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A QUASI-VARIATIONAL INEQUALITY PROBLEM ARISING
IN THE MODELING OF GROWING SANDPILES
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Abstract. Existence of a solution to the quasi-variational inequality problem arising in a model for
sand surface evolution has been an open problem for a long time. Another long-standing open problem
concerns determining the dual variable, the flux of sand pouring down the evolving sand surface,
which is also of practical interest in a variety of applications of this model. Previously, these problems
were solved for the special case in which the inequality is simply variational. Here, we introduce a
regularized mixed formulation involving both the primal (sand surface) and dual (sand flux) variables.
We derive, analyse and compare two methods for the approximation, and numerical solution, of this
mixed problem. We prove subsequence convergence of both approximations, as the mesh discretization
parameters tend to zero; and hence prove existence of a solution to this mixed model and the associated
regularized quasi-variational inequality problem. One of these numerical approximations, in which the
flux is approximated by the divergence-conforming lowest order Raviart–Thomas element, leads to an
efficient algorithm to compute not only the evolving pile surface, but also the flux of pouring sand.
Results of our numerical experiments confirm the validity of the regularization employed.
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1. Introduction

Let a cohesionless granular material (sand), characterized by its angle of repose α, be poured out onto a rigid
surface y = w0(x), where y is vertical, x ∈ Ω ⊂ R

d, d = 1 or 2, and Ω is a domain with boundary ∂Ω. The
support surface w0 ∈ W 1,∞

0 (Ω) and the nonnegative density of the distributed source f ∈ L2(0, T ;L2(Ω)) are
given. We consider the growing sandpile y = w(x, t) and set an open boundary condition w|∂Ω = 0. Denoting
by q(x, t) the horizontal projection of the flux of material pouring down the evolving pile surface, we can write
the mass balance equation

∂w

∂t
+ ∇ . q = f. (1.1)
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The quasi-stationary model of sand surface evolution, see Prigozhin [15, 17, 18], assumes the flow of sand is
confined to a thin surface layer and directed towards the steepest descent of the pile surface. Wherever the
support surface is covered by sand, the pile slope should not exceed the critical value; that is, w > w0 ⇒
|∇w| ≤ k0, where k0 = tanα is the internal friction coefficient. Of course, the uncovered parts of the support
can be steeper. This model does not allow for any flow on the subcritical parts of the pile surface; that is,
|∇w| < k0 ⇒ q = 0. These constitutive relations can be conveniently reformulated for a.e. (x, t) ∈ Ω × (0, T )
as

|∇w| ≤M(w) and M(w) |q| + ∇w . q = 0, (1.2)

where for any x ∈ Ω

M(w)(x) :=
{
k0 w(x) > w0(x),
max(k0, |∇w0(x)|) w(x) ≤ w0(x). (1.3)

Let us define, for any η ∈ C(Ω), the closed convex non-empty set

K(η) :=
{
ϕ ∈ W 1,∞

0 (Ω) : |∇ϕ| ≤M(η) a.e. in Ω
}
. (1.4)

Since M(w) |q| + ∇ϕ . q ≥ 0 for any ϕ ∈ K(w), we have, on noting (1.2), that w ∈ K(w) and ∇(ϕ − w) . q ≥ 0.
A weak form of the latter inequality is: for a.a. t ∈ (0, T )∫

Ω

∇ . q (w − ϕ) dx ≥ 0 ∀ ϕ ∈ K(w). (1.5)

Combining (1.5) and (1.1) yields an evolutionary quasi-variational inequality for the evolving pile surface: find
w ∈ K(w) such that for a.a. t ∈ (0, T )∫

Ω

(
∂w

∂t
− f

)
(ϕ− w) dx ≥ 0 ∀ ϕ ∈ K(w). (1.6)

Assuming there is no sand on the support initially, we set

w(·, 0) = w0(·). (1.7)

A solution w to this quasi-variational inequality problem, (1.6) and (1.7), if it exists, should be a monotoni-
cally non-decreasing function in time for any f ≥ 0, see Section 3 in Prigozhin [18]. However, existence and
uniqueness of a solution has only been proved for support surfaces with no steep slopes; that is, |∇w0| ≤ k0, see
Prigozhin [15, 18]. In this case K(w) ≡ K :=

{
ϕ ∈W 1,∞

0 (Ω) : |∇ϕ| ≤ k0 a.e. in Ω
}

and the quasi-variational
inequality becomes simply a variational inequality. Independently, the variational inequality for supports without
steep slopes has been derived and studied in Aronson, Evans and Wu [2] as the p→ ∞ limit of the evolutionary
p-Laplacian equation.

The quasi-variational inequality (1.6) can, of course, be considered not only with the initial condition (1.7).
However, if w(·, 0) = w̃0(·) ≥ w0(·) and w̃0 does not belong to the admissible set K(w̃0), an instantaneous solu-
tion reconstruction takes place. Such discontinuous solutions, interpreted as simplified descriptions of collapsing
piles with overcritical slopes, were studied in the variational inequality case in Evans, Feldman and Gariepy [10],
and Dumont and Igbida [8]. Since we assumed the initial condition (1.7) and, obviously, w0 ∈ K(w0), one could
expect a solution continuously evolving in time. However, for the quasi-variational inequality with the open
boundary condition w|∂Ω = 0, an uncontrollable influx of material from outside can occur through the parts
of the boundary where ∇w0 . ν ≥ k0, where ν is the outward unit normal to ∂Ω. This makes the solution
non-unique and, possibly, discontinuous. Such an influx is prevented in our model by assuming that

∇w0 . ν < k0 on ∂Ω, (1.8)

which implies that ∇w . ν < k0 on ∂Ω for t > 0.
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For the variational inequality version of the sand model, equivalent dual and mixed variational formulations
have recently been proposed; see, e.g., Barrett and Prigozhin [4] and Dumont and Igbida [7]. Such formulations
are often advantageous, because they allow one to determine not only the evolving sand surface w but also
the surface flux q, which is of interest too in various applications; see Prigozhin [16, 17], and Barrett and
Prigozhin [6]. In such formulations, and this is their additional advantage, the difficult to deal with gradient
constraint is replaced by a simpler, although non-smooth, nonlinearity.

Here we will also use a mixed variational formulation of a regularized version of the growing sandpile model
involving both variables. Instead of excluding the surface flux q from the model formulation, as in the transition
to (1.6) above, we now note that the first condition in (1.2) holds if for a.e. (x, t) ∈ Ω × (0, T )

M(w) |v| + ∇w . v ≥ 0 (1.9)

for any test flux v. Hence we can reformulate the conditions (1.2) for a.a. t ∈ (0, T ) as∫
Ω

[
M(w) (|v| − |q|) − w∇ . (v − q)

]
dx ≥ 0 (1.10)

for any test flux v, and consider a mixed formulation of the sand model as (1.1) and (1.10).
The quasi-variational inequality (1.6) is a difficult problem; in particular, due to the discontinuity of the

nonlinear operator M , which determines the gradient constraint in (1.4). Furthermore, the natural function
space for the flux q is the space of vector-valued bounded Radon measures having L2 divergence. If q is such
a measure, the discontinuity of M(w) also makes it difficult to give a sense to the term

∫
Ω M(w) |q| dx in the

inequality (1.10) of the mixed formulation.
In this work we consider a regularized version of the growing sandpile model with a continuous operator Mε :

C(Ω) → C(Ω), determined as follows. For a fixed small ε > 0, we approximate the initial data w0 ∈ W 1,∞
0 (Ω)

by wε
0 ∈W 1,∞

0 (Ω) ∩ C1(Ω), and M(·) by the continuous function Mε(·) such that for any x ∈ Ω

Mε(η)(x) :=

⎧⎪⎪⎨⎪⎪⎩
k0 η(x) ≥ wε

0(x) + ε,

kε
1(x) + (k0 − kε

1(x))
(
η(x) − wε

0(x)
ε

)
η(x) ∈ [wε

0(x), wε
0(x) + ε],

kε
1(x) := max(k0, |∇wε

0(x)|) η(x) ≤ wε
0(x).

(1.11)

We note that Mε is such that for all η1, η2 ∈ C(Ω)

|Mε(η1) −Mε(η2)|0,∞,Ω ≤
kε
1,∞ − k0

ε
|η1 − η2|0,∞,Ω, (1.12)

where

kε
1,∞ := max

x∈Ω
kε
1(x). (1.13)

In addition, it follows for any x ∈ Ω that

η1(x) ≥ η2(x) ⇒ 0 < k0 ≤Mε(η1(x)) ≤Mε(η2(x)) ≤ kε
1(x). (1.14)

We note that the analysis of the sand quasi-variational inequality problem studied in this paper is far more
involved than that of the superconductivity quasi-variational inequality problem studied by the present authors
in [6]. In the superconductivity context, M : R → [M0,M1] ⊂ R with M0 > 0. In [6], we exploit the fact that
|∇w(x)| ≤M(w(x)) can be rewritten as |∇[F (w(x))]| ≤ 1 for all x ∈ Ω, where F ′(·) = [M(·)]−1 and F (0) = 0.
Clearly, such a reformulation is not applicable to M(·), (1.3), or Mε(·) (1.11).

In addition, we note that in the very recent paper by Rodrigues and Santos [19] an existence result can be
deduced for the primal quasi-variational inequality problem (1.6) for a continuous and positive M(·), such as
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Mε(·), and f ∈ W 1,∞(Ω × (0, T )). Assuming w0 ∈ K(w0) ∩ C0(Ω), they show that w ∈ L∞(0, T ;W 1,∞
0 (Ω)) ∩

W 1,∞(0, T ; [C0(Ω)]�). Their proof is based on the method of vanishing viscosity and constraint penalization.
The outline of this paper is as follows. In the next section we introduce two fully practical finite element

approximations, (Qh,τ
A ) and (Qh,τ

B,r), to the regularized mixed formulation (1.1) and (1.10), whereM(·) is replaced
byMε(·), and prove well-posedness and stability bounds. Here h and τ are the spatial and temporal discretization
parameters, respectively. In addition, r > 1 is a regularization parameter in replacing the non-differentiable
nonlinearity | · | by the strictly convex function 1

r | · |r. The approximation (Qh,τ
A ) is based on a continuous

piecewise linear approximation for w and a piecewise constant approximation for q, whereas (Qh,τ
B,r) is based on

a piecewise constant approximation for w and the lowest order Raviart–Thomas element for q. In Section 3 we
prove subsequence convergence of both approximations to a solution of a weak formulation of the regularized
mixed problem. This is achieved by passing to the limit h → 0 first, then r → 1 in the case of (Qh,τ

B,r),
and finally τ → 0. In Section 4, we introduce iterative algorithms for solving the resulting nonlinear algebraic
equations arising from both approximations at each time level. Finally, in Section 5 we present various numerical
experiments. Even though the approximation (Qh,τ

A ) is simpler and may seem more natural than (Qh,τ
B,r), and

its convergence proof is certainly more straightforward; these experiments show that only the approximation
(Qh,τ

B,r) leads to an efficient algorithm to approximate both the surface w and the flux q.
We end this section with a few remarks about the notation employed in this paper. Above and throughout we

adopt the standard notation for Sobolev spaces on a bounded domain D with a Lipschitz boundary, denoting
the norm of W �,s(D) (
 ∈ N, s ∈ [1,∞]) by ‖.‖�,s,D and the semi-norm by | · |�,s,D. Of course, we have that
| · |0,s,D ≡ ‖ · ‖0,s,D. We extend these norms and semi-norms in the natural way to the corresponding spaces of
vector functions. For s = 2, W �,2(D) will be denoted by H�(D) with the associated norm and semi-norm written
as, respectively, ‖ · ‖�,D and | · |�,D. We set W 1,s

0 (D) := {η ∈ W 1,s(D) : η = 0 on ∂D}, and H1
0 (D) ≡ W 1,2

0 (D).
We recall the Poincaré inequality for any s ∈ [1,∞]

|η|0,s,D ≤ C�(D) |∇η|0,s,D ∀ η ∈W 1,s
0 (D), (1.15)

where the constant C�(D) depends on D, but is independent of s; see e.g. p. 164 in Gilbarg and Trudinger [13].
In addition, |D| will denote the measure of D and (·, ·)D the standard inner product on L2(D). When D ≡ Ω,
for ease of notation we write (·, ·) for (·, ·)Ω .

For m ∈ N, let (i) Cm(D) denote the Banach space of continuous functions with all derivatives up to order
m continuous on D, (ii) Cm

0 (D) denote the space of continuous functions with compact support in D with
all derivatives up to order m continuous on D and (iii) Cm

0 (D) denote the Banach space {η ∈ Cm(D) : η =
0 on ∂D}. In the case m = 0, we drop the superscript 0 for all three spaces.

As one can identify L1(D) as a closed subspace of the Banach space of bounded Radon measures, M(D) ≡
[C(D)]�, i.e. the dual of C(D); it is convenient to adopt the notation∫

D

|μ| ≡ ‖μ‖M(D) := sup
η∈C(D)

|η|0,∞,D≤1

〈μ, η〉C(D) <∞, (1.16)

where 〈·, ·〉C(D) denotes the duality pairing on [C(D)]� × C(D).
We introduce also the Banach spaces for a given s ∈ [1,∞]

V s(D) := {v ∈ [Ls(D)]d : ∇ . v ∈ L2(D)} and VM(D) := {v ∈ [M(D)]d : ∇ . v ∈ L2(D)}. (1.17)

The condition ∇. v ∈ L2(D) in (1.17) means that there exists u ∈ L2(D) such that 〈v,∇φ〉C(D) = −(u, φ)D for
any φ ∈ C1

0 (D).
We note that if {μn}n≥0 is a bounded sequence in M(D), then there exist a subsequence {μnj}nj≥0 and a

μ ∈ M(D) such that as nj → ∞

μnj → μ weakly in M(D); i.e. 〈μnj − μ, η〉C(D) → 0 ∀ η ∈ C(D). (1.18)
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In addition, we have that

lim inf
nj→∞

∫
D

|μnj | ≥
∫

D

|μ|; (1.19)

see e.g. p. 223 in Folland [12].
We recall the following Sobolev interpolation theorem, see Theorem 5.8 in Adam and Fournier [1]. If η ∈

W 1,s(D), with s > d, then η ∈ C(Ω) with the embedding being compact; and moreover,

|η|0,∞,D ≤ C(s,D) ‖η‖α
1,s,D |η|1−α

0,D with α =
d s

d s+ 2(s− d)
∈ (0, 1). (1.20)

We recall also the Aubin–Lions–Simon compactness theorem, see Corollary 4 in Simon [20]. Let B0, B and B1 be
Banach spaces, Bi, i = 0, 1, reflexive, with a compact embedding B0 ↪→ B and a continuous embedding B ↪→ B1.
Then, for α > 1, the embedding

{ η ∈ L∞(0, T ;B0) :
∂η

∂t
∈ Lα(0, T ;B1) } ↪→ C([0, T ];B) (1.21)

is compact.
Finally, throughout C denotes a generic positive constant independent of the regularization parameter, r ∈

(1,∞), the mesh parameter h and the time step parameter τ . Whereas, C(s) denotes a positive constant
dependent on the parameter s.

