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A DIFFUSE INTERFACE FRACTIONAL TIME-STEPPING TECHNIQUE
FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH MOVING CONTACT

LINES ∗

Abner J. Salgado
1

Abstract. For a two phase incompressible flow we consider a diffuse interface model aimed at
addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the
Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show
that this model possesses a natural energy law. For this system, a new numerical technique based on
operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally
stable. We present several numerical illustrations of this scheme.
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1. Introduction

The no-slip boundary condition is usually regarded as a cornerstone in fluid dynamics, and its applicability
has been proved for diverse fluid flow problems. However, when dealing with two-phase flows it is of importance
to accurately describe the displacement of the so-called three-phase contact line, that is, the points which are
at the intersection of the solid boundary of the domain and the interface separating the two fluids. In this case,
contrary to what is seen in experiments, the no-slip condition implies that the contact line does not move. This
is known as the contact line problem (paradox) and it has recently been the subject of intense research and
debate. The interested reader is referred to [4, 5, 11, 32, 34, 38, 39] for an overview.

Let us elaborate on the ideas mentioned above. Consider the motion of an incompressible, viscous two-phase
fluid, which can be described by the time-dependent Navier-Stokes equations,⎧⎨

⎩
ρt +∇·(ρu) = 0,
ρ (ut + u·∇u) +∇p−∇· (ηT(u)) = ρf + γHnΣδΣ,
∇·u = 0.

(1.1)

The unknowns are: ρ > 0 – the density, the velocity field u and the pressure p; the parameter η > 0 is the
dynamic viscosity coefficient and f is an external driving force; Σ is the interface between the two phases (which
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is also a priori unknown, thus making this a free boundary problem), nΣ its normal and H its mean curvature;
γ is the surface tension coefficient. For a vector v, we have denoted by T(v) the symmetric gradient∇v+(∇v)ᵀ.
The fluid occupies a bounded domain Ω in Rd with d = 2 or 3, and a solution to the above problem is sought
over a bounded time interval [0, T ]. We supplement this system with the initial conditions

ρ|t=0 = ρ0(x) u|t=0 = u0(x). (1.2)

If we assume that the fluid is confined within solid walls, then we must impose the so-called impermeability
condition

u·n|Γ = 0, (1.3)

where Γ = ∂Ω and n is the outer unit normal to Γ. This boundary condition implies that we do not need
boundary conditions on the density or pressure. However, we must still prescribe a boundary condition on the
tangential component of the velocity. Usually, the no-slip condition is assumed

u·τ |Γ = U(x, t)·τ , (1.4)

where τ is any vector tangent to Γ and U is the wall velocity. Let us now consider the case of a non-moving
container (U ≡ 0) and assume that at some instant part of the interface Σ reaches the walls Γ. If that is the
case, the no-slip boundary condition (1.4) implies then that Σ ∩ Γ (the contact line) will not move anymore.
This is in contrast to what experience dictates.

The seminal work by Huh and Scriven [21] is one of the first references to approach systematically the contact
line problem. They showed that the no-slip boundary condition implies that the shear stress and pressure have
a non-integrable singularity at the contact line which, in turn, implies that the work done by the wall stresses
and the viscous dissipation are infinite. They conclude that the no-slip condition is the cause of this conundrum
and propose that some type of smoothing must be introduced to relax this condition. As a first variant they
propose to consider the well-known Navier slip condition

β (u−U) ·τ + η(T(u)·n)·τ |Γ = 0, (1.5)

where β is the slip coefficient. In practice, this coefficient is very large, which explains why in many cases the
no-slip condition is a good approximation. However, they realize that to obtain a consistent model one must
also take into account the fact that there are additional interfacial stresses acting on the three-phase contact
line Σ ∩ Γ, see also [38].

Qian et al., first on the basis of molecular dynamics simulations (cf. [31]), and then using variational principles
(cf. [33]); have proposed the so-called generalized Navier boundary condition:

β (u−U) ·τ + η(T(u)·n)·τ + γ(cos(θd)− cos(θs))t·τδ∂Σ |Γ = 0, (1.6)

where δ∂Σ is a Dirac measure supported at the contact line, θd is the angle between Σ and Γ, θs is the static
contact angle, i.e. the angle Σ and Γ would make at equilibrium and is considered part of the data of the
problem and t is the unit normal vector of Σ restricted to Γ. Compared to the classical Navier slip boundary
conditions, we have the extra term

γ(cos(θd)− cos(θs))t·τ δ∂Σ

which is the so-called uncompensated Young stress, and measures the difference between the dynamic contact
angle and the static contact angle θs.

