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FIRST ORDER SECOND MOMENT ANALYSIS
FOR STOCHASTIC INTERFACE PROBLEMS
BASED ON LOW-RANK APPROXIMATION ∗

Helmut Harbrecht1 and Jingzhi Li2

Abstract. In this paper, we propose a numerical method to solve stochastic elliptic interface problems
with random interfaces. Shape calculus is first employed to derive the shape-Taylor expansion in the
framework of the asymptotic perturbation approach. Given the mean field and the two-point correlation
function of the random interface, we can thus quantify the mean field and the variance of the random
solution in terms of certain orders of the perturbation amplitude by solving a deterministic elliptic
interface problem and its tensorized counterpart with respect to the reference interface. Error esti-
mates are derived for the interface-resolved finite element approximation in both, the physical and the
stochastic dimension. In particular, a fast finite difference scheme is proposed to compute the variance
of random solutions by using a low-rank approximation based on the pivoted Cholesky decomposition.
Numerical experiments are presented to validate and quantify the method.
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1. Introduction

This paper is devoted to an efficient numerical method for physical problems governed by elliptic partial
differential equations (PDEs) with discontinuous coefficients across random interfaces, namely stochastic elliptic
interface problems (SEIP). A distinct feature of elliptic interface problems (EIPs) lies in the fact that their
solutions have high regularity on each individual material region but low global regularity due to the discontinuity
of the material coefficients across the interface. Many numerical methods such as finite difference methods, finite
element methods, and finite volume methods have been developed in the past few decades for deterministic
elliptic interface problems. We refer the reader to the monograph [32] and the references therein.

Here, we will model and solve EIPs which involve new challenges by random interfaces. This is of immense in-
terest in the computational simulation in nano-physics, biology and chemistry, where one has unsharp interfaces
like rough cross sections, cell membranes and molecular surfaces for instance. We emphasize that traditional
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methods for PDEs with random coefficients fail since the underlying statistics is inherently non-smooth. Hence,
we shall use techniques which have been developed in the past five years for PDEs with an uncertain computa-
tional domain, see, e.g., [9, 20, 23, 44] and the references therein. Broadly speaking, there are two categories of
approaches to solve stochastic PDE.

(A) Monte Carlo methods (MC) (see [29,35] and the references therein): This is the most general methodology
to treat randomness by sampling numerous draws of the random input data according to some a priorily known
or empirical distribution, where each draw entails the computation of a deterministic PDE. Then, the statistics
like the mean and variance of these samples is formed. By interpreting the realizations as draws of independent
and identically distributed (i.i.d.) random variables, one can show that the convergence rate of MC methods is
inversely proportional to the square root of the number of samples. Dimension-independence is the key advantage
of MC methods. Nevertheless, to guarantee a certain accuracy, a huge number of samples has to be evaluated
which could require formidable computing resources. Recently, the efficient multilevel MC method has been
proposed to solve elliptic PDEs with stochastic coefficients in asymptotically optimal complexity [5].

(B) Deterministic approaches: If the statistical description of the random input data is specified, one can
mathematically characterize the uncertainty in the input data and recast the original stochastic PDE into a
deterministic one. From this, the statistics of the unknown random field is derived. There are two subclasses in
this case.

(B.1) Perturbation methods [1, 19, 20, 22, 27, 28]: The pivotal idea of the perturbation approach for stochastic
PDEs is the expansion of the random field at hand around the related input parameter’s expectation via a
Taylor series. This is applicable if the perturbation amplitude is small. Then, the expansion is substituted into
the original problem. Equating the terms of equal order in the asymptotic expansion of the output parameter,
one arrives at the corresponding zeroth-, first- and second-order subproblems, etc.

(B.2) Stochastic Galerkin methods [2–4,12,13,16,17,33,36,37,40,41,43]: The rationale behind these methods
is to express, through the decomposition of physical and stochastic variables (e.g. by the Karhunen–Loève
expansion), the random field as the tensor product of functions in the physical domain and random variables in
the stochastic domain. Then one adopts, respectively, finite element spaces for the physical approximation and
wavelets or (generalized) chaos polynomials for the stochastic approximation. Efficient solvers are achieved by
employing sparse grid techniques to mitigate the curse of dimensionality.

In the present paper, we will employ the perturbation approach to treat the SEIP. Due to the uncertainty
of the interface, the solution of the elliptic system itself becomes a random field. The statistics of the random
solution is obtained by transforming the stochastic problem into a couple of deterministic ones (possibly) in
high dimensions. It is common sense that the knowledge of the complete statistics of the input random field
is rarely known in practice. Therefore, as in [23], we impose two additional assumptions for the model in the
current work. Namely, (i) that the perturbation amplitude of the random interface around its mean is relatively
small and (ii) that the mean field and the two-point correlation function of the random interface are known
empirically or from elsewhere. It is emphasized that the underlying stochastic process needs not to be explicitly
known. More precisely, the SEIP may well be reformulated as follows: Given the statistics of the interface’s
random perturbation, how to compute the statistics of the SEIP’s random solution?

The use of shape sensitivity analysis offers the possibility to treat such problems, which, to our opinion,
is not known and new to the mathematical and engineering community. The novelty of our approach lies
in the derivation of a tensorized PDE for the two-point correlation function of the shape derivative. This
PDE constitutes the basis to derive the variance of random solutions. It is worth noting that solving such a
tensorized PDE is a highly-nontrivial task with challenging demands if one resorts to sparse grid techniques.
As an alternative approach, we use the pivoted Cholesky decomposition to solve this equation. It is worth
remarking that the Monte Carlo approach employs a great number of sample interfaces to solve deterministic
EIPs with each sample interface, which is a demanding job, not to mention the work about remeshing for each
sample interface to avoid the sub-optimal convergence [31].
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We mention that an approach which is similar to ours was first utilized and analyzed in [1] to address elliptic
PDEs with stochastic coefficients. However, in difference to [1], we also derive the asymptotic error of the
variance. Moreover, in [11], which is a more recent work than ours, a very general and abstract framework of the
present first order perturbation approach has been formulated. It covers even nonlinear operator equations with
random input data and particularly includes also random domains. Besides precise estimates on the constants
which are involved in the asymptotic expansions, also expressions for the random solution’s higher order moments
are derived by multilinear, tensorized operator equations. Nevertheless, we focus here on the specific application
to random interface problems and the related numerical realization.

