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STABILITY ANALYSIS OF THE INTERIOR PENALTY DISCONTINUOUS
GALERKIN METHOD FOR THE WAVE EQUATION
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Abstract. We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the
wave equation. We show how to derive the optimal penalization parameter involved in this method in
the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme
when IPDG is coupled with the classical Leap–Frog scheme for the time discretization. Numerical
experiments illustrate the fact that these conditions are also sufficient.
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1. Introduction

The accurate numerical solution to acoustic, elastodynamic or electromagnetic wave equations is required in
a number of important applications such as medical imaging, seismic imaging, radar or earthquakes simulations.
In many cases, the equations have to be solved in very large domains with strong heterogeneities. Therefore,
one has to use sophisticated discretization methods to compute the most accurate solution at the smallest
computational cost.

Finite Differences Methods, which are widely used because of their small computational cost and the simplicity
of their implementation, are not adapted to deal with strong heterogeneities. Indeed, they rely on structured
grids, which can not accurately approximate the shape of the various layers of the domain. Finite Elements
Methods (FEM) are more adapted to this kind of problems since they allow for the use of unstructured grids.
Among all existing FEM, the Spectral Element Method [7,9,17,19], is probably one of the most efficient methods
to solve the wave equation since the resulting mass matrix is diagonal. Hence, it can be easily coupled to explicit
time-schemes, which involves the inversion of the mass matrix at each time step. However, SEM requires the use
of quadrilateral (in 2D) or hexahedral (in 3D) meshes which can be difficult to generate for realistic applications.
Let us however mention that SEM can be extended to handle triangular meshes [8], but this requires additional
degrees of freedom and the implementation is more complex. Moreover, as far as we know, the extension to
tetrahedral meshes has not been proposed yet.

Keywords and phrases. Discontinuous Galerkin, penalization coefficient, CFL condition, wave equation.

1 LMAP, University of Pau, INRIA Project-Team Magique-3D, France. cyril.agut@orange.fr
2 INRIA Project-Team Magique-3D, LMAP, University of Pau, France

Article published by EDP Sciences c© EDP Sciences, SMAI 2013

http://dx.doi.org/10.1051/m2an/2012061
http://www.esaim-m2an.org
http://www.edpsciences.org


904 C. AGUT AND J. DIAZ

Discontinuous Galerkin Methods are more and more popular for solving the wave equation since they lead
to block-diagonal mass matrices without the help of quadrature formula. Moreover, they can be used with any
type of meshes and even allow for the variation of the physical parameters inside the cells of the mesh (provided
that the variation of each physical quantity can be approximated by polynomial functions). DGM are also
naturally adapted to parallel computing since all volume integrals are computed locally and the communications
between the cells are ensured by integrals over the faces of the elements. In [4], Arnold et al. provide a detailed
review of the various Discontinuous Galerkin approximations of the Laplacian operator. They show that the
so-called Interior Penalty Discontinuous Galerkin Method (IPDGM), also known as Symmetric Interior Penalty
(SIP) [3], is one of the most suitable since it is stable and adjoint consistent, which guarantees the optimal
order of convergence of the scheme. This explains why this method has been succesfully used to solve Helmholtz
equation [2, 6] and the wave equation [2, 15, 16]. Comparisons of the performances of IPDGM and SEM can be
found in [5,11]. It is worth noting that the first paper concluded that the performances of SEM are better than
IDPGM when IPDGM is applied to structured grids composed of squares, while the second paper shows that the
performances of IPDGM are better when it is applied to triangular meshes. However, the methodologies were
slightly different. In the first paper, the computational costs and the accuracy of both methods are compared
for a given mesh. It appeared that the computational costs of SEM (computational time and storage) were
smaller than IPDG but that the accuracy of IPDG was better. In the second paper the computational cost are
compared for a given accuracy and it appeared that the computational costs of IPDG were smaller for high
order element (polynomial degree greater than two).

Nevertheless, in spite of all its interesting properties, IPDGM still suffers from two difficulties. The first one
is the determination of the penalization parameter, which penalizes the discontinuities of the solution through
the faces. The accurate determination of the optimal parameter is crucial, since a too small value leads to
instabilities while a too large value could (strongly) hamper the CFL (Courant–Friedrichs–Lewy) condition,
which gives the maximal time step that can be used to ensure the stability of the scheme. In [2], Ainsworth,
Monk and Muniz conjectured a minimal value of the penalization parameters, depending on p, the polynomial
degree of the basis functions and on the size of the elements. They proved their conjecture up to p = 3. The
extension of this result to p > 3 and to unstructured meshes, is still to be done. The second difficulty is
the determination of the CFL condition. It is well-known that this condition decreases when the penalization
parameter increases, but no analytical formula has been proposed yet. The aim of this paper is (a) to prove
the conjecture of Ainsworth, Monk and Muniz up to p = 5; (b) to propose a solution methodology to prove it
for a given p; and (c) to provide an analytic formula linking the CFL condition to the penalization parameter.
We restrict ourselves to the cases of structured meshes composed of segments (in 1D), squares (in 2D) or cubes
(in 3D). In Section 1, we recall the IPDG discretization of the wave equation. In Section 2, we propose two
theorems, the first one provides explicit necessary stability conditions on the penalization parameter and the
time step while the second one provides a more restrictive but implicit necessary stability condition. The proof
of these theorems in the one dimensional case is given in Section 3. Section 4 is devoted to the proof in the three
dimensional case and contains a discussion on the adaptation of the theorems to structured meshes composed
of rectangles or parallelepipeds. We do not present the proof in the two dimensional case, but it can be adapted
without any difficulties from the three dimensional case. Finally, we present numerical results in Section 5 that
illustrate the fact that the stability condition is actually necessary and sufficient for numerical applications.

2. Interior penalty discontinuous galerkin discretization

of the wave equation

In this section, we recall the so called Interior Penalty Discontinuous Galerkin method applied to the acoustic
wave equation in homogeneous bounded media Ω ⊂ R

d, d = 1, 2, 3. For the sake of simplicity, we impose
homogeneous Dirichlet boundary conditions on the boundary Γ := ∂Ω but this study can be extended to
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Neumann boundary conditions without major difficulties.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u : Ω × [0, T ] �→ R such that :

1
μ

∂2u

∂t2
− div

(
1
ρ
∇u

)
= f in Ω × ]0, T ] ,

u (x, 0) = u0,
∂u

∂t
(x, 0) = u1 in Ω,

u = 0 on ∂Ω.

(2.1)

where u stands for the displacement, μ is the compressibility modulus, ρ is the density and f is the source term.
In this paper, ρ and μ are assumed to be constant, but in practical applications they are usually assumed to be
piecewise constant or piecewise polynomial.

We introduce a triangulation Th of Ω and the following space of approximation with piecewise discontinuous
polynomial functions :

Vh :=
{
v ∈ L2 (Ω) : v|K ∈ P p (K) , ∀K ∈ Th

}
.

The IPDG method can be applied with piecewise constant finite elements (p = 0) as it is mentionned in [2] but
in practice we consider polynomial degrees greater than or equal to one.

The set of the mesh faces is denoted Fh which is partitionned into two subsets F i
h and Fb

h corresponding
respectively to the interior faces and those located on the boundary. For F ∈ F i

h, we denote by K+ and K− the
two elements sharing F and we define ν as the unit outward normal vector pointing from K+ to K−. Moreover,
v± represents the restriction of a function v to the element K± and we define the jump and the average of a
piecewise smooth function v ∈ Vh over F ∈ F i

h as

[[v]] = v+ − v−, {{v}} =
v+ + v−

2
· (2.2)

For F ∈ Fb
h, we define [[v]] = v and {{v}} = v.

The IPDG discretization of (2.1) reads as⎧⎪⎪⎨
⎪⎪⎩

Find uh ∈ Vh such that, ∀vh ∈ Vh :

∑
K∈Th

∫
K

1
μ

∂2
t uhvh dx = −ah (uh, vh) +

∑
K∈Th

∫
K

fvh dx.
(2.3)

where ah is a bilinear form defined by

ah (uh, vh) = BTh
(uh, vh) − I (uh, vh) − I (vh, uh) + BS (uh, vh),

with

BTh
(uh, v) =

∑
K∈Th

∫
K

1
ρ
∇uh∇v, I (uh, v) =

∑
F∈Fi

h

∫
F

[[v]]
{{

1
ρ
∇uh · ν

}}
,

BS (uh, v) =
∑

F∈Fi
h

∫
F

γ [[uh]] [[v]] .