In this work we consider a diffuse interface model of (1.1), (1.2), (1.3) and (1.6). We show that this system
has an energy law and propose an efficient discretization scheme for it. Our model is a generalization of the one
treated in [33], where only the case of a Stokes fluid is considered. In this respect, it is related to the models
presented in [1] where, however, boundary conditions are not discussed. The energy law that we obtain for this
model is similar to the ones obtained in the aforementioned references and, in addition, generalizes the one
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obtained in [14], Theorem 3.1, to the case of two-phase fluids with different densities. Moreover, this energy law
is a variant of the one obtained in [15], Proposition 1, where the sharp interface version (1.6) of this boundary
condition is considered. Concerning numerics, our approach is new in the sense that it extends the schemes
of [19,35] to the case of the generalized Navier boundary condition, and thus it proposes schemes that are more
general than the ones considered in [14, 20], which are restricted to the matched density case.

The organization of this work is as follows: Section 2 introduces the diffuse interface model we shall be
concerned with. In Section 3 we show that this system has an energy law. A time discrete scheme for our model
is introduced in Section 4 and we show that this scheme is unconditionally stable. The space discretization is
handled using Galerkin techniques in Section 5 and it is shown that the fully discrete scheme shares the same
stability properties as the semi-discrete one. Finally, a series of numerical experiments aimed at illustrating the
capabilities of the proposed algorithm are exposed in Section 6.

2. A Diffuse interface model for moving contact lines

Let us present the model. To simplify notation, for any vector v defined on Γ, we denote

vτ := v − (v·n)n,

similarly, for any smooth enough scalar field ψ defined on Γ, we denote

∂τψ := (∇ψ)τ .

On the basis of thermodynamical principles, [33] has obtained a diffuse interface variant of (1.6) for a flow
governed by Stokes law. Repeating the steps provided in this reference, we can obtain a more general model
which we now describe. The reader is referred to [1, 29] for details. Let us introduce the so-called phase field
variable φ, which serves as a marker, i.e. φ ≈ ±1 on each one of the phases, respectively. All material parameters
that are phase dependent are then functions of φ. For instance, we can define the density as

ρ(φ) =
ρ1 − ρ2

2
φ+

ρ1 + ρ2

2
·

The phase field variable φ satisfies ⎧⎨
⎩
φt + u·∇φ = ∇· (M(φ)∇μ) , in Ω,
M(φ)∂nμ = 0, on Γ,
α (φt + uτ∂τφ) + L(φ) = 0, on Γ.

(2.1)

Here M > 0 is a (phenomenological) mobility parameter and α is a relaxation parameter. The quantity μ is
known as the chemical potential and is defined by

μ := γ

(
1
δ
W ′(φ) − δΔφ

)
+

1
2
ρ′(φ)|u|2, (2.2)

where the function W is the Ginzburg–Landau double well potential

W(r) =
1
4
(1− r2)2,

and δ is a parameter that characterizes the interface thickness. The boundary condition M(φ)∂nμ = 0 comes
from impermeability. Finally,

L(φ) := γ
(
δ∂nφ+Θ′

fs(φ)
)
, (2.3)

Θfs is the interfacial free energy density per unit area at the fluid-solid interface. A possible definition of the
interfacial free energy is

Θfs(φ) = cos(θs) sin(πφ/2) +
γ1,2

2γ
,

where γ1,2 is the difference of surface tensions between each one of the phases and the solid.
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Remark 2.1 (Static contact angle). It has been shown in [33] that minimization of the free energy with respect
to φ leads to L(φ) ≡ 0, from which we can recover Young’s equation for the static contact angle, i.e.

γΘfs(φ+) + γ cos θs = γΘfs(φ−)

see [33], equation (4.6) for more details.