The rest of the paper is organized as follows. In Section 2, we set up a SEIP model and mathematically describe
the randomness and the statistics of stochastic interfaces. In Section 3, we derive the shape derivative of solutions
to EIPs via shape calculus. In Section 4, we formulate a deterministic elliptic interface problem and its tensorized
counterpart for the mean and two-point correlation of the random solution, respectively. In Section 5, error
estimates for the fully discrete approximation of the mean field and two-point correlation function are derived in
both stochastic and physical dimensions. A fast algorithm based on the low-rank approximation via the pivoted
Cholesky decomposition is proposed as an efficient alternative to compute the two-point correlation function
of random solutions. In Section 6, numerical experiments are shown to compare our proposed deterministic
implementation with the Monte Carlo method and to demonstrate promising advantages.

2. Mathematical formulation

2.1. Model problem

Consider the following EIP arising from the heat conduction model in physics:

−∇ · (α(x, ω)∇u(x, ω)) = f(x) in D−(ω) ∪D+(ω), (2.1)
[u(x, ω)] = 0 on Γ (ω), (2.2)[

α(x, ω)
∂u

∂n
(x, ω)

]
= 0 on Γ (ω), (2.3)

u(x, ω) = 0 on ∂D, (2.4)

where D ⊂ R
d, d = 2, 3, is assumed to be a simply-connected and convex domain with Lipschitz boundary

∂D. The domain D is occupied by two random subdomains D−(ω) and D+(ω) of different materials, where
D−(ω) � D, D+(ω) := D \ D−(ω). These two subdomains are separated by the random interface Γ (ω) :=
∂D−(ω) (see Fig. 1). Equations (2.2) and (2.3) are the jump conditions which the solution u(x, ω) has to meet
on the random interface Γ (ω). The function f(x) is a deterministic source term satisfying f ∈ C∞(D). Moreover,
n(x, ω) denotes the unit normal vector to the interface Γ (ω), pointing to the interior of D+(ω). As regards the
smoothness of the random interface, we have made the following assumption:

Assumption 2.1. The interface Γ (ω) is C2,1-smooth.

Note that a boundary Γ (or the domain with boundary Γ ) is Ck,1-smooth if there exist for all x ∈ Γ a neigh-
borhood U(x) ⊂ Γ and an associated diffeomorphism γ : (0, 1)d−1 → U(x) such that γ ∈ Ck,1((0, 1)d−1,Rd),
see [42] for example.

For any arbitrarily fixed realization ω of a continuous function u(·, ω) we denote by u−(·, ω) (resp. u+(·, ω))
its restriction onto D−(ω) (resp. D+(ω)). Throughout the paper, the jump [u(·, ω)] is always understood to be
u−(·, ω) − u+(·, ω) on Γ (ω) in the sense of the trace for each sample ω. The random coefficient field α(x, ω),
due to the uncertainty of the interface Γ (ω), is assumed to be a piecewise smooth function, namely

α(x, ω) = β(x) + χD−(ω)(x)γ(x) in D,
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Figure 1. Domain sketch with stochastic interface.

with smooth (deterministic) functions β(x) and γ(x). The function χD−(ω)(x) is the characteristic function
of the random subdomain D−(ω), i.e., it is 1 if x ∈ D−(ω) and 0 otherwise. Moreover, we denote α−(x, ω)
(resp. α+(x, ω)) the restriction of α(x, ω) onto D−(ω) (resp. D+(ω)). Hence, the flux jump satisfies[

α(ω)
∂u

∂n
(ω)
]

:= α− ∂u
−

∂n
(ω) − α+ ∂u

+

∂n
(ω) on Γ (ω).

2.2. Stochastic interfaces

To address the randomness of the interface, it is of first priority to model the stochastic interface in a
mathematical way.

Fix any fixed reference interface Γ ∈ C3,1 ⊂ C2,1, which is a closed and orientable manifold of co-dimension
one, separating two fixed subdomains D− and D+. Let n(x) denote the unit normal vector along Γ pointing
into D+. From Γ ∈ C3,1, we conclude n(x) ∈ C2,1(Γ,Rd). Thus, for any

κ ∈ A :=
{
ν ∈ C2,1(Γ,R) : ‖ν‖C2,1(Γ,R) ≤ 1

}
,

we obtain a normal variation of the interface

V(x) := κ(x)n(x) ∈ C2,1(Γ,Rd),

cf. [14, 34]. It exists an ε0 > 0, such that for any 0 ≤ ε ≤ ε0 the perturbed interface

Γε := {x + εκ(x)n(x) : x ∈ Γ} ∈ C2,1

is well defined. In particular, Γε determines uniquely the subdomains D−
ε and thus D+

ε := D \ D−
ε . Here the

second assumption on interfaces comes into play to facilitate the perturbation analysis.

Assumption 2.2. The upper bound ε0 is sufficiently small to ensure that the interface Γε is not degenerate
and lies still inside the domain D.

To account for the randomness of stochastic interfaces, it is equivalent to describe mathematically the random
field

κ(x, ω) : Γ ×Ω → R .

The stochastic interfaces Γ (ω) can be rigorously characterized by a complete probability space (Ω,Σ, P ) where
Ω is the set of all sample draws, namely realizations ω 	→ κ(·, ω) ∈ A , Σ is the Borel σ-algebra of A , and
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P : Σ → [0, 1] is a probability measure on the measurable space (Ω,Σ). For probability spaces on Banach spaces
see [6, 30] and references therein.

Instead of grasping full knowledge of the random solutions, we are more interested in the statistics of the
random field, u : D ×Ω → R which satisfies the PDE (2.1)–(2.4) P -a.s. in Ω.