The bilinear form BS is devoted to enforce the coercivity of ah and the penalization function γ is defined on
each interior face F by

γ =
α

ξF
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where α is a positive parameter. There are many definitions of the function ξF in the litterature. The most
commonly used are:

• ξF = h (F ) where h (F ) denotes the diameter of F . See for instance [2,4,12,16]. It is worth noting that this
definition does not make sense in 1D.

• ξF = min(h (K+) , h (K−)) where h (K±) is the diameter of K±. See for instance [15].
• ξF = min(ρ (K+) , ρ (K−)) where ρ (K±) is the diameter of the inscribed circle (or sphere) of K±. See for

instance [20].

Whatever the definition of ξF , there exists αp
0 > 0 such that the coercivity of ah is ensured for all α ≥ αp

0.
Obviously, the optimal parameter α0 depends on the choice of the basis functions of Vh, but also on ξF . It has
been shown by Shabazi in [20], using inverse inequalities proposed in [22], that the third definition was the most
appropriate for triangular meshes. In [2], it has been shown that, on meshes of squares or cubes, using the first
definition of ξF , the optimal parameter is αp

0 = p (p + 1)/2 for p = 0, . . . , 3 and they conjectured this relation
for p ≥ 4. It is worth noting that, for such meshes, the first and the third definition of ξF are equivalent. More
recently, Epshteyn and Rivière [12] have proposed a more sophisticated definition of ξF for meshes of triangles
and tetrahedra. This definition does not only involve the length of the edge or the surface of the face, but also
the minimal angle of elements K+ and K−.

At this point, we choose not to make explicit the expression for ξF . This will be done in the next section.
We refer to [2, 4, 15] for more details on the properties of the bilinear form ah.
Considering {ϕi}i=1,...,m the classical discontinuous Lagrange basis functions of degree p of Vh, where m

denotes the number of degrees of freedom of the problem, we obtain the following linear system:

∂2
t U = M−1KU + M−1F (2.4)

where
(M)i,j =

∑
K∈Th

∫
K

ϕiϕj , (K)i,j = ah (ϕi, ϕj), (F )i =
∑

K∈Th

∫
K

fϕi.

Now, we have to discretize in time. Using the well known Leap–Frog scheme, we obtain the following fully
discretized scheme:

Un+1 − 2Un + Un−1

Δt2
= −M−1KUn + M−1Fn. (2.5)

Since (2.5) is an explicit scheme, its L2 stability is constrained by a CFL condition. It is well known [16] that
this CFL condition decreases when α increases and behaves as 1/

√
α for large α. However, no explicit formula

of the CFL condition has been proposed yet. This is the objective of the next section.
Let us note that, even if all the results are related to the second-order Leap–Frog scheme, they can be

easily extended to higher-order schemes obtained by the modified equation technique [10, 21], also known as
Lax–Wendroff schemes [18]. Indeed, the CFL condition of this schemes is simply the CFL condition of the
Leap–Frog scheme multiplied by a factor depending on the order of the scheme (see [14] for more details).

3. Stability analysis

In this section, we first prove necessary conditions on γ and Δt ensuring the L2-stability of scheme (2.5).
This theorem provides an explicit dependence of Δt with respect to γ and h. Next we propose a more restrictive
necessary stability condition. In this second theorem, the dependence of Δt with respect to γ is no longer
explicit. However the condition can be numerically computed using the roots of a polynomial of degree 2p. We
assume here that the domain Ω is unbounded

(
Ω = R

d
)

and uniformly meshed by segments (if d = 1), squares
(if d = 2) or cubes (if d = 3). We denote by h the length of segments in 1D and the length of edges of squares

and cubes in 2D and 3D. We define c the wave velocity by c =
√

μ

ρ
·

First of all, let us recap the definition of the L2-stability.
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Definition 3.1. A scheme is L2-stable if and only if its solution satisfies ‖Un‖L2 ≤ CnΔt.

The necessary stability conditions are given by the following theorem.

Theorem 3.2. Let 1 ≤ p ≤ 5 and let us set α0
p = p(p+1)

2 . For the scheme (2.5) to be L2-stable, the two following
conditions have to be satisfied,

γ ≥
α0

p

h
; (3.1)

and, writing γ = α/h,
√

d
cΔt

h
≤
{

C1,p if α ≤ α1,p

C2,p (α) if α > α1,p

(3.2)

where α1,p, C1,p and C2,p (α) are defined with respect to the polynomial degree p as:

p α1,p C1,p C2,p (α)

1 2
√

3
3

� 0.577
1√

3 (α − 1)

2
27
5

= 5.4
1√
15

� 0.258

√
2

−15 + 6α + (405 − 240α + 36α2)
1/2

3
2
√

1605 + 393
49

� 9.65

√
2

45 +
√

1605
� 0.153

√
2

−45 + 10α + (4545− 1320α + 100α2)
1/2

4 α1,4 � 14.7

√
2

3
(
35 +

√
805
) � 0.103

√
1

2
√

5g4,1 (α) g4,2 (α) + 5α − 35

5 α1,5 � 20.8

√
1

10
√

133 cos (g5) + 70
� 0.074

√
1

2
√

7g5,1 (α) g5,2 (α) + 7 (α − 10)

where, for the case p = 4, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g4,1 (α) =
(
518 − 98α + 5α2

) 1
2 ,

g4,2 (α) = cos

(
1
3

arccos

(
1
10

g4,3 (α)
√

5
g3
4,1 (α)

))
,

g4,3 (α) = −47705 + 14574α− 1470α2 + 50α3

and for the polynomials of degree 5,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g5 =
1
3

arccos
(

10447
126350

√
133
)

g5,1 (α) =
(
1555 − 200α + 7α2

) 1
2 ,

g5,2 (α) = cos

(
1
3

arccos

(
1
14

g5,3 (α)
√

7
g3
5,1 (α)

))
,

g5,3 (α) = −299825 + 61440α− 4200α2 + 98α3.
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Remark 3.3. a

• As it is was noted in [16], the stability condition on Δt behaves as C/
√

α for α large enough. More precisely,

C =

√
2

(p + 1) (p + 2)
.

• This stability condition is constant for
p (p + 1)

2
≤ α ≤ α1,p. This shows that it is not necessary to choose

α too close from α0
p to improve the CFL condition.

• In [2], Ainsworth et al. proved (3.1) for p = 0, . . . , 3 and conjectured this relation for any p. Theorem 3.2
extends its validity until p = 5.

• The condition (3.1) does not depend on the dimension d. This would not have been the case if we had
expressed γ as a function of the circumcircle (or circumsphere) diameter which is

√
dh. Since h is the diameter

of the inscribed circle or sphere, we conjecture that the third definition of ξF is the most appropriate. We will
strengthen this conjecture when we discuss the extension of this theorem to meshes composed of rectangles
or parallelepipeds.

We have performed numerical experiments to compute the numerical CFL condition on finite meshes. We have
observed (see Sect. 6) that this condition was equivalent to condition (3.2), except for a small range of value
of α. Therefore we need a more restrictive necessary condition, which is provided by the following theorem.

Theorem 3.4. Let Vp,α =
{

λ ∈ R : Qp,α (λ) = 0 and |Q̃p,α (λ) | ≤ 1
}

where Qp,α (λ) is a polynomial of degree

2p and Q̃p,α (λ) is a rational function whose expressions are given in Appendix A. Let also 1 ≤ p ≤ 5. Then,
for the scheme (2.5) to be L2-stable, the conditions (3.1), (3.2) and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vp,α = ∅

or

√
d
cΔt

h
≤ C3,p (α) =

1
2
√

maxVp,α

(3.3)

have to be satisfied.

Remark 3.5. a

• This theorem does not provide an explicit CFL condition. However, it can be computed numerically by the
following algorithm:
1. Compute all the roots of Qp,α;
2. Select the real roots such that |Q̃p,α (λ) | ≤ 1;
3. Choose the maximum of these roots.

• The numerical results in Section 6 show that this theorem gives in practical cases necessary and sufficient
conditions.

• The numerical study of condition (3.3) that we present in Section 6 shows that the set Vp,α is actually empty
except when α belongs to a small segment around αp

1. This means that Theorem 3.2 provides a sufficient
and necessary stability condition when α is not in this segment. Moreover Remark 3.3 is still valid.