2. Finite element approximation

We make the following assumptions on the data.

(A1) Ω ⊂ R
d, d = 1 or 2, has a Lipschitz boundary ∂Ω with outward unit normal ν. f ∈ L2(0, T ;L2(Ω)) is

a nonnegative source, and Mε(·) is given by (1.11). In addition, the initial data wε
0 ∈ C1

0 (Ω) is such that
∇wε

0 . ν < k0 on ∂Ω.

For ease of exposition, we shall assume that Ω is a polygonal domain to avoid perturbation of domain errors in
the finite element approximation. We make the following standard assumption on the partitioning.

(A2) Ω is polygonal. Let {T h}h>0 be a regular family of partitionings of Ω into disjoint open simplices σ with
hσ := diam(σ) and h := maxσ∈T h hσ, so that Ω = ∪σ∈T hσ.

Let ν∂σ be the outward unit normal to ∂σ, the boundary of σ. We then introduce the following finite element
spaces

Sh := {ηh ∈ L∞(Ω) : ηh |σ= aσ ∈ R ∀ σ ∈ T h }, (2.1a)

Sh
≥0 := {ηh ∈ L∞(Ω) : ηh |σ= aσ ∈ R≥0 ∀ σ ∈ T h }, (2.1b)

Sh := {ηh ∈ [L∞(Ω)]d : ηh |σ= aσ ∈ R
d ∀ σ ∈ T h }, (2.1c)

Uh := {ηh ∈ C(Ω) : ηh |σ= aσ . x+ bσ, aσ ∈ R
d, bσ ∈ R ∀ σ ∈ T h}, (2.1d)

Uh
0 := Uh ∩W 1,∞

0 (Ω), (2.1e)

V h := {vh ∈ [L∞(Ω)]d : vh |σ= aσ + bσ x, aσ ∈ R
d, bσ ∈ R ∀ σ ∈ T h

and (vh |σ −vh |σ′) . ν∂σ = 0 on ∂σ ∩ ∂σ′ ∀ σ, σ′ ∈ T h.} (2.1f)

Here V h is the lowest order Raviart–Thomas finite element space.
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Let πh : C(Ω) → Uh denote the interpolation operator such that πhη(xj) = η(xj), j = 1, . . . , J , where
{xj}J

j=1 are the vertices of the partitioning T h. We note for m = 0 and 1 that

|(I − πh)η|m,s,σ ≤ C h2−m |η|2,s,σ ∀ σ ∈ T h, for any s ∈ [1,∞], (2.2a)

lim
h→0

‖(I − πh)η‖m,∞,Ω = 0 ∀ η ∈ Cm(Ω); (2.2b)

where I is the identity operator. Let P h : [L1(Ω)]d → Sh be such that

P hv |σ=
1
|σ|

∫
σ

v dx ∀ σ ∈ T h. (2.3)

We note that

|P hv|0,s,σ ≤ |v|0,s,σ ∀ v ∈ [Ls(σ)]d, s ∈ [1,∞], ∀ σ ∈ T h, (2.4a)

lim
h→0

| |v| − |Phv| |0,∞,Ω ≤ lim
h→0

|v − P hv|0,∞,Ω = 0 ∀ v ∈ [C(Ω)]d. (2.4b)

Similarly, we define P h : L1(Ω) → Sh with the equivalent to (2.4a,b) holding.
In addition, we introduce the generalised interpolation operator Ih : [W 1,s(Ω)]d → V h, where s > 1, satisfying∫

∂iσ

(v − Ihv) . ν∂iσ ds = 0 i = 1, 2, 3, ∀ σ ∈ T h; (2.5)

where ∂σ ≡ ∪3
i=1∂iσ and ν∂iσ are the corresponding outward unit normals on ∂iσ. It follows that

(∇ . (v − Ihv), ηh) = 0 ∀ ηh ∈ Sh. (2.6)

Moreover, we have for all σ ∈ T h and any s ∈ (1,∞] that

||v| − |Ihv||0,s,σ ≤ |v − Ihv|0,s,σ ≤ C hσ |v|1,s,σ and |Ihv|1,s,σ ≤ C |v|1,s,σ, (2.7)

e.g. see Lemma 3.1 in Farhloul [11] and the proof given there for s ≥ 2 is also valid for any s ∈ (1,∞].
We introduce (η, χ)h :=

∑
σ∈T h(η, χ)h

σ, and

(η, χ)h
σ := 1

d+1 |σ|
d+1∑
j=1

η(xσ
j )χ(xσ

j ) =
∫

σ

πh[η χ] dx ∀ η, χ ∈ C(σ), ∀ σ ∈ T h; (2.8)

where {xσ
j }d+1

j=1 are the vertices of σ. Hence (η, χ)h averages the integrand η χ over each simplex σ at its vertices,
and is exact if η χ is piecewise linear over the partitioning T h. We recall the well-known results that

|ηh|20,Ω ≤ |ηh|2h := (ηh, ηh)h ≤ (d+ 2) |ηh|20,Ω ∀ ηh ∈ Uh, (2.9a)∣∣(ηh, χh) − (ηh, χh)h
∣∣ =

∣∣((I − πh)(ηh χh), 1)
∣∣ ≤ |(I − πh)(ηh χh)|0,1,Ω ≤ C h |ηh|0,Ω |χh|1,Ω ∀ ηh, χh ∈ Uh,

(2.9b)

where we have noted (2.2a).
In order to prove existence of solutions to approximations of (1.10), we regularise the non-differentiable

nonlinearity | · | by the strictly convex function 1
r | · |r for r > 1. We note for all a, b ∈ R

d that

1
r

∂|a|r
∂ai

= |a|r−2 ai ⇒ |a|r−2 a . (a− b) ≥ 1
r [ |a|r − |b|r ] . (2.10)
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Similarly to (2.9a), we have from the equivalence of norms and the convexity of | · |r for any r > 1 and for any
vh ∈ V h that

C ( |vh|r, 1)h
σ ≤

∫
σ

|vh|r dx ≤ ( |vh|r, 1)h
σ ∀ σ ∈ T h. (2.11)

Furthermore, it follows from (2.7) and (2.8) for any r > 1 and any σ ∈ T h that

|
∫

σ

|Ihv|rdx− (|Ihv|r, 1)h
σ| ≤ C r |σ| |Ihv|r−1

0,∞,σ max
x, y∈σ

|(Ihv)(x) − (Ihv)(y)|

≤ C r hσ |σ| ‖v‖r
1,∞,σ ∀ v ∈ [W 1,∞(σ)]d. (2.12)

In addition, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of [0, T ] into possibly variable time
steps τn := tn − tn−1, n = 1, . . . , N . We set τ := maxn=1,...,N τn and introduce

fn(·) :=
1
τn

∫ tn

tn−1

f(·, t) dt ∈ L2(Ω) n = 1, . . . , N. (2.13)

We note that

N∑
n=1

τn |fn|s0,s,Ω ≤
∫ T

0

|f |s0,s,Ω dt for any s ∈ [1, 2]. (2.14)

Finally, on setting

wε,h
0 = P h[πhwε

0], (2.15)

we introduce Mh
ε : Sh → Sh approximating Mε : C(Ω) → C(Ω), defined by (1.11), for any σ ∈ T h as

Mh
ε (ηh) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k0 ηh ≥ wε,h

0 + ε,

kε,h
1,σ + (k0 − kε,h

1,σ)

(
ηh − wε,h

0

ε

)
ηh ∈ [wε,h

0 , wε,h
0 + ε],

kε,h
1,σ := max(k0, |∇πhwε

0 |σ |) ηh ≤ wε,h
0 .

(2.16)

We note that Mε is also well-defined on Sh with Mε : Sh → L∞(Ω), and we have the following result.

Lemma 2.1. For any ηh ∈ Sh, we have that

|Mε(ηh) −Mh
ε (ηh)|0,∞,Ω ≤ C(ε−1)

[
|(I − P h)wε

0|0,∞,Ω + ‖(I − πh)wε
0‖1,∞,Ω

]
. (2.17)

Proof. It is convenient to rewrite (1.11) and (2.16) for any ηh ∈ Sh and for a.e. x ∈ Ω as

Mε(ηh)(x) = k0 +
(
kε
1(x) − k0

ε

)
min(max(wε

0(x) + ε− ηh(x), 0), ε), (2.18a)

Mh
ε (ηh)(x) = k0 +

(
kε,h
1 (x) − k0

ε

)
min(max(wε,h

0 (x) + ε− ηh(x), 0), ε); (2.18b)

where

k0 ≤Mh
ε (ηh)(x) ≤ kε,h

1 (x) := max(k0, |∇πhwε
0(x)|) for a.e. x ∈ Ω. (2.19)
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Since

|min(max(a, 0), ε) − min(max(b, 0), ε)| ≤ |a− b| and |min(max(a, 0), ε)| ≤ ε ∀ a, b ∈ R, (2.20)

it follows from (2.18a,b), (2.19), (2.15), (2.4a) and Assumption (A1) that

|Mε(ηh) −Mh
ε (ηh)|0,∞,Ω ≤

kε
1,∞ − k0

ε
|wε

0 − wε,h
0 |0,∞,Ω + | |∇wε

0| − |∇πhwε
0| |0,∞,Ω

≤ C(ε−1)
[
|(I − P h)wε

0|0,∞,Ω + ‖(I − πh)wε
0‖1,∞,Ω

]
; (2.21)

and hence the desired result (2.17). �

2.1. Approximation (Qh,τ
A )

Our first fully practical finite element approximation is:
(Qh,τ

A ) For n = 1, . . . , N , find Wn
A ∈ Uh

0 and Qn

A
∈ Sh such that(

Wn
A −Wn−1

A

τn
, ηh

)h

− (Qn

A
,∇ηh) = (fn, ηh) ∀ ηh ∈ Uh

0 , (2.22a)

(Mh
ε (P hWn

A), |vh| − |Qn

A
|) + (∇Wn

A , v
h −Qn

A
) ≥ 0 ∀ vh ∈ Sh; (2.22b)

where W 0
A = πhwε

0.

For any χh ∈ Uh
0 , we introduce the closed convex non-empty set

Kh(χh) := {ηh ∈ Uh
0 : |∇ηh| ≤Mh

ε (P hχh) a.e. in Ω}. (2.23)

In Theorem 2.3 below, we will show that (Qh,τ
A ), (2.22a,b), is equivalent to (Ph,τ

A ) and (Mh,τ
A ). The former is

the approximation of the primal quasi-variational inequality:
(Ph,τ

A ) For n = 1, . . . , N , find Wn
A ∈ Kh(Wn

A) such that(
Wn

A −Wn−1
A

τn
, ηh −Wn

A

)h

≥ (fn, ηh −Wn
A) ∀ ηh ∈ Kh(Wn

A), (2.24)

where W 0
A = πhwε

0.
The latter, having obtained {Wn

A}N
n=1 from (Ph,τ

A ), is the minimization problem:
(Mh,τ

A ) For n = 1, . . . , N , find Qn

A
∈ Zh,n such that

(Mh
ε (P hWn

A), |Qn

A
|) ≤ (Mh

ε (P hWn
A), |vh|) ∀ vh ∈ Zh,n, (2.25)

where

Zh,n :=
{
vh ∈ Sh : (vh,∇ηh) =

(
Wn

A −Wn−1
A

τn
, ηh

)h

− (fn, ηh) ∀ ηh ∈ Uh
0

}
. (2.26)

As ∇Uh
0 is a strict subset of Sh, it follows that the affine manifold Zh,n, n = 1, . . . , N , is non-empty.

We consider the following regularization of (Qh,τ
A ) for a given r > 1:

(Qh,τ
A,r) For n = 1, . . . , N , find Wn

A,r ∈ Uh
0 and Qn

A,r
∈ Sh such that

(
Wn

A,r −Wn−1
A,r

τn
, ηh

)h

− (Qn

A,r
,∇ηh) = (fn, ηh) ∀ ηh ∈ Uh

0 , (2.27a)
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(Mh
ε (P hWn

A,r) |Qn

A,r
|r−2Qn

A,r
, vh) + (∇Wn

A,r, v
h) = 0 ∀ vh ∈ Sh; (2.27b)

where W 0
A,r = πhwε

0.
Associated with (Qh,τ

A,r) is the corresponding approximation of a generalised p-Laplacian problem for p > 1,
where, here and throughout the paper, 1

r + 1
p = 1:

(Ph,τ
A,p) For n = 1, . . . , N , find Wn

A,r ∈ Uh
0 such that(

Wn
A,r −Wn−1

A,r

τn
, ηh

)h

+
(
[Mh

ε (P hWn
A,r)]

−(p−1) |∇Wn
A,r|p−2 ∇Wn

A,r,∇ηh
)

= (fn, ηh) ∀ ηh ∈ Uh
0 , (2.28)

where W 0
A,r = πhwε

0.