2.3. Mean and two-point correlation

Throughout the rest of this work, the first and second moments of the P -measurable mapping κ(x, ω) : Ω → A
have to be given. Thus we make the last assumption as follows:

Assumption 2.3. The random field κ(x, ω) has a finite second moment with respect to P which belongs to
the Bochner space L2(Ω,C2,1(Γ,R)).

Given a random field κ ∈ L2(Ω,C2,1(Γ,R)) and a perturbation amplitude ε with 0 ≤ ε ≤ ε0, the random
interface can be parametrized by

Φε :

{
Γ ×Ω → R

d,

(x, ω) 	→ x + εκ(x, ω)n(x).

A realization of the subdomains D±
ε (ω) is thus separated by the interface

Γε(ω) := {Φε(x, ω) : x ∈ Γ} , ω ∈ Ω.

Due to κ ∈ L2(Ω,C2,1(Γ,R)), the first two statistical moments of the random interface variation κ(x, ω) are
pointwise finite. They are defined as follows: the mean

Eκ(x) :=
∫

Ω

κ(x, ω) dP (ω) = E(κ(x, ω)), x ∈ Γ,

the two-point correlation function

Corκ(x,y) :=
∫

Ω

κ(x, ω)κ(y, ω) dP (ω) = E(κ(x, ω)κ(y, ω)), x,y ∈ Γ,

and the covariance
Covarκ(x,y) := Corκ(x,y) − Eκ(x)Eκ(y), x,y ∈ Γ.

Here, by E we denote the expectation or ensemble average with respect to the probability measure P .
It obviously holds that

E(Γε(ω)) := {E(Φε(x, ω)), x ∈ Γ} = {x + εEκ(x)n(x), x ∈ Γ}.
Without loss of generality, we may assume that the random field κ(x, ω) is centered, namely

Eκ(x) = 0. (2.5)

Otherwise, we may readjust the reference interface such that (2.5) holds. Therefore, E(Γε(ω)) = Γ and

Covarκ(x,y) = Corκ(x,y).

Furthermore, once Eκ(x) and Corκ(x,y) are given, it holds

CorΦε(x,y) = E(Φε(x, ω)Φε(y, ω))
= x · y + ε2Corκ(x,y)n(x) · n(y).

This means that the two-point correlation function of the random interface can be modeled by that of the
random variation κ(x, ω).
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3. Shape calculus

In this section, we return to the deterministic world to develop the shape-Taylor expansion of solutions to
EIPs with respect to the reference interface Γ ∈ C3,1 via shape calculus. To that end, we derive the shape
gradient based on the velocity method (cf. [24–26,34, 39]).

Consider a deterministic EIP with respect to the reference interface Γ

−∇ · (α∇u) = f inD− ∪D+, (3.1)
[u] = 0 on Γ, (3.2)[

α
∂u

∂n

]
= 0 on Γ, (3.3)

u = 0 on ∂D, (3.4)

and a deterministic perturbed PDE with respect to perturbed interface Γε

−∇ · (α∇uε) = f in D−
ε ∪D+

ε , (3.5)
[uε] = 0 on Γε, (3.6)[

α
∂uε

∂n

]
= 0 on Γε, (3.7)

uε = 0 on ∂D, (3.8)

where Γε := {x + εκ(x)n(x), x ∈ Γ} is the perturbed interface, D−
ε is the interior part of Γε and D+

ε := D\D−
ε ,

and κ(x) ∈ A is the normal variation. Moreover, we denote by u−ε (resp. u+
ε ) the perturbed solution’s restriction

on D−
ε (resp. D+

ε ).
The first order shape derivative of the elliptic interface problem is defined formally by the pointwise limit

du(x) := du[κ](x) = lim
ε→0

uε(x) − u(x)
ε

, x ∈ (D− ∩D−
ε

) ∪ (D+ ∩D+
ε

)
.

It is characterized by the following lemma.

Lemma 3.1. Under the Assumptions 2.1–2.3, the shape derivative du := du[κ] exists and satisfies the following
EIP with nonhomogeneous jump conditions:

−∇ · (α∇du) = 0 inD− ∪D+, (3.9)

[du] = −κ
[
∂u

∂n

]
on Γ, (3.10)[

α
∂du
∂n

]
= ∇Γ · (κ[α]∇Γu) on Γ, (3.11)

du = 0 on∂D. (3.12)

Here, ∇Γ , ∇Γ · denote, respectively, the surface gradient and the surface divergence operators which are defined
by ∇Γ v := ∇v − (∇v · n)n for a scalar function v, and ∇Γ · v := ∇ · v − ((∇v)n) · n for a vector field v.

Proof. The plan of the proof is as follows. We take the difference of the respective variational formulations of
the original problem (3.1)–(3.4) and of the perturbed problem (3.5)–(3.8) and let tend ε → 0 to arrive at the
variational formulation which belongs to the EIP (3.9)–(3.12) of the shape gradient.

The variational formulations of the original PDE (3.1)–(3.4) and of the perturbed problem (3.5)–(3.8) read
as follows: Seek u, uε ∈ H1

0 (D) such that∫
D−

α−∇u− · ∇v dx +
∫

D+
α+∇u+ · ∇v dx =

∫
D

fv dx (3.13)
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and ∫
D−

ε

α−∇u−ε · ∇v dx +
∫

D+
ε

α∇u+
ε · ∇v dx =

∫
D

fv dx (3.14)

for all v ∈ H1
0 (D).