We were unfortunately unable to establish this theorem for any p and we have restricted ourselves to p ≤ 5.
The proofs in the one dimensional case are given in Section 4 while the extension to d = 3 is the subject of
Section 5. The proof for d = 2 can be easily deduced from the case d = 3.
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4. Proof for the 1-dimensional case

This section contains the proofs of Theorems 3.2 and 3.4 in the one dimensional case. It consists of three
steps. The first step is a Fourier analysis presented in Section 4.1; the second step is devoted to the proof of
conditions (3.1) and is presented in Section 4.2; the last step concerning the proof of (3.2) and (3.3) is given in
Section 4.3. The proofs are detailed for p = 3 and are easily extendable to the cases p = 1, 2, 4 and 5.

Here, we assume that the domain is Ω = R and is meshed by segments of length h. We consider a velocity
c2 = μ/ρ = 1 but we can extend the proof to other velocities by setting Δt′ = Δt/c. We consider the scheme (2.5)
without source term that is to say

M
Un+1 − 2Un + Un−1

Δt2
+ KUn = 0. (4.1)

Considering the equation on one element J of the mesh, we have ∀J ∈ Th

M1,p
Un+1

J − 2Un
J + Un−1

J

Δt2
+
(
KW

1,p

)T
Un

J−1 + K1,pU
n
J + KW

1,pU
n
J+1 = 0 (4.2)

where UJ corresponds to the vector of unknowns U restricted to the element J and M1,p, K1,p and KW
1,p are

respectively the mass and stiffness matrices in dimension 1 considering polynomials of degree p:

M1,p (i, j) = h

∫
[0,1]

ϕ̂i (x̂) ϕ̂j (x̂) dx̂,

K1,p (i, j) =
1
h

∫
[0,1]

∂ϕ̂i

∂x̂
(x̂)

∂ϕ̂j

∂x̂
(x̂) dx̂ +

1
2h

ϕ̂i (1)
∂ϕ̂j

∂x̂
(1) +

1
2h

ϕ̂j (1)
∂ϕ̂i

∂x̂
(1)

+ γϕ̂i (1) ϕ̂j (1) − 1
2h

ϕ̂i (0)
∂ϕ̂j

∂x̂
(0) − 1

2h
ϕ̂j (0)

∂ϕ̂i

∂x̂
(0)

+ γϕ̂i (0) ϕ̂j (0),

KW
1,p (i, j) = − 1

2h
ϕ̂i (1)

∂ϕ̂j

∂x̂
(0) +

1
2h

ϕ̂j (0)
∂ϕ̂i

∂x̂
(1) − γϕ̂i (1) ϕ̂j (0),

(4.3)

where {ϕ̂i}i =1,...,p+1 are the classical discontinuous Lagrange basis functions on the reference element [0, 1].

4.1. Fourier analysis of the IPDG scheme in 1D

In order to study the stability of the IPDG scheme, we have to introduce the discrete Fourier transform

Fh : L2
h → L2 (Kh)

U → Ũ = Fh (U) (k) =
h

2π

∑
J∈Z

UJe−ikJh

with Kh =
[
−π

h , π
h

]
and L2

h =
{

U = (UJ)J∈Z
,
∑
J∈Z

‖UJ‖2 < +∞
}

.

Now, applying this discrete Fourier transform to (4.2), we obtain, ∀β ∈ [−π, π]

M1,p
Ũn+1

J (β) − 2Ũn
J (β) + Ũn−1

J (β)
Δt2

+ KβŨn
J (β) = 0 (4.4)

where β = hk and Kβ =
(
KW

1,p

)T e−iβ + K1,p + KW
1,peiβ .

The L2-stability of (4.4) for all β ∈ [−π, π], is equivalent to the L2-stability of (4.1), thanks to the Parseval
equalities.
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Since M1,p is positive definite and Kβ is Hermitian, all the eigenvalues of Nβ = M−1
1,pKβ are real. Moreover,

a classical stability analysis shows that (4.4) is stable if and only if

0 ≤ λ ≤ 4
Δt2

for all λ ∈ Λ (β), where Λ (β) denotes the set of the eigenvalues of Nβ . Then, a necessary and sufficient condition
for the stability of (4.1) is

λmin ≥ 0 and Δt ≤ 2√
λmax

with λmin = min
β∈[−π,π]

[min (Λ (β))] and λmax = max
β∈[−π,π]

[max (Λ (β))].

In Section 4.2, we show that the condition λmin ≥ 0 is equivalent to (3.1) and in Section 4.3, we show that
the condition λmax ≤ 4

Δt2 implies (3.2) and (3.3).

4.2. Proving the condition λmin ≥ 0

In the following, we consider the change of variable α = hγ to simplify the presentation.
To show the equivalence between (3.2) and λmin ≥ 0, we have to consider the characteristic polynomial of Nβ:

qα (β, λ) = (−1)p+1
λp+1 +

p∑
i=0

ci (α, β) λi.

The coefficients ci (α, β) can be computed by a symbolic calculus software such as Maple. We present them in
Appendix A for 1 ≤ p ≤ 5.

In order to study the sign of the eigenvalues of Nβ, we will use the following lemma.

Lemma 4.1. Let P be a polynomial of degree n with n real roots such that P (X) =
n∑

i=0

ciX
i. All the roots of P

are non negative if and only if
(−1)i ci ≥ 0.

Proof. The proof of this lemma can be found in [1]. �

Hence, we have to find a condition on α such that, ∀i ∈ {0, . . . , p}, ∀β ∈ [−π, π],

(−1)i ci (α, β) ≥ 0.

Here we only detail the computations in the case p = 3 and we give the expression of the characteristic
polynomials for p �= 3 in Appendix A. For p = 3, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c3 (α, β) =
8
h2

((15 − α) cos (β) − 4α)

c2 (α, β) =
240
h4

(
cos2 (β) − (23 + α) cos (β) + (18α − 65)

)
c1 (α, β) =

2880
h6

(
4 cos2 (β) + (65 − 3α) cos (β) + (141 − 32α)

)
c0 (α, β) =

100 800
h8

(
3 cos2 (β) + 2 (3 − α) cos (β) + (2α − 9)

)
.
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• Let us first study the condition on c3. We have, ∀β ∈ [−π, π],

−c3 (α, β) ≥ 0 ⇔ (α − 15) cos (β) + 4α ≥ 0.

It is clear that this condition is satisfied for all β if and only if{
(α − 15) + 4α ≥ 0,
(15 − α) + 4α ≥ 0 (4.5)

which implies that {
α ≥ 3,
α ≥ −5.

(4.6)

Consequently, −c3 (α, β) ≥ 0, whatever the choice of β, if and only if

α ≥ 3 (4.7)

• Let us now consider the condition on c2.
Setting X = cos (β), this condition is equivalent to

fα (X) := X2 − (23 + α) X + (18α − 65) ≥ 0, ∀X ∈ [−1, 1]. (4.8)

This second order polynomial admits two roots:⎧⎪⎪⎨
⎪⎪⎩

X1 =
1
2

(
23 + α +

(
(α − 13)2 + 620

)1/2
)

,

X2 =
1
2

(
23 + α −

(
(α − 13)2 + 620

)1/2
)

.

We know that fα (X) is a second-order polynomial on the variable X and its head coefficient is positive.
Thus, to have fα non negative ∀X ∈ [−1; 1], we need one of the following conditions:

(1) the two roots are in ] −∞;−1] i.e. X1 ≤ −1;
(2) the two roots are in ]1; +∞[ i.e. X2 ≥ 1;
(3) X1 = X2.

Since (α − 13)2 + 620 > 0, X1 > X2 and 3. is impossible.
The case X1 ≤ −1 is also impossible since X1 ≥ 0 when α ≥ 0 so we just have to consider the case X2 ≥ 1,
which leads to the inequality

23 + α −
(
(α − 13)2 + 620

)1/2

≥ 2,

which is equivalent to

α ≥ 87
17

· (4.9)

Finally, c2 (α, β) ≥ 0, whatever the choice of β, if and only if (4.9) holds.
• Now, let us study the sign of c1 (α, β).

Using the change of variable X = cos (β), the condition −c1 (α, β) ≥ 0, ∀β ∈ [−π, π] is equivalent to

fα (X) := −4X2 + (3α − 65)X + (32α − 141) ≥ 0, ∀X ∈ [−1, 1].