Theorem 2.2. Let the Assumptions (A1) and (A2) hold. Then for all r ∈ (1, 2), for all regular partitionings
T h of Ω, and for all τn > 0, there exists a solution, Wn

A,r ∈ Uh
0 and Qn

A,r
∈ Sh to the nth step of (Qh,τ

A,r). In
addition, we have that

max
n=0,...,N

|Wn
A,r|0,Ω +

N∑
n=1

|Wn
A,r −Wn−1

A,r |20,Ω +
N∑

n=1

τn |Qn

A,r
|r0,r,Ω +

(
N∑

n=1

τn|∇Wn
A,r|

p
0,p,Ω

) 1
p

≤ C (2.29)

where 1
r + 1

p = 1. Moreover, (Qh,τ
A,r), (2.27a,b), is equivalent to (Ph,τ

A,p), (2.28).

Proof. It follows immediately from (2.27b) that

∇Wn
A,r = −Mh

ε (P hWn
A,r) |Qn

A,r
|r−2Qn

A,r

⇔ Qn

A,r
= −[Mh

ε (P hWn
A,r)]

−(p−1) |∇Wn
A,r|p−2 ∇Wn

A,r on σ, ∀ σ ∈ T h. (2.30)

Substituting this expression for Qn

A,r
into (2.27a) yields (2.28). Hence (Ph,τ

A,p), with (2.30), is equivalent to (Qh,τ
A,r).

We now apply the Brouwer fixed point theorem to prove existence of a solution to (Ph,τ
A,p), and therefore to

(Qh,τ
A,r). Let Fh : Uh

0 → Uh
0 be such that for any ϕh ∈ Uh

0 , Fhϕh ∈ Uh
0 solves(

Fhϕh −Wn−1
A,r

τn
, ηh

)h

+
(
[Mh

ε (P hϕh)]−(p−1) |∇Fhϕh|p−2 ∇Fhϕh,∇ηh
)

= (fn, ηh) ∀ ηh ∈ Uh
0 . (2.31)

The well-posedness of the mapping Fh follows from noting that (2.31) is the Euler–Lagrange system associated
with the strictly convex minimization problem:

min
ηh∈Uh

0

Eh,n
p (ηh), (2.32a)

where Eh,n
p : Uh

0 → R is defined by

Eh,n
p (ηh) :=

1
2τn

|ηh −Wn−1
A,r |2h +

1
p

∫
Ω

[Mh
ε (P hϕh)]−(p−1) |∇ηh|p dx− (fn, ηh); (2.32b)

that is, there exists a unique element (Fhϕh) ∈ Uh
0 solving (2.31). It follows immediately from (2.32a,b) that

1
2τn

|Fhϕh −Wn−1
A,r |2h − (fn, Fhϕh) ≤ Eh,n

p (Fhϕh) ≤ Eh,n
p (0) =

1
2τn

|Wn−1
A,r |2h. (2.33)
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It is easily deduced from (2.33) and (2.9a) that

Fhϕh ∈ Bγ := {ηh ∈ Uh
0 : |ηh|0,Ω ≤ γ}, (2.34)

where γ ∈ R>0 depends on |Wn−1
A,r |0,Ω, |fn|0,Ω and τn. Hence Fh : Bγ → Bγ . In addition, it is easily verified

that the mapping Fh is continuous, as Mh
ε : Sh → Sh is continuous. Therefore, the Brouwer fixed point theorem

yields that the mapping Fh has at least one fixed point in Bγ . Hence, there exists a solution to (Ph,τ
A,p), (2.28),

and therefore to (Qh,τ
A,r), (2.27a,b).

It follows from (2.30) and (2.19) that for n = 1, . . . , N

|∇Wn
A,r|

p
0,p,Ω = |[Mh

ε (P hWn
A,r)]

p−1Qn

A,r
|r0,r,Ω ≤ (kε,h

1,∞)p−1 (Mh
ε (P hWn

A,r), |Qn

A,r
|r); (2.35)

where, on noting (2.19), (2.2b) and Assumption (A1),

kε,h
1,∞ := max

x∈Ω
kε,h
1 (x) ≤ C. (2.36)

Choosing ηh = Wn
A,r, v

h = Qn

A,r
in (2.27a,b), combining and noting the simple identity

(a− b) a =
1
2
[
a2 + (a− b)2 − b2

]
∀ a, b ∈ R, (2.37)

we obtain for n = 1, . . . , N , on applying a Young’s inequality and (1.15), that for all δ > 0

|Wn
A,r|2h + |Wn

A,r −Wn−1
A,r |2h + 2τn (Mh

ε (P hWn
A,r), |Qn

A,r
|r)

= |Wn−1
A,r |2h + 2τn (fn,Wn

A,r)

≤ |Wn−1
A,r |2h + 2τn

[
1
r
δ−r |fn|r0,r,Ω +

1
p
δp|Wn

A,r|
p
0,p,Ω

]
≤ |Wn−1

A,r |2h + 2τn

[
1
r
δ−r |fn|r0,r,Ω +

1
p

[δ C�(Ω)]p|∇Wn
A,r|

p
0,p,Ω

]
. (2.38)

It follows on summing (2.38) from n = 1 to m, with δ = 1/(C�(Ω) [kε,h
1,∞]

1
r ), and noting (2.35) and (2.36) that

for m = 1, . . . , N

|Wm
A,r|2h +

m∑
n=1

|Wn
A,r −Wn−1

A,r |2h +
m∑

n=1

τn (Mh
ε (P hWn

A,r), |Qn

A,r
|r) ≤ |W 0

A,r|2h + 2 [C�(Ω)]r kε,h
1,∞

m∑
n=1

τn |fn|r0,r,Ω.

(2.39)

The desired result (2.29) follows immediately from (2.39), (2.9a), (2.14), (2.19), (2.36) and (2.35). �

Theorem 2.3. Let the Assumptions (A1) and (A2) hold. Then for all regular partitionings T h of Ω, and for
all τn > 0, there exists a solution, Wn

A ∈ Uh
0 and Qn

A
∈ Sh to the nth step of (Qh,τ

A ). In addition, we have that

max
n=0,...,N

|Wn
A |0,Ω +

N∑
n=1

|Wn
A −Wn−1

A |20,Ω +
N∑

n=1

τn |Qn

A
|0,1,Ω + max

n=0,...,N
‖Wn

A‖1,∞,Ω ≤ C. (2.40)

Moreover, (Qh,τ
A ), (2.22a,b), is equivalent to (Ph,τ

A ), (2.24), and (Mh,τ
A ), (2.25). Furthermore, for n = 1, . . . , N ,

having obtained Wn
A, then Qn

A
= −λn

A ∇Wn
A, where λn

A ∈ Sh
≥0 is the Lagrange multiplier associated with the

gradient inequality constraint in (Ph,τ
A ).
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Proof. It follows immediately from (2.29), on noting that | · |0,1,Ω ≤ |Ω|+ | · |r0,r,Ω, that for fixed T h and {τn}N
n=1,

there exists for n = 1, . . . , N a subsequence of {Wn
A,r, Q

n

A,r
}r>1 (not indicated) and Wn

A ∈ Uh
0 and Qn

A
∈ Sh

such that

Wn
A,r →Wn

A , Qn

A,r
→ Qn

A
as r → 1. (2.41)

We now need to establish that {Wn
A , Q

n

A
}N

n=1 solves (Qh,τ
A ), (2.22a,b). Noting (2.41), one can pass to the limit

r → 1 in (2.27a) to obtain (2.22a). Choosing vh = Qn

A,r
− ψh in (2.27b) and noting (2.10), (2.19) and (2.36),

one obtains that

(∇Wn
A,r, ψ

h −Qn

A,r
) = (Mh

ε (P hWn
A,r) |Qn

A,r
|r−2Qn

A,r
, Qn

A,r
− ψh) ≥ 1

r
(Mh

ε (P hWn
A,r), |Qn

A,r
|r − |ψh|r)

≥ (Mh
ε (P hWn

A,r), |Qn

A,r
| − 1

r
|ψh|r) +

1 − r

r
kε,h
1,∞ |Ω| ∀ ψh ∈ Sh. (2.42)

Noting (2.41), (2.18b) and (2.20), one can pass to the limit r → 1 in (2.42) to obtain (2.22b). Hence there exists
a solution to (Qh,τ

A ), (2.22a,b).
In addition, one can pass to the limit r → 1 on the first three bounds in (2.29), on noting (2.41), to obtain

the first three bounds in (2.40).
Choosing vh = 0 and 2Qn

A
in (2.22b), yields for n = 1, . . . , N that

(Mh
ε (P hWn

A), |Qn

A
|) + (∇Wn

A , Q
n

A
) = 0 (2.43a)

and hence that (Mh
ε (P hWn

A), |vh|) + (∇Wn
A , v

h) ≥ 0 ∀ vh ∈ Sh. (2.43b)

Choosing

vh =
{
−∇Wn

A |σ� σ = σ�,
0 σ �= σ�;

(2.44)

in (2.43b), and repeating for all σ� ∈ T h, yields for n = 1, . . . , N that

|∇Wn
A | ≤Mh

ε (P hWn
A) a.e. on Ω. (2.45)

As Wn
A ∈ Uh

0 , it follows from (2.45), (2.19), (2.36), (1.15), (2.2b) and our choice of W 0
A that the fourth bound

in (2.40) holds.
It follows from (2.45) that Wn

A ∈ Kh(Wn
A). Choosing ηh = ϕh −Wn

A for any ϕh ∈ Kh(Wn
A) in (2.22a), we

obtain, on noting (2.43a) and (2.23), that(
Wn

A −Wn−1
A

τn
, ϕh −Wn

A

)h

− (fn, ϕh −Wn
A) = (Qn

A
,∇(ϕh −Wn

A)) = (Mh
ε (P hWn

A), |Qn

A
|) + (∇ϕh, Qn

A
) ≥ 0.

(2.46)

Hence {Wn
A}N

n=1 solves (Ph,τ
A ), (2.24). It follows from (2.22a) that Qn

A
∈ Zh,n, n = 1, . . . , N . Therefore (2.22b)

immediately yields (2.25) on choosing vh ∈ Zh,n. Hence {Qn

A
}N

n=1 solves (Mh,τ
A ), (2.25). Therefore a solution

{Wn
A , Q

n

A
}N

n=1 of (Qh,τ
A ) solves (Ph,τ

A ) and (Mh,τ
A ).

We now prove the reverse. If {Wn
A}N

n=1 solves (Ph,τ
A ), then, for n = 1, . . . , N , Wn

A is the unique solution to
the strictly convex minimization problem:

min
ηh∈Kh(W n

A)
Eh,n(ηh), (2.47a)
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where Eh,n : Uh
0 → R is defined by

Eh,n(ηh) :=
1

2τn
|ηh −Wn−1

A |2h − (fn, ηh). (2.47b)

Next we introduce the Lagrangian Lh,n : Uh
0 × Sh

≥0 → R defined by

Lh,n(ηh, μh) := Eh,n(ηh) + 1
2 (μh, |∇ηh|2 − [Mh

ε (P hWn
A)]2). (2.48)

As k0 > 0, we note that the Slater constraint qualification hypothesis, see e.g. (5.34) on p. 69 in Ekeland and
Temam [9], is obviously satisfied; that is, there exists an ηh

0 ∈ Uh
0 such that |∇ηh

0 | < Mh
ε (P hWn

A). Hence it
follows from the Kuhn–Tucker theorem, see e.g. Theorem 5.2 on p. 69 in Ekeland and Temam [9], that there
exists a λn

A ∈ Sh
≥0 such that

Lh,n(Wn
A , μ

h) ≤ Lh,n(Wn
A , λ

n
A) ≤ Lh,n(ηh, λn

A) ∀ ηh ∈ Uh
0 , ∀ μh ∈ Sh

≥0. (2.49)

The first inequality in (2.49) yields for μh = 0 and 2λn
A that

(λn
A, |∇Wn

A |2 − [Mh
ε (P hWn

A)]2) = 0 ⇒ (λn
A |∇Wn

A |, |∇Wn
A | −Mh

ε (P hWn
A)) = 0, (2.50)

as Wn
A ∈ Kh(Wn

A). The second inequality in (2.49) yields that(
Wn

A −Wn−1
A

τn
, ηh

)h

+ (λn
A ∇Wn

A ,∇ηh) = (fn, ηh) ∀ ηh ∈ Uh
0 . (2.51)

It follows that (2.22a) holds on setting Qn

A
= −λn

A ∇Wn
A , and Qn

A
∈ Zh,n. Furthermore, we have from this

definition for Qn

A
∈ Zh,n and (2.50) that for all vh ∈ Zh,n

(Mh
ε (P hWn

A), |Qn

A
|) = −(Qn

A
,∇Wn

A) = −(vh,∇Wn
A) ≤ (Mh

ε (P hWn
A), |vh|), (2.52)

where we have recalled that Wn
A ∈ Kh(Wn

A) for the last inequality. Hence, for n = 1, . . . , N , Qn

A
= −λn

A ∇Wn
A ∈

Zh,n solves the minimization problem (Mh,τ
A ), (2.25). Since the inequality in (2.52) holds for all vh ∈ Sh, it

follows from this and the first equality in (2.52) that (2.22b) holds. Therefore a solution {Wn
A , Q

n

A
}N

n=1 of (Ph,τ
A )

and (Mh,τ
A ) solves (Qh,τ

A ). �

2.2. Approximation (Qh,τ
B )

Our second fully practical finite element approximation is:
(Qh,τ

B ) For n = 1, . . . , N , find Wn
B ∈ Sh and Qn

B
∈ V h such that(

Wn
B −Wn−1

B

τn
, ηh

)
+ (∇. Qn

B
, ηh) = (fn, ηh) ∀ ηh ∈ Sh, (2.53a)

(Mh
ε (Wn

B), |vh| − |Qn

B
|)h − (Wn

B,∇. (vh −Qn

B
)) ≥ 0 ∀ vh ∈ V h; (2.53b)

where W 0
B = P h[πhwε

0].
For computational and theoretical purposes, it is convenient to consider the following regularization of (Qh,τ

