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ON UNIQUENESS IN ELECTROMAGNETIC SCATTERING
FROM BIPERIODIC STRUCTURES

Armin Lechleiter1 and Dinh-Liem Nguyen2

Abstract. Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric struc-
ture mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution
holds, existence of solution follows from a well-known Fredholm framework for the variational formula-
tion of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution
to this variational problem under suitable smoothness conditions on the material parameter. Under
additional non-trapping assumptions on the material parameter, this identity allows us to establish
uniqueness of solution for all positive wave numbers.
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1. Introduction

Scattering of electromagnetic waves from periodic structures is not only an interesting mathematical topic in
its own right but also of great interest in applications, e.g. for the construction and optimization of optical filters,
lenses, and beam-splitters in optics. An overview about this and further topics in applied mathematics related
to wave propagation in periodic structures can be found in, e.g. [5]. In this paper we consider scattering of time-
harmonic electromagnetic waves from a dielectric biperiodic structure mounted on a perfectly conducting plate in
three dimensions. By biperiodic, we mean that the structure is periodic in the, say, x1- and x2-direction, while it
is bounded in the x3 direction. In contrast to scattering from bounded structures, uniqueness of solution for this
scattering problem does in general not hold for all positive wave numbers. Instead, non-trivial solutions to the
homogeneous problem might exist for a discrete set of exceptional wave numbers, and these solutions turn out to
be exponentially localized surface waves. Our study in the present paper focuses on conditions guaranteeing the
well-posedness of the full three-dimensional electromagnetic scattering problem mentioned above. We establish
non-trapping and smoothness conditions on the (non-absorbing) dielectric such that uniqueness of solution holds
for all positive wave numbers. This means that materials satisfying the latter conditions cannot guide surface
waves.

Mathematical formulation for the well-posedness of electromagnetic scattering problem for periodic structures
has been an active area of research in the last years. For the scalar case, the authors in [2,17] studied uniqueness of
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Figure 1. Sketch of the biperiodic structure under consideration.

solution for all wave numbers (or, equivalently, all frequencies), under geometrical conditions on the scatterer, for
impenetrable structures with Dirichlet and Neumann conditions. Similar results are obtained in the paper [7]
for more complicated periodic structures which are constituted of conducting and dielectric materials. The
latter paper further gave examples of structures for which non-uniqueness of solution occurs at the so-called
singular wave numbers. These wave numbers were shown to be related to guided waves (surface waves) that are
exponentially localized along the structure.

For the case of Maxwell’s equations, the authors of [10] studied well-posedness of the scattering problem from
a medium consisting of two homogeneous materials separated by a smooth biperiodic surface using an integral
equation approach. In [4,6,11] the authors studied existence and uniqueness of solution for the scattering problem
from penetrable biperiodic structures using a variational approach for the magnetic field. Nevertheless, unlike
the scalar cases, the uniqueness results in cited cases of Maxwell’s equations were proven for all but possibly a
discrete set of wave numbers. Furthermore, all the cited papers above considered the non-magnetic case, i.e.,
the coefficient magnetic permeability is assumed to be the same constant outside and inside the structure. The
case of variable magnetic permeability were investigated in the paper [1] for Maxwell’s equations where the
biperiodic structure consists of conducting and dielectric materials. That paper studied a variational approach,
formulated in terms of the electric field, and showed that the obtained saddle point problem satisfies the Fredholm
alternative, and again uniqueness of solution was proven for all but possibly a discrete set of wave numbers.
More recently, the paper [16] analyzed the well-posedness of the scattering problem for penetrable anisotropic
biperiodic structures with a restriction on the non-magnetic case again. The latter paper also proved that the
scattering problem is uniquely solvable for all wave numbers if the structure contains absorbing materials, and
if the dielectric tensor is piecewise analytic. Hence, to the best of our knowledge, uniqueness results for all wave
numbers for the vectorial scattering problem still remains open if the biperiodic materials is non-absorbing.

The aim of the present work is to prove that the electromagnetic scattering problem for non-absorbing
biperiodic dielectric structures mounted on a perfectly conducting plate is uniquely solvable for all positive
wave numbers if the material parameter satisfies non-trapping and smoothness conditions. We formulate the
Maxwell’s equations variationally in terms of the magnetic field in a suitable Sobolev space. We further restrict
ourselves to the case of non-magnetic and isotropic materials. The variational problem is well-known to fit into
a Fredholm framework, see, e.g. [4,11,16]. (These papers deal with periodic scattering in the full space, but can
be adapted to the half-space setting that we consider here). As mentioned in the paper [7] on the corresponding
scalar scattering problems, non-uniqueness phenomena indeed arise at certain singular wave numbers if the non-
absorbing material parameter satisfies suitable trapping conditions. In this paper we show a converse result for
the full three-dimensional periodic Maxwell equations: uniqueness of solution holds for all positive wave numbers
if the material parameter is non-absorbing and satisfies suitable non-trapping and smoothness conditions. To
prove the uniqueness result we derive a so-called Rellich identity for a solution to the homogeneous variational
problem. The solution estimates resulting from this integral identity allow us to show that the homogeneous
variational problem has only the trivial solution for all positive wave numbers.



ON UNIQUENESS IN ELECTROMAGNETIC SCATTERING FROM BIPERIODIC STRUCTURES 1169

Our analysis extends the approach in [12] that was motivated by an existence and uniqueness proof for solu-
tions to rough surface scattering problems via Rellich identities in [8]. For scalar periodic problems, a related
technique has been used in [7]. The paper [12] studied electromagnetic scattering from rough, unbounded pene-
trable layers. Such scattering problems are considered to be more complicated than those for periodic structures
since the problem to find the scattered field cannot reduced, e.g. to a bounded domain. The applications of
rough scattering problems include for instance outdoor noise propagation, oceanography or even optical tech-
nologies when the dielectric lacks periodicity. The authors in [12] formulated the latter scattering problem in
terms of the electric field. We will instead choose a formulation in terms of the magnetic field, which somewhat
changes the role of the dielectric material parameter in the integral identities since the material is non-magnetic.
The paper [12] establishes existence and uniqueness of solution under non-trapping and smoothness conditions
on the material parameter. While a priori estimates resulting from the Rellich identity allowed the authors
in [12] to deduce uniqueness of solution, existence of solution has been obtained using a limiting absorption
argument. The approach studied in the present paper is, from the technical point of view, somewhat similar to
the one introduced in [12]. However, the analysis of the biperiodic case is definitely simpler since uniqueness of
solution directly implies existence. Therefore, one only needs to investigate the Rellich identity and estimates
for solutions to the homogeneous problem. It turns out also that this procedure produces weaker assumptions
on the material parameter than those found in [12]. More precisely, uniqueness and existence of solution for all
wave numbers are obtained under the following (non-trapping and smoothness) assumptions on the biperiodic
relative material parameter εr : R3

+ := {x ∈ R3, x3 > 0} → R. First, we assume that ε−1
r ∈ L∞(R3

+) equals one
in {x3 > h} for some h > 0 and possesses essentially bounded and measurable first weak derivatives. Second,
we require that

(a)
∂ε−1

r

∂x3
≤ 0 in R

3
+,

(b) It holds that
∂ε−1

r

∂x3
< 0 in some non-empty open subset of R

3
+,

(c) There exists δ > 1/2 such that
δ

2
‖∇T ε−1

r ‖2
L∞(R3

+)3 +
√

2
h

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
L∞(R3

+)

<
2
h2

,

where ∇T ε−1
r := (∂ε−1

r /∂x1, ∂ε−1
r /∂x2, 0)�. Under these conditions, the existence of surface waves is auto-

matically ruled out. While conditions (a) and (c) are similar to conditions (a) and (d) in [12], Equation (7.2),
condition (b) is weaker and clearly simpler than the corresponding conditions (b) and (c) in [12], Equation (7.2).