The polynomial fα admits the two following roots:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1 =
−1
8

⎛
⎝65 − 3α +

((
3α +

61
3

)2

+
14000

9

)1/2
⎞
⎠,

X2 =
−1
8

⎛
⎝65 − 3α −

((
3α +

61
3

)2

+
14000

9

)1/2
⎞
⎠.
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Since, the head coefficient of the polynom fα is negative, we need X1 ≤ −1 and X2 ≥ 1.
The condition X1 ≤ −1 implies that

65 − 3α +

((
3α +

61
3

)2

+
14000

9

)1/2

≥ 8

which leads to
α ≥ 80

29
· (4.10)

In the same way, the condition X2 ≥ 1 is equivalent to

α ≥ 6. (4.11)

Consequently, −c1 (α, β) ≥ 0, ∀β ∈ [−π, π] if and only if α ≥ 6.
• Finally, let us look at the positivity of c0 (α, β) , ∀β ∈ [−π, π].

Once again, using the change of variable X = cos (β), we have

fα (X) := 3X2 + 2 (3 − α)X + 2α − 9 ≥ 0.

This polynomial function fα admits the two following roots:⎧⎪⎨
⎪⎩

X1 =
1
3

(2α − 9),

X2 = 1.

In the same way than previously, we need X1 ≥ 1 which leads to the condition

α ≥ 6. (4.12)

In conclusion, taking into account the conditions (4.7), (4.9), (4.10), (4.11) and (4.12), we have

λmin ≥ 0 ⇔ α ≥ 6. (4.13)

We used the same technique to derive a condition on α for all polynomial degrees p from p = 1 to p = 5. Since
the calculations are very similar, we do not detail them here and we just present the conditions in Table 1.

From these results, we can easily deduce the smallest penalization parameters ensuring the stability of the
scheme (see Tab. 2). It is clear that, for 1 ≤ p ≤ 5, the stability is guaranteed if and only if

α ≥ p (p + 1)
2

, or, equivalently, γ ≥ p (p + 1)
2h

·

4.3. The CFL condition

Now, we propose to prove that the condition

Δt ≤ 2√
λmax

implies (3.2) and (3.3). It is clear that for all β ∈ [−π; π], the polynomial qα admits p + 1 roots. We denote
these roots, from the smallest to the greatest, λ1 (β) , . . . , λp+1 (β). Then, λmax = max

β∈[−π,π]
[max (Λ (β))] =

max
β∈[−π;π]

λp+1 (β).
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Table 1. Conditions on α for each coefficient ci and each polynomial degree p.

p c0 c1 c2 c3 c4 c5

1 α ≥ 1 α ≥ 1

2 α ≥ 3 α ≥ 30

11
α ≥ 2

3 α ≥ 6 α ≥ 6 α ≥ 87

17
α ≥ 3

4 α ≥ 10 α ≥ 543

55
α ≥ 325

34
α ≥ 581

73
α ≥ 4

5 α ≥ 15 α ≥ 15 α ≥ 336

23
α ≥ 1185

86
α ≥ 124

11
α ≥ 5

Table 2. Stability condition on α for each polynomial degree p.

p 1 2 3 4 5

α ≥ 1 α ≥ 3 α ≥ 6 α ≥ 10 α ≥ 15

The interval [−π; π] is a closed subspace of R, then it exists βmax such that λmax = λp+1 (βmax). Moreover,
the real number βmax is such that one of the following conditions is satisfied:

(1) λ′
p+1 (βmax) = 0;

(2) βmax = ±π;
(3) λp+1 is not differentiable in βmax.

In order to exploit the conditions (1) and (3) we use the implicit function theorem.
The polynomial qα satisfies qα (β, λp+1 (β)) = 0, then the implicit function theorem allows us to verify the

existence of λ′
p+1 (β) and to compute its value.

Thus, the conditions (1), (2) and (3) can be rewritten as:

(1)
∂qα

∂β
(βmax, λp+1 (βmax)) = 0;

(2) βmax = ±π;

(3)
∂qα

∂λ
(βmax, λp+1 (βmax)) = 0.

Consequently, we have to determine all the β satisfying (1), (2) or (3). Then, we have

λmax = max
β∈A

λp+1 (β)

where A = {β ∈ [−π; π] such that one of the conditions (1), (2) or (3) is satisfied}.
However, the third condition gives no usable information. We restrict ourselves to β ∈ Ã where Ã =

{β ∈ [−π; π] : such that one of the conditions (1) or (2) is satisfied}.
Then, we have λmax ≥ max

β∈Ã
λp+1 (β) which means that the stability condition we will obtain will just be

necessary.
In the following, we only detail the case p = 3, since the proofs are similar for all p = 1, . . . , 5.
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For the condition (1), we are seeking (β0, λ (β0)) such that
∂qα

∂β
(β0, λ (β0)) = 0. Since

∂qα

∂β
(β0, λ (β0)) = sin (β0)

[
8
h2

(α − 15)λ3 (β0) +
240
h4

(23 + α − 2 cos (β0))λ2 (β0)

+
2880
h6

(3α − 65 − 8 cos (β0))λ (β0) +
100 800

h8
(−6 cos (β0) + 2 (α − 3))

]
:= sin (β0) q̃α (β0, λ (β0)).

we obtain the two following conditions

∂qα

∂β
(β0, λ (β0)) = 0 ⇔

⎧⎪⎪⎨
⎪⎪⎩

sin (β0) = 0

or

q̃α (β0, λ (β0)) = 0.

(4.14)

First, we consider only the condition sin (β0) = 0.

• If β0 = 0, we obtain the following eigenvalues:

0;
60
h2

;
90 + 20α + 2g1 (α)

h2
;
90 + 20α − 2g1 (α)

h2

where g1 (α) =
(
4545 − 1320α + 100α2

) 1
2 .

It is clear that, for α ≥ 0, the two greatest eigenvalues are x1 =
60
h2

and x2 =
1
h2

(90 + 20α + 2g1 (α)).
Studying the sign of the quantity

h2 (x1 − x2) = −150 + 20α + 2g1 (α)

we can easily obtain {
λ4 (0) = x2 if α ≥ 6

λ4 (0) = x1 if α < 6.
(4.15)

We have proved in Section 4.2 that the condition α ≥ 6 is a necessary stability condition. Therefore, we only
have to consider λ4 = x2.

• If β0 = ±π, we obtain the following eigenvalues:

2
h2

(
45 +

√
1605

)
;

2
h2

(
45 −

√
1605

)
;

2
h2

(−15 + 6α + g2 (α)) ;
2
h2

(−15 + 6α − g2 (α))

where g2 (α) =
(
405 − 240α + 36α2

) 1
2 .

The two greatest eigenvalues are x3 = 2
h2

(
45 +

√
1605

)
and x4 = 2

h2 (−15 + 6α + g2 (α)). The study of the
sign of x3 − x4 implies {

λ4 (π) = x3 if α ≤ 10

λ4 (π) = x4 if α ≥ 10.
(4.16)

Now we have to compare λ4 (0) and λ4 (π). We easily verify that⎧⎪⎪⎨
⎪⎪⎩

λ4 (0) ≥ λ4 (π) if α ≥ 2
√

1605 + 393
49

� 9.66,

λ4 (π) > λ4 (0) if
2
√

1605 + 393
49

< α.

(4.17)

Then, we have max
β∈Ã

λ4 (β) ≥ max
β={0,π}

λ4 (β).
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Consequently, considering (4.15) and (4.17), a necessary condition of stability is

Δt

h
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2√
λ4 (π)

if 6 ≤ α ≤ α1,p,

2√
λ4 (0)

if α1,p < α,
(4.18)

with α1,p =
2
√

1605 + 393
49

, which corresponds to the necessary condition (3.1). We remark that the condition

sin (β0) = 0 implies (2) then we do not need to consider this condition once again.

Let us now find (β0, λ (β0)) such that q̃α (β0, λ (β0)) = 0. In fact, we don’t have to compute β0, we interest
ourselves only to maxΛ (β0).

We can easily obtain that

cos (β0) =
(α − 15)h6λ3 (β0) + 30 (23 + α)h4λ2 (β0) + 360 (3α − 65)h2λ (β0) + 25200 (α − 3)

60 (h4λ2 (β0) + 48h2λ (β0) + 1260)
:= Q̃3,α (λ (β0)).

Using this expression of cos (β0) in the characteristic polynomial qα we obtain that λ (β0) is solution to

qα (β0, λ (β0)) = − 1
15h8 (h4λ2 (β0) + 48h2λ (β0) + 1260)

6∑
i=0

λi (β0) h2ic̃i (α) = 0

or, equivalently, solution to

Q3,α (λ (β0)) =
6∑

i=0

λi (β0)h2ic̃i (α) = 0

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃0 (α) = 635040000
(
α2 − 12α + 36

)
,

c̃1 (α) = 3628800
(
15α2 + 70α − 96

)
,

c̃2 (α) = 86400
(
31α2 − 447α + 5316

)
,

c̃3 (α) = 14400
(
8α2 − 135α− 1728

)
,

c̃4 (α) = 180
(
17α2 − 442α + 7740

)
,

c̃5 (α) = 60
(
α2 + 16α − 357

)
,

c̃6 (α) = α2 − 30α + 210.