B )
for a given r > 1:
(Qh,τ

B,r) For n = 1, . . . , N , find Wn
B,r ∈ Sh and Qn

B,r
∈ V h such that(

Wn
B,r −Wn−1

B,r

τn
, ηh

)
+ (∇. Qn

B,r
, ηh) = (fn, ηh) ∀ ηh ∈ Sh, (2.54a)

(Mh
ε (Wn

B,r) |Qn

B,r
|r−2Qn

B,r
, vh)h − (Wn

B,r,∇. vh) = 0 ∀ vh ∈ V h; (2.54b)

where W 0
B,r = P h[πhwε

0].
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Theorem 2.4. Let the Assumptions (A1) and (A2 hold. Then for all r ∈ (1, 2), for all regular partitionings
T h of Ω, and for all τn > 0, there exists a solution, Wn

B,r ∈ Sh and Qn

B,r
∈ V h to the nth step of (Qh,τ

B,r). In

addition, we have for τ ∈ (0, 1
2 ] that

max
n=0,...,N

|Wn
B,r|0,Ω +

N∑
n=1

|Wn
B,r −Wn−1

B,r |20,Ω +
N∑

n=1

τn |Qn

B,r
|r0,r,Ω +

N∑
n=1

τ2
n |∇. Qn

B,r
|20,Ω ≤ C. (2.55)

Proof. It follows from (2.54a) and (2.3) that

Wn
B,r = gn − τn ∇. Qn

B,r
, where gn = Wn−1

B,r + τn P
hfn. (2.56)

Substituting (2.56) into (2.54b) yields that the nth step of (Qh,τ
B,r) can be rewritten as find Qn

B,r
∈ V h such that

(Mh
ε (gn − τn ∇. Qn

B,r
) |Qn

B,r
|r−2Qn

B,r
, vh)h + τn (∇. Qn

B,r
,∇. vh) = (gn,∇. vh) ∀ vh ∈ V h. (2.57)

One can apply the Brouwer fixed point theorem to prove existence of a solution to (2.57), and therefore to
(Qh,τ

B,r). Let Gh : V h → V h be such that for any ψh ∈ V h, Ghψh ∈ V h solves

(Mh
ε (gn − τn ∇. ψh) |Ghψh|r−2Ghψh, vh)h + τn (∇. (Ghψh),∇. vh) = (gn,∇. vh) ∀ vh ∈ V h. (2.58)

The well-posedness of the mapping Gh follows from noting that (2.58) is the Euler–Lagrange system associated
with the strictly convex minimization problem:

min
vh∈V h

Jh,n
r (vh), (2.59a)

where Jh,n
r : V h → R is defined by

Jh,n
r (vh) :=

1
r

(Mh
ε (gn − τn ∇ . ψh), |vh|r)h +

τn
2

|∇ . vh|20,Ω − (gn,∇ . vh); (2.59b)

that is, there exists a unique element (Ghψh) ∈ V h solving (2.58). It follows immediately from (2.59a,b) that
Jh,n

r (Ghψh) ≤ Jh,n
r (0), and this yields, on noting (2.19) and (2.11), that

k0

r
( |Ghψh|r, 1) +

τn
2

|∇ . (Ghψh)|20,Ω ≤ (gn,∇ . (Ghψh) ). (2.60)

It is easily from (2.60) that

Ghψh ∈ Bγ := {vh ∈ V h : |vh|0,r,Ω ≤ γ}, (2.61)

where γ ∈ R>0 depends on |gn|0,Ω, r and τn. Hence Gh : Bγ → Bγ . In addition, it is easily verified that the
mapping Gh is continuous, as Mh

ε : Sh → Sh is continuous. Therefore, the Brouwer fixed point theorem yields
that the mapping Gh has at least one fixed point in Bγ . Hence, there exists a solution to (Qh,τ

B,r), (2.54a,b).
Choosing ηh = Wn

B,r, v
h = Qn

B,r
in (2.54a,b), combining and noting (2.37) yields, similarly to (2.38), that

|Wn
B,r|20,Ω + |Wn

B,r −Wn−1
B,r |20,Ω + 2τn (Mh

ε (Wn
B,r), |Qn

B,r
|r)h = |Wn−1

B,r |20,Ω + 2τn (fn,Wn
B,r)

≤ |Wn−1
B,r |20,Ω + τn

[
|Wn

B,r|20,Ω + |fn|20,Ω

]
. (2.62)
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It follows from (2.62), on noting that (1−τn)−1 ≤ (1+2τn) ≤ e2τn as τn ∈ (0, 1
2 ] and (2.14), that for n = 1, . . . , N

|Wn
B,r|20,Ω ≤ e2τn

[
|Wn−1

B,r |20,Ω + τn |fn|20,Ω

]
≤ e2tn

[
|W 0

B,r|20,Ω +
N∑

m=1

τm |fm|20,Ω

]
≤ C, (2.63)

which yields the first bound in (2.55). Summing (2.62) from n = 1, . . . , N yields, on noting (2.19), (2.11)
and (2.63), the second and third bounds in (2.55).

Choosing ηh = ∇ . Qn

B,r
in (2.54a) yields that

τ2
n |∇ .Qn

B,r
|20,Ω = τn (Wn−1

B,r −Wn
B,r + τn f

n,∇ . Qn

B,r
) ≤ 2

[
|Wn

B,r −Wn−1
B,r |20,Ω + τ2

n |fn|20,Ω

]
. (2.64)

Summing (2.64) from n = 1, . . . , N , and noting the second bound in (2.55) and (2.14), yields the fourth bound
in (2.55). �

Theorem 2.5. Let the Assumptions (A1) and (A2) hold. Then for all regular partitionings T h of Ω, and for
all τn > 0, there exists a solution, Wn

B ∈ Sh and Qn

B
∈ V h to the nth step of (Qh,τ

B ). In addition, we have for
τ ∈ (0, 1

2 ] that

max
n=0,...,N

|Wn
B |0,Ω +

N∑
n=1

|Wn
B −Wn−1

B |20,Ω +
N∑

n=1

τn |Qn

B
|0,1,Ω +

N∑
n=1

τ2
n |∇. Qn

B
|20,Ω ≤ C. (2.65)

Proof. Similarly to (2.41), on noting that | · |0,1,Ω ≤ |Ω|+ | · |r0,r,Ω, it follows from (2.55), that for fixed T h and
{τn}N

n=1, there exists a subsequence of {Wn
B,r, Q

n
B,r}r>1 (not indicated) and Wn

B ∈ Sh and Qn

B
∈ V h such that

Wn
B,r →Wn

B , Qn

B,r
→ Qn

B
as r → 1, (2.66)

and the bounds (2.65) hold. One can now immediately pass to the limit r → 1 in (2.54a) to obtain (2.53a).
Similarly to (2.42), choosing vh = Qn

B,r
− ψh in (2.54b) and noting (2.10), (2.19) and (2.36), one obtains that

(Wn
B,r,∇ . (Qn

B,r
− ψh) ) ≥ (Mh

ε (Wn
B,r), |Qn

B,r
| − 1

r
|ψh|r)h +

1 − r

r
kε,h
1,∞ |Ω| ∀ ψh ∈ V h. (2.67)

Noting (2.66), one can pass to the limit r → 1 in (2.67) to obtain (2.53b). Hence there exists a solution to
(Qh,τ

B ), (2.53a,b). �

3. Convergence

We introduce the following discrete time approximation of the mixed formulation:

(Qτ ) For n = 1, . . . , N , find wn ∈W 1,∞
0 (Ω) and qn ∈ VM(Ω) such that(
wn − wn−1

τn
, η

)
+ (∇ . qn, η) = (fn, η) ∀ η ∈ L2(Ω), (3.1a)

〈|v| − |qn|,Mε(wn)〉C(Ω) − (∇ . (v − qn), wn) ≥ 0 ∀ v ∈ VM(Ω); (3.1b)

where w0 = wε
0.

For any χ ∈W 1,∞
0 (Ω), we introduce the closed convex non-empty set

K(χ) := {η ∈ W 1,∞
0 (Ω) : |∇η| ≤Mε(χ) a.e. on Ω}. (3.2)
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Associated with (Qτ ) is the corresponding approximation of the primal quasi-variational inequality:
(Pτ ) For n = 1, . . . , N , find wn ∈ K(wn) such that(

wn − wn−1

τn
, η − wn

)
≥ (fn, η − wn) ∀ η ∈ K(wn), (3.3)

where w0 = wε
0.

For our convergence results we need extra assumptions on Ω.

(A3) Ω is a strictly star-shaped domain.

(A4) Ω is a convex domain.

In Section 3.1 under Assumption (A3) we show, for a fixed time partition {τn}N
n=1, that a subsequence of

{{Wn
A , Q

n

A
}N

n=1}h>0, where {Wn
A, Q

n

A
}N

n=1 solves (Qh,τ
A ), converges, as h → 0 to {wn, qn}N

n=1 solving (Qτ ). In
Section 3.2 under Assumptions (A3) and (A4) we show, for a fixed time partition {τn}N

n=1, that a subsequence
of {{Wn

B,r, Q
n

B,r
}N

n=1}h>0, where {Wn
B,r, Q

n

B,r
}N

n=1 solves (Qh,τ
B,r), converges, as h→ 0 and r → 1, to {wn, qn}N

n=1

solving (Qτ ). For our final convergence result in Section 3.3, we need an extra assumption on the data.

(A5) wε
0 ≥ 0 and f ∈ L∞(0, T ;L2(Ω)).

Under this further assumption, we will show that a subsequence of {{wn, qn}N
n=1}τ>0, where {wn, qn}N

n=1

solves (Qτ ), converges, as τ → 0, to {w, q} solving

(Q) Find w ∈ L∞(0, T ;W 1,∞
0 (Ω)) ∩W 1,∞(0, T ; [C1

0 (Ω)]∗) and q ∈ L∞(0, T ; [M(Ω)]d) such that

∫ T

0

[〈
∂w

∂t
, η

〉
C1

0(Ω)

− 〈q,∇η〉C(Ω) − (f, η)

]
dt = 0 ∀ η ∈ L1(0, T ;C1

0(Ω)), (3.4a)

∫ T

0

[
〈|v| − |q|,Mε(w)〉C(Ω) − (∇. v − f, w)

]
dt ≥ 1

2

[
|w(·, T )|20,Ω − |wε

0(·)|20,Ω

]
∀ v ∈ L1(0, T ;VM(Ω));

(3.4b)

where w(·, 0) = wε
0(·).

Associated with (Q) is the corresponding primal quasi-variational inequality:
(P) Find w ∈ L∞(0, T ;K(w)) ∩W 1,∞(0, T ; [C1

0(Ω)]∗) such that∫ T

0

[〈
∂w

∂t
, η

〉
C1

0(Ω)

− (f, η − w)

]
dt ≥ 1

2

[
|w(·, T )|20,Ω − |wε

0(·)|20,Ω

]
∀ η ∈ L1(0, T ;K(w) ∩C1

0 (Ω)), (3.5)

where w(·, 0) = wε
0(·).

Remark 3.1. One might expect the inequality in the primal quasi-variational inequality (P) to be such that∫ T

0

[〈
∂w

∂t
, η − w

〉
C1

0(Ω)

− (f, η − w)

]
dt ≥ 0. (3.6)

However, the term ∫ T

0

〈
∂w

∂t
, w

〉
C1

0(Ω)

dt (3.7)
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is not well-defined for w ∈ L∞(0, T ;W 1,∞
0 (Ω)) ∩W 1,∞(0, T ; [C1

0(Ω)]∗), and has been rewritten to yield (3.5),
which is well defined. This follows from (1.21) with B = L2(Ω), and, for example, the reflexive Banach spaces
B0 = H1

0 (Ω) and B1 = [W 2,s
0 (Ω)]� with s ∈ (d,∞); see the proof of Theorem 3.8 below. In addition, the test

space has been smoothed to make the first term on the left-hand side of (3.5) well-defined.
Similar remarks apply to (Q), where one might expect the inequality in (3.4b) to take the form∫ T

0

[
〈|v| − |q|,Mε(w)〉C(Ω) − (∇. (v − q), w)

]
dt ≥ 0. (3.8)

However, the term ∫ T

0

(∇. q, w) dt = −
∫ T

0

〈q,∇w〉C(Ω) dt (3.9)

is not well-defined for w ∈ L∞(0, T ;W 1,∞
0 (Ω)) and q ∈ L∞(0, T ; [M(Ω)]d). This term has been rewritten

using (3.4a) formally with η = w, and the rewrite of the term (3.7) employed in (3.5), to yield (3.4b).

On recalling (1.17), we note that VM(D) and V s(D) for s ∈ [1, 2) are not of local type; that is, v ∈
VM(D) [V s(D)] and φ ∈ C∞(D) does not imply that φ v ∈ VM(D) [V s(D)], see e.g. page 22 in Temam [22].
Therefore, one has to avoid cut-off functions in proving any required density results. If Ω is strictly star-shaped
one can show, using the standard techniques of change of variable and mollification, that

[C∞(Ω)]2 is dense in V s(Ω) if s ∈ (1,∞). (3.10)

Moreover, for any v ∈ VM(Ω), there exist {vj}j≥1 ∈ [C∞(Ω)]d such that

∇. vj → ∇. v weakly in L2(Ω) as j → ∞, (3.11a)

lim sup
j→∞

∫
Ω

ρ |vj | dx ≤
∫

Ω

ρ |v| (3.11b)

for any positive ρ ∈ C(Ω). We briefly outline the proofs of (3.11a,b). Without loss of generality, one can assume
that Ω is strictly star-shaped with respect to the origin. Then for v defined on Ω and θ > 1, we have that
vθ(x) = v(θ−1x) is defined on Ωθ := θ Ω ⊃ Ω. Applying standard Friedrich’s mollifiers Jε to vθ, and a diagonal
subsequence argument yield, for θ → 1 and ε→ 0 as j → ∞, the desired sequences {vj}j≥1 demonstrating (3.10)
if v ∈ V s(Ω) and satisfying (3.11a,b) if VM(Ω); see e.g. Lemma 2.4 in Barrett and Prigozhin [5], where such
techniques are used to prove similar density results.