The half-space setting that we consider in this paper is somewhat special, and it seems worth to mention that
the Rellich identity itself generalizes to a corresponding periodic scattering problem in full space. The resulting
estimate for a solution H to the scattering problem has a similar structure to the estimate in Lemma 5.4.
However, in the half-space setting, the term 2Re

∫
Ω(∂ε−1

r /∂x3) (∂H3/∂x3)H3 dx can be treated without inte-
gration by parts using a Poincaré lemma. In contrast, in the full-space setting the only obvious way of treating
this term is to integrate by parts. Since we seek for solution estimates, this introduces the condition that
x3 �→ ε−1

r (x1, x2, x3) needs to be concave to conclude. Since this is a somewhat unnatural condition, we do not
present this result in more detail.

One can further generalize the results presented here to certain anisotropic structures. However, already for
the simpler case of isotropic coefficients the derivation of the Rellich identity is a technical matter. Again, we
have opted to try to keep the presentation simple instead of treating the most general setting that could be
considered.

The paper is organized as follows: In Section 2 we present setting of the problem. Section 3 is dedicated to a
variational formulation and to the Fredholm property of the latter. Section 4 contains a couple of technical lem-
mas. We derive the integral inequalities resulting from the Rellich identity in Section 5. Finally, the uniqueness
of the variational problem for all wave numbers is proven in Section 6.
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Notation. We denote by Hs(Rd)3, d = 2, 3, the usual L2-based Sobolev space of vector-valued functions in Rd.
Moreover, Hs

loc(R
3)3 = {v ∈ Hs(B)3 for all balls B ⊂ R3}, and W 1,∞(R3) = {v ∈ L∞(R3) : ∇v ∈ L∞(R3)3}.

2. Problem setting

We consider scattering of time-harmonic electromagnetic waves from a biperiodic structure which models
a dielectric layer mounted on a perfectly conducting plate. The electric field E and the magnetic field H are
governed by the time-harmonic Maxwell equations at frequency ω > 0 in R3

+ = {(x1, x2, x3) ∈ R3 : x3 > 0},
curlH + iωεE = 0 in R

3
+, (2.1)

curlE − iωμH = 0 in R
3
+, (2.2)

e3 × E = 0 on {x3 = 0}, (2.3)

where e3 = (0, 0, 1)�. The electric permittivity ε is a bounded measurable function that is 2π-periodic in x1 and
x2. Further, we assume that ε equals ε0 > 0 outside the biperiodic structure, that is, for x3 ≥ h where h > 0
is chosen larger than sup{x3 : (x1, x2, x3)� ∈ supp(ε − ε0)}. The magnetic permeability μ = μ0 is assumed to
be a positive constant and the conductivity is assumed to vanish. As usual, the problem (2.1)–(2.3) has to be
completed by a radiation condition that we set up using Fourier series.

The biperiodic structure is illuminated by an electromagnetic plane wave with wave vector d = (d1, d2, d3) ∈
R3, d3 < 0, such that d · d = ω2ε0μ0. The polarizations p, q ∈ R3 of the incident wave satisfy p · d = 0 and
q = 1/(ωε0)(p × d). With these definitions, the incident plane waves Ei and Hi are given by

Ei := qeid·x, Hi := peid·x, x ∈ R
3
+.

In the following we will exploit that one can explicitly compute the corresponding reflected field at {x3 = 0}.
To this end, we introduce the notation ã = (a1, a2,−a3)� for a = (a1, a2, a3)� ∈ R3. The reflected waves at the
plane {x3 = 0} are

Er(x) := −q̃eid̃·x, Hr(x) := p̃eid̃·x, x ∈ R
3
+,

since divEr = 0, divHr = 0, and e3 × (Ei + Er) = 0, e3 · (Hi + Hr) = 0 on {x3 = 0}. From now on, we denote
the sum of the incident and reflected plane waves by

Eir := Ei + Er and Hir := Hi + Hr.

Set
α = (α1, α2, α3)� := (d1, d2, 0)�

and define Eir
α and Hir

α by

Eir
α := e−iα·xEir(x), Hir

α := e−iα·xHir(x), x ∈ R
3
+,

such that Eir
α and Hir

α are 2π-periodic in x1 and x2. If we apply the same phase shift to solutions E and H of
the Maxwell equations (2.1)–(2.3),

Eα = e−iα·xE(x), Hα = e−iα·xH(x),

and if we denote

∇αf = ∇f + iαf, curlα F = curlF + iα × F, divαF = divF + iα · F
for scalar functions f and vector fields F , then Eα and Hα satisfy

curlα Hα + iωεEα = 0 in R
3
+, (2.4)

curlα Eα − iωμ0Hα = 0 in R
3
+, (2.5)

e3 × Eα = 0 on {x3 = 0}. (2.6)
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Note that we still have divα curlα = 0 and curlα ∇α = 0. Let us denote the relative material parameter by

εr :=
ε

ε0
·

Obviously, εr equals one outside the biperiodic dielectric structure. Recall that the magnetic permeability μ0 is
constant which motivates us to work with the divergence-free magnetic field, that is, divαHα = 0.

Note that (2.4) plugged in into (2.6) implies that e3× (ε−1
r curlα Hα) = 0 on {x3 = 0} and that the condition

e3 · Hα = 0 on {x3 = 0} can be derived by plugging (2.6) into (2.5). Hence, introducing the wave number
k = ω(ε0μ0)1/2, and eliminating the electric field Eα from (2.4)–(2.6), we find that

curlα
(
ε−1
r curlα Hα

)− k2Hα = 0 in R
3
+, (2.7)

e3 × (ε−1
r curlα Hα) = 0 on {x3 = 0}, (2.8)

e3 · Hα = 0 on {x3 = 0}. (2.9)

We now formally reformulate the last three equations in terms of the scattered field Hs
α, defined by Hs

α :=
Hα −Hir

α . Since, by construction, curlα curlα Hir
α − k2Hir

α = 0 in R3
+, Hir

α · e3 = 0 and e3 × (ε−1
r curlα Hir

α ) = 0
on {x3 = 0}, a simple computation shows that

curlα
(
ε−1
r curlα Hs

α

)− k2Hs
α = − curlα

(
(ε−1

r − 1) curlα Hir
α

)
in R

3
+,

e3 × (ε−1
r curlα Hs

α) = 0 on {x3 = 0},
e3 · Hs

α = 0 on {x3 = 0}. (2.10)

Due to the biperiodicity of the right-hand side and of εr, we seek for a biperiodic solution Hs
α, and reduce the

problem to the domain (0, 2π)2× (0,∞). We complement this boundary value problem by a radiation condition,
see also in [6, 11], that we set up using Fourier series. The scattered field Hs

α is 2π-periodic in x1 and x2 and
can hence be expanded as

Hs
α(x) =

∑
n∈Λ

Ĥn(x3)ein·x, x = (x1, x2, x3)� ∈ R
3
+, Λ = Z

2 × {0}, (2.11)

where the Fourier coefficients Ĥn(x3) are defined by

Ĥn(x3) =
1

4π2

∫ 2π

0

∫ 2π

0

Hs
α(x1, x2, x3)e−in·x dx1 dx2 , n ∈ Λ. (2.12)

Define

βn :=

{√
k2 − |n + α|2, k2 ≥ |n + α|2,

i
√|n + α|2 − k2, k2 < |n + α|2, n ∈ Λ.