After having computed the roots of Q3,α, we have to verify that β0 is well defined, that is to say |Q̃3,α (λ) | ≤ 1.
That is why we are interested uniquely in the eigenvalues λ verifying Q3,α (λ) = 0 and |Q̃3,α (λ) | ≤ 1, that is
to say in the elements of V3,α.

Finally, we have max
β∈Ã

λ4 (β) = max [max [λ4 (0) , λ4 (π)] , max V3,α]. We can easily deduce the results of

Theorem 3.4.
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Figure 1. Notations of the faces in 3D.

5. The d-dimensional case

In this section, we propose to adapt the technique proposed in [13] to extend the analysis from the 1D case
to the dD case. Here, we only detail the three-dimensional case, since the technique is exactly the same for the
two dimensional case.

First of all, we consider an infinite homogeneous 3D domain Ω uniformly meshed by cubes of edge h.
We introduce the following notations.

• Ω =
⋃

KJ∈Th

KJ where KJ =
3∏

k=1

SJk
=

3∏
k=1

[Jkh, (Jk + 1)h] and J = (Jk)k=1,...,3.

• On K̂ [0, 1]d, we define the Lagrange basis functions (ϕ̂l)l∈{1,...,p+1}3 by

ϕ̂l (x) =
3∏

k=1

ϕ̂lk (xk)

where ϕ̂lk are the 1D Lagrange basis functions.
• Since the mesh is uniform, the basis functions are defined thanks to the functions (ϕ̂l)l∈{1,...,p+1}3 by

ϕJ
m (x) = ϕ̂m

(
x − Jh

h

)
�Kj

(x)

where �KJ is the indicator function of KJ . These functions can be written as a product of d 1D basis
functions:

ϕJ
m (x) =

3∏
k=1

ϕ̂mk

(
x − Jkh

h

)
�SJk

(xk).

• The different faces of the reference element K̂ are denoted by an exponent C corresponding to the orientation
of the face: North (N), South (S), East (E), West (W), in Front of (F) and in the Back (B) (cf. Fig. 1).

Since the mesh is uniform, we can rewrite the problem on an element I = {I1, I2, I3}:

M3,pδ
nUI1,I2,I3 =K3,pUI1,I2,I3 + KE

3,pUI1+1,I2,I3 + KW
3,pUI1−1,I2,I3

+ KF
3,pUI1,I2+1,I3 + KB

3,pUI1,I2−1,I3 + KN
3,pUI1,I2,I3+1 (5.1)

+ KS
3,pUI1,I2,I3−1
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where

• UI1,I2,I3 corresponds to the restriction of U on the element I;

• δnUI1,I2,I3 =
Un+1

I1,I2,I3
− 2Un

I1,I2,I3
+ Un−1

I1,I2,I3

Δt2
;

• M3,p is a block of the mass matrix M ;

M3,p (i, j) = h3

∫
K̂

ϕ̂iϕ̂j dx̂, i, j ∈ {1, . . . , p + 1}3 ;

• K3,p is a diagonal block of the matrix K

K3,p (i, j) = h
∫

K̂
∇ϕ̂i · ∇ϕ̂j dx̂ −

∑
C∈{N,S,E,W,B,F}

h
2

∫
Γ C (ϕ̂i∇ϕ̂j + ϕ̂j∇ϕ̂i) νC dσ

+
∑

C∈{N,S,E,W,B,F}
h2

∫
Γ C

γϕ̂iϕ̂j dσ, i, j ∈ {1, . . . , p + 1}3 ;

where νC is the outward unit normal vector to the face Γ C .
• KC

3,p is a block of the matrix K corresponding to the interactions between an element I and its neighbour
on the face Γ C :

KE
3,p (i, j) =

∫
[0,1]2

h

2
(ϕ̂i (1, x2, x3)∇ϕ̂j (0, x2, x3) + ϕ̂j (0, x2, x3)∇ϕ̂i (1, x2, x3)) νE

− h2ϕ̂i (1, x2, x3) ϕ̂j (0, x2, x3) dx2dx3

KF
3,p (i, j) =

∫
[0,1]2

h

2
(ϕ̂i (x1, 1, x3)∇ϕ̂j (x1, 0, x3) + ϕ̂j (x1, 0, x3)∇ϕ̂i (x1, 1, x3)) νF

− h2ϕ̂i (x1, 1, x3) ϕ̂j (x1, 0, x3) dx1dx3

KN
3,p (i, j) =

∫
[0,1]2

h

2
(ϕ̂i (x1, x2, 1)∇ϕ̂j (x1, x2, 0) + ϕ̂j (x1, x2, 0)∇ϕ̂i (x1, x2, 1)) νN

− h2ϕ̂i (x1, x2, 1) ϕ̂j (x1, x2, 0) dx1dx2

KW
3,p ((i1, i2, i3), (j1, j2, j3)) = KE

3,p ((j1, i2, i3), (i1, j2, j3))

KB
3,p ((i1, i2, i3), (j1, j2, j3)) = KF

3,p ((i1, j2, i3), (j1, i2, j3))

KS
3,p ((i1, i2, i3), (j1, j2, j3)) = KN

3,p ((i1, i2, j3), (j1, j2, i3)).

Then, multiplying equation (5.1) by the inverse of the mass matrix M3,p, we obtain

δnUI1,I2,I3 =N3,pUI1,I2,I3 + NE
3,pUI1+1,I2,I3 + NW

3,pUI1−1,I2,I3

+ NF
3,pUI1,I2+1,I3 + NB

3,pUI1,I2−1,I3 + NN
3,pUI1,I2,I3+1 (5.2)

+ NS
3,pUI1,I2,I3−1

where N3,p = M−1
3,pK3,p and NC

3,p = M−1
3,pKC

3,p.

Now, we are interested in rewriting the matrices N3,p and NC
3,p with respect to the matrices we have obtained

for the one dimensional case.
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5.1. From the 3 dimensional case to the one dimensional case

The coefficients of M3,p, K3,p, KC
3,p, N3,p and NC

3,p can be deduced from the coefficients of M1,p, K1,p, KW
1,p,

N1,p and NW
1,p thanks to the following theorem.

Theorem 5.1. For all m = (mk)k=1,...,3 ∈ {1, . . . , p + 1}3 and n = (nk)k=1,...,3 ∈ {1, . . . , p + 1}3, we have

1. M3,p (m,n) =
3∏

i=1

M1,p (mi, ni),

2. K3,p (m,n) =
3∑

i=1

⎛
⎝K1,p (mi, ni)

3∏
k=1, k �=i

M1,p (mk, nk)

⎞
⎠,

3. KC
3,p (m,n) = KW

1,p (mpC , npC )
3∏

k=1, k �=pC

M1,p (mk, nk),

4. N3,p (m,n) =
3∑

p=1

⎛
⎝N1,p (mp, np)

3∏
k=1, k �=p

δmk,nk

⎞
⎠,

5. NC
3,p (m,n) = NW

1,p (mpC , npC )
3∏

k=1, k �=pC

δmk,nk
,

(5.3)

where pC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if C ∈ {E, W} ,

2 if C ∈ {N, S} ,

3 if C ∈ {B, F} ,

and N1,p = M−1
1,pK1,p and NC

1,p = M−1
1,pKC

1,p.

The proof of this theorem is given in Appendix C.

5.2. Consequences of the stability analysis

Let us now apply a Fourier transform in the three directions to (5.2) to obtain, for β = [−π, π]3,

δnŨβ1,β2,β3 = NβŨβ1,β2,β3 (5.4)

where the matrix Nβ is defined by

Nβ (m,n) =

3∑
j=1

⎡
⎣N1,p (mj , nj)

3∏
q=1, q �=j

δmq,nq + eiβj NW
1,p (mj, nj)

3∏
q=1, q �=j

δmq,nq + e−iβj NW
1,p (nj , mj)

3∏
q=1, q �=j

δmq,nq

⎤
⎦

which can be rewritten as

Nβ (m,n) =
3∑

j=1

⎛
⎝(N1,p (mj, nj) + eiβj NW

1,p (mj , nj) + e−iβj NW
1,p (nj, mj)

) 3∏
q=1, q �=j

δmq,nq

⎞
⎠

=
3∑

j=1

Nβj (mj , nj)
3∏

q=1, q �=j

δmq,nq .