3.1. Convergence of (Qh,τ
A ) to (Qτ)

Theorem 3.2. Let the Assumptions (A1), (A2) and (A3) hold. For any fixed time partition {τn}N
n=1 and

for all regular partitionings T h of Ω, there exists a subsequence of {{Wn
A, Q

n

A
}N

n=1}h>0 (not indicated), where
{Wn

A , Q
n

A
}N

n=1 solves (Qh,τ
A ), such that as h→ 0

∇Wn
A → ∇wn weak� in [L∞(Ω)]d, n = 0, . . . , N, (3.12a)

Wn
A → wn strongly in C(Ω), n = 0, . . . , N, (3.12b)

Mh
ε (P hWn

A) →Mε(wn) strongly in L∞(Ω), n = 0, . . . , N, (3.12c)

Qn

A
→ qn weakly in [M(Ω)]d, n = 1, . . . , N ; (3.12d)

where {wn, qn}N
n=1 is a solution of (Qτ ), (3.1a,b).
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Proof. The desired subsequence convergence results (3.12a,b,d) for a fixed time partition {τn}N
n=1 follow im-

mediately from (2.40), on noting that W 1,∞(Ω) is compactly embedded in C(Ω) and (1.18). Next we note
that

|Mh
ε (P hWn

A) −Mε(wn)|0,∞,Ω ≤ |Mh
ε (P hWn

A) −Mε(P hWn
A)|0,∞,Ω + |Mε(P hWn

A) −Mε(wn)|0,∞,Ω. (3.13)

It follows from (2.18a), (2.20) and (2.4a) that

|Mε(P hWn
A) −Mε(wn)|0,∞,Ω ≤ C(ε−1) |wn − P hWn

A |0,∞,Ω

≤ C(ε−1)
[
|(I − P h)wn|0,∞,Ω + |wn −Wn

A |0,∞,Ω

]
. (3.14)

Hence, the desired result (3.12c) follows from (3.13), (2.17), (3.14), (2.4b), (2.2b) and (3.12b).
We now need to establish that {wn, qn}N

n=1 solve (Qτ ), (3.1a,b). For any η ∈ C∞
0 (Ω), we choose ηh = πhη

in (2.22a) and now pass to the limit h → 0 for the subsequence to obtain, on noting (3.12b), (2.9b), (2.2b)
and (3.12d), for n = 1, . . . , N that(

wn − wn−1

τn
, η

)
− 〈qn,∇η〉C(Ω) = (fn, η) ∀ η ∈ C∞

0 (Ω). (3.15)

It follows from (3.15), (2.14) and as wn ∈ C(Ω) that∣∣∣〈qn,∇η〉C(Ω)

∣∣∣ ≤ C(τ−1
n ) |η|0,Ω ∀ η ∈ C∞

0 (Ω). (3.16)

We deduce from (3.16) that the distributional divergence of qn belongs to L2(Ω), and hence qn ∈ VM(Ω),
n = 1, . . . , N , and so (3.15) can be rewritten as(

wn − wn−1

τn
, η

)
+ (∇. qn, η) = (fn, η) ∀ η ∈ C∞

0 (Ω). (3.17)

Noting that C∞
0 (Ω) is dense in L2(Ω) and that wn, ∇ . qn, fn ∈ L2(Ω) yields the desired (3.1a).

For any v ∈ [C∞(Ω)]d, we choose vh = P hv in (2.22b) and now try to pass to the limit for the subsequence
as h→ 0. First we note from (3.12a), (2.4b) and as wn ∈ W 1,∞

0 (Ω) that for n = 1, . . . , N

lim
h→0

(∇Wn
A , P

hv) = (∇wn, v) = −(wn,∇ . v). (3.18)

It follows from (2.22a) with ηh = Wn
A , (3.12b), (2.9b), (2.40) and (3.1a) with η = wn that for n = 1, . . . , N

lim
h→0

(∇Wn
A , Q

n

A
) = lim

h→0

[(
Wn

A −Wn−1
A

τn
,Wn

A

)h

− (fn,Wn
A)

]
=
(
wn − wn−1

τn
− fn, wn

)
= −(wn,∇ .qn).

(3.19)

Next we note that

(Mh
ε (P hWn

A), |Qn

A
| − |P hv|) = (Mε(wn), |Qn

A
| − |P hv|) + (Mh

ε (P hWn
A) −Mε(wn), |Qn

A
| − |P hv|). (3.20)

As Mε(wn) ∈ C(Ω) is positive, it follows from (3.12d), (1.19) and (2.4b) that

lim inf
h→0

(Mε(wn), |Qn

A
| − |P hv|) ≥ 〈|qn| − |v|,Mε(wn)〉C(Ω). (3.21)

It follows from (2.40) and (2.4a) that∣∣∣(Mh
ε (P hWn

A) −Mε(wn), |Qn

A
| − |P hv|)

∣∣∣ ≤ |Mh
ε (P hWn

A) −Mε(wn)|0,∞,Ω

[
C τ−1

n + |v|0,1,Ω

]
. (3.22)
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Combining (3.18)–(3.22) and (3.12c), we can pass to the limit for the subsequence as h → 0 in (2.22b), with
vh = P hv for any fixed v ∈ [C∞(Ω)]d, to obtain for n = 1, . . . , N that

(∇ . (qn − v), wn) ≥ 〈|qn| − |v|,Mε(wn)〉C(Ω) ∀ v ∈ [C∞(Ω)]d. (3.23)

Recalling the results (3.11a,b) and that wn, Mε(wn) ∈ C(Ω), we obtain the desired result (3.1b). �

3.2. Convergence of (Qh,τ
B,r) to (Qτ)

For the purposes of the convergence analysis in this subsection, it is convenient to introduce the following
regularization of (Qτ ) for a given r > 1:
(Qτ

r ) For n = 1, . . . , N , find wn
r ∈W 1,p

0 (Ω) and qn
r
∈ V r(Ω) such that(

wn
r − wn−1

r

τn
, η

)
+ (∇ . qn

r
, η) = (fn, η) ∀ η ∈ L2(Ω), (3.24a)

(Mε(wn
r ) |qn

r
|r−2qn

r
, v) − (wn

r ,∇ . v) = 0 ∀ v ∈ V r(Ω); (3.24b)

where w0
r = wε

0.

Theorem 3.3. Let the Assumptions (A1), (A2), (A3) and (A4) hold. For any fixed r ∈ (1, 2) and fixed time
partition {τn}N

n=1 with τ ∈ (0, 1
2 ], and for all regular partitionings T h of Ω, there exists a subsequence of {{Wn

B,r,

Qn

B,r
}N

n=1}h>0 (not indicated), where {Wn
B,r, Q

n

B,r
}N

n=1 solves (Qh,τ
B,r), such that as h→ 0, for any s ∈ [1,∞),

Wn
B,r → wn

r strongly in L2(Ω), n = 0, . . . , N, (3.25a)

Mh
ε (Wn

B,r) →Mε(wn
r ) strongly in Ls(Ω), n = 0, . . . , N, (3.25b)

Qn

B,r
→ qn

r
weakly in [Lr(Ω)]d, n = 1, . . . , N, (3.25c)

∇ . Qn

B,r
→ ∇ . qn

r
weakly in L2(Ω), n = 1, . . . , N ; (3.25d)

where {wn
r , q

n
r
}N

n=1 is a solution of (Qτ
r ), (3.24a,b).

Proof. The desired subsequence weak convergence results (3.25c,d) follow immediately from the bounds on
{Qn

B,r
}N

n=1 in (2.55), on noting that the time partition {τn}N
n=1 is fixed. In addition, we obtain from the first

bound in (2.55) that

Wn
B,r → wn

r weakly in L2(Ω), n = 0, . . . , N. (3.26)

Furthermore, we obtain from (2.54b), (2.19), (2.36), (2.11) and (2.55) for n = 1, . . . , N that

|(Wn
B,r,∇ . vh)| = |(Mh

ε (Wn
B,r) |Qn

B,r
|r−2Qn

B,r
, vh)h| ≤ kε,h

1,∞(|Qn

B,r
|r−1, |vh|)h

≤ C [(|Qn

B,r
|r, 1)h]

r−1
r [(|vh|r, 1)h]

1
r ≤ C |Qn

B,r
|r−1
0,r,Ω |vh|0,r,Ω

≤ C(τ−1
n ) |vh|0,r,Ω ∀ vh ∈ V h. (3.27)

For any fixed v ∈ [C∞(Ω)]d, on choosing vh = Ihv in (3.27), letting h → 0 and noting (2.6), (3.26) and (2.7),
we obtain that

|(wn
r ,∇ . v)| ≤ C(τ−1

n ) |v|0,r,Ω, n = 1, . . . , N. (3.28)

Repeating (3.28) for all v ∈ [C∞(Ω)]d and as C∞(Ω) is dense in Lr(Ω), we obtain that

wn
r ∈ W 1,p

0 (Ω) with ‖wn
r ‖1,p,Ω ≤ C(τ−1

n ), n = 1, . . . , N. (3.29)

The fact that wn
r vanishes on ∂Ω can be deduced from (3.28) by using an argument similar to that in [6],

page 699.
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Next, for n = 1, . . . , N , we introduce ∇hW
n
B,r ∈ V h such that

(∇hW
n
B,r, v

h) = −(Wn
B,r,∇ . vh) ∀ vh ∈ V h. (3.30)

It follows from (3.30) and (3.27) that

|∇hW
n
B,r|0,Ω ≤ C(τ−1

n ), n = 1, . . . , N. (3.31)

For n = 1, . . . , N , we now introduce Ŵn
B,r ∈ Uh

0 such that

(∇Ŵn
B,r,∇ηh) = (∇hW

n
B,r,∇ηh) ∀ ηh ∈ Uh

0 . (3.32)

It follows from (1.15), (3.32) and (3.31) that for n = 1, . . . , N

‖Ŵn
B,r‖1,Ω ≤ C |∇Ŵn

B,r|0,Ω ≤ C |∇hW
n
B,r|0,Ω ≤ C(τ−1

n ). (3.33)

We deduce from (3.31) and (3.33) that there exists a further subsequence of {{∇hW
n
B,r, Ŵ

n
B,r}N

n=1}h>0 (not
indicated) such that as h→ 0, for any s ∈ [1,∞),

∇hW
n
B,r → dn

r weakly in [L2(Ω)]d, n = 1, . . . , N, (3.34a)

∇Ŵn
B,r → ∇ŵn

r weakly in [L2(Ω)]d, n = 1, . . . , N, (3.34b)

Ŵn
B,r → ŵn

r strongly in Ls(Ω), n = 1, . . . , N ; (3.34c)

where ŵn
r ∈ H1

0 (Ω). For any fixed v ∈ [C∞(Ω)]d, on choosing vh = Ihv in (3.30), letting h → 0 for the
subsequence and noting (2.6), (3.34a), (3.26) and (2.7) yields that

(dn
r , v) = −(wn

r ,∇ . v) n = 1, . . . , N. (3.35)

Repeating (3.35) for all v ∈ [C∞(Ω)]d yields that dn
r = ∇wn

r . Similarly, for any fixed η ∈ C∞
0 (Ω), on choosing

ηh = πhη in (3.32), letting h→ 0 for the subsequence and noting (2.2b), (3.34a,b) and dn
r = ∇wn

r yields that

(∇ŵn
r ,∇η) = (dn

r ,∇η) = (∇wn
r ,∇η) n = 1, . . . , N. (3.36)

Repeating (3.36) for all η ∈ C∞
0 (Ω) yields that ŵn

r = wn
r .

For n = 1, . . . , N , let zn be such that

−Δzn = Ŵn
B,r −Wn

B,r in Ω, zn = 0 on ∂Ω. (3.37)

As Ω is convex polygonal, elliptic regularity yields that

‖zn‖2,Ω ≤ C |Ŵn
B,r −Wn

B,r|0,Ω. (3.38)

It follows from (3.37), (3.32), (2.6), (3.30), (3.33), (2.2a), (2.7) and (3.38) that for n = 1, . . . , N

|Ŵn
B,r −Wn

B,r|20,Ω = (∇Ŵn
B,r,∇zn) + (Wn

B,r, Δz
n)

= (∇Ŵn
B,r,∇(zn − πhzn) ) + (∇hW

n
B,r,∇[πhzn]) + (Wn

B,r, Δz
n)

= (∇Ŵn
B,r −∇hW

n
B,r,∇(zn − πhzn) ) + (∇hW

n
B,r,∇zn) + (Wn

B,r, Δz
n)

= (∇Ŵn
B,r −∇hW

n
B,r,∇(zn − πhzn) ) + (∇hW

n
B,r,∇zn − Ih(∇zn) )



1152 J.W. BARRETT AND L. PRIGOZHIN

≤ C(τ−1
n )

[
|∇(zn − πhzn)|0,Ω + |∇zn − Ih(∇zn)|0,Ω

]
≤ C(τ−1

n )h ‖zn‖2,Ω ≤ C(τ−1
n )h2. (3.39)

As ŵn
r = wn

r , n = 1, . . . , N , it follows from (3.39) and (3.34c) that the desired result (3.25a) holds.
We deduce from (3.25a), (2.18a) and (2.20) for a further subsequence of {{Wn

B,r}N
n=0}h>0 (not indicated)

that as h→ 0, for n = 0, . . . , N ,

Wn
B,r → wn

r a.e. in Ω ⇒ Mε(Wn
B,r) →Mε(wn

r ) a.e. in Ω. (3.40)

It follows from (3.40), (1.14), (1.13) and Lebesgue’s general convergence theorem that as h→ 0 for any s ∈ [1,∞)

Mε(Wn
B,r) →Mε(wn

r ) strongly in Ls(Ω), n = 0, . . . , N. (3.41)

Combining (2.17), (2.4b), (2.2b) and (3.41) yields the desired result (3.25b).
We now need to establish that {wn

r , q
n
r
}N

n=1 solve (Qτ
r ), (3.24a,b). For any η ∈ C∞

0 (Ω), we choose ηh = P hη
in (2.54a) and now pass to the limit h→ 0 for the subsequence, on noting (3.25a,d) and (2.4b), to obtain (3.24a)
for all η ∈ C∞

0 (Ω). Noting that C∞
0 (Ω) is dense in L2(Ω) and that wn

r , ∇ . qn
r
, fn ∈ L2(Ω) yields the desired

result (3.24a).
For any v ∈ [C∞(Ω)]d, we choose vh = Qn

B,r
− Ihv in (2.54b) and now try to pass to the limit for the

subsequence as h→ 0. First, we note from (2.10) and (2.11) that for n = 1, . . . , N

(Wn
B,r,∇ . (Qn

B,r
− Ihv) ) = (Mh

ε (Wn
B,r) |Qn

B,r
|r−2Qn

B,r
, Qn

B,r
− Ihv)h ≥ 1

r
(Mh

ε (Wn
B,r), |Qn

B,r
|r − |Ihv|r)h

≥ 1
r

[
(Mh

ε (Wn
B,r), |Qn

B,r
|r − |Ihv|r) + (Mh

ε (Wn
B,r), |Ihv|r) − (Mh

ε (Wn
B,r), |Ihv|r)h

]
.