Since ε−1
r equals one for x3 > h it holds that divαHs

α vanishes for x3 > h, and equation (2.10) becomes
(Δα + k2)Hs

α = 0 in {x3 > h}, where Δα = Δ + 2iα · ∇ − |α|2. Using separation of variables, and choosing
the upward propagating solution, we set up a radiation condition in form of a Rayleigh expansion condition,
prescribing that Hs

α can be written as

Hs
α(x) =

∑
n∈Λ

Ĥneiβn(x3−h)+in·x for {x3 > h}, where Ĥn := Ĥn(h), (2.13)

and that the series converges uniformly in compact subsets of {x3 > h}.
The scattering problem to find a scattered field Hs

α that satisfies the boundary value problem (2.10) and the
expansion (2.13) is in the following section reformulated variationally in a suitable Sobolev space.
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Figure 2. Geometric setting for electromagnetic scattering problem from a biperiodic dielectric
structure mounted on a perfectly conducting plate (in two dimensions, for simplicity).

3. Variational formulation

We solve the scattering problem presented in the last section variationally, and briefly recall in this section
a variational formulation of the problem in a suitable Sobolev space. Our framework is an adaption of the
results from [16] to our half-space setting. In contrast to the variational formulation in H(curl) in [1], the
papers [4, 6, 11, 16] set up a variational formulation in H1 for the magnetic field. Indeed, since the latter is
divergence-free, any solution that is locally H(curl) indeed belongs locally to H1. For our purposes, the H1

formulation has the additional advantage that it is well-defined at Rayleigh–Wood frequencies, as it was noted
in [16]. We define a bounded domain

Ω = (0, 2π)2 × (0, h) for h > sup{x3 : (x1, x2, x3)� ∈ supp(εr − 1)},

with boundaries Γ0 := (0, 2π)2 × {0} and Γh := (0, 2π)2 × {h}, and Sobolev spaces

H�
p(Ω)3 := {F ∈ H�(Ω)3 : F = F̃ |Ω for some 2π-biperiodic F̃ ∈ H�

loc(R
3)3}, � ∈ N,

H1
p,T(Ω)3 := {F = (F1, F2, F3)� ∈ H1

p(Ω)3 : F3 = 0 on Γ0},

equipped with the usual integral norm, e.g.,

‖F‖2
H1

p(Ω)3 = ‖F‖2
L2(Ω)3 + ‖∇αF‖2

L2(Ω)3 .

The space H1
p,T(Ω)3 of periodic vector fields that are tangential on Γ0 is well-defined due to the standard trace

theorem in H1. We also define periodic Sobolev spaces of functions with d = 1, 2, 3 components on Γh: for s ∈ R,

Hs
p(Γh)d := {F ∈ Hs(Γh)d : F = F̃ |Γh

for some 2π-biperiodic F̃ ∈ Hs
loc({x3 = h})d}.

A periodic vector field F ∈ Hs(Γh)d can be developed in a Fourier series, F (x) =
∑

n∈Λ F̂n exp(in · x), and
‖F‖Hs

p(Γh)d = (
∑

n∈Λ(1 + n2)s|F̂n|2)1/2 defines a norm on Hs
p(Γh)d.

We define a non-local boundary operator Tα (the exterior Dirichlet–Neumann operator) by

(Tαf)(x) =
∑
n∈Λ

iβnf̂nein·x, for f =
∑
n∈Λ

f̂n exp(in · x) ∈ H1/2
p (Γh).

It is a classical result that Tα is bounded from H
1/2
p (Γh) into H

−1/2
p (Γh), see, e.g. [3]. Using Tα, we define a

vector of (pseudo-)differential operators Rα := (∂α/∂x1, ∂
α/∂x2, Tα). For a vector field F ∈ H

1/2
p (Γh)3,

Rα × F = (∂α/∂x1, ∂
α/∂x2, Tα) × F, Rα · F = (∂α/∂x1, ∂

α/∂x2, Tα) · F.
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Since all components of Rα are bounded operators from H
1/2
p (Γh) into H

−1/2
p (Γh), the operator F �→ Rα × F

is bounded from H
1/2
p (Γh)3 into H

−1/2
p (Γh)3, and F �→ Rα · F is bounded from H

1/2
p (Γh)3 into H

−1/2
p (Γh). If

a biperiodic function H ∈ H1
loc(R

3
+) satisfies the Rayleigh expansion condition, then TαH3 = ∂H3/∂x3 on Γh.

This implies that e3 × (curlα H) = e3 × (Rα × H) on Γh (see, e.g. [16]).
Assume that Hs

α is a distributional periodic solution to the boundary value problem (2.10) such that Hs
α,

curlα Hs
α, and divαHs

α are locally square-integrable, such that the radiation condition (2.13) is satisfied, and
such that ν · (Hs

α +Hir
α ) and ν× (ε−1

r curl(Hs
α +Hir

α )) are continuous over interfaces with normal vector ν where
εr jumps. As noted in [16], this implies that, following the above notation, Hs

α ∈ H1
p,T(Ω). Then the Stokes

formula [1, 16] implies that∫
Ω

(ε−1
r curlα Hs

α · curlα F − k2Hs
α · F ) dx

−
∫

Γ0

e3 × (ε−1
r curlα Hs

α) · F dx +
∫

Γh

e3 × (Rα × Hs
α) · F ds

=
∫

Ω

(1 − ε−1
r ) curlα Hir

α · curlα F dx −
∫

Γ0

(e3 × (1 − ε−1
r ) curlα Hir

α ) · F dx

for all test functions F ∈ H1
p,T(Ω)3. Since we assumed that

0 = e3 × (ε−1
r curlα Hα) = e3 × (ε−1

r curlα(Hs
α + Hir

α )) on Γ0,

the above identity simplifies to

∫
Ω

(ε−1
r curlα Hs

α · curlα F − k2Hs
α · F ) dx +

∫
Γh

e3 × (Rα × Hs
α) · F ds

=
∫

Ω

(1 − ε−1
r ) curlα Hir

α · curlα F dx −
∫

Γ0

(e3 × curlα Hir
α ) · F dx .