Using the stability analysis as in Section 4.1, the stability of the scheme is ensured if and only if

λmin,3 ≥ 0 and λmax,3 ≤ 4
Δt2



STABILITY ANALYSIS OF THE IPDG METHOD 919

where λmin,3 = min
β∈[−π,π]3

(min Λ (Nβ)), λmax,3 = max
β∈[−π,π]3

(max Λ (Nβ)) and Λ (Nβ) is the set of eigenvalues

of Nβ.
To compute these values, we use the following lemma.

Lemma 5.2. Let
(
λβ

i

)
i=1,...,p+1

denote the eigenvalues of Nβ and
(
vβ

i

)
i=1,...,p+1

the associated eigenvectors.

Then, the eigenvalues of Nβ are given by

λβ
i =

3∑
k=1

λβk

ik

and the associated eigenvectors by

vβ
i (m) =

3∏
k=1

vβk

ik
(mk). (5.5)

Proof. Let vβ
i defined by (5.5), then

(
Nβvβ

i

)
(m) =

p+1∑
n1,...,n3=1

⎛
⎝ 3∑

q=1

Nβq (mq, nq)
3∏

k=1, k �=q

δmk,nk

3∏
k=1

vβk

ik
(nk)

⎞
⎠

=
3∑

q=1

⎛
⎝
⎛
⎝ p+1∑

nq=1

Nβq (mq, nq) v
βq

iq
(nq)

⎞
⎠ 3∏

k=1, k �=q

vβk

ik
(mk)

⎞
⎠

=
3∑

q=1

⎛
⎝λ

βq

iq
v

βq

iq
(mq)

3∏
k=1, k �=q

vβk

ik
(mk)

⎞
⎠

=

(
3∑

q=1

λ
βq

iq

)
vβ
i (m) �

It is then clear that
λmin,3 = 3λmin and λmax,3 = 3λmax·

Hence, the scheme (5.5) is stable, if and only if

λmin ≥ 0 and
cΔt

h
≤ 1√

3

√
2

λmax
·

The first condition is equivalent to condition (3.1), while the second one implies (3.2) and (3.3).

5.3. Extension to rectangular or parallelepiped mesh

For the sake of simplicity, we restricted our theorem to mesh consisting of squares or cubes. However, one
can extend the proof to the case of rectangular or parallelepipeds meshes to show that a necessary stability
condition is in 2D:

γ ≥ p (p + 1)
2 min (hx, hy)

and in 3D:

γ ≥ p (p + 1)
2 min (hx, hy, hz)

·

Here, hx, hy and hz denote respectively the length of the edges of the elements in the x, y and z direction. The
minimal value of hx, hy and hz is actually the diameter of the inscribed sphere of each element. This remark
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Figure 2. The 3 conditions for p = 1.
Figure 3. Zoom on the 3 cond.
for p = 1.

Figure 4. The 3 conditions for p = 2.
Figure 5. Zoom on the 3 cond.
for p = 2.

confirms that the third definition of ξF using the diameter of the inscribed sphere or circle in 2D is the most
appropriate.

The proof could also be extended to obtain a CFL condition, but its expression is complicated and does not
add much insight.

6. Numerical results

In this section, we first represent the behaviour of the CFL condition with respect to α and we show that
the set Vp,α is empty for almost all the values of α (Sect. 6.1). This illustrate the fact that Theorem 3.2 is
actually necessary and sufficient for most of the values of α. Then, we compare our analytical CFL condition in
infinite domain to the CFL condition computed numerically on finite meshes in order to illustrate the validity
of Theorem 3.4 (Sect. 6.2). Indeed, one of the main goal of this part is to illustrate the fact that the theoretical
results we have obtained are valid for various kind of boundary conditions.

6.1. Behaviour of the CFL condition with respect to α

In Figures 2, 4, 6, 8 and 10 we plot the functions C1,p (blue line with diamonds), C2,p (α) (red line with
circles) and C3,p (α) (black line) respectively for p = 1, 2, 3, 4 and 5. The function C3,p (α) only modifies the
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Figure 6. The 3 conditions for p = 3.
Figure 7. Zoom on the 3 cond.
for p = 3.

Figure 8. The 3 conditions for p = 4.
Figure 9. Zoom on the 3 cond.
for p = 4.

CFL condition in a small segment around α1,p. The behaviour is confirmed in Figures 3, 5, 7, 9 and 11 which
represent a zoom around α1,p. Theses numerical results confirm the fact that Theorem 3.2 provides actually a
necessary and sufficient condition except for a small range of α. Moreover, the CFL condition remains constant

for α from
p (p + 1)

2
to a close value of α1

p, which means that it is not necessary to choose α =
p (p + 1)

2
to

optimize the time step.

6.2. Comparison with numerical experiments

In this section, we compare the results we have obtained previously with numerical experiments. The goal
are (a) to show that the necessary condition we have proposed is actually sufficient in practical applications and
(b) to show that even if the results we have proposed have been obtained for infinite domains, they are also valid
for finite domains. We consider the simulation of wave propagation in an homogeneous 1D domain Ω = [0, 10]
with a velocity c = (μ/ρ)

1/2 = 1 m s−1. We impose also Dirichlet boundary conditions at the both ends of the
domain and the length of the space step is h = 0.1. We precise that we have performed these experiments with
other boundary conditions as Neumann or periodic boundary coonditions and the results are equivalent.
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Figure 10. The 3 conditions for p = 5.
Figure 11. Zoom on the 3 cond.
for p = 5.

Figure 12. Numerical compari-
son in P 1.

Figure 13. Numerical compari-
son in P 2.

We computed numerically the greatest eigenvalue λmax of the matrix M−1K and we deduced the CFL

condition of the scheme using the formula
cΔt

h
≤ 2√

λmax

. In Figures 12, 13, 14, 15 and 16 we compare the

analytical CFL (red line) obtained by Theorem 3.4 to the numerical CFL (triangles), respectively for p = 1, 2, 3, 4
and 5. All figures show a very good agreement between the analytical and the numerical CFL.

7. Conclusion

In this paper, we have proved necessary conditions for L2-stability of an IPDG method using regular meshes
and the numerical results show that these conditions are actually sufficient in practice. It also confirm the
conjecture of Ainsworth, Monk and Muniz up to p = 5. Moreover, we have observed that the CFL condition is

constant with respect to α on a segment
[
p (p + 1)

2
, α̃

]
and is decreasing as α−1/2 for α > α̃. This means that

it is not necessary to choose α too close to p (p + 1)/2 to improve the CFL condition. Finally, we have observed
that a good choice for ξF should be the diameter of the inscribed circle (or sphere). This should be confirmed
by an analysis on triangular meshes, which will be the topic of future work.
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Figure 14. Numerical compari-
son in P 3.

Figure 15. Numerical compari-
son in P 4.

Figure 16. Numerical comparison in P 5.

Appendix A. Expression of the polynomial qα

• In the case of discontinuous basis functions of degree 1, we can easily obtain the following characteristic
polyomial associated to the matrix Nβ

qα (β, λ) = λ2 + c1 (α, β) λ + c0 (α, β) (A.1)

with ⎧⎪⎪⎨
⎪⎪⎩

c1 (α, β) =
4
h2

((3 − α) cos (β) − 2α)

c0 (α, β) =
12
h4

(
cos2 (β) − 2α cos (β) + 2α − 1

)
.

• In the case of discontinuous basis functions of degree 2, the characteristic polyomial associated to the matrix
Nβ is

qα (β, λ) = −λ3 + c2 (α, β)λ2 + c1 (α, β) λ + c0 (α, β) (A.2)
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with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c2 (α, β) = − 6
h2

((α − 8) cos (β) − 3α)

c1 (α, β) =
12
h4

(
−6 cos2 (β) − 2 (15 + 4α) cos (β) + 4 (24 − 13α)

)
c0 (α, β) = −1440

h6

(
cos2 (β) + (α − 3) cos (β) + 2 − α

)
.

• In the case of discontinuous basis functions of degree 4, the characteristic polyomial associated to the matrix
Nβ is

qα (β, λ) = −λ5 + c4 (α, β) λ4 + c3 (α, β)λ3 + c2 (α, β) λ2 + c1 (α, β) λ + c0 (α, β) (A.3)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c4 (α, β) = −10
h2

((α − 24) cos (β) − 5α)

c3 (α, β) = −120
h4

(
5 cos2 (β) + (4α + 287) cos (β) + 10 (15α − 88)α

)
c2 (α, β) = −10 080

h6

(
5 cos2 (β) + (3α − 305) cos (β) + 990 − 133α

)
c1 (α, β) = −201600

h8

(
15 cos2 (β) + (8α + 165) cos (β) + 2 (59α − 468)

)
c0 (α, β) = −50803200

h10

(
2 cos2 (β) + (α − 10) cos (β) + 8 − α

)
.