Subtracting (3.13) from (3.14), dividing by ε on both sides and taking the limit ε → 0, we obtain (see [39],
Chap. 2 and [34], Chap. 4 for the details), the variational formulation of the shape gradient du:∫

D−
α−∇du− · ∇v dx +

∫
D+

α+∇du+ · ∇v dx +
∫

Γ

κ(α−∇u− − α+∇u+) · ∇v dx = 0 (3.15)

where we used the notation du+ := du
∣∣−
D

and du− := du
∣∣
D− . Testing (3.15) by φ ∈ C∞

0 (D+) and φ ∈ C∞
0 (D−),

respectively, we arrive at the PDE (3.9).
The flux jump condition (3.11) follows by first testing (3.15) with a smooth function ψ ∈ C∞(Rd) on Γ and

then employing the flux jump condition (3.3) on Γ . This yields

α− ∂du−

∂n
− α+ ∂du+

∂n
= ∇Γ · ((α− − α+

)
κ∇Γu

)
by using the tangential Green formula (cf. [14]) on the surface of co-dimension one, namely∫

Γ

∇Γ f · v ds+
∫

Γ

f ∇Γ · v ds = 0,

where f is a scalar function on the surface and v is a tangential vector field on the surface.
For ψ ∈ C∞(Rd), the jump condition (3.6) implies for the perturbed problem (3.5)–(3.8) that∫

Γε

(
u−ε − u+

ε

)
ψ ds = 0.

Pulling the integral back from Γε to Γ , taking the derivative with respect to ε on both sides of this equality
and evaluating it at ε = 0, we obtain, by the same argument as in [14], equation (4.16), that∫

Γ

(
du− − du+

)
ψ ds = −

∫
Γ

κ

[
∂ ((u− − u+)ψ)

∂n
+ (d− 1)H (u− − u+

)
ψ

]
ds

= −
∫

Γ

κ

[
∂u

∂n

]
ψ ds,

where H is the mean curvature of the interface Γ . Note that we inserted the jump condition (3.2) in the first
equality to simplify this expression. The second equality finally implies the jump condition (3.10) due to the
arbitrariness of ψ. This completes the proof. �

Remark 3.2. It is worth noting that the shape gradient du is in general not in H1
0 (D) since it may be discon-

tinuous along the interface Γ .

With the shape derivative and the Assumptions 2.1–2.3 at hand, we obtain for all 0 ≤ ε ≤ ε0 the pointwise first
order shape-Taylor expansion

uε(x) = u(x) + εdu[κ](x) + c(x)ε2, x ∈ D \ Uε0(Γ ) (3.16)

where Uε0(Γ ) denotes the ε0-tube region

Uε0(Γ ) := {y = x + tε0n(x), t ∈ [−1, 1], x ∈ Γ} . (3.17)
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The constant c(x) in (3.16) depends on the function u, the jump size [a], and the distance of the point x to the
interface, but it is bounded in κ since we supposed ‖κ‖C2,1(Γ,R) ≤ 1. Assuming a compact subset K � D\Uε0(Γ ),
we thus obtain from (3.16) the global first order shape-Taylor expansion

uε(x) = u(x) + εdu[κ](x) + O(ε2), x ∈ K � D \ Uε0(Γ ). (3.18)

4. Statistics of random solutions

In this section, we study the statistics of random solutions to SEIPs in terms of that of random interfaces
through the perturbation method. The main idea behind the perturbation approach for the stochastic PDE is
the matched asymptotic principle, which involves expanding all the random fields under concern around the
expectation of the random interface via Taylor series expansion with a given small perturbation ε and retaining
terms up to high order, mostly second or third order. For a sufficiently small ε0 > 0, we can develop a random
version shape-Taylor expansion of random solutions to (2.1)–(2.4) with resort to the shape gradient, which is
formulated in the following lemma.

Lemma 4.1. Under Assumptions 2.1–2.3, the random solution to (2.1)–(2.4) admits the following first order
shape-Taylor expansion:

u(x, ω) = u(x) + εdu[κ(ω)](x) + O(ε2) (4.1)

for all x � K ⊂ D \Uε0(Γ ), P -a.s. ω ∈ Ω. Here, u is the deterministic solution to the elliptic problem with the
fixed reference interface Γ and du [κ(ω)] (x) is the associated shape derivative, given by the EIP (3.9)–(3.12)
with κ(x) being replaced by κ(x, ω) and D± by D±(ω).

Proof. Applying the shape-Taylor expansion (3.18) for an arbitrary, fixed realization κ(ω), ω ∈ Ω, yields in
view of κ(ω) ∈ A and Assumptions 2.1–2.3 its stochastic counterpart (4.1). �

Now we can approximate the deterministic statistics of the random solution of (2.1)–(2.4) with the help
to (4.1). More precisely, the mean field and the variance of random solutions can be approximated by their
deterministic surrogates with respect to the reference interface in terms of certain approximation orders of the
perturbation amplitude.

The following theorem addresses the semi-discrete approximation to the mean field in the stochastic dimen-
sion.

Theorem 4.2. The expectation Eu(x) of the random solutions to (2.1)–(2.4) can be approximated, up to the
second order in terms of the perturbation amplitude ε, by solving the deterministic PDE (3.1)–(3.4) with respect
to the reference interface Γ . More precisely, it holds that

Eu(x) = u(x) + O(ε2), x ∈ K � D \ Uε0(Γ ),

where u is the deterministic solution to the EIP (3.1)–(3.4) with the reference interface Γ .

Proof. We use the shape-Taylor expansion and obtain

Eu(x) = u(x) + εE (du[κ(ω)](x)) + O(ε2).

Since the expectation operator E is linear, we can take the expectation on both sides of the stochastic version
of the PDE (3.9)–(3.12) of the shape derivative du[κ(ω)](x), which yields, in view of Eκ(x) = 0, the equation

E (du[κ(ω)](x)) = 0.

From this, the desired claim follows. �
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As we will see, we can approximate Varu(x) by deterministically solving the tensor product PDE of
Cordu(x,y) on the product domain D × D ⊂ R

2d. Denote by [[·]] the tensor-product of the jump operator
which is given for any two-point correlation function w(x,y) by

[[w(x,y)]] = lim
D−�x→Γ

D−�y→Γ

w(x,y) − lim
D−�x→Γ

D+�y→Γ

w(x,y) − lim
D+�x→Γ

D−�y→Γ

w(x,y) + lim
D+�x→Γ

D+�y→Γ

w(x,y).