(3.42)

Once again, it follows from (2.10) that

1
r

(Mh
ε (Wn

B,r), |Qn

B,r
|r − |Ihv|r) ≥ (Mh

ε (Wn
B,r), |Ihv|r−2Ihv,Qn

B,r
− Ihv). (3.43)

In addition, it follows from (2.19), (2.36) and (2.12) that

1
r

∣∣∣(Mh
ε (Wn

B,r), |Ihv|r) − (Mh
ε (Wn

B,r), |Ihv|r)h
∣∣∣ ≤ C h ‖v‖1,∞,Ω. (3.44)

Combining (3.42) and (3.43), and passing to the limit h → 0 for the subsequence yields, on not-
ing (2.6), (3.25a–d), (2.7) and (3.44), yields for n = 1, . . . , N that

(wn
r ,∇ . (qn

r
− v) ≥ (Mε(wn

r ) |v|r−2 v, qn
r
− v) ∀ v ∈ [C∞(Ω)]d. (3.45)

As wn
r , Mε(wn

r ) ∈ C(Ω), qn
r
∈ V r(Ω) and fn ∈ L2(Ω), it follows from (3.10) that (3.45) holds true for all

v ∈ V r(Ω). For any fixed z ∈ V r(Ω), choosing v = qn
r
± αz with α ∈ R>0 in (3.45) and letting α → 0 yields

the desired result (3.24b) on repeating the above for any z ∈ V r(Ω). Hence {wn
r , q

n
r
}N

n=1 is a solution of (Qτ
r ),

(3.24a,b). �

Theorem 3.4. Let the Assumptions (A1), (A2), (A3) and (A4) hold. For any fixed time partition {τn}N
n=1 with

τ ∈ (0, 1
2 ], there exists a subsequence of {{wn

r , q
n
r
}N

n=1}r>1 (not indicated), where {wn
r , q

n
r
}N

n=1 solves (Qτ
r ), such

that as r → 1

wn
r → wn strongly in C(Ω), n = 0, . . . , N, (3.46a)
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Mε(wn
r ) →Mε(wn) strongly in C(Ω), n = 0, . . . , N, (3.46b)

qn
r
→ qn weakly in [M(Ω)]d, n = 1, . . . , N, (3.46c)

∇ . qn
r
→ ∇ . qn weakly in L2(Ω), n = 1, . . . , N ; (3.46d)

where {wn, qn}N
n=1 is a solution of (Qτ ), (3.1a,b).

Proof. It follows immediately from (2.55), (2.10) and (3.25a,c,d) that

max
n=0,...,N

|wn
r |0,Ω +

N∑
n=1

|wn
r − wn−1

r |20,Ω +
N∑

n=1

τn |qn
r
|r0,r,Ω +

N∑
n=1

τ2
n |∇ . qn

r
|20,Ω ≤ C. (3.47)

The desired convergence results (3.46a–d) follow immediately from (3.47) and (3.29) on recalling that the
embedding W 1,p(Ω) ↪→ C(Ω) is compact for p > d, Mε : C(Ω) → C(Ω). One can immediately pass to the
limit r → 1 for the subsequence in (3.24a), on noting (3.46a,d), to obtain (3.1a). Similarly to (2.42), choosing
v = qn

r
− ψ in (3.24b) and noting (2.10), (1.14) and (3.47), one obtains for n = 1, . . . , N that

(wn
r ,∇ . (qn

r
− ψ) ) = (Mε(wn

r ) |qn
r
|r−2qn

r
, qn

r
− ψ)

≥ (Mε(wn), |qn
r
|) − C(τ−1

n ) |Mε(wn) −Mε(wn
r )|0,∞,Ω − 1

r
(Mε(wn

r ), |ψ|r) +
1 − r

r
kε
1,∞ |Ω|

∀ ψ ∈ V r(Ω). (3.48)

Noting (3.46a–d) and (1.19), one can pass to the limit r → 1 for the subsequence in (3.48) to obtain (3.1b).
Hence {wn, qn}N

n=1 solves (Qτ ), (3.1a,b). �

Remark 3.5. It appears necessary to split the convergence proof of solutions of (Qh,τ
B,r) to solutions of (Qτ ),

as h → 0 and r → 1, by first considering the limit h → 0 to solutions of (Qτ
r ), then the limit r → 1 to

solutions of (Qτ ). Similarly, it does not appear possible to directly prove convergence of solutions of (Qh,τ
B )

to solutions of (Qτ ), as h → 0. For example, if we attempted the latter, we would still only be able to show
Mε(Wn

B) → Mε(wn) strongly in Ls(Ω) for s ∈ [1,∞), as h → 0; and this is not adequate to pass to the limit
h→ 0 in (Qh,τ

B ), (2.53a,b).

3.3. Convergence of (Qτ) to (Q)

First we note the following result.

Theorem 3.6. Let the Assumptions (A1), (A2) and (A3) hold. If {wn, qn}N
n=1 is a solution of (Qτ ), (3.1a,b),

then {wn}N
n=1 solves (Pτ ), (3.3), and

wn ≥ wn−1 n = 1, . . . , N. (3.49)

Proof. Similarly to (2.43a,b), we deduce on choosing v = 0 and 2 qn in (3.1b) that

〈|qn|,Mε(wn)〉C(Ω) = (∇ . qn, wn) (3.50a)

and hence that 〈|v|,Mε(wn)〉C(Ω) ≥ (∇ . v, wn) ∀ v ∈ VM(Ω). (3.50b)

Noting that [C∞(Ω)]d ⊂ VM(Ω) and wn ∈W 1,∞
0 (Ω) ⊂ C(Ω), we deduce from (3.50b) that

(Mε(wn), |v|) ≥ −(∇wn, v) ∀ v ∈ [C∞(Ω)]d, (3.51)

It follows from (3.51) that for n = 1, . . . , N

|∇wn| ≤Mε(wn) a.e. on Ω ⇒ wn ∈ K(wn); (3.52)

see, for example, the argument in [6], page 698.
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Similarly to (2.46), choosing η = ϕ−wn for any ϕ ∈ K(wn) in (3.1a), we obtain, on noting (3.50a), employing
a sequence of the form (3.11a,b) (with v and {vj}j≥1 replaced by qn and {qn

j
}j≥1, respectively) and (3.2), that(

wn − wn−1

τn
− fn, ϕ− wn

)
= −(∇ . qn, ϕ− wn) = 〈|qn|,Mε(wn)〉C(Ω) − lim

j→∞
(∇ . qn

j
, ϕ)

= 〈|qn|,Mε(wn)〉C(Ω) + lim
j→∞

(qn
j
,∇ϕ)

≥ 〈|qn|,Mε(wn)〉C(Ω) − lim
j→∞

〈|qn
j
|,Mε(wn)〉C(Ω) ≥ 0. (3.53)

Hence {wn}N
n=0 solves (Pτ ), (3.3).

Let η = wn + [wn−1 −wn]+, where [s]+ := max(s, 0) for any s ∈ R. It follows from (3.52) and (1.14) that for
a.e. x ∈ Ω

wn(x) ≥ wn−1(x) ⇒ |∇η(x)| = |∇wn(x)| ≤Mε(wn(x)),
wn−1(x) ≥ wn(x) ⇒ |∇η(x)| = |∇wn−1(x)| ≤Mε(wn−1(x)) ≤Mε(wn(x)). (3.54)

Hence η = wn +[wn−1−wn]+ ∈ K(wn). Substituting this into (3.3), and recalling that the source fn ≥ 0 yields
for n = 1, . . . , N that

|[wn−1 − wn]+ |20,Ω ≤ −τn (fn, [wn−1 − wn]+) ≤ 0, (3.55)

and hence the desired result (3.49). �

Remark 3.7. We note that the monotonicity result (3.49) for {wn}N
n=1 solving (Qτ ) ≡ (Pτ ) does not hold for

{Wn
A,r}N

n=1 solving (Qh,τ
A,r) ≡ (Ph,τ

A,p), {Wn
A}N

n=1 solving (Qh,τ
A ) ≡ (Ph,τ

A ), {Wn
B,r}N

n=1 solving (Qh,τ
B,r) and {Wn

B}N
n=1

solving (Qh,τ
B ).

We introduce the following notation for t ∈ (tn−1, tn], n = 1, . . . , N ,

f τ,+(·, t) := fn(·) wτ (·, t) :=
(t− tn−1)

τn
wn(·) +

(tn − t)
τn

wn−1(·),

wτ,+(·, t) := wn(·), wτ,−(·, t) := wn−1(·), qτ,+(·, t) := qn(·). (3.56)

In addition, we write wτ(,±) to mean with or without the superscripts ±. We note from (3.56) and (2.13) that

f τ,+ → f strongly in Ls(0, T ;L2(Ω)) as τ → 0; (3.57)

where s = 2 if Assumption (A1) holds, and s = ∞ if (A5) holds.
Adopting the notation (3.56), (Qτ ), (3.1a,b), can be rewritten as: Find wτ ∈ L∞(0, T ;W 1,∞

0 (Ω))∩W 1,∞(0, T ;
L2(Ω)) and qτ,+ ∈ L∞(0, T ; [M(Ω)]d) such that∫ T

0

[(
∂wτ

∂t
, η

)
− 〈qτ,+,∇η〉C(Ω) − (f τ,+, η)

]
dt = 0 ∀ η ∈ L1(0, T ;C1

0(Ω)), (3.58a)∫ T

0

[
〈|v| − |qτ,+|,Mε(wτ,+)〉C(Ω) − (∇ . v − f τ,+, wτ,+)

]
dt ≥ 1

2

[
|wτ (·, T )|20,Ω − |wε

0(·)|20,Ω

]
∀ v ∈ L1(0, T ;VM(Ω)); (3.58b)

where wτ (·, 0) = wε
0(·).
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(3.58a) is obtained from (3.1a) by choosing η(·) =
∫ tn

tn−1
χ(·, t) dt in (3.1a) and summing from n = 1, . . . , N ,

for any χ ∈ L1(0, T ;C1
0 (Ω)), and noting that∫ T

0

(∇ . qτ,+, χ) dt = −
∫ T

0

〈qτ,+,∇χ〉C(Ω) dt ∀ χ ∈ L1(0, T ;C1
0(Ω)). (3.59)

Similarly, (3.58b) is obtained from (3.1b) by choosing v(·) = 1
τn

∫ tn

tn−1
ψ(·, t) dt in (3.1b), multiplying by τn and

summing from n = 1, . . . , N , for any ψ ∈ L1(0, T ;VM(Ω)), and noting from (3.1a) and (2.37) that

−
N∑

n=1

τn (∇ . qn, wn) = 1
2

[
|wN |20,Ω − |wε

0|20,Ω

]
+

N∑
n=1

[
1
2 |w

n − wn−1|20,Ω − τn (fn, wn)
]

≥ 1
2

[
|wN |20,Ω − |wε

0|20,Ω

]
−

N∑
n=1

τn (fn, wn). (3.60)

Theorem 3.8. Let the Assumptions (A1), (A2), (A3) and (A5) hold. For all time partitions {τn}N
n=1, there

exists a subsequence of {{wn, qn}N
n=1}τ>0 (not indicated), where {wn, qn}N

n=1 solves (Qτ ), such that as τ → 0

wτ , wτ,± → w weak� in L∞(0, T ;W 1,∞(Ω)), (3.61a)
∂wτ

∂t
→ ∂w

∂t
weakly in L∞(0, T ; [C1

0(Ω)]�), (3.61b)

wτ → w strongly in C([0, T ];C(Ω)), (3.61c)

wτ,± → w strongly in L2(0, T ;C(Ω)), (3.61d)

Mε(wτ ) →Mε(w) strongly in C([0, T ];C(Ω)), (3.61e)

Mε(wτ,±) →Mε(w) strongly in L2(0, T ;C(Ω)), (3.61f)

qτ,+ → q weakly in L∞(0, T ; [M(Ω)]d); (3.61g)

where {w, q} is a solution of (Q), (3.4a,b). Moreover, w solves (P), (3.5).