• In the case of discontinuous basis functions of degree 5, the characteristic polyomial associated to the matrix
Nβ is

qα (β, λ) = λ6 + c5 (α, β) λ5 + c4 (α, β) λ4 + c3 (α, β)λ3 + c2 (α, β) λ2 + c1 (α, β) λ + c0 (α, β) (A.4)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c5 (α, β) = −12
h2

((α − 35) cos (β) + 6α)

c4 (α, β) = −420
h4

(
−3 cos2 (β) + (2α + 336) cos (β) + 1155 − 134α

)
c3 (α, β) = −40320

h6

(
−4 cos2 (β) + (2α − 702) cos (β) + 256α − 2849α

)
c2 (α, β) = −1814400

h8

(
−9 cos2 (β) + (4α770) cos (β) + 9343− 326α

)
c1 (α, β) = −101606400

h10

(
−12 cos2 (β) + (5α − 303) cos (β) + 94α − 1170

)
c0 (α, β) = −10059033600

h12

(
−5 cos2 (β) + (2α − 20) cos (β) + 25 − 2α

)
.

Appendix B. Definition of Qp,α and Q̃p,α

We present here the expressions of the polynomial Qp,α and the rational function Q̃p,α for 1 ≤ p ≤ 5.

• For the polynomials of degree 1, Q̃1,α is defined by

Q̃1,α (λ) =
h2λ

2

(α

3
− 1
)

+ α.
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We have,

Q1,α (λ) =
2∑

i=0

λih2ic̃i (α)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c̃0 (α) = 36
(
α2 − 2α + 1

)
,

c̃1 (α) = 12
(
α2 − α

)
,

c̃2 (α) = α2 − 6α + 6.

• In the case p = 2, the definition of Q̃p,α is

Q̃2,α (λ) = − (α − 1)h4λ2 + 4 (15 + 4α)h2λ + 240 (α − 3)
24 (h2λ + 20)

·

The polynomial Q2,α is such that

Q2,α (λ) =
4∑

i=0

λih2ic̃i (α)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃0 (α) = 57600
(
α2 − 2α + 1

)
,

c̃1 (α) = 1920
(
4α2 − 43α + 39

)
,

c̃2 (α) = 16
(
46α2 − 342α + 1521

)
,

c̃3 (α) = 8
(
4α2 + α − 140

)
,

c̃4 (α) = α2 − 16α + 56.

• For p = 3, we have

Q3,α (λ) =
6∑

i=0

λih2ic̃i (α)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃0 (α) = 635040000
(
α2 − 12α + 36

)
,

c̃1 (α) = 3628800
(
15α2 + 70α − 96

)
,

c̃2 (α) = 86400
(
31α2 − 447α + 5316

)
,

c̃3 (α) = 14400
(
8α2 − 135α− 1728

)
,

c̃4 (α) = 180
(
17α2 − 442α + 7740

)
,

c̃5 (α) = 60
(
α2 + 16α − 357

)
,

c̃6 (α) = α2 − 30α + 210.

and Q̃3,α is defined by

Q̃3,α (λ) =
(α − 15)h6λ3 + 30 (23 + α) h4λ2 + 360 (3α − 65)h2λ + 25200 (α − 3)

60 (h4λ2 + 48h2λ + 1260)
·
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• For the polynomials of degree 4, Q̃4,α is defined by

Q̃4,α (λ) = − B̃4,α (λ)
120 (169344 + h6λ3 + 84h4λ2 + 5040h2λ)

with

B̃4,α (λ) = λ4h8 (α − 24) + 12λ3h6 (4α + 287) + 1008λ2h4 (3α − 305)

+20160λh2 (8α − 165) + 5080320 (α − 1)

and, we have

Q4,α (λ) =
8∑

i=0

λih2ic̃i (α).

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃0 (α) = 25809651302400 (α − 6)2 ,

c̃1 (α) = 204838502400
(
8α2 − 357α + 1854

)
,

c̃2 (α) = 81285120
(
698α2 + 3882α + 292185

)
,

c̃3 (α) = 203212800
(
72α2 − 13791α− 328

)
,

c̃4 (α) = 48384
(
719α2 − 12750α + 2419275

)
,

c̃5 (α) = 8064
(
76α2 − 972α − 286209

)
,

c̃6 (α) = 144
(
58α2 − 5282α + 201609

)
,

c̃7 (α) = 24
(
4α2 + 241α− 6972

)
,

c̃8 (α) = α2 − 48α + 55.

• For p = 5, Q̃5,α is such that

Q̃5,α (λ) =
B̃5,α (λ)

210 (39916800 + λ4h8 + 128λ3h6 + 12960λ2h4 + 967680λh2)

with

B̃5,α (λ) = λ5h10 (α − 35) + 70λ4h8 (α + 168) + 6720λ3h6 (α − 351)

+302400λ2h4 (2α + 385) + 8467200λh2 (5α − 303) + 1676505600 (α − 1)

and we have

Q5,α (λ) =
10∑

i=0

λih2ic̃i (α)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃0 (α) = 2810671026831360000 (α − 15)2 ,

c̃1 (α) = 28390616432640000 (5α + 168) (α − 15),

c̃2 (α) = 10241925120000
(
373α2 − 35067α + 855423

)
,

c̃3 (α) = 3072577536000
(
24α2 − 895α − 159240

)
,

c̃4 (α) = 1016064000
(
1151α2 − 11360α + 24379995

)
,

c̃5 (α) = 67737600
(
257α2 − 3570α− 9096540

)
,

c̃6 (α) = 2822400
(
76α2 − 2417α + 2988895

)
,

c̃7 (α) = 67200
(
32α2 + 2383α− 974820

)
,

c̃8 (α) = 140
(
131α2 − 37062α + 2285235

)
,

c̃9 (α) = 140
(
α2 + 151α − 5912

)
,

c̃10 (α) = α2 − 70α + 1190.

Appendix C. Proof of Theorem 5.1

This section is devoted to the proof of the following theorem

Theorem C.1. For all m = (mk)k=1,...,3 ∈ {1, . . . , p + 1}3 and n = (nk)k=1,...,3 ∈ {1, . . . , p + 1}3, we have

1. M3,p (m,n) =
3∏

i=1

M1,p (mi, ni),

2. K3,p (m,n) =
3∑

i=1

⎛
⎝K1,p (mi, ni)

3∏
k=1, k �=i

M1,p (mk, nk)

⎞
⎠

3. KC
3,p (m,n) = KW

1,p (mpC , npC )
3∏

k=1, k �=pC

M1,p (mk, nk)

4. N3,p (m,n) =
3∑

p=1

N1,p (mp, np)
3∏

k=1, k �=p

δmk,nk

5. NC
3,p (m,n) = NW

1,p (mpC , npC )
3∏

k=1, k �=pC

δmk,nk

(C.1)

where pC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if C ∈ {E, W} ;

2 if C ∈ {N, S} ,

3 if C ∈ {B, F} .

and N1,p = M−1
1,pK1,p and NC

1,p = M−1
1,pKC

1,p;
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Proof. a

• Proof of 1.
Considering the notations and the results of Section 5, we have

M3,p (m,n) = h3

∫
K̂

ϕ̂mϕ̂ndx

= h3

∫
K̂

3∏
i=1

ϕ̂mi (xi)
3∏

i=1

ϕ̂ni (xi)
3∏

i=1

dxi

=
3∏

i=1

h

∫
[0,1]

ϕ̂mi (xi) ϕ̂ni (xi) dxi

=
3∏

i=1

M1,p (mi, ni)

• Proof of 2.
We first have the following lemma for the volumic term.

Lemma C.2. For all m = (mk)k=1,...,3 ∈ {1, . . . , p + 1}3 and n = (nk)k=1,...,3 ∈ {1, . . . , p + 1}3, we have

h

∫
K̂

∇ϕ̂m · ∇ϕ̂ndx =
3∑

i=1

⎛
⎝ 1

h

∫
[0,1]

∂ϕ̂mi

∂xi
(xi)

∂ϕ̂ni

∂xi
(xi) dxi

3∏
k=1, k �=i

M1,p (mk, nk)

⎞
⎠.