Then, the tensor product boundary value problem for Cordu(x,y) can be stated as follows:
– Tensor-product-domain PDE :

(∇x ⊗∇y) · (α(x)α(y)(∇x ⊗∇y)Cordu(x,y)) = 0, (4.2)

for all (x,y) ∈ D± ×D±;
– Interface-domain PDE :

−∇y · (α(y)∇y [Cordu(x,y)]x) = 0, (4.3)

−∇y ·
(
α(y)∇y

[
α(x)

∂Cordu

∂nx
(x,y)

]
x

)
= 0, (4.4)

for all (x,y) ∈ Γ ×D±;
– Domain-interface PDE :

−∇x ·
(
α(x)∇x [Cordu(x,y)]y

)
= 0, (4.5)

−∇x ·
(
α(x)∇x

[
α(y)

∂Cordu

∂ny
(x,y)

]
y

)
= 0, (4.6)

for all (x,y) ∈ D± × Γ ;
– DD tensor interface condition:

[[Cordu(x,y)]] = Corκ(x,y)
[
∂u

∂n
(x)
] [

∂u

∂n
(y)
]
, (4.7)

for all (x,y) ∈ Γ × Γ ;
– DN and ND tensor interface condition:[[

α(y)
∂Cordu

∂ny
(x,y)

]]
= −∇Γ,y ·

([
∂u

∂n
(x)
]

[α(y)]Corκ(x,y)∇Γ u(y)
)
, (4.8)[[

α(x)
∂Cordu

∂nx
(x,y)

]]
= −∇Γ,x ·

([
∂u

∂n
(y)
]

[α(x)]Corκ(x,y)∇Γ u(x)
)
, (4.9)

for all (x,y) ∈ Γ × Γ ;
– NN tensor interface condition:[[

α(x)α(y)
∂2Cordu

∂nx∂ny
(x,y)

]]
= (∇Γ,x ⊗∇Γ,y) · ([α(x)][α(y)]Corκ(x,y)∇Γ u(x)∇Γ u(y)) , (4.10)

for all (x,y) ∈ Γ × Γ ;
– Tensor-product boundary condition:

Cordu(x,y) = 0, (4.11)

for all (x,y) ∈ ∂ (D ×D).
The solution Cordu(x,y) to the tensorized PDE (4.2)–(4.11) is crucial for the approximation of the variance

of the random solution to (2.1)–(2.4). One can either solve it by the sparse grid technique from [19,23] or employ
the algorithm which we propose in the next section.

The second theorem studies the approximation of the variance of random solutions.
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Theorem 4.3. The variance Varu(x) of the random solutions to (2.1)–(2.4) can be approximated, up to the third
order in terms of the perturbation amplitude ε, by solving the deterministic tensor-product PDE (4.2)–(4.11).
More precisely, it holds

Varu(x) = ε2Vardu(x) + O(ε3), x ∈ K � D \ Uε0(Γ ), (4.12)

where

Vardu(x) = Var(du[κ(ω)](x))
= Cor(du[κ(ω)](x), du[κ(ω)](y))

∣∣
y=x

= Cordu(x,y)
∣∣
y=x

,

and Cordu(x,y) is the solution to (4.2)–(4.11).

Proof. Consider the two random variables X and Y with finite second moments. Then, on the one hand, we
find the identity

Var(a+ bX + cY ) = b2Var(X) + 2bcCovar(X,Y ) + c2Var(Y ), (4.13)

On the other hand, the following inequality holds due to the Cauchy–Schwarz inequality:

Covar(X,Y ) ≤
√

Var(X) · Var(Y ) . (4.14)

Combining (4.13) and (4.14) with the shape-Taylor expansion (4.1), we have

Varu(x) = ε2Var(du[κ(ω)](x)) + O(ε4) +
√

Var(du[κ(ω)](x))O(ε3)
= ε2Var(du[κ(ω)](x)) + O(ε3).

Hence the proof is completed. �

Remark 4.4. The relative error of the approximation of the variance is of order ε. In [11], it is shown that,
under the present assumptions, even higher order moments are approximated with relative error ε. Moreover,
there are also given precise estimates on the constants hidden by the present O-notation.

5. Error estimates and implementation

In this section, error estimates will be carried out for the fully discrete approximations of the mean field and
two-point correlation function of random solutions in terms of both the mesh size in the physical domain and
the perturbation amplitude in the stochastic dimension. We propose the efficient computation of the random
solution’s variance by a low-rank approximation via the pivoted Cholesky decomposition. The evaluation of
shape derivates can be avoided if finite differences are used.

In the sequel, we employ a shape regular and interface-resolved triangulation for the finite element dis-
cretization of the EIP system (3.1)–(3.4) to achieve optimal convergence rates for the deterministic PDE. By
“interface-resolved” we mean that the vertices of elements around the interface lie exactly on the interface
(cf. [10, 31]). By the use of parametric mappings, we are even endowed with hierarchical finite element spaces
amenable for the sparse tensor approximation of the two-point correlation function (cf. [19]).

5.1. Computing the approximate expectation

We have presented the discussion of the semi-discrete approximation in the stochastic dimension of the mean
field and two-point correlation function in the continuous case by the asymptotic analysis in terms of the per-
turbation amplitude. Now, we develop the finite element discretization to obtain a fully discrete approximation.
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In particular, we derive an error estimate in terms of both, the finite element mesh size of the triangulation and
the perturbation amplitude.

Assume that the triangulation {Th}h>0 is a sequence of quasi-uniform and shape-regular triangulations with
the mesh size h, and let {Vh}h>0 be the corresponding finite element spaces over the given triangulations. It
is noted that the finite elements used in the numerical analysis can be piecewise linear or of arbitrary degree
provided that the underlying triangulation resolves the interface. In our particular implementation, we use
continuous piecewise linear finite elements. Armed with the finite element spaces, we can obtain the discrete
finite element approximation uh to u by solving the variational formulation of (3.1)–(3.4) with respect to the
reference interface Γ in the finite dimensional space Vh.