By construction, e3 × curlα Hir
α vanishes on Γ0, that is, we can neglect the last term in the last equation. The

divergence constraint divαHs
α = 0 that follows from (2.10) shows that

B(Hs
α, F ) :=

∫
Ω

(ε−1
r curlα Hs

α · curlα F − k2Hs
α · F ) dx + ρ

∫
Ω

(divαHs
α)(divαF ) dx

+
∫

Γh

e3 × (Rα × Hs
α) · F ds −

∫
Γh

(Rα · Hs
α)(e3 · F ) ds

=
∫

Ω

(1 − ε−1
r ) curlα Hir

α · curlα F dx , (3.1)

where ρ is some complex constant with Re (ρ) ≥ c > 0 and Im (ρ) < 0.
We next prove that the bounded sesquilinear form B : H1

p,T(Ω)3 × H1
p,T(Ω)3 → C satisfies a G̊arding

inequality (this goes back to [1]), i.e. there exist strictly positive constants c1 and c2 such that

Re (B(H, H)) ≥ c1

∫
Ω

|∇αH |2 dx − c2

∫
Ω

|H |2 dx . (3.2)

for all H ∈ H1
p,T(Ω)3.

Theorem 3.1. Assume that ε−1
r ∈ L∞(Ω) is positive and bounded away from zero. Set Re ρ = infΩ ε−1

r > 0
and choose Im ρ < 0. Then B satisfies (3.2).
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Proof. As in [16], proof of Theorem 1 one shows that

Re (B(H, H)) ≥ Re (ρ)
∫

Ω

(| curlα H |2 + |divαH |2) dx − k2

∫
Ω

|H |2 dx

− Re
∫

Γh

TαH · H ds − 2Re
∫

Γh

(
H3

∂αH1

∂x1
+ H3

∂αH2

∂x2

)
ds .

The following identity follows from integrations by parts, the periodicity, and the vanishing normal component
of H on Γ0, ∫

Ω

(| curlα H |2 + |divαH |2) dx =
∫

Ω

|∇αH |2 dx + 2Re
∫

Γh

(
H3

∂αH1

∂x1
+ H3

∂αH2

∂x2

)
ds .

In consequence,

Re (B(H, H)) ≥ Re (ρ)
∫

Ω

|∇αH |2 dx − k2

∫
Ω

|H |2 dx

− Re
∫

Γh

TαH · H ds − 2(1 − Re (ρ))Re
∫

Γh

(
∂αH1

∂x1
+

∂αH2

∂x2

)
H3 ds .

Precisely as in [16] one shows now by a Fourier series argument that

−Re
∫

Γh

TαH · H ds − 2(1 − Re (ρ))Re
∫

Γh

(
∂αH1

∂x1
+

∂αH2

∂x2

)
H3 ds ≥ Re

∫
Γh

K(H) · H ds

≥ −C

∫
Ω

|H |2 dx

for a finite-dimensional operator K on H
1/2
p (Γh)3. Note that the last inequality follows from | ∫Γh

K(H)·H ds | ≤
C
∫

Ω
|H |2 dx due to the finite-dimensional range of K and the fact that on finite-dimensional spaces all norms

are equivalent. The last inequality implies a G̊arding inequality for B. �

For simplicity we write from now on H for the searched-for scattered field Hs
α in (3.1) and replace the source

function curlHir
α by a G ∈ H1

p(Ω)3. The last theorem implies the following corollary.

Corollary 3.2. The variational problem to find H ∈ H1
p,T(Ω)3 such that

B(H, F ) =
∫

Ω

(1 − ε−1
r )G · curlα F dx for all F ∈ H1

p,T(Ω)3 (3.3)

satisfies the Fredholm alternative, i.e., uniqueness of solution implies existence of solution.

Note that this formulation corresponds to the usual variational formulation of the Maxwell equations with
perfectly conducting magnetic boundary conditions in smooth bounded domains, see, e.g. [9], Section 4.5(b).
For special material parameters ε−1

r in

W 1,∞
p (Ω) := {f ∈ L∞(Ω) : f = f̃ |Ω for some 2π-biperiodic f̃ ∈ W 1,∞(R3)}

we will in the sequel of the paper establish a uniqueness result via a Rellich identity. The next lemma will be
useful when proving this identity.
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Lemma 3.3. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero, and that G ∈ H1
p(Ω)3.

Then a solution H ∈ H1
p,T(Ω)3 to problem (3.3) satisfies

curlα(ε−1
r curlα H) − k2H = curlα((1 − ε−1

r )G) in L2(Ω)3, (3.4)
divαH = 0 in L2(Ω), (3.5)

e3 × (ε−1
r curlα H) = e3 × ((1 − ε−1

r )G) in H−1/2
p (Γ0)3, (3.6)

e3 · H = 0 in H1/2
p (Γ0). (3.7)

Moreover,

e3 × Rα × H = e3 × curlα H in H−1/2
p (Γh)3 and Rα · H = 0 in H−1/2

p (Γh), (3.8)

and ∂H/∂x3 = Tα(H) holds in H
−1/2
p (Γh).

Proof. The proof that divαH = 0 is analogous to the proof of [16], Theorem 2. In consequence, using a test
function F ∈ C∞

0 (Ω)3 in the variational problem (3.3) shows that the solution H satisfies the differential
equation (3.4) in the distributional sense. Since H ∈ H1

p,T(Ω)3, (3.4) holds in the L2-sense if the right-hand
side belongs to L2(Ω)3, which holds if ε−1

r ∈ W 1,∞
p (Ω) and G ∈ H1

p(Ω)3.
Multiplying (3.4) by F ∈ H1

p,T(Ω)3, using the Stokes formula, and subtracting the resulting expression from
the variational formulation (3.3), we find that

∫
Γh

e3 × (Rα × H) · F ds −
∫

Γh

(Rα · H)(e3 · F ) ds −
∫

Γh

e3 × curlα H · F ds

+
∫

Γ0

e3 × (ε−1
r curlα H) · F ds −

∫
Γ0

e3 × ((1 − ε−1
r )G) · F ds = 0.

If we choose F such that F |Γh
= 0, then we see that e3 × (ε−1

r curlα H − (1 − ε−1
r )G) = 0 in H

−1/2
p (Γ0). If

e3 · F |Γh
= 0, it follows that e3 × (Rα × H) = e3 × curlα H in H

−1/2
p (Γh)3. Hence, Rα · H = 0 in H

−1/2
p (Γh).