The velocity and pressure satisfy⎧⎪⎨
⎪⎩
σ(φ)(σ(φ)u)t + (ρ(φ)u·∇)u + 1

2∇·(ρ(φ)u)u−∇· (η(φ)T(u)) +∇p =
ρ(φ)f + μ∇φ+ 1

2ρ
′(φ)φtu, in Ω,

∇·u = 0, in Ω,
un = 0, β(φ) (uτ −U) + η(φ)T(u)nτ = L(φ)∂τφ, on Γ.

(2.4)

Here σ(φ) :=
√
ρ(φ). The surface tension is now expressed by the term μ∇φ, see [22, 35, 37] for more details.

Remark 2.2 (Momentum equation). Notice that, as initially proposed in [18], we have modified the original
form of the momentum equation

ρ(φ)ut + (ρ(φ)u·∇)u−∇· (η(φ)T(u)) +∇p = ρ(φ)f + μ∇φ,
by adding to it

1
2

(ρ(φ)t +∇·(ρ(φ)u)) u = 0,

i.e. a suitable multiple of the mass conservation equation. In this respect, we must mention that this step is also
performed in [37], where the phase field Navier Stokes equations with no-slip boundary conditions are studied.
The purpose of this reformulation is to take advantage of the following identity∫

Ω

[(ρ(φ)v·∇)w] ·w +
1
2

∫
Ω

∇·(ρ(φ)v)w·w = 0, (2.5)

for all v·n|Γ = 0. Notice that we do not require the fields to be solenoidal. This is important not just to obtain
an energy law of this system but also in the design of efficient numerical schemes. In this respect, the reader is
referred to [6], Section 2.3 where, for the standard Cahn Hilliard Navier Stokes problem, a numerical simulation
is presented that illustrates the loss of stability that might occur if this modification is not accounted for.

Remark 2.3 (Diffuse interface model). Several remarks are in order about this model:

• Model (2.1)–(2.4) belongs to the general class of so-called phase field models, which have recently gained
popularity in the literature. One of the main advantages of phase field formulations for the simulation of free
surface flows is that, as opposed to interface tracking techniques (i.e. ALE formulations), topological changes
can be handled automatically. In addition, derivation of such models is based on the physical principle of
energy dissipation, which might not be the case with other interface capturing techniques as, say, level set
methods.

• The derivation of the phase field version of the generalized Navier boundary condition introduced in (2.4)
as well as its relation with the sharp interface counterpart presented in (1.6) is discussed in [32], Section 5.2.

• The model contains several parameters. The origin and values of M , α, δ, θs and β are discussed in [32,33].

3. Energy law for the generalized Navier boundary condition

The purpose of this section is to show that the Cahn Hilliard Navier Stokes equations with generalized Navier
boundary conditions (2.1)–(2.4) satisfy an energy law. This is important not just from an analysis point of view,
as it guarantees that, in a sense, the system is thermodynamically consistent (see [1]), but will also guide us in
the construction of numerical schemes. To avoid irrelevant technicalities, let us assume that f ≡ 0 and U ≡ 0.
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Theorem 3.1 (Energy law). Let f ≡ 0 and U ≡ 0. Then the system (2.1)–(2.4) has the following energy law

d
dt

{∫
Ω

[
1
2
|σ(φ)u|2 + γ

(
δ

2
|∇φ|2 +

1
δ
W(φ)

)]
+ γ

∫
Γ

Θfs(φ)
}

+
∫

Ω

(
η(φ)|T(u)|2 +M(φ)|∇μ|2)+

∫
Γ

(
β(φ)|uτ |2 + α |φt + uτ∂τφ|2

)
= 0. (3.1)

Remark 3.2 (Physical interpretation of the energy law). The many terms in (3.1), can be given a physical
interpretation. Consider first the term inside the time derivative:∫

Ω

[
1
2
|σ(φ)u|2 + γ

(
δ

2
|∇φ|2 +

1
δ
W(φ)

)]
+ γ

∫
Γ

Θfs(φ).

The first term is the kinetic energy of the fluid; the second and third correspond to the interfacial energy; whereas
the boundary integral term to the energy at the walls. The other terms can be characterized as dissipative
mechanisms in the system. It is clear that

∫
Ω
η(φ)|T(u)|2 represents viscous dissipation; the term

∫
Ω
M(φ)|∇μ|2,

as stated in [33], gives the composition diffusion in the bulk; and, finally, the boundary terms are associated
with the loss mechanism related with the movement of the fluid at the walls. In other words, (3.1) expresses
that the change in energy is due to dissipation.