The discretization error of the deterministic solution u can be quantified by the follow lemma adapted
from [31], Theorem 4.1 with a little modification.

Theorem 5.1. Let {Th}h>0, {Vh}h>0 be a family of interface-resolved triangulations and the associated finite
element spaces (cf. [19,31]). Let uh be the deterministic finite element solution corresponding to the deterministic
solution u(x) of the elliptic problem (3.1)–(3.4) with respect to the reference interface Γ . Then, for s = 0, 1,
there holds that

‖u− uh‖Hs(D) ≤ Ch2−s ‖u‖H2(D−)∪H2(D+) , (5.1)

where H2(D−) ∪H2(D+) is the standard broken Sobolev space equipped by the norm

‖ · ‖H2(D−)∪H2(D+) :=
√
‖ · ‖2

H2(D−) + ‖ · ‖2
H2(D+).

On K � D \ Uε0(Γ ), there holds for the expectation Eu of the random solution to the SEIP (2.1)–(2.4)

‖Eu(x) − uh(x)‖Hs(K) ≤ C
(
ε2 + h2−s

) ‖u‖H2(D−)∪H2(D+) .

Proof. The estimate (5.1) readily follows from [10, 31] for at least C2-smooth interfaces. The estimate for the
expectation is derived from combining Theorem 4.2, (5.1) and the following triangle inequality

‖Eu − uh‖Hs(K) ≤ ‖Eu − u‖Hs(K) + ‖u− uh‖Hs(K) .

�

5.2. Computing the two-point correlation function

5.2.1. Computing local shape derivatives

Notice that the PDE for the local shape derivative du = du[κ] is not amenable for a naive finite element
discretization due to the non-homogeneous Dirichlet jump condition. Here, we use the offset function technique
to convert the original PDE (3.9)–(3.12) into two systems.

We shall start with the week formulation of the interface problem. We seek the function du = du[κ] ∈
H1(D−) ∪H1(D+) such that∫

D−
α−∇du∇v dx +

∫
D+

α+∇du∇v dx = −
∫

Γ

κ[α]∇Γu∇Γ v ds, v ∈ H1
0 (D)

and [du] = −κ
[
∂u

∂n

]
on Γ , du = 0 on ∂D.

(5.2)

Note that we used integration by parts to remove the surface divergence in the Neumann jump.
To solve this variational problem, we make the ansatz du = duhom + duoff , where the offset function du−off =

du−off [κ] ∈ H1(D−) solves the inhomogeneous Dirichlet problem∫
D−

α−∇du−off∇v dx = 0, v ∈ H1
0 (D−)

and du−off = −κ
[
∂u

∂n

]
on Γ.

(5.3)
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We extend this function trivially to D+ by setting du+
off := 0. If we subtract duoff from du, we are led to seek

duhom = duhom[κ] ∈ H1
0 (D) such that

∫
D−

α−∇duhom∇v dx +
∫

D+
α+∇duhom∇v dx = −

∫
D−

α−∇duoff∇v dx −
∫

Γ

κ[α]∇Γu∇Γ v ds, v ∈ H1
0 (D)

and [duhom] = 0 on Γ , duhom = 0 on ∂D. (5.4)

The computation of duoff and duhom via (5.3) and (5.4), respectively, by a interface-resolved finite element
method is straightforward if we restrict the finite element spaces Vj onto D− and D, respectively.

Theorem 5.2. Assume {Th}h>0, {Vh}h>0 as specified in Subsection 5.1. For given κ ∈ C2,1(Γ,R), let du =
du[κ] denote the shape derivative given by (3.9)–(3.12) and let duh be its finite element approximation via
combining the respective finite element solutions from (5.3) and (5.4). Then, for s = 0, 1, there holds that

‖du− duh‖Hs(D−)∪Hs(D+) ≤ Ch2−s

{∥∥∥∥κ
[
∂u

∂n

]∥∥∥∥
H3/2(Γ )

+ ‖∇Γ · (κ[α]∇Γu)‖H1/2(Γ )

}

≤ Ch2−s ‖u‖H3(D−)∪H3(D+) (5.5)

provided that the given data are sufficiently smooth.

Proof. It is obvious that the successive solution of (5.3) and (5.4) yields the solution of (5.2). Thus, from [7,8],
it follows for s = 0, 1 the estimate

‖du− duh‖Hs(D−)∪Hs(D+) ≤ Ch2−s

{∥∥∥∥κ
[
∂u

∂n

]∥∥∥∥
H3/2(Γ )

+ ‖∇Γ · (κ[α]∇Γu)‖H1/2(Γ )

}
.

Finally, in view of ∥∥∥∥κ
[
∂u

∂n

]∥∥∥∥
H3/2(Γ )

� ‖u‖H3(D−)∪H3(D+)

and

‖∇Γ · (κ[α]∇Γu)‖H1/2(Γ ) � ‖u‖H5/2(Γ ) � ‖u‖H3(D−)∪H3(D+) ,

we conclude also the last estimate. �

Remark 5.3. In the above error estimate (5.5), we have not taken into account that we have only access to
the numerical approximation uh of u. This approximation induces an additional consistency error. It is of the
order O(h) due to

‖u− uh‖H1/2(Γ ) � ‖u− uh‖H1(D) � h‖u− uh‖H2(D−)∪H2(D+)

and ∥∥∥∥
[
∂u

∂n

]
−
[
∂uh

∂n

]∥∥∥∥
H−1/2(Γ )

� ‖u− uh‖H1(D) � h‖u− uh‖H2(D−)∪H2(D+).

Hence, due to the consistency error of the order O(h), we can only expect the reduced convergence rate O(h)
instead of O(h2) for the approximation of the shape derivative.
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5.2.2. Low-rank approximation

We can proceed in two different ways to compute the two-point correlation function Cordu given by (4.2)–
(4.11). The first way is a direct solution in the sparse tensor product space as considered in e.g. [19, 23]. The
over-all computational complexity is then essentially linear (i.e., linear up to logarithmic terms). However, the
implementation of this approach for the interface problem under consideration is nontrivial.

