(n)
j−1 + U

(n)
j

2

)
− δ〈2〉x

(
U

(n)
j−1 + U

(n)
j

2

)
−
∫ 1

0

φ′(ξU (n)
j + (1 − ξ)U (n)

j−1)dξ = 0, (6.4)
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which satisfies the discrete momentum conservation law

M∑
j=1

1
4

[
(δ−x U

(n+1)
j ) · (δ+

t (U (n)
j−1 + U

(n)
j )) + (δ−x U

(n)
j ) · (δ+

t (U (n+1)
j−1 + U

(n+1)
j ))

]
Δx = const.,

if the boundary condition satisfies

Ld(M, n, pr(1)d U
(n)
M ) − (δ〈1〉x U

(n)
M )2 − Ld(1, n, pr(1)d U

(n)
1 ) + (δ〈1〉x U

(n)
1 )2 = 0.

Next, we performed a numerical test to compare these two schemes with the Marsden–Patrick–Shkoller
scheme [48]

1
2
δ
〈2〉
t U

(n)
j +

1
4
δ
〈2〉
t U

(n)
j+1 +

1
4
δ
〈2〉
t U

(n)
j−1 − δ〈2〉x U

(n)
j +

1
4

(
φ′(Ū (n)

j ) + φ′(Ū (n)
j−1) + φ′(Ū (n−1)

j ) + φ′(Ū (n−1)
j−1 )

)
= 0,

Ū
(n)
j =

1
4

(
U

(n)
j + U

(n)
j+1 + U

(n+1)
j + U

(n+1)
j+1

)
. (6.5)

Because this scheme is a system of nonlinear equations, we used the Broyden method to solve it [38]. Motivated
by the numerical test presented in [45], we solved the nonlinear Klein–Gordon equation under the periodic
boundary condition

utt − uxx = φ′(u), φ(u) =
u2

2
− u4

4π2
, u(t, x + L) = u(t, x), L = 100 (6.6)

with the initial condition

u(t, x) = π

(
tanh

x − 48.5 + βt√
2(1 − β2)

+ tanh
−(x − 51.5) + βt√

2(1 − β2)
− 1

)

for t ≤ 0. We set β = 0.2. The numerical solutions obtained under these conditions are of breather-type. We set
Δt to 0.1 and used a uniform grid consisting of 501 nodes.

The numerical solutions obtained by (6.3), (6.4) and (6.5) are shown in Figures 1– 3 respectively. We do
not observe any significant differences between these figures. Next, we compared the behaviors of the conserved
quantities. The evolutions of the energies, the momenta and the angular momenta are presented in Figures 4–6,
respectively. The discrete angular momentum that we used is a linear combination of the discrete energy density
and the discrete momentum density:

M∑
j=1

[
jΔx

(
(δ〈1〉t U

(n)
j )2 + Ld(j, n, pr(1)d U

(n)
j )

)

+
nΔt

4

[
(δ−x U

(n+1)
j ) · (δ+

t (U (n)
j−1 + U

(n)
j )) + (δ−x U

(n)
j ) · (δ+

t (U (n+1)
j−1 + U

(n+1)
j ))

]]
Δx.

As shown in Figure 4, the discrete energy of the energy-preserving scheme is exactly conserved. In this case, the
discrete energy is also well preserved by the momentum-preserving scheme and the Marsden–Patrick–Shkoller
scheme. The results presented in Figure 5 are somewhat surprising. All schemes preserve the discrete momen-
tum well. Actually, the Marsden–Patrick–Shkoller scheme performs the best, and surprisingly, the momentum-
preserving scheme performs the worst. This behavior is caused by the rounding errors. In fact, when we performed
the computation in quadruple-precision, the discrete momentum of the momentum-preserving scheme was pre-
served up to 10−31. Conversely, the Marsden–Patrick–Shkoller scheme has the modified momentum conservation
law that is guaranteed by the backward error analysis, and therefore is not much affected by the rounding errors.
This is possibly why this scheme is “more conservative” than the momentum-preserving scheme. Although the
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Figure 1. The numerical solution
of the nonlinear Klein–Gordon equa-
tion (6.6) obtained by the energy-
preserving scheme (6.3).

Figure 2. The numerical solution
of the nonlinear Klein–Gordon equa-
tion (6.6) obtained by the momentum-
preserving scheme (6.4).