These identities imply that ∂H/∂x3 = Tα(H) in H
−1/2
p (Γh) due to [16], Lemma 1. �

Remark 3.4. Instead of the above variational formulation in H1
p,T(Ω), one can also consider formulations

in Hp(curlα, Ω), the natural energy space for the second-order Maxwell equations (2.10), see, e.g. [1]. In
Hp(curlα, Ω)3 there is no bounded trace operator for the normal component of the field, and in consequence,
the formulation (3.3) needs to be adapted. Usually, one replaces F �→ e3 × (Rα × F )× e3 by Q(e3 × H), where
Q is a bounded operator between the natural trace spaces H

−1/2
p,div (Γh) and H

−1/2
p,curl(Γh), defined by

(QF )(x) = −
∑
n∈Λ

1
iβn

{k2F̂T,n − [(n + α) · F̂n](n + α)}ein·x, for F (x) =
∑
n∈Λ

F̂nein·x, (3.9)

see, e.g. [1]. Obviously this definition only makes sense if all βn are non-zero. If this is the case, then the
variational formulation (3.3) is equivalent to the formulation in Hp(curlα, Ω)3 obtained using Q. Under the
assumption that βn �= 0, all subsequent results could also be obtained via the formulation in Hp(curlα, Ω)3.

4. Integral identities

This section is concerned with technical lemmas that will be used to derive the Rellich identity and solution
bounds subsequently. Roughly speaking, for deriving the Rellich identity, we will multiply the Maxwell equa-
tions (3.4) by x3∂H/∂x3 and integrate by parts. Therefore, it is the aim of the technical lemmas in this section



1176 A. LECHLEITER AND D.-L. NGUYEN

to analyze the term Re
∫

Ω
x3∂H/∂x3 · curlα(ε−1

r curlα H) dx for a solution H ∈ H1
p,T(Ω)3 to the problem (3.3).

Note that the first two lemmas need the function H to be in H2
p(Ω)3. These lemmas for the magnetic field

formulation actually correspond to the ones for the electric field formulation in [12], Section 3.
We need to introduce some notation. For a vector field F = (F1, F2, F3)� we denote by FT = (F1, F2, 0)�

its transverse part. Recall that ∂αf/∂xj = ∂f/∂xj + iαjf for a scalar function f and j = 1, 2, 3. Further, we
introduce

∇T f :=
(

∂f

∂x1
,

∂f

∂x2
, 0
)�

, ∇α,T f :=
(

∂αf

∂x1
,
∂αf

∂x2
, 0
)�

,
−−→
curlα,T f :=

(
∂αf

∂x2
,−∂αf

∂x1
, 0
)�

,

and, for a vector field F = (F1, F2, F3)�,

divα,T F :=
∂αF1

∂x1
+

∂αF2

∂x2
and curlα,T F :=

∂αF2

∂x1
− ∂αF1

∂x2
.

It is straightforward to show that divα,T
−−→
curlα,T = 0 as well as curlα,T ∇α,T = 0. Moreover, a tedious computation

shows that

curlα F = (curlα,T FT )e3 +
−−→
curlα,T F3 − ∂(F × e3)

∂x3
,

and further

| curlα F |2 = | curlα,T FT |2 + |−−→curlα,T F3|2 +
∣∣∣∣∂FT

∂x3

∣∣∣∣
2

− 2Re
(
∇α,T F3 · ∂FT

∂x3

)
· (4.1)

Lemma 4.1. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero and that H ∈ H2
p(Ω)3.

Then

2Re
∫

Ω

x3
∂H

∂x3
· curlα(ε−1

r curlα H) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlα H |2 dx + h

∫
Γh

| curlα H |2 ds

+ 2Re
∫

Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx + 2hRe

∫
Γh

∂HT

∂x3
· (e3 × curlα H) ds . (4.2)

Proof. Denote by ν the outward unit normal to Ω. Using integration by parts and noting that ν = e3 on Γh,
and that the boundary term on Γ0 vanishes since x3 = 0 on Γ0, we find that

2Re
∫

Ω

x3
∂H

∂x3
· curlα(ε−1

r curlα H) dx

= 2Re
∫

Ω

ε−1
r curlα

(
x3

∂H

∂x3

)
· curlα H dx + 2Re

∫
∂Ω

x3
∂H

∂x3
· (ν × ε−1

r curlα H) ds

=
∫

Ω

ε−1
r x3

∂| curlα H |2
∂x3

dx + 2Re
∫

Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx

+ 2hRe
∫

Γh

∂HT

∂x3
· (e3 × curlα H) ds

= −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlα H |2 dx + 2Re

∫
Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx

+ h

∫
Γh

| curlα H |2 ds + 2hRe
∫

Γh

∂HT

∂x3
· (e3 × curlα H) ds . �
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The next lemma continues the analysis of the term Re
∫

Ω ε−1
r (e3 × ∂H/∂x3) · curlα H dx in the right hand

side of (4.2).

Lemma 4.2. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero. Then for all H ∈ H2
p(Ω)3

the following identity holds,

2Re
∫

Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx = 2

∫
Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx

−2Re
∫

Ω

∂(ε−1
r H3)
∂x3

divαH dx − 2Re
∫

Γh

(
∂H3

∂x3
− divαH

)
H3 ds

−2Re
∫

Γ0

ε−1
r H3divα,T HT ds . (4.3)

Proof. First, we have

2Re
∫

Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx = 2

∫
Ω

ε−1
r

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

dx

− 2Re
∫

Ω

ε−1
r

∂HT

∂x3
· ∇T H3 dx + 2Re

∫
Ω

ε−1
r

∂HT

∂x3
· iαH3 dx . (4.4)

Second, we compute that

− 2Re
∫

Ω

ε−1
r

∂HT

∂x3
· ∇T H3 dx = 2Re

∫
Ω

divT

(
ε−1
r

∂HT

∂x3

)
H3 dx

= 2Re
∫

Ω

ε−1
r divT

(
∂HT

∂x3

)
H3 dx + 2Re

∫
Ω

∇T ε−1
r · ∂HT

∂x3
H3 dx

= −2Re
∫

Ω

∂ε−1
r

∂x3
H3divT HT dx − 2Re

∫
Ω

ε−1
r

∂H3

∂x3
divT HT dx

+ 2Re
∫

Ω

∇T ε−1
r · ∂HT

∂x3
H3 dx + 2Re

∫
Γh

H3divT HT ds − 2Re
∫

Γ0

ε−1
r H3divT HT ds

Now, using the identity divT HT = −∂H3/∂x3 + divαH − iα · H , we obtain that

−2Re
∫

Ω

ε−1
r

∂HT

∂x3
·∇T H3 dx =2Re

∫
Ω

∂ε−1
r

∂x3
H3(iα · H) dx +2Re

∫
Ω

∂ε−1
r

∂x3
H3

∂H3

∂x3
dx

− 2Re
∫

Ω

∂ε−1
r

∂x3
H3divαH dx +2Re

∫
Ω

ε−1
r

∂H3

∂x3
(iα · H) dx +2Re

∫
Ω

ε−1
r

∣∣∣∣∂H3

∂x3

∣∣∣∣
2

dx

− 2Re
∫

Ω

ε−1
r

∂H3

∂x3
divαH dx +2Re

∫
Ω

∇T ε−1
r · ∂HT

∂x3
H3 dx +2Re

∫
Γh

H3divT HT dx

− 2Re
∫

Γ0

ε−1
r H3divT HT ds

Applying Green formula to the term 2Re
∫

Ω
(∂ε−1

r /∂x3)H3(iα · H) dx , we have

− 2Re
∫

Ω

ε−1
r

∂HT

∂x3
· ∇T H3 dx = −2Re

∫
Ω

ε−1
r

∂HT

∂x3
· iαH3 dx + 2Re

∫
Ω

ε−1
r

∣∣∣∣∂H3

∂x3

∣∣∣∣
2

dx

− 2Re
∫

Ω

∂ε−1
r

∂x3
H3divαH dx − 2Re

∫
Ω

ε−1
r

∂H3

∂x3
divαH dx + 2Re

∫
Ω

∇ε−1
r · ∂H

∂x3
H3 dx

− 2Re
∫

Γh

(
∂H3

∂x3
− divαH

)
H3 ds − 2Re

∫
Γ0

ε−1
r H3divα,T HT ds

Now the claim follows from substituting this identity into equation (4.4). �
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In the following final lemma of this section we will reformulate the term Re
∫

Ω x3∂H/∂x3·
curlα(ε−1

r curlα H) dx for a solution H ∈ H1
p,T(Ω)3 to the problem (3.3) using the last two lemmas.