Proof. We know that, ∀m ∈ {1, . . . , p + 1}d

ϕ̂m (x) =
3∏

k=1

ϕ̂mp (xp)

which implies that

∂ϕ̂m

∂xk
(x) =

∂ϕ̂mk

∂xk
(xk)

3∏
i=1, i�=k

ϕ̂mi (xi).

Then, using the same reasoning as previously,

h

∫
K̂

∇ϕ̂m · ∇ϕ̂ndx =
3∑

i=1

⎛
⎝ 1

h

∫
[0,1]

∂ϕ̂mi

∂xi
(xi)

∂ϕ̂ni

∂xi
(xi) dxi

3∏
k=1, k �=i

h

∫
[0,1]

ϕ̂mk
(xk) ϕ̂nk

(xk) dxk

⎞
⎠

=
3∑

i=1

⎛
⎝ 1

h

∫
[0,1]

∂ϕ̂mi

∂xi
(xi)

∂ϕ̂ni

∂xi
(xi) dxi

3∏
k=1, k �=i

M1,p (mk, nk)

⎞
⎠

which ends the proof. �

Now, we have to deal with the surface terms.
Let us first remark that, over all the faces Γ C ,

∇ϕ̂m · ν|Γ C =
∂ϕ̂mpC

∂xpC

(xpC ) ν1,C

3∏
k=1, k �=pC

ϕ̂mk
(xk) (C.2)
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where ν1,C is the outward unit normal vector in the one dimensional case defined by

ν1,C =

{
1 if C ∈ {E, N, F} ,

−1 if C ∈ {W, S, B}

and xpC is defined by

xpC =

{
1 if C ∈ {E, N, F} ,

0 if C ∈ {W, S, B} .

Then, we can propose the following lemma.

Lemma C.3. For all C ∈ {E, W, N, S, F, B}, we have ∀m,n ∈ {1, . . . , p + 1}d

h

∫
Γ C

ϕ̂m (∇ϕ̂n · ν) dσ =
1
h

ϕ̂mpC
(xpC )

∂ϕ̂npC

∂xpC

(xpC ) ν1,C

3∏
k=1, k �=pC

M1,p (mk, nk)

h2

∫
Γ C

γϕ̂mϕ̂ndσ = γϕ̂mpC
(xpC ) ϕ̂npC

(xpC )
3∏

k=1, k �=pC

M1,p (mk, nk).

Proof. First of all, using (C.2), we have

h

∫
Γ C

ϕ̂m (∇ϕ̂n · ν) dσ = h

∫
Γ C

(
3∏

k=1

ϕ̂mk
(xk)

)⎛
⎝∂ϕ̂npC

∂xpC

(xpC ) ν1,C

3∏
k=1, k �=pC

ϕ̂nk
(xk)

⎞
⎠ 3∏

k=1,k �=pC

dxk

=
1
h

ϕ̂mpC
(xpC )

∂ϕ̂npC

∂xpC

(xpC ) ν1,C

3∏
k=1, k �=pC

h2

∫
[0,1]

ϕ̂mk
(xk) ϕ̂nk

(xk) dxk

which can be rewritten as∫
Γ C

ϕ̂m (∇ϕ̂n · ν) dσ = ϕ̂mpC
(xpC )

∂ϕ̂npC

∂xpC

(xpC ) ν1,C

3∏
k=1, k �=pC

M1,p (mk, nk).

In the same way, for the penalization term, we have:

h2

∫
Γ C

γϕ̂mϕ̂ndσ = ϕ̂mpC
(xpC ) ϕ̂npC

(xpC )h2

∫
Γ C

γ
3∏

k=1, k �=pC

ϕ̂mk
(xk)

3∏
k=1, k �=pC

ϕ̂nk
(xk)

3∏
k=1, k �=pC

dσk

= γϕ̂mpC
(xpC ) ϕ̂npC

(xpC )
3∏

k=1, k �=pC

h2

∫
[0,1]

ϕ̂mk
(xk) ϕ̂nk

(xk) dxk

which clearly implies that
∫

Γ C

γϕ̂mϕ̂ndσ = γϕ̂mpC
(xpC ) ϕ̂npC

(xpC )
3∏

k=1, k �=pC

M1,p (mk, nk)

which ends the proof. �

Finally, using the two lemmas, we obtain

K3,p (m,n) =
3∑

i=1

⎛
⎝K1,p (mi, ni)

3∏
k=1, k �=i

M1,p (mk, nk)

⎞
⎠. (C.3)
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• Proof of 3.
To rewrite the terms KC

3,p (m,n) for all m, n, we use a similar reasoning as for K3,p.
• Proof of 4.

To prove 4. and 5., we need the following lemma.

Lemma C.4. Let m = (mp)p=1,...,3 and n = (np)p=1,...,3.
We have

M−1
3,p (m,n) =

3∏
k=1

M−1
1,p (mk, nk).

Proof. Let A be the matrix defined ∀m,n ∈ {1, . . . , p + 1}d by

A (m,n) =
3∏

k=1

M−1
1,p (mk, nk).

We have

(AM) (m,n) =
p+1∑

l1,...,l3=1

(
3∏

k=1

M−1
1,p (mk, lk)

3∏
k=1

M1,p (lk, nk)

)

=

⎛
⎝ p+1∑

l1,l2=1

(
2∏

k=1

M−1
1,p (mk, lk)

2∏
k=1

M1,p (lk, nk)

)
3∑

l3=1

M−1
1,p (m3, l3) M1,p (l3, n3)

⎞
⎠

=
3∏

k=1

(
p+1∑
lk=1

M−1
1,p (mk, lk) M1,p (lk, nk)

)
.

But,
p+1∑
lk=1

M−1
1,p (mk, lk)M1,p (lk, nk) =

(
M−1

1,pM1,p

)
(mk, nk) = δmk,nk

so that

(AM) (m,n) =
3∏

k=1

δmk,nk
= I (m,n)

where I is the identity matrix, which ends the proof. �

Let us now consider the matrix N3,p = M−1
3,pK3,p. First, we rewrite K3,p as

K3,p =
3∑

q=1

Tq,

with Tq (m,n) = K1,p (mq, nq)
3∏

k=1, k �=q

M1,p (mk, nk).
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Then, M−1
3,pK3,p =

3∑
q=1

M−1
3,pTq and, using Lemma C.4

(
M−1

3,pT1

)
(m,n) =

p+1∑
l1,...,l3=1

(
3∏

k=1

M−1
1,p (mk, lk)K1,p (l1, n1)

3∏
k=2

M1,p (lk, nk)

)

=
p+1∑

l1,...,l3=1

M−1
1,p (m1, l1)K1,p (l1, n1)M−1

1,p (m2, l2)M1,p (l2, n2)M−1
1,p (m3, l3)M1,p (l3, n3)

=
p+1∑
l1=1

M−1
1,p (m1, l1)K1,p (l1, n1)

3∏
k=2

(
p+1∑
lk=1

M−1
1,p (mk, lk)M1,p (lk, nk)

)
.

So that (
M−1

3,pT1

)
(m,n) = N1,p (m1, n1) δm2,n2δm3,n3 .

Performing the same calculations for T2 and T3, we obtain

N3,p (m,n) =
3∑

p=1

N1,p (mp, np)
3∏

k=1, k �=p

δmk,nk
.

• Proof of 5.
We apply the technique used to prove 4. to show that

NC
3,p (m,n) = NW

1,p (mpC , npC )
3∏

k=1, k �=pC

δmk,nk
�
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[16] M.J. Grote and D. Schötzau, Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation.
Preprint No. 2008-04 (2008).

[17] D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation.
Geophys J. Int. 139 (1999) 806–822.

[18] P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217–237.

[19] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal.
Des. 16 (1994) 37–348.

[20] K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005)
401–407.

[21] G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation.
SIAM J. Sci. Statist. Comput. 8 (1987) 135–151.

[22] T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl.
Mech. Engrg. 192 (2003) 2765–2773.


	Introduction
	Interior penalty discontinuous galerkin discretization of the wave equation
	Stability analysis
	Proof for the 1-dimensional case
	Fourier analysis of the IPDG scheme in 1D
	Proving the condition min0
	The CFL condition

	The d-dimensional case
	From the 3 dimensional case to the one dimensional case
	Consequences of the stability analysis
	Extension to rectangular or parallelepiped mesh

	Numerical results
	Behaviour of the CFL condition with respect to 
	Comparison with numerical experiments

	Conclusion
	Appendix A. Expression of the polynomial q
	Appendix B. Definition of Qp, and p,
	Appendix C. Proof of Theorem 5.1
	References