Proof. It follows from (1.15), (3.52), (1.14) and (A1) that

max
n=0,...,N

‖wn‖1,∞,Ω ≤ C. (3.62)

Choosing η = wn in (3.1a), summing from n = 1, . . . , N and noting (3.50a), (2.37), (2.14) and (3.62) yields that

|wN |20,Ω +
N∑

n=1

|wn − wn−1|20,Ω + 2
N∑

n=1

τn 〈|qn|,Mε(wn)〉C(Ω)

= |wε
0|20,Ω + 2

N∑
n=1

τn (fn, wn)

≤ |wε
0|20,Ω + 2

(
N∑

n=1

τn |fn|20,Ω

) 1
2
(

N∑
n=1

τn |wn|20,Ω

) 1
2

≤ C. (3.63)

The bounds (3.62) and (3.63) only assume the Assumptions (A1) and (A2).
Choosing η = wn in (3.1a), and noting (3.50a), (3.49) and (A5), yields for n = 1, . . . , N that

〈|qn|,Mε(wn)〉C(Ω) = (∇ . qn, wn) =
(
fn − wn − wn−1

τn
, wn

)
≤ |fn|0,Ω |wn|0,Ω ≤ C. (3.64)
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Therefore (3.64) and (1.14) yield that

max
n=1,...,N

∫
Ω

|qn| ≤ C. (3.65)

We obtain from (3.1a), (3.65) and (A5) for n = 1, . . . , N that∣∣∣∣(wn − wn−1

τn
, η

)∣∣∣∣ =
∣∣(fn −∇ . qn, η)

∣∣ =
∣∣∣(fn, η) + 〈qn,∇η〉C(Ω)

∣∣∣
≤
[
|fn|0,1,Ω +

∫
Ω

|qn|
]
‖η‖1,∞,Ω ≤ C ‖η‖1,∞,Ω ∀ η ∈ C1

0 (Ω). (3.66)

Combining the bounds (3.62)–(3.66), we obtain, on adopting the notation (3.56), that

‖wτ(,±)‖L∞(0,T ;W 1,∞(Ω)) +
∥∥∥∥∂wτ

∂t

∥∥∥∥
L∞(0,T ;[C1

0(Ω)]�)

+
1
τ
‖wτ,+ − wτ,−‖2

L2(0,T ;L2(Ω)) + ‖qτ,+‖L∞(0,T ;[M(Ω)]d) ≤ C. (3.67)

It follows from (3.56) and the third bound in (3.67) that

‖wτ,+ − wτ,−‖2
L2(0,T ;L2(Ω)) + ‖wτ − wτ,±‖2

L2(0,T ;L2(Ω)) ≤ C τ. (3.68)

The subsequence convergence results (3.61a,b) and (3.61g) follow immediately from the bounds (3.67) and (3.68).
To apply (1.21) to wτ , we first note that C1

0 (Ω) is not a reflexive Banach space. However, W 2,s
0 (Ω), the closure

of C∞
0 (Ω) for the norm ‖ · ‖2,s,Ω, with s ∈ (d,∞) is a reflexive Banach space such that W 2,s

0 (Ω) ⊂ C1
0 (Ω).

Hence, the first two bounds in (3.67) yield for s ∈ (d,∞) that

‖wτ‖L∞(0,T ;W 1,∞(Ω)) +
∥∥∥∥∂wτ

∂t

∥∥∥∥
L∞(0,T ;[W 2,s

0 (Ω)]�)

≤ C. (3.69)

Next we note that the reflexive Banach space W 2,s
0 (Ω) is dense in L2(Ω). It follows that [L2(Ω)]� ≡ L2(Ω)

is continuously embedded and dense in [W 2,s
0 (Ω)]�; see, for example, the first two remarks in Section 5 in

Simon [21]. Furthermore, we have that C(Ω) is continuously embedded and dense in [W 2,s
0 (Ω)]�. Hence, on

recalling the compact embedding of W 1,s(Ω) into C(Ω) for s > d and that Mε : C(Ω) → C(Ω), we obtain
from (3.69), (1.21) and (1.12) the strong convergence results (3.61c,e). It follows from (1.20) for s > d and
α(s, d) ∈ (0, 1) that

‖wτ − wτ,±‖2
L2(0,T ;C(Ω))

≤ C(T, ‖wτ(,±)‖L∞(0,T ;W 1,s(Ω))) ‖wτ − wτ,±‖2(1−α)
L2(0,T ;L2(Ω)). (3.70)

Therefore the strong convergence results (3.61d,f) follow immediately from (3.70), (3.67), (3.68), (3.61c)
and (1.12).

On noting (3.61b,g), Assumption (A5) and (3.57), we can pass to the limit τ → 0 for the subsequences
in (3.58a) to obtain (3.4a).

We now consider passing to the limit τ → 0 for the subsequences in (3.58b), where at first we fix v ∈
C∞(0, T ; [C∞(Ω)]d). Noting (3.61c–g), Assumption (A5) and (3.57) we immediately obtain (3.4b) for the fixed
v ∈ C∞(0, T ; [C∞(Ω)]d). The only term that requires some comment is the one involving qτ,+, which, similarly
to (3.20)–(3.22), we now discuss. First we note that∫ T

0

〈|qτ,+|,Mε(wτ,+)〉C(Ω) dt =
∫ T

0

〈|qτ,+|,Mε(w)〉C(Ω) dt+
∫ T

0

〈|qτ,+|,Mε(wτ,+) −Mε(w)〉C(Ω) dt. (3.71)
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As Mε(w) ∈ C([0, T ], C(Ω)) is positive, it follows from (3.61g) and (1.19) that

lim inf
τ→0

∫ T

0

〈|qτ,+|,Mε(w)〉C(Ω) dt ≥
∫ T

0

〈|q|,Mε(w)〉C(Ω) dt. (3.72)

It follows from (3.67) and (3.61f) that

lim
τ→0

∣∣∣∣∣
∫ T

0

〈|qτ,+|,Mε(wτ,+) −Mε(w)〉C(Ω) dt

∣∣∣∣∣ ≤ lim
τ→0

C ‖Mε(wτ,+) −Mε(w)‖L2(0,T ;C(Ω)) = 0. (3.73)

Combining (3.71)–(3.73) yields the desired result. Finally, we obtain the desired result (3.4b) by noting that
any v ∈ L1(0, T ;VM(Ω)) can be approximated by a sequence {vj}j≥1, with vj ∈ C∞(0, T ; [C∞(Ω)]d), on
recalling (3.11a,b); and that all the terms in (3.4b) are well-defined. Hence we have shown that {w, q} solves
(Q), (3.4a,b).

We now show that w solves (P), (3.5). Choosing v = 0 in (3.4b) yields that

−
∫ T

0

〈|q|,Mε(w)〉C(Ω) dt ≥ −
∫ T

0

(f, w) dt + 1
2

[
|w(·, T )|20,Ω − |wε

0(·)|20,Ω

]
. (3.74)

Then for any η ∈ L1(0, T ;K(w) ∩ C1
0 (Ω)), on noting (3.74), we have that∫ T

0

〈q,∇η〉C(Ω) dt ≥ −
∫ T

0

〈|q|,Mε(w)〉C(Ω) dt ≥ −
∫ T

0

(f, w) dt+ 1
2

[
|w(·, T )|20,Ω − |wε

0(·)|20,Ω

]
. (3.75)

Using the relationship (3.75) in (3.4a), we obtain (3.5). Finally, we need to show that w ∈ L∞(0, T ;K(w)), as
opposed to just w ∈ L∞(0, T ;W 1,∞

0 (Ω)). It follows from (3.4b) that∫ T

0

[
〈|q|,Mε(w)〉C(Ω) − (f, w)

]
dt+ 1

2

[
|w(·, T )|20,Ω − |wε

0(·)|20,Ω

]
≤ J := inf

v∈L1(0,T ;V M(Ω))
J(v), (3.76a)

where

J(v) :=
∫ T

0

[
〈|v|,Mε(w)〉C(Ω) − (∇ . v, w)

]
dt. (3.76b)

Choosing v = 0 yields that J ≤ 0. If J < 0 then, for any minimizing sequence {vj}j≥1, we obtain that
J(2 vj) = 2 J(vj) → 2J < J , which is a contradiction. Hence J = 0, and so we have that J(v) ≥ 0 for any
v ∈ L1(0, T ;VM(Ω)). Since this is true also for −v, and as w ∈ L∞(0, T ;W 1,∞

0 (Ω)), we obtain that∫ T

0

(v,∇w) dt =
∫ T

0

(∇ . v, w) dt ≤
∫ T

0

(|v|,Mε(w)) dt ∀ v ∈ L1(0, T ;W 1,1(Ω));

and therefore by a density result that∫ T

0

(v,∇w) dt ≤
∫ T

0

(|v|,Mε(w)) dt ∀ v ∈ L1(0, T ;L1(Ω)). (3.77)

For any p ∈ (2,∞), choosing v = |[Mε(w)]−1 ∇w|p−2 [Mε(w)]−2 ∇w in (3.77), and noting the continuity of the
p norm for p ∈ [1,∞], we obtain that

‖[Mε(w)]−1 ∇w ‖L∞(0,T ;L∞(Ω)) ≤ 1. (3.78)

Hence we have that w ∈ L∞(0, T ;K(w)), and so w solves (P), (3.5). �
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Remark 3.9. Under only Assumptions (A1) and (A2), we obtain in place of the second and fourth bounds
in (3.67) that ∥∥∥∥∂wτ

∂t

∥∥∥∥
L1(0,T ;[C1

0(Ω)]�)

+ ‖qτ,+‖L1(0,T ;[M(Ω)]d) ≤ C. (3.79)

The second bound in (3.79) follows from (3.63) and (1.14), whilst the first follows from (3.66) and the second
bound in (3.79). Unfortunately, the first bound in (3.66) is not enough to obtain strong convergence of wτ

using (1.21), as we require α > 1. Hence, the need for the additional Assumption (A5).
We believe the assumption wε

0 ≥ 0 in (A5) is not really required to prove (3.64), and the assumption
∇wε

0 . ν < k0 on ∂Ω in (A1) should be sufficient. For n = 1, . . . , N , as wn − w0 ∈ C0(Ω) is nonnegative, it
follows from (A1) that ∇wn . ν < k0 on ∂Ω. Formally, qn = −λn ∇wn in Ω with λn ≥ 0, and as qn = 0 on
subcritical slopes, this yields that

∫
Ω ∇ . qn dx =

∫
∂Ω q

n . ν ds = −
∫
∂Ω λ

n ∇wn . ν ds ≥ 0. This can then be
exploited in (3.64) by noting that

〈|qn|,Mε(wn)〉C(Ω) ≤ (∇ . qn, wn + M) =
(
fn − wn − wn−1

τn
, wn + M

)
≤ |fn|0,Ω |wn + M|0,Ω ≤ C,

where M = maxn=1,...,N ‖wn‖0,∞,Ω ≤ C. Unfortunately, we are not able to make rigorous the formal argument
above establishing that

∫
Ω
∇ . qn dx ≥ 0 under Assumption (A1).

4. The nonlinear algebraic systems

4.1. Solution of (Qh,τ
A )

To solve the nonlinear algebraic system arising from (Qh,τ
A ), we recall Theorem 2.3 and use an extension of

the splitting algorithm, ALG2, see page 170 in Glowinski [14] from the variational to the quasi-variational case.
We introduce the Lagrangian Lh,n : Uh

0 × Sh × Sh → R defined by

Lh,n(ηh, ψh, vh) := Eh,n(ηh) − (vh,∇ηh − ψh), (4.1)

where Eh,n(·) is defined by (2.47b). For a given ρ ∈ R>0, we introduce the augmented Lagrangian Lh,n
ρ :

Uh
0 × Sh × Sh → R defined by

Lh,n
ρ (ηh, ψh, vh) := Lh,n(ηh, ψh, vh) +

ρ

2
|∇ηh − ψh|20,Ω. (4.2)

For any χh ∈ Uh
0 , we introduce the closed convex non-empty set

Rh(χh) := {ψh ∈ Sh : |ψh| ≤Mh
ε (P hχh) a.e. on Ω}. (4.3)

Set Wn,0
A = Wn−1

A ∈ Uh
0 , φn,0

A
= φn−1

A
∈ Sh and Qn,0

A
= Qn−1

A
∈ Sh, where we choose φ0

A
= Q0

A
= 0.

For m ≥ 1, given iterates Wn,m−1
A ∈ Uh

0 , φn,m−1

A
∈ Sh and Qn,m−1

A
∈ Sh, then

(i) Find Wn,m
A ∈ Uh

0 such that

Lh,n
ρ (Wn,m

A , φn,m−1

A
, Qn,m−1

A
) ≤ Lh,n

ρ (ηh, φn,m−1

A
, Qn,m−1

A
) ∀ ηh ∈ Uh

0 . (4.4a)

(ii) Find φn,m

A
∈ Rh(Wn,m

A ) such that

Lh,n
ρ (Wn,m

A , φn,m

A
, Qn,m−1

A
) ≤ Lh,n

ρ (Wn,m
A , ψh, Qn,m−1

A
) ∀ ψh ∈ Rh(Wn,m

A ). (4.4b)
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(iii) Set

Qn,m

A
= Qn,m−1

A
− ρ (∇Wn,m

A − φn,m

A
). (4.4c)

Step (i) is equivalent to finding the unique Wn,m
A ∈ Uh

0 solving the linear problem(
Wn,m

A −Wn−1
A

τn
, ηh

)h

+ ρ (∇Wn,m
A − φn,m−1

A
,∇ηh) − (Qn,m−1

A
,∇ηh) = (fn, ηh) ∀ ηh ∈ Uh

0 . (4.5)

Step (ii) decouples to solving the problem on each element σ ∈ T h. Let Lh,n
ρ,σ : Uh

0 |σ ×R
d × R

d → R be such
that

Lh,n
ρ (ηh, ψh, vh) =

∑
σ∈T h

Lh,n
ρ,σ (ηh

σ , ψ
h

σ
, vh

σ), (4.6)

where the subscript σ denotes restriction to the element σ. Hence, for all σ ∈ T h, first find φ̂
n,m

A,σ
∈ R such that

Lh,n
ρ,σ (Wn,m

A,σ , φ̂
n,m

A,σ
, Qn,m−1

A,σ
) ≤ Lh,n

ρ,σ (Wn,m
A,σ , a,Q

n,m−1

A,σ
) ∀ a ∈ R

d, (4.7)

then project φ̂
n,m

A,σ
to the ball of radius [Mh

ε (P hWn,m
A )]σ centred at the origin to yield φn,m

A,σ
. The minimiza-

tion (4.7) leads to

φ̂
n,m

A,σ
=

−Qn,m−1

A,σ
+ ρ∇Wn,m

A |σ
ρ

; (4.8a)

and we then set

φn,m

A,σ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ̂

n,m

A,σ
if |φ̂

n,m

A,σ
| ≤ [Mh

ε (P hWn,m
A )]σ,

φ̂
n,m

A,σ

|φ̂
n,m

A,σ
|

[Mh
ε (P hWn,m

A )]σ otherwise.
(4.8b)