Figure 3. The numerical solution
of the nonlinear Klein–Gordon equa-
tion (6.6) obtained by the Marsden–
Patrick–Shkoller scheme (6.5).

momentum by the energy-preserving scheme is oscillatory, it exhibits small deviations. The behaviors of the
discrete angular momenta are similar to those of the discrete energies; actually, the energy-preserving scheme
preserves it very well. This may be due to the fact that in this case the angular momentum mostly consists of
the energy.

In summary, although the discrete conservation property is proved only for energy or momentum, in the test
case considered, these schemes also preserve other conserved quantities well; actually, their performance was not
much worse than the Marsden–Patrick–Shkoller scheme. In particular, considering that the energy-preserving
scheme is an explicit scheme, this scheme could be a method of choice. The good performance of our schemes
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Figure 4. The evolutions of the to-
tal energies of the numerical solutions
of the nonlinear Klein–Gordon equa-
tion (6.6).

-1.2e-13

-1e-13

-8e-14

-6e-14

-4e-14

-2e-14

 0

 2e-14

 4e-14

 0  20  40  60  80  100

energy-preserving scheme
momentum-preserving scheme

the Marsden-Patrick-Shkoller scheme

Figure 5. The evolutions of the total
momenta of the numerical solutions
of the nonlinear Klein–Gordon equa-
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Figure 6. The evolutions of the total
angular momenta of the numerical so-
lutions of the nonlinear Klein–Gordon
equation (6.6).

would be related to the fact that the AVF method is conjugate-symplectic of order 4 for Hamiltonian ODEs;
however, we have not performed any rigorous analysis on it. Thus, the situation may depend on equations and
also on choices of discrete Lagrangians.

7. Local theory of conservative schemes

In this section, we present a local theory for the energy-preserving schemes and the momentum-preserving
schemes. The Noether theorem guarantees, for example, not only the global energy-conservation law but also
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the local conservation law [60]

⎛
⎝Dt

Dx

⎞
⎠ ·

⎛
⎜⎜⎜⎝
L − ut

∂L
∂ut

−ut
∂L
∂ux

⎞
⎟⎟⎟⎠ = 0.

In this section, we show that the conservative schemes presented above admit a similar discrete local conservation
law.

Roughly speaking, we consider the action integral in order to apply the variational calculus, particularly
the integration-by-parts formula. However, because the integration-by-parts formula is obtained by integrating
the product rule (uv)x = uxv + uvx, the local theory should be obtained by replacing the integration-by-
parts formula with the product rule. The discrete product rules corresponding to the summation-by-parts
formulas (3.1) and (3.2) are

U
(n)
j

(
δ+
x V

(n)
j

)
+ V

(n)
j

(
δ−x U

(n)
j

)
= δ−x

(
U

(n)
j V

(n)
j+1

)
= δ+

x

(
U

(n)
j−1V

(n)
j

)
, (7.1)

U
(n)
j

(
δ+
t V

(n)
j

)
+ V

(n)
j

(
δ−t U

(n)
j

)
= δ−t

(
U

(n)
j V

(n+1)
j

)
= δ+

t

(
U

(n−1)
j V

(n)
j

)
. (7.2)

Similar formulas for general difference operators are shown in Logan [46] and Miller [59].
First, we consider the energy-preserving schemes. Suppose that the given discrete Lagrangian density has the

local symmetry at (j, n) with respect to time translation

Ld(j, n + 1, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j ),

instead of the global symmetry

Ld(j, n + z, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j ) for all z ∈ Z.

Then, we have

0 =
1

Δt

[
Ld(j, n + 1, pr(1)d U

(n)
j ) − Ld(j, n, pr(1)d U

(n)
j )

]
=

1
Δt

[
Ld(j, n + 1, pr(1)d U

(n+1)
j ) − Ld(j, n, pr(1)d U

(n)
j ) − Ld(j, n + 1, pr(1)d U

(n+1)
j ) + Ld(j, n + 1, pr(1)d U

(n)
j )

]
.

Application of the discrete gradient (3.3) gives

=
1

Δt

[
Ld(j, n + 1, pr(1)d U

(n+1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

]
− 1

Δt
∇̄Ld ·

(
pr(1)d (U (n+1)

j − U
(n)
j )

)�
=

1
Δt

[
Ld(j, n + 1, pr(1)d U

(n+1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

]

−
[
δ+
t U

(n)
j

(
∂Ld

∂(U (n)
j , U

(n+1)
j )

)
+ δ+

t δ+
x U

(n)
j

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,+

)

+ δ+
t δ−x U

(n)
j

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

)
+ δ+

t δ+
t U

(n)
j

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,+

)
+ δ+

t δ−t U
(n)
j

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)]
.
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By applying the discrete product rules (7.1) and (7.2), we get