The second way, which is much simpler to implement, consists in computing a low-rank approximation

Corκ ≈
m∑

i=1

κi ⊗ κi (5.6)

of the two-point correlation function of κ(ω) in the full tensor product space Vh ⊗ Vh. With such a low-rank
approximation at hand we have

Cordu ≈
m∑

i=1

du[κi] ⊗ du[κi] (5.7)

due to the linearity of the mapping κ 	→ du[κ]. Hence, it suffices to solve (5.2) for all κi.
Assume that Corκ ∈ C(Γ × Γ ) is continuous, then the discrete version of the low-rank approximation (5.6)

corresponds to the low-rank decomposition

C ≈ Cm =
m∑

i=1

�i�
T
i (5.8)

of the matrix
C = [Corκ(xi,xj)]i,j ∈ R

n×n

where {xi} are the nodes of the finite element mesh.
The best low-rank approximation (5.6) with respect to L2(Γ × Γ ) is given by the spectral decomposition

whose computation requires the knowledge of the eigenpairs (ϕi, λi) of the integral operator

(Kκu)(x) :=
∫

Γ

Corκ(x,y)u(y) dy, x ∈ Γ. (5.9)

The decay of the eigenvalues {λi} and thus the rank m depends heavily on the smoothness of Corκ. Related
decay rates have been proven in [18, 38].

We use here the pivoted Cholesky decomposition to compute a low-rank approximation of Corκ as proposed
in [21]. It is a purely algebraic approach which is quite simple to implement, see Algorithm 1. It produces a low-
rank approximation to C for any given precision ε > 0 where the approximation error is rigorously controlled in
the trace norm. A rank-m approximation is computed in O(m2n) operations, if n denotes the number of nodes
{xi} of the finite element mesh. Exponential convergence rates in m are proven under the assumption that
the eigenvalues of C exhibit a sufficiently fast exponential decay, see [21]. Nevertheless, numerical experiments
show that, in general, the pivoted Cholesky decomposition converges optimally in the sense that the rank m is
uniformly bounded by the number of terms required for the spectral decomposition of Corκ to get the error ε.

Having the low-rank decomposition (5.6) of the interface perturbation’s two-point correlation function at
hand, the complexity to compute the shape derivative’s two-point correlation (5.7) is at least O(mn). Therefore,
log-linear complexity in n can only be achieved if m ∼ logn which requires an exponential decay of the spectral
decomposition of the two-point correlation Corκ. This, however, can only be shown in the case that Corκ is
analytical (cf. [38]). In contrast to that, the sparse grid approach from [19, 23] produces approximations in
essentially linear complexity also for two-point correlation functions of finite smoothness. We refer the reader
to [18] for a more extensive comparison of the spectral decomposition and the sparse grid approach.
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Algorithm 1: Pivoted Cholesky decomposition
Data: matrix C = [Corκ(xi,xj)]i,j ∈ R

n×n and error tolerance ε > 0
Result: low-rank approximation Cm =

∑m
i=1 �i�

T
i such that trace(C −Cm) ≤ ε

begin
set m := 1;
set d := diag(C) and error := ‖d‖1;
initialize π := (1, 2, . . . , n);
while error > ε do

set i := arg max{dπj : j = m, m + 1, . . . , n};
swap πm and πi;
set �m,πm :=

√
dπm ;

for m + 1 ≤ i ≤ n do

compute �m,πi :=

(
Corκ(xπm ,xπi) −

m−1∑
j=1

�j,πm�j,πi

)/
�m,πm ;

update dπi := dπi − �m,πm�m,πi ;

compute error :=

n∑
i=m+1

dπi ;

increase m := m + 1;

end

5.2.3. Non-intrusive approach

Instead of computing the local shape derivative du[κi], we can approximate it by a finite difference. This
means that, for a small h > 0, we replace (5.7) by

Cordu ≈ 1
h2

m∑
i=1

(
uΓ (I+hκi) − u

)⊗ (uΓ (I+hκi) − u
)
, (5.10)

where uΓ (I+hκi) denotes the solution of the interface problem (2.1)–(2.4) with respect to the perturbed interface

Γ (I + hκi) := {x + hκi(x)n(x) : x ∈ Γ}.

Thus, it is neither necessary to explicitly know the local shape derivative nor to implement it. In fact, besides the
computation of the approximate expectation u, we need then only the m “samples” uΓ (I+hκi) to calculate the
approximate variance. This therefore constitutes an extremely fast non-intrusive algorithm in the quantification
of domain uncertainties. The drawback is that we need to construct for each sample uΓ (I+hκi) a new interface-
resolved triangulation in order not to lose accuracy.

6. Numerical experiments and discussion

6.1. Deterministic vs. Monte Carlo approach

We present some numerical tests to demonstrate our theoretical predictions. Let D := (−1, 1)2 be a square
of edge length 2 and let

Γ := {x ∈ R
2 : ‖x‖ = 1/2}

be a circular interface which subdivides D into the interior domain D− and the exterior domain D+. In the
exterior domain D+ the diffusion coefficient is set to α+ := 1. In the interior domain D− we consider α− := 2
in our first and α− := 10 in our second example.
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We parametrize the interface Γ by polar coordinates

γ : [0, 2π] → Γ, s 	→ γ(s) :=
1
2

[
cos(s)
sin(s)

]
.

Correspondingly, the stochastic interface Γε(ω) can be expressed via the perturbed parametrization

γ(s, ω) := γ(s) + εκ(s, ω)
[
cos(s)
sin(s)

]
.