Proof. (Theorem 3.1) Let us first multiply the momentum equation (first equation in (2.4)) by u and integrate
over Ω. Using (2.5) we obtain

1
2

d
dt

∫
Ω

|σ(φ)u|2 −
∫

Ω

∇· (η(φ)T(u)) ·u +
∫

Ω

∇p·u =
∫

Ω

μ∇φ·u +
1
2

∫
Ω

ρ′(φ)φt|u|2.

The impermeability condition on the velocity and the incompressibility constraint give us∫
Ω

∇p·u =
∫

Γ

pun −
∫

Ω

p∇·u = 0.

Integration by parts and the impermeability condition give us∫
Ω

∇· (η(φ)T(u)) ·u =
∫

Γ

η(φ)T(u)nτ ·uτ −
∫

Ω

η(φ)|T(u)|2,

so that the generalized Navier boundary condition gives us

1
2

d
dt

∫
Ω

|σ(φ)u|2 +
∫

Ω

η(φ)|T(u)|2 +
∫

Γ

β(φ)|uτ |2

+ α

∫
Γ

(φt + uτ∂τφ) uτ∂τφ =
∫

Ω

μ∇φ·u +
1
2

∫
Ω

ρ′(φ)φt|u|2. (3.2)

Let us take now the first equation in (2.1), multiply it by μ and integrate it over Ω. We obtain∫
Ω

μφt +
∫

Ω

μ∇φ·u =
∫

Ω

∇· (M(φ)∇μ)μ.

Integration by parts and the impermeability condition give us,∫
Ω

∇· (M(φ)∇μ)μ = −
∫

Ω

M(φ)|∇μ|2.
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Multiply the definition of the chemical potential μ by −φt and integrate over Ω

−
∫

Ω

μφt = γδ

∫
Ω

Δφφt − γ

δ

∫
Ω

W ′(φ)φt − 1
2

∫
Ω

ρ′(φ)φt|u|2 =

γδ

∫
Γ

∂nφφt − γδ

2
d
dt

∫
Ω

|∇φ|2 − γ

δ

d
dt

∫
Ω

W(φ)− 1
2

∫
Ω

ρ′(φ)φt|u|2,

where to obtain the second equality we integrated by parts. The boundary condition on the phase field variable
yields

γδ

∫
Γ

∂nφφt = −α
∫

Γ

(φt + uτ∂τφ)φt − γ
∫

Γ

Θ′
fs(φ)φt.

Adding the last four relations gives

γ
d
dt

[∫
Ω

(
δ

2
|∇φ|2 +

1
δ
W(φ)

)
+
∫

Γ

Θfs(φ)
]

+
∫

Ω

μ∇φ·u +
∫

Ω

M(φ)|∇μ|2

+ α

∫
Γ

(φt + uτ∂τφ)φt = −1
2

∫
Ω

ρ′(φ)φt|u|2. (3.3)

Adding (3.2) and (3.3) we obtain the result. �

Remark 3.3 (Energy law for matched density). A similar energy law has been obtained in [14]. This work,
however, assumes that the density is constant which, clearly, simplifies the arguments. In particular, there is no
need to introduce the modification of the momentum equation discussed in Remark 2.2.

4. Time discretization and stability analysis

In this section, we study the time discretization of the phase field model introduced in Section 2. Our goal is
to construct time discrete schemes that satisfy a discrete energy law which, in some appropriate sense, mimics
(3.1). Moreover, these schemes should be computationally efficient.

Several works deal with the approximation of moving contact lines. See, for instance [10, 26, 27, 30, 40, 41].
However, most of these works handle the contact line using the Navier slip boundary condition (1.5) or adding
an empirical law that determines the tangential component of the velocity. A discussion on the validity and
physical significance of these approaches (and of the generalized Navier boundary condition for that matter)
is well beyond our scope of interest. We want to point out, however, that to the best of our knowledge, there
are very few references where the generalized Navier boundary condition is used for the treatment of moving
contact lines. [15] develops an ALE approach and [27] uses a volume of fluid formulation, coupled with interface
tracking techniques. References [14, 20] present schemes similar to ours, but restricted to the matched density
case.