=
1

Δt

[
Ld(j, n + 1, pr(1)d U

(n+1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

]

− δ+
t U

(n)
j

[(
∂Ld

∂(U (n)
j , U

(n+1)
j )

)
− δ−x

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,+

)
− δ+

x

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

)

− δ−t

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)]

− δ+
x

((
δ+
t U

(n)
j

) ∂Ld

∂(U (n)
j−1, U

(n+1)
j−1 )x,+

)
− δ+

x

((
δ+
t U

(n)
j−1

) ∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

)

− δ+
t

((
δ+
t U

(n)
j

) ∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)
− δ+

t

((
δ−t U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)
.

Next, we introduce discrete counter parts of the total derivatives Δ+
t and Δ+

x , which are defined by

Δ+
t Ld(j, n, pr(1)d U

(n)
j ) =

1
Δt

[
Ld(j, n + 1, pr(1)d U

(n+1)
j ) − Ld(j, n, pr(1)d U

(n)
j )

]
,

Δ+
x Ld(j, n, pr(1)d U

(n)
j ) =

1
Δx

[
Ld(j + 1, n, pr(1)d U

(n)
j+1) − Ld(j, n, pr(1)d U

(n)
j )

]
for the discrete Lagrangian density, and by Δ+

t = δ+
t and Δ+

x = δ+
x for other quantities. Using these definitions,

we get

0 = − δ+
t U

(n)
j

[(
∂Ld

∂(U (n)
j , U

(n+1)
j )

)
− δ−x

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,+

)
− δ+

x

(
∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

)

− δ−t

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,+

)
− δ+

t

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)]
+ Δ+

t Ld(j, n, pr(1)d U
(n)
j )

− Δ+
x

((
δ+
t U

(n)
j

) ∂Ld

∂(U (n)
j−1, U

(n+1)
j−1 )x,+

)
− Δ+

x

((
δ+
t U

(n)
j−1

) ∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

)

− Δ+
t

((
δ+
t U

(n)
j

) ∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

)
− Δ+

t

((
δ−t U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)
,

which shows that the (gd, ∇̄)-discrete Euler–Lagrange equation satisfies the following discrete local energy
conservation law:

⎛
⎝Δ+

t

Δ+
x

⎞
⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ld(j, n, pr(1)d U
(n)
j )

−
(
δ+
t U

(n)
j

) ∂Ld

∂(U (n−1)
j , U

(n)
j )t,+

−
(
δ−t U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

−
(
δ+
t U

(n)
j

) ∂Ld

∂(U (n)
j−1, U

(n+1)
j−1 )x,+

−
(
δ+
t U

(n)
j−1

) ∂Ld

∂(U (n)
j , U

(n+1)
j )x,−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Similarly, if a discrete Lagrangian density has the local symmetry at (j, n) with respect to spatial translation

Ld(j + 1, n, pr(1)d U
(n)
j ) = Ld(j, n, pr(1)d U

(n)
j ),
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we have

0 = − δ+
x U

(n)
j

[(
∂Ld

∂(U (n)
j , U

(n)
j+1)

)
− δ−x

(
∂Ld

∂(U (n)
j , U

(n)
j+1)x,+

)
− δ+

x

(
∂Ld

∂(U (n)
j , U

(n)
j+1)x,−

)

− δ−t

(
∂Ld

∂(U (n)
j , U

(n)
j+1)t,+

)
− δ+

t

(
∂Ld

∂(U (n)
j , U

(n+1)
j )t,−

)]
+ Δ+

x Ld(j, n, pr(1)d U
(n)
j )

− Δ+
x

((
δ+
x U

(n)
j

) ∂Ld

∂(U (n)
j−1, U

(n)
j )x,+

)
− Δ+

x

((
δ−x U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n)
j+1)x,−

)

− Δ+
t

((
δ+
x U

(n)
j

) ∂Ld

∂(U (n−1)
j , U

(n−1)
j+1 )t,+

)
− Δ+

t

((
δ+
x U

(n−1)
j

) ∂Ld

∂(U (n)
j , U

(n)
j+1)t,−

)
,

which shows that the (hd, ∇̄)-discrete Euler–Lagrange equation satisfies the following discrete local momentum
conservation law:

⎛
⎝Δ+

t

Δ+
x

⎞
⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(
δ+
x U

(n)
j

) ∂Ld

∂(U (n−1)
j , U

(n−1)
j+1 )t,+

−
(
δ−x U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n)
j+1)t,−

Ld(j, n, pr(1)d U
(n)
j )