Lemma 4.3. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero. Then any solution H ∈
H1

p,T(Ω)3 to the problem (3.3) satisfies

2Re
∫

Ω

x3
∂H

∂x3
· curlα(ε−1

r curlα H) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlα H |2 dx + h

∫
Γh

| curlα H |2 ds

+2
∫

Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx − 2Re

∫
Γh

H3
∂H3

∂x3
ds

+2hRe
∫

Γh

∂HT

∂x3
· (e3 × curlα H) ds .

Proof. It is sufficient to prove that H satisfies (4.2) and

2Re
∫

Ω

ε−1
r

(
e3 × ∂H

∂x3

)
· curlα H dx = 2

∫
Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx

− 2Re
∫

Γh

H3
∂H3

∂x3
ds . (4.5)

Recall that, for h > sup{x3 : (x1, x2, x3)� ∈ supp(εr−1)}, there exists a constant 0 < η  1 such that εr = 1 in
(0, 2π)2 × (h− η, h). Hence, a solution H ∈ H1

p,T(Ω)3 to the problem (3.3) belongs to H1
p,T(Ω)3 ∩H2

p((0, 2π)2 ×
(h − η, h))3 due to interior elliptic regularity theory. Then one can extend H to a function defined in all of R3

that is 2π-biperiodic and belongs to H1
p((0, 2π)2 × (−∞, h))3 ∩ H2

p((0, 2π)2 × (h − η,∞))3 (This can be seen
using [13] combined with suitable cut-off arguments). By abuse of notation, we still denote the extended function
by H . Let φ ∈ C∞(R3) be a smooth and non-negative function supported in the unit ball and

∫
R3 φdx = 1.

For δ > 0 and x ∈ R
3 let φδ(x) = δ−3φ(x/δ). The convolution Hδ := φδ ∗ H belongs to H2

p(Ω)3 and thus
satisfies (4.2). Then, from Lemma 3.3 and the fact that Hδ → H in H1

p,T(Ω)3 ∩ H2
p((0, 2π)2 × (h − η, h))3 we

obtain that
curlα(ε−1

r curlα Hδ) δ→0→ curlα(ε−1
r curlα H) in L2(Ω)3.

Moreover, the convergence in H2
p((0, 2π)2 × (h − η, h))3 implies that curlα Hδ → curlα H in L2(Γh)3 as δ → 0.

Consequently, H satisfies (4.2).
It remains to show that H also satisfies (4.5). The function Hδ satisfies (4.3) and we consider the limit of

this identity as δ → 0. It is easily seen that divαHδ → divαH = 0 in L2(Ω). Thus, we have

e3 · Hδ δ→0→ e3 · H = 0 in H1/2
p (Γ0), divα,T Hδ

T
δ→0→ divα,T HT in H−1/2

p (Γ0),

due to the convergence of Hδ to H in H1
p(Ω)3. Further, the convergence of Hδ to H in H2

p((0, 2π)2× (h−η, h))3

and the fact divαH = 0 on Γh imply that

∂Hδ

∂x3
− divαHδ → ∂H3

∂x3
− divαH =

∂H3

∂x3
in H−1/2

p (Γh).

Plugging these limits into (4.3) shows that (4.5) holds. �

5. Rellich identity and solution estimate

For establishing uniqueness of solution to the variational problem (3.3), we derive in this section the so-called
Rellich identity relating | curlα H |2 and |∂H/∂x3|2 where H is a solution to the homogeneous variational problem
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corresponding to (3.3). Then, under suitable non-trapping and smoothness conditions on the material parameter,
integral inequality resulting from this identity allow us to obtain estimate for a solution to the homogeneous
problem. As mentioned in the introduction, the Rellich identity and solution estimate obtained in this section
are much simpler than the ones in [12], Section 4. It turns out also that the non-trapping assumptions on the
parameter material are weaker than the ones in the latter paper.

The proof of the Rellich identity is based on an integration-by-parts technique that goes back to Rellich [15].
Typically, this technique requires more regularity of a solution than just to belong to the energy space. In
our case we will roughly speaking multiply the Maxwell equations (3.4), for G = 0 in the right hand side, by
x3∂H/∂x3 and integrate by parts.

Lemma 5.1 (Rellich Identity). Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero. Then
the following identity holds for all solutions H ∈ H1

p,T(Ω)3 to the homogeneous problem corresponding to (3.3),

∫
Ω

[
2ε−1

r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlα H |2 + 2Re

(
∇ε−1

r · ∂H

∂x3
H3

)]
dx

+ Re
∫

Γh

e3 × (Rα × H) · H ds − 2Re
∫

Γh

Tα(H3)H3 ds = 0. (5.1)

Proof. Let H ∈ H1
p,T(Ω)3 be a solution to the homogeneous problem corresponding to (3.3). First, using

integration by parts we have

Re
∫

Γh

∂HT

∂x3
· (e3 × curlα H) ds =

∫
Γh

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

ds + Re
∫

Γh

∂HT

∂x3
· ∇α,T H3 ds .

Note that H satisfies the assumptions of Lemma 4.3. Together with the latter equation we obtain

2Re
∫

Ω

x3
∂H

∂x3
· curlα(ε−1

r curlα H) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlα H |2 dx + h

∫
Γh

| curlα H |2 ds

+ 2
∫

Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx − 2Re

∫
Γh

∂H3

∂x3
H3 ds

− 2h

∫
Γh

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

ds + 2hRe
∫

Γh

∂HT

∂x3
· ∇α,T H3 ds .

We exploit that H solves (3.4) for G = 0,

2Re
∫

Ω

x3
∂H

∂x3
· curlα(ε−1

r curlα H) dx = k22Re
∫

Ω

x3
∂H

∂x3
· H dx = k2

∫
Ω

x3
∂|H |2
∂x3

dx

= −k2

∫
Ω

|H |2 dx + k2h

∫
Γh

|H |2 ds .