Herein, we assume that the stochastic interface perturbation is given by

κ(s, ω) :=
5∑

k=0

{ak(ω) cos(ks) + bk(ω) sin(ks)}

with stochastic coefficients ak(ω) and bk(ω) being equally distributed in [−1, 1] and mutually stochastically
independent. This leads to the two-point correlation function

Corκ(s, t) =
1
3

5∑
k=0

{cos(ks) cos(kt) + sin(ks) sin(kt)}. (6.1)

For our numerical experiments we choose ε = 0.02. Even though ε is small the perturbation is considerably
large since the norm ‖κ(ω)‖C2,1([0,2π]) might become large. In particular, the boundary points vary up to about
±0.15 around the related unperturbed point on the reference interface.

We determine first the expectation and the variance of random solutions to this SEIP by a MC method, using
M = 10 000 samples. The triangulation has to be reconstructed for each sample in order to resolve the interface
exactly. In order to compute the sample mean and variance, we interpolate the solution to a fixed quadrangular
grid with 65× 65 nodes. The approximate expectation and variance are depicted in the first row of Figure 2 for
α− := 2 and Figure 3 for α− := 10.

In the second row of Figures 2 and 3 the approximate expectation and variance of our deterministic algorithm
is depicted. To ensure a fair comparison, we interpolated the finite element solutions on the same rectangular
mesh as the MC solutions. Notice that the pivoted Cholesky decomposition computes an exact rank-11 approx-
imation of the two-point correlation (6.1) since it is of finite rank 11. This means that only 11 shape derivatives
need to be determined to compute the approximate variance.

In the last row of Figures 2 and 3, we plotted the differences of expectations and variances of both algo-
rithms. We see that the deterministic approach produces quite accurate approximations except in the direct
neighborhood of the reference interface, as predicted by our theory.

Finally, we shall validate the asymptotic behavior in the perturbation parameter ε given by Theorems 4.2
and 4.3. At the interface, we remove the tube Uε0(Γ ) of size ε0 = 0.2 (cf. (3.17)) to define the domain K :=
D\Uε0(Γ ). On this domain K and for the choices α− := 2, 10, 50 (as above we set α+ := 1), we compare for 0 ≤
ε ≤ 0.02 the approximate mean and variance of the deterministic approach with a related MC simulation. Note
that our choice ofK ensures that the interfaces of the samples in the MC method are always contained in Uε0(Γ ).
In particular, the assumptions of Lemma 4.1 hold. We displayed the L2(K)-errors versus the perturbation
parameter ε in Figure 4 (in fact, the graph is the mean of three independent simulations). In case of the
expectation (left plot), we observe indeed that the error between the deterministic method and the MC method
is of the order O(ε2) (indicated by the dashed line). In case of the variance (right plot), we find that the error
between the deterministic method and the MC method is of the order O(ε3) (also indicated by the dashed line).
The results are thus in good agreement with our theoretical findings on the asymptotic behaviour in ε. On the
other hand, for fixed ε, we observe that the error increases if α− and thus the jump size [α] increases. This
means that the constant in (3.16) (as already mentioned there) and thus the method is not robust in the jump
size [α].
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Expectation and variance of the Monte Carlo simulation
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Figure 2. Approximate expectation and variation in case of α− = 2 and ε = 0.02.

6.2. Non-intrusive approach
Our next example is concerned with the comparison of the shape derivative based approach (5.7) and the

non-intrusive approach (5.10). The domain D and the interface Γ are chosen as in the previous example while
the associated coefficients are set to α− := 2 and to α+ = 1. The stochastic perturbation of the interface is
assumed to exhibit the Gaussian two-point correlation

Corκ = exp(−σ‖x − y‖2
)

where we consider the choices σ = 10, 100, 1000.
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Expectation and variance of the Monte Carlo simulation
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Figure 3. Approximate expectation and variation in case of α− = 10 and ε = 0.02.

We again use the pivoted Cholesky decomposition (Algorithm 1) to compute the discrete low-rank decompo-
sition (5.8) with a trace error of ε = 0.001. It has the rank m = 17 if σ = 10, the rank m = 54 if σ = 100, and the
rank m = 171 if σ = 1000. The step size h in the finite differences of (5.10) is chosen as h = 0.001. The resulting
approximate variances are plotted in Figures 5–7. As these plots demonstrate, the non-intrusive approach (5.10)
produces reasonable approximations of the solution’s variance while the implementation is extremely simple.
Especially, we observe that the influence of the stochastic interface becomes more localized as σ increases, i.e.,
if the correlation length of the interface perturbation decreases.
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Figure 4. Asymptotic behaviour in the perturbation parameter ε in case of the expectation
(left plot) and in case of the variance (right plot).
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Figure 5. Approximate variations (left: via shape derivative / middle: via finite difference /
right: difference between the approaches) in case of the Gaussian kernel with σ = 10.
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Figure 6. Approximate variations (left: via shape derivative / middle: via finite difference /
right: difference between the approaches) in case of the Gaussian kernel with σ = 100.
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Figure 7. Approximate variations (left: via shape derivative / middle: via finite difference /
right: difference between the approaches) in case of the Gaussian kernel with σ = 1000.
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[1] I. Babuška and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech.
Engrg. 191 (2002) 4093–4122.
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[4] I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential
equations. SIAM J. Numer. Anal. 42 (2004) 800–825.

[5] A. Barth, C. Schwab and N. Zollinger, Multi-Level Monte Carlo Finite Element method for elliptic PDE’s with stochastic
coefficients. Numer. Math. 119 (2011) 123–161.

[6] V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs in vol. 62. AMS, Providence, RI (1998).

[7] J.H. Bramble and J.T. King, A finite element method for interface problems with smooth boundaries and interfaces. Adv.
Comput. Math. 6 (1996) 109–138.

[8] J.W. Barrett and C.M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with interfaces. IMA J. Numer.
Anal. 7 (1987) 283–300.

[9] C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of pdes in stochastic domains. Numer.
Math. 107 (2007) 257–293.

[10] Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math.
79 (1998) 175–202.

[11] A. Chernov and C. Schwab, First order k-th moment finite element analysis of nonlinear operator equations with stochastic
data. Math. Comput. To appear (2012).

[12] M.K. Deb, I.M. Babuska and J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element
techniques. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6359–6372.
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