−
(
δ+
x U

(n)
j

) ∂Ld

∂(U (n)
j−1, U

(n)
j )x,+

−
(
δ−x U

(n)
j

) ∂Ld

∂(U (n)
j , U

(n)
j+1)x,−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

8. Concluding remarks

In this paper, we have proposed a Lagrangian approach to deriving energy-preserving numerical schemes.
Because our approach is a combination of the discrete gradient method and the Noether theorem in Lagrangian
mechanics, it can be considered as a Lagrangian counterpart of the discrete gradient method. In our method,
energy-preserving schemes are obtained as a discrete analogue of the Euler–Lagrange equation that is derived by
using the symmetry of time translation of the given discrete Lagrangian density. From a practical point of view,
it would be noteworthy that our approach naturally gives explicit or linearly implicit schemes in most cases,
while the usual application of the discrete gradient method typically results in a nonlinear system of equations.
It is also shown that the same procedure can be applied with spatial symmetry to derive momentum-preserving
schemes, and the derived schemes have the corresponding local conservation law.

Finally, we make some general comments.

Other Conservation Laws and Conjugate-Symplecticity. The AVF method is shown to be conjugate-symplectic
of order 4, if this method is applied to Hamiltonian ODEs [14]. Although this method can be used in
our Lagrangian approach, the resulting scheme may or may not be conjugate-symplectic; thus conserved
quantities other than that corresponding to the chosen symmetry may or may not be conserved. Practically,
in the numerical test presented in Section 6, the energy-preserving scheme for the nonlinear Klein–Gordon
equation preserves the discrete momentum and the discrete angular momentum well. This result indicates
that the energy-preserving method that uses the AVF method might have conjugate-symplecticity; however,
this should be investigated in future studies.

Order of Accuracy. Although the schemes shown in Section 6 are of the 2nd order in space and time, higher
order schemes in the spatial direction can be obtained in a straightforward manner.
The most important tools used in our method are the summation-by-parts formula and the discrete gradient
method. Therefore, to obtain higher order schemes, we need
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• the summation-by-parts formula for higher order difference operators and
• a discrete gradient of higher order accuracy.

Because the former is available (see [46, 59, 70]) and the latter affects only on the temporal accuracy, we
can immediately obtain spatially higher order schemes by replacing the difference operators in the discrete
Lagrangian density with higher order ones, which include the pseudo-spectral difference operator.

Although, it is difficult to obtain a discrete gradient of higher order accuracy, there are some results
available in the literature. For example, Matsuo proposed a high-order generalization of the Gonzalez discrete
gradient [27, 51], and Hairer proposed a collocation method [32]. These methods could be combined with our
method.

Multi-Dimensional Problems and Use of Nonuniform Meshes. When addressing multi-dimensional problems
defined on complicated domains, use of nonuniform or triangular meshes is of great importance. If we are
interested only in energy-preserving schemes, we can use these meshes, because they do not destroy the sym-
metry of time translation, while they destroy the spatial symmetry. The most critical step is the application
of the summation-by-parts formula, or more generally the discrete Stokes theorem, on nonuniform/triangular
meshes. However, because this is the same situation as in the standard (Hamiltonian-type) approach of the
discrete gradient method, these formulas have been developed and are available in, for example, [58, 70].

The CFL Condition. Because the energy-preserving scheme for the nonlinear Klein–Gordon equation is explicit,
step sizes must be determined so that the CFL condition is satisfied. This is inconvenient because users may
be required to use a uniform temporal mesh to obtain the energy conservation law. However, as shown in
Section 7, the energy-preserving scheme also satisfies the discrete local energy conservation law. This implies
that different time steps can be used on each node.

Application to ODEs. Although we have focused on partial differential equations in this paper, our approach
can be applied also to ordinary differential equations.

Future Studies. Possibilities for future studies include the following:
• Some other results are available that deal with symmetry of discrete systems, such as, the discrete

analogues of Noether’s theorem reported in [18, 19, 35, 47]. The relation of our approach to these results
should be investigated.

• Backward error analysis should be applied to investigate the existence of the variational principle and
other properties.

• In our approach, the schemes, and thereby their stability, depend on the discrete Lagrangian density.
Hence, because in most cases, our approach gives explicit or linearly implicit multi-step schemes, we
should apply the stability analysis of linear multi-step methods.

• Finally, a finite-element-type framework should be developed.
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grateful to Prof. S. Reich for pointing out the possibility of existence of the local energy conservation law. Finally, the
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