From the last two equations we conclude that

−
∫

Ω

(
∂(x3ε

−1
r )

∂x3
| curlα H |2 − k2|H |2

)
dx + 2

∫
Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx

− 2Re
∫

Γh

H3
∂H3

∂x3
ds − 2h

∫
Γh

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

ds + 2hRe
∫

Γh

∂HT

∂x3
· ∇α,T H3 ds

+ h

∫
Γh

(| curlα H |2 − k2|H |2) ds = 0.
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Due to the variational formulation (3.3) for G = 0,∫
Ω

(ε−1
r | curlα H |2 − k2|H |2) dx + Re

∫
Γh

e3 × (Rα × H) · H ds = 0 (5.2)

since divαH = 0 in Ω and Rα · H = 0 in H
−1/2
p (Γh) due to Lemma 3.3. Adding the last two equations yields

that the term
∫

Ω k2|H |2 dx cancels, and further exploiting ∂H3/∂x3 = TαH3 on Γh to yields that

−
∫

Ω

x3
∂ε−1

r

∂x3
| curlα H |2 dx + 2

∫
Ω

ε−1
r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx + 2Re
∫

Ω

∇ε−1
r · ∂H

∂x3
H3 dx

− 2Re
∫

Γh

Tα(H3)H3 ds + Re
∫

Γh

e3 × (Rα × H) · H ds + 2hRe
∫

Γh

∂HT

∂x3
· ∇α,T H3 ds

+ h

∫
Γh

(
| curlα H |2 − k2|H |2 − 2

∣∣∣∣∂HT

∂x3

∣∣∣∣
2)

ds = 0.

Recall equality (4.1),

| curlα H |2 = | curlα,T H |2 + |−−→curlα,T H3|2 +
∣∣∣∣∂HT

∂x3

∣∣∣∣
2

− 2Re
(

∂HT

∂x3
· ∇α,T H3

)
.

Combining the last two equations yields

L(H) = h

∫
Γh

(∣∣∣∣∂HT

∂x3

∣∣∣∣
2

+ k2|H |2 − | curlα,T H |2 − |−−→curlα,T H3|2
)

ds

where L(H) is the left hand side of (5.1). It remains now to prove that the right hand side of the latter equation
vanishes. First, we recall from Lemma 3.3 that ∂H/∂x3 = TαH in H

−1/2
p (Γh) which yields that∫

Γh

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

=
∑
n∈Λ

|βnĤT,n|2,
∫

Γh

∣∣∣∣∂H3

∂x3

∣∣∣∣
2

=
∑
n∈Λ

|βnĤ3,n|2.

Using the latter formulas and replacing k2 by |n + α|2 + β2
n in the first boundary term in (5.1) yields∫

Γh

(∣∣∣∣∂HT

∂x3

∣∣∣∣
2

+ k2|H |2 − | curlα,T H |2 − |−−→curlα,T H3|2
)

ds

=
∑
n∈Λ

[
|βnĤT,n|2 + (|n + α|2 + β2

n)(|ĤT,n|2 + |Ĥ3,n|2) − |(n + α) × ĤT,n|2 − |n + α|2|Ĥ3,n|
]

=
∑
n∈Λ

[
(β2

n + |βn|2)|ĤT,n|2 + |n + α|2|ĤT,n|2 − |(n + α) × ĤT,n|2 + β2
n|Ĥ3,n|

]
. (5.3)

On the other hand, due to the divergence-free condition, we have∑
n∈Λ

[
|n + α|2|ĤT,n|2 − |(n + α) × ĤT,n|2

]
=
∑
n∈Λ

|(n1 + α1)Ĥ1,n + (n2 + α2)Ĥ2,n|2

= ‖divα,T HT ‖2
L2(Γh) = ‖∂H3/∂x3‖2

L2(Γh) =
∑
n∈Λ

|βnĤ3,n|2.

Now substituting the latter equation into (5.3) leads to∫
Γh

(∣∣∣∣∂HT

∂x3

∣∣∣∣
2

+ k2|H |2 − | curlα,T H |2 − |−−→curlα,T H3|2
)

ds = 2
∑

βn≥0

β2
n|Ĥn|2, (5.4)
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where we exploited that βn is either a non-negative or a purely imaginary number. The proof is hence finished if
we show that

∑
βn≥0 β2

n|Ĥn|2 = 0 (since then L(H) = 0, which is the claim of the theorem). First, we compute
that

〈e3 × (Rα × H), H〉Γh
=
∑
n∈Λ

i(n + α) · ĤT,nĤ3,n −
∑
n∈Λ

iβn|ĤT,n|2

= −
∑
n∈Λ

iβn|Ĥ3,n|2 −
∑
n∈Λ

iβn|ĤT,n|2.

Since Re (βn) ≥ 0 this implies that

Im 〈e3 × (Rα × H), H〉Γh
= −

∑
n∈Λ

Re (βn)|Ĥn|2 ≤ 0, and (5.5)

Re 〈e3 × (Rα × H), H〉Γh
=
∑
n∈Λ

Im (βn)|Ĥ3,n|2 +
∑
n∈Λ

Im (βn)|ĤT,n|2. (5.6)

(The second equation will be exploited later on). Taking the imaginary part of the variational formulation (3.3)
with G = 0 and F = H , and exploiting Lemma 3.3, we obtain that

0 = Im 〈e3 × (Rα × H), H〉Γh

(5.5)
= −

∑
n∈Λ

Re (βn)|Ĥn|2.

This implies that |Ĥn|2 = 0 for all n such that Re (βn) > 0. Since βn is either purely imaginary or non-negative,
we conclude that

∑
βn≥0 β2

n|Ĥn|2 = 0. �

The next Poincaré-like result is classical (see, e.g. [8] for a proof).

Lemma 5.2. For u ∈ {v ∈ H1
p(Ω) : v|Γ0 = 0} there holds 2‖u‖2

L2(Ω) ≤ h2‖∂u/∂x3‖2
L2(Ω).

The following assumptions on ε−1
r will guarantee a stability estimate and a uniqueness statement for a solution

to the variational problem (3.3):

(a) ε−1
r ∈ W 1,∞

p (Ω) satisfies
∂ε−1

r

∂x3
≤ 0 in Ω,

(b) It holds that
∂ε−1

r

∂x3
< 0 in a non-empty open ball B ⊂ Ω,

(c) There exists δ > 1/2 such that
δ

2
‖∇T ε−1

r ‖2
L∞(Ω)2 +

√
2

h

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
L∞(Ω)

<
2
h2

. (5.7)

Remark 5.3. Note that (5.7)(a) implies that ε−1
r ≥ 1, since, by construction, ε−1

r = 1 in {h − η < x3 < h}
for some small η > 0. For the case of periodic non-absorbing structures, the main difference between these non-
trapping conditions and the ones for the scalar case in [7] is the additional condition (5.7)(c). This condition
arises from estimating the term 2Re

∫
Ω(∇ε−1

r · ∂H/∂x3H3) dx in the Rellich identity (5.1) using the Poincaré-
like result above. This is natural since the Rellich identity resulting from a similar technique for the scalar
case [7] does not have a corresponding term.