So overall, φn,m

A
∈ Rh(Wn,m

A ) is such that

(ρ (φn,m

A
−∇Wn,m

A ) +Qn,m−1

A
, ψh − φn,m

A
) ≥ 0 ∀ ψh ∈ Rh(Wn,m

A ). (4.9)

On noting that φn

A
= ∇Wn

A , n = 1, . . . , N , in the variational case, Mε(·) ≡ k0 ∈ R>0, then following the abstract
framework in Section 5.1 in [14] one can show that for n = 1, . . . , N and m ≥ 1 that[

|Q̃
n,m−1

A
|20,Ω + ρ2 |φ̃

n,m−1

A
|20,Ω

]
−
[
|Q̃

n,m

A
|20,Ω + ρ2 |φ̃

n,m

A
|20,Ω

]
≥ 2ρ
τn

|W̃n,m
A |2h + ρ2 |∇W̃n,m

A − φ̃
n,m

A
|20,Ω + ρ2 |φ̃

n,m

A
− φ̃

n,m−1

A
|20,Ω; (4.10)

where W̃n,m
A := Wn

A − Wn,m
A , φ̃

n,m

A
:= φn

A
− φn,m

A
and Q̃

n,m

A
:= Qn

A
− Qn,m

A
. Hence, one can deduce

from (4.10), (4.4c), (4.5) and (4.9) for n = 1, . . . , N that as m→ ∞

Wn,m
A →Wn

A , φn,m

A
→ φn

A
= ∇Wn

A , Qn,m

A
→ Qn

A
. (4.11)

Although we have no convergence proof of the iterative algorithm (4.4a–c) in the quasi-variational inequality
case, in practice it worked well.
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4.2. Solution of (Qh,τ
B,r)

Adopting the notation (2.56), we find Qn

B,r
solving (2.57), and hence {Wn

B,r, Q
n

B,r
} solving the nth step of

(Qh,τ
B,r), (2.54a,b), using the following iteration:
Set Qn,0

B,r
= Qn−1

B,r
∈ V h. For m ≥ 1, given iterate Qn,m−1

B,r
∈ V h, find Qn,m

B,r
∈ V h such that

(Mh
ε (gn − τn ∇ . Qn,m−1

B,r
) |Qn,m−1

B,r
|r−2
δ Qn,m

B,r
, vh)h + τn (∇ . Qn,m

B,r
,∇ . vh)

= (Mh
ε (gn − τn ∇ . Qn,m−1

B,r
)
[
|Qn,m−1

B,r
|r−2
δ − |Qn,m−1

B,r
|r−2

]
Qn,m−1

B,r
, vh)h + (gn,∇ . vh) ∀ vh ∈ V h,

(4.12)

where |v|δ := (|v|2 + δ2)
1
2 with δ2 � 1. Clearly, the linear system (4.12) is well-posed. We note that similar

algorithms have been used in [5,6]. Although we have no convergence proof of (4.12), in practice it worked well.

5. Numerical experiments

In this section we perform numerical experiments for our finite element approximations (Qh,τ
A ), (2.22a,b), and

(Qh,τ
B,r), (2.54a,b), as stated in Section 2; except for ease of implementation we replaced wε

0 and wε,h
0 , (2.15), by

w0 and wh
0 = P h[πhw0], respectively, in Mh

ε (·), (2.16), and in the initial data for both approximations.
The approximation (Qh,τ

A ) is simpler and is easier to implement than (Qh,τ
B,r), which is based on the lowest order

Raviart–Thomas element. We refer to [3] for a Matlab implementation of the lowest Raviart–Thomas element.
Whereas, both approximations lead to an efficient numerical approximation of the evolving sand surface w, our
numerical experiments, see below, show that only the (Qh,τ

B,r) approximation yields a useful approximation to the
surface sand flux q for a reasonable choice of discretization parameters. Although we have no uniqueness results
for either the mixed formulation (Q) or the primal formulation (P), and hence only subsequence convergence
results for our approximations (Qh,τ

A ) and (Qh,τ
B,r), in practice both approximations always converged as the

mesh and regularization parameters were reduced to the same solution w of (Q).
The simulations have been performed in Matlab R2011a (64 bit) on a PC with Intel Core i5-2400 3.10GHz

processor with 4Gb RAM.
In all of our examples, we set the sand internal friction coefficient k0 = 0.4 and chose r = 1 + 10−7 for the

approximation (Qh,τ
B,r), (2.54a,b).

The stopping criterion for the splitting iterative algorithm, (4.4a–c), for (Qh,τ
A ) was chosen as

‖Wn,m
A −Wn,m−1

A ‖L1(Ω)

‖Wn,m
A ‖L1(Ω)

< 10−6 and
‖φn,m

A
− φn,m−1

A
‖[L1(Ω)]2

‖φn,m

A
‖[L1(Ω)]2

< 5 × 10−4. (5.1)

For solving the nonlinear algebraic system, arising from (Qh,τ
B,r) at each time level, we chose δ = 10−9 for the

iterative method (4.12) with stopping criterion∑
e∈Eh

|e||Qn,m
B,r (e) −Qn,m−1

B,r (e)|∑
e∈Eh

|e||Qn,m
B,r (e)|

< 3 × 10−4. (5.2)

Here Eh is the collection of edges associated with the partitioning T h so that any vh ∈ V h can be written
as vh(x) =

∑
e∈Eh vh(e)φ

e
(x), where {φ

e
}e∈Eh are the standard lowest order Raviart–Thomas basis functions,

see [3].
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|x|
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|q|

|x|

Figure 1. Variational inequality, (Qh,τ
A ) approximation, simulation results for h = 0.04, τ =

0.01, t = 0.1. Left – exact surface w(|x|, t) (red line) and its approximation Wn
A at the mesh

nodes (black dots). Middle – exact flux modulus |q(|x|, t)| (red line) and its approximation
|Qn

A
| in the elements (black dots). Right – levels of |Qn

A
| showing the mosaic structure of the

approximate flux Qn

A
.

5.1. Approximation (Qh,τ
A )

We start with a simple variational inequality example. Let sand be disposed onto a flat, w0 = 0, open circular
platform, Ω = {x : |x| < 1}. The source f is uniform in its support |x| ≤ R0 = 0.2 with

∫
Ω f(x, t) dx = 1 for all

t ≥ 0. Due to the radial symmetry, the analytical solution to this problem, {w, q}, is easy to find. The growing pile
starts as a cut-off cone having critical slopes, volume t and height t/(π R2

0). Then, at t∗ = π k0R
3
0

√
3 ≈ 0.0174,

the pile turns into a cone w(x, t) = k0 max(Rc(t) − |x|, 0). This cone grows until its base, a circle of radius
Rc(t) = (3t/(π k0))

1
3 , fills the domain Ω. The flux can be found as q(x, t) = q(|x|, t)x /|x|, where q(R, t) is a

solution to the balance equation

1
R

∂

∂R
(Rq) = f − ∂w

∂t
for R ∈ (0, 1), q(0, t) = 0, for t > 0. (5.3)

The iterations of the augmented Lagrangian method with splitting, recall Section 4.1, converged quickly with
ρ = 1. For t = 0.1 we compared our numerical approximations obtained for different finite element meshes and
a constant time step τ with the analytical solution. The approximate surfaces, Wn

A with n τ = t, were close to
the exact surface, w(·, t); see Figure 1, left. We checked that, for the meshes employed and τ ∈ (0, 0.01], the
error in w was dominated by the spatial discretization. For meshes with maximal element sizes h = 0.01, 0.02,
0.04 the relative errors of w(·, t) in the L1 norm were, respectively, 0.3%, 0.9%, and 1.8%.

Although in our simulations the approximate flux iterates Qn,m
A also converged on every mesh, no pointwise

convergence ofQn
A, with n τ = t, to the analytical flux q(·, t) was observed; see Figure 1, middle. The approximate

flux Qn
A has a fine structure in the region where the exact flux is not zero. There elements σ ∈ T h with zero

numerical flux were intermixed with elements in which the numerical flux was much stronger than the exact
one; see Figure 1, middle and right. Such a behavior of the numerical solution does not contradict our proof of
its vague convergence to q; but, clearly, a different method should be employed for approximating the flux even
in the variational inequality case.

The situation is similar for the quasi-variational inequality case, with only the evolving pile surface being
approximated well using this method. In our second example, see Figure 2, we set w0 = max(0.5 − |x− x0|, 0),
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Figure 2. Regularized quasi-variational inequality with ε = 0.01, (Qh,τ
A ) approximation, sim-

ulation results for h = 0.02, τ = 0.01. Left – the support surface w0, the dashed line indicates
the boundary of the support of f . Middle and Right – approximate sandpile surface, Wn

A ,
corresponding to t = 0.1 and t = 0.2, respectively.

y
f

R1(t) R2(t) |x|

0.4

0.40

Figure 3. Sandpile, yellow region, forming upon the support platform with a steep cone.

where x0 = (0.3, 0), for the square Ω = (−1, 1) × (−1, 1). The source f is uniform in its support |x| ≤ 0.7 with∫
Ω f(x, t) = 1 for all t ≥ 0. For h = 0.02 the generated mesh contained approximately 34,000 elements. Since

the gradient constraint is now updated after each iteration of the splitting algorithm, existing theory does not
guarantee its convergence. We found that, for the regularization parameter ε = 0.01, good convergence of this
algorithm is achieved for a smaller value of the augmented Lagrangian parameter ρ. In this example we chose
ρ = 0.05 with stopping criterion (5.1) and obtained the solution with τ = 0.005 and twenty time steps in 11
minutes of CPU time.

5.2. Approximation (Qh,τ
B,r)

This approximation performed better in the variational inequality example from the previous section, recall
Figure 1. Using the time step, τ = 0.005, and meshes, h = 0.02 and 0.04, we obtained, for t = 0.1, the
pile surface with smaller relative errors in the L1 norm; 0.1% and 0.6%, respectively. Furthermore, for this
approximation the fluxes Qn

B,r also converged to the exact solution. Comparing the approximate and exact
fluxes at the element centers we estimated the relative flux error in the L1 norm. For the two meshes chosen
these errors were, correspondingly, 2.8% and 5.2%.
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Figure 4. Regularized quasi-variational inequality with ε = 0.005, (Qh,τ
B ) approximation,

simulation results for h = 0.04, τ = 0.0005 and t = 0.1. Left – exact surface w(|x|, t) (red line)
and its approximationWn

B,r in the elements (black dots). Middle – exact flux modulus |q(|x|, t)|
(red line) and its approximation |Qn

B,r
| at the element centers (black dots). Right – the Qn

B,r

vector field, where the dashed line indicates the exact pile boundary.

Choosing a different initial support, w0(x) = max(0.4− |x|, 0), and keeping the same source f and domain Ω
from the variational inequality example, we arrive at a quasi-variational inequality problem that can be solved
analytically for the unregularized M(·). Being discharged from the source, sand now pours down the steep
conical part of the support surface and forms a pile around this cone. The volume of the pile is t and its surface
w(|x|, t) = k0 (R2(t)− |x|) for |x| ∈ [R1(t), R2(t)], see Figure 3. Using simple geometric arguments, we first find
the two variables, R1(t) and R2(t), determining this surface from the equations

t =
π

3
[
(R3

2 −R3
1) k0 − (0.43 −R3

1)
]

and R2 = R1 +
1
k0

(0.4 −R1).

We then find the flux using the balance equation (5.3).
We solved the problem numerically, see Figure 4, with the regularization parameter ε = 0.005 and estimated

the errors of Wn
B,r and Qn

B,r
at t = 0.1 using the analytical solution. As could be expected, the smaller the value

of ε, the more difficult it is to obtain convergence of the iterations (4.12) in the quasi-variational inequality case.
We were, however, able to achieve convergence of these iterations by decreasing the time step τ . For the stated
value of ε, we chose τ = 0.0005 yielding 200 time steps on the time interval [0, 0.1] for two different meshes. For
a mesh generated with h = 0.04 the relative errors in the L1 norm were 0.6% for the pile surface and 5% for
the surface flux. For a finer mesh, h = 0.02, the corresponding errors were 0.1% and 2%. These results confirm
the validity of our regularization, Mε(·), of M(·).

We solved again, now using (Qh,τ
B,r), the quasi-variational problem considered in Figure 2 above, using the

same mesh, time step, and the value of regularization parameter. Now we were able to find good approximations,
not only to the pile surface but the surface flux as well, see Figure 5; and the computation time was about the
same. We note that as the surface Wn

B,r touches the support boundary ∂Ω at some time in the interval (0.1, 0.2)
sand flows out of the system, which can be seen from the flux Qn

B,r.
In our last example Ω = (−1, 1) × (−1, 1) and w0 = min(max(|x1| − 0.9, |x2| − 0.9), 0) is the surface of an

inverted pyramid supplemented, to satisfy the no-influx condition (1.8), by a narrow horizontal margin. The
uniform source is f(x, t) ≡ 0.25. Sand, discharged from the source, flows down the pyramid faces until it reaches
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Figure 5. Regularized quasi-variational inequality with ε = 0.01 as in Figure 2, (Qh,τ
B ) ap-

proximation, simulation results for h = 0.02, τ = 0.01 and t = 0.2. Left – the calculated surface
Wn

B,r. Middle – the flux modulus |Qn

B,r
| at the element centers. Right – the Qn

B,r
vector field

and level contours of Wn
B,r.

Figure 6. Regularized quasi-variational inequality with ε = 0.02, (Qh,τ
B ) approximation, sim-

ulation results for h = 0.02, τ = 0.0025 and t = 0.075. Left – initial surface w0 (blue lines) and
the approximate surface Wn

B,r in the elements (grey surface). Middle – the flux modulus |Qn

B,r
|

at the element centers. Right – Qn

B,r
vector field and levels of Wn

B,r.

a pyramid edge; then it pours down along the edge and forms a pile above the apex of the inverted pyramid,
see Figure 6. Our numerical solution clearly shows the singularity of the edge fluxes.
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