Let us construct a function ε−1
r that satisfies the above assumptions (5.7). Choose constants 0 < h1 < h2 < h,

λ > 0, and a C1-smooth cut-off function χ ∈ C1((0, 2π)2) with compact support in (0, 2π)2 such that 0 ≤ χ ≤ 1
and χ = 1 in (π/2, 3π/2)2. For x = (x1, x2, x3)� ∈ Ω, we define

ε−1
r (x1, x2, x3) =

⎧⎪⎨
⎪⎩

λχ(x1, x2) + 1, 0 < x3 < h1,

λ
(

x3−h2
h1−h2

)
χ(x1, x2) + 1, h1 < x3 < h2,

1, h2 < x3 < h.
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Then ε−1
r is a decreasing function that satisfies (5.7)(a), and condition (5.7)(c) is satisfied when λ > 0 is small

enough. Moreover, ε−1
r also satisfies condition (5.7)(b) in (π/2, 3π/2)2 × (h1, h2). However, ε−1

r does not satisfy
the corresponding conditions (7.2)(b,c) in [12], which require, roughly speaking, strict positivity of ∂εr/∂x3 in
(0, 2π)2 × (h1, h2) (an arbitrary ball B ⊂ Ω as in (5.7)(b) is not sufficient for the proof in [12]).

Lemma 5.4. Assume that ε−1
r satisfies the three assumptions in (5.7). Then there exists C > 0 (independent

of k > 0) such that

C

∫
Ω

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

dx ≤
∫

Ω

x3
∂ε−1

r

∂x3
| curlα H |2 dx

for all solutions H ∈ H1
p,T(Ω)3 to the homogeneous problem corresponding to (3.3).

Proof. We first estimate the two boundary terms in (5.1). We find that

−2Re
∫

Γh

Tα(H3)H3 ds = 2
∑
n∈Λ

Im (βn)|Ĥ3,n|2 ≥ 0.

Together with (5.6) we obtain

Re 〈e3 × (Rα × H), H〉Γh
− 2Re

∫
Γh

Tα(H3)H3 ds =
∑
n∈Λ

Im (βn)|Ĥn|2 ≥ 0.

Therefore, from the Rellich identity (5.1) we deduce V (H) ≤ 0 where V (H) is the volumetric terms in (5.1).
We need now to bound V (H) from below,

V (H) =
∫

Ω

[
2ε−1

r

∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlα H |2 + 2Re

(
∇T ε−1

r · ∂HT

∂x3
H3 +

∂ε−1
r

∂x3

∂H3

∂x3
H3

)]
dx

≥
∫

Ω

[
2
∣∣∣∣ ∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlα H |2 dx

]
dx − γ−1

∥∥∥∥∂H3

∂x3

∥∥∥∥
2

L2(Ω)

− γ

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω)

− δ‖∇T ε−1
r ‖2

L∞(Ω)2‖H3‖2
L2(Ω) − δ−1

∥∥∥∥∂HT

∂x3

∥∥∥∥
2

L2(Ω)2

for arbitrary δ, γ > 0. Poincaré’s inequality from Lemma 5.2 and the binomial formula imply that

V (H) ≥
∫

Ω

[(
2 − δh2

2
‖∇T ε−1

r ‖2
L∞(Ω)2

)∣∣∣∣∂H3

∂x3

∣∣∣∣
2

+
2δ − 1

δ

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlα H |2 dx

]
dx

− γ−1

∥∥∥∥∂H3

∂x3

∥∥∥∥
2

L2(Ω)

− γ

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω)

Again, we exploit Poincaré’s inequality, to find that

γ−1

∥∥∥∥∂H3

∂x3

∥∥∥∥
2

L2(Ω)

+ γ

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω) ≤

(
γ−1 + γ

h2

2

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
2

L∞(Ω)

)∥∥∥∥∂H3

∂x3

∥∥∥∥
2

L2(Ω)

.

The minimum of γ �→ γ−1 + Cγ is 2
√

C. In consequence,

V (H) ≥
[
2 − δh2

2
‖∇T ε−1

r ‖2
L∞(Ω)2 −

√
2h

∥∥∥∥∂ε−1
r

∂x3

∥∥∥∥
L∞(Ω)

]∫
Ω

∣∣∣∣∂H3

∂x3

∣∣∣∣
2

dx

+
2δ − 1

δ

∫
Ω

∣∣∣∣∂HT

∂x3

∣∣∣∣
2

dx −
∫

Ω

x3
∂ε−1

r

∂x3
| curlα H |2 dx .



ON UNIQUENESS IN ELECTROMAGNETIC SCATTERING FROM BIPERIODIC STRUCTURES 1183

Finally, assumption (5.7)(c) implies that there exists δ > 1/2 such that the first bracket on the right-hand side
is positive. �

6. Uniqueness of solution for all wave numbers

In this section, we prove our main uniqueness result for the electromagnetic scattering problem (3.3), under
the assumption that εr satisfies (5.7). As mentioned above, corresponding uniqueness results that hold for all
wave numbers currently exist, to the best of our knowledge, only for absorbing materials, see [16], or simpler
two-dimensional structures, see [7].

Theorem 6.1. Assume that ε−1
r satisfies the assumptions (5.7). Then problem (3.3) is uniquely solvable for all

right-hand sides G ∈ H1
p(Ω) and for all wave numbers k > 0.

Proof. Consider a solution H ∈ H1
p,T(Ω)3 to the homogeneous problem corresponding to (3.3). Due to

Lemma 5.4 and the assumptions on ε−1
r we obtain that ∂H/∂x3 = 0 in Ω and curlα H = 0 in the ball B

(see assumption (5.7)(b)). Equation (3.4) implies that H vanishes in B, too.
Since H is independent of x3, it is sufficient to show that H vanishes on Γh−η = {(x1, x2, x3) ∈ Ω : x3 = h−η}

for some (small) η > 0 to conclude that H vanishes entirely in Ω. If η is small enough, then all three components
Hj , j = 1, 2, 3, satisfy

ΔαHj + k2Hj = 0, ΔαHj := ΔHj + 2iα · ∇Hj − |α|2Hj ,

in some neighborhood of Γh−η. Let us denote by Δ2 = ∂2/∂x2
1 + ∂2/∂x2

2 the two-dimensional Laplacian. Since
∂2Hj/∂x2

3 vanishes, Hj |Γh−η
∈ H1

p(Γh−η) is a weak solution to the two-dimensional equation

Δ2Hj + 2iα · ∇T Hj + (k2 − |α|2)Hj = 0 on Γh−η, j = 1, 2, 3.

Standard elliptic regularity results imply that Hj |Γh−η
belongs to H2

p(Γh−η). Moreover, since H vanishes in the
open ball B and since H is independent of x3, Hj vanish in a non-empty relatively open subset of Γh−η.

In this situation, the unique continuation principle stated in Theorem 6.2 (see, e.g. [14]) implies that Hj

vanishes on Γh−η for j = 1, 2, 3, and hence H vanishes in Ω. �

Theorem 6.2. Let O be an open and simply connected set in R2, and let u1, ..., um ∈ H2(O) be real-valued
such that

|Δuj| ≤ C

m∑
l=1

(|ul| + |∇ul|) in O for j = 1, ..., m. (6.1)

If uj vanishes in some open and non-empty subset of O for all j = 1, ..., m, then uj vanish identically in O for
all j = 1, ..., m.
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