The Cahn Hilliard Navier Stokes system (2.1)–(2.4) presents serious challenges for efficient numerical approxi-
mation. Even in the simpler case of standard boundary conditions, i.e. no-slip on the velocity and impermeability
on the phase field, this system includes a fourth order evolution equation, coupled with the variable density
Navier–Stokes equations. Without being exhaustive, we mention the following references: [13], [23–25] and [6,28].
The author of [13] proposes a discretization of the matched density case and shows that the solutions to his
fully discrete scheme converge to an exact solution when the space and time discretization parameters tend
to zero. The discretization scheme, however, is not the most amenable to computation, since it couples all the
variables. References [23, 24] develop an operator splitting approach for the phase-field and chemical potential
part, together with a coupled solver for the Navier–Stokes part. The work [25], under the assumption that the
density does not depend on the phase, develops a nonlinear multigrid algorithm for the Cahn Hilliard system,
which is coupled with a projection-type solver for the Navier–Stokes part. Finally, references [6,28] are concerned
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with the discretization and analysis of a triphasic fluid. They propose unconditionally stable schemes and show
convergence to exact solutions in the case of matched densities.

Amongst the most popular techniques used to solve the constant density Navier–Stokes equations are pro-
jection methods, which aim at decoupling the incompressibility constraint from the diffusion process. These
methods are known to converge even in the case of open boundary conditions (see [17]). Moreover, efficient ex-
tensions of these schemes to the variable density or multiphase case have been recently proposed in [19,35,37].
On the basis of these observations, we apply a fractional time-stepping technique based on penalization of the
divergence to the Navier Stokes part of the system. The Cahn Hilliard component is solved using an operator
splitting approach, similar to [23–25].

To construct the time-discrete scheme, we replace the Ginzburg–Landau potential, which has quartic growth
(i.e. W(r) = O(r4)) by

W(r) =

⎧⎨
⎩

(r − 1)2, r > 1,
1
4 (r2 − 1)2, r ∈ [−1, 1],
(r + 1)2, r < −1.

(4.1)

This is done because this function has the same behavior when φ ≈ ±1 and

sup
r∈R

|W ′′(r)| ≤ 2.

Moreover, as it has been shown in [8], limiting the growth of the potential to quadratic allows, in the continuous
case, to obtain uniform L∞ estimates for the solution of Cahn Hilliard equations.

Next, we introduce a time step Δt > 0. The scheme begins with a standard initialization step, i.e. φ0 = φ|t=0,
u0 = u|t=0 and p0 = p|t=0. Then, for k ≥ 0, we proceed as follows:

Phase field and chemical potential: Find φk+1 and μk+1 that solve:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φk+1−φk

Δt + uk+1·∇φk = ∇· (M(φk)∇μk+1
)
, in Ω,

μk+1 = γ
δ

[W ′(φk) +A (φk+1 − φk
)]− γδΔφk+1 + 1

2ρ
′(φk)uk·uk+1, in Ω,

α
(

φk+1−φk

Δt + uk+1
τ ∂τφ

k
)

+ L(φk+1, φk) = 0, on Γ,
M(φk)∂nμk+1 = 0, on Γ.

(4.2)

where L(Φ, Ψ) := γ
(
δ∂nΦ+Θ′

fs(Ψ) + B (Φ− Ψ)
)
. The values of A and B will be defined below.

Auxiliary variables: Define

φ̂(x) =
{
φk+1(x), |φk+1(x)| ≤ 1,
sgn(φk+1(x)), |φk+1(x)| > 1, x ∈ Ω,

and ρk+1 = ρ(φ̂). Define also

ρ� =
1
2
(ρk+1 + ρk), p	 = 2pk − pk−1.

Velocity: Find uk+1 that solves

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ�uk+1−ρkuk

Δt + (ρkuk·∇)uk+1 + 1
2∇·

(
ρkuk

)
uk+1 −∇· (η(φk+1)T(uk+1)

)
+∇p	 = ρk+1fk+1 + μk+1∇φk + 1

2ρ
′(φk)φk+1−φk

Δt uk, in Ω,
uk+1

n = 0, on Γ,
β(φk+1)

(
uk+1

τ −Uτ

)
+ η(φk+1)T(uk+1)nτ

+α
(

φk+1−φk

Δt + uk+1
τ ∂τφ

k
)
∂τφ

k = 0, on Γ.

(4.3)
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Penalization: The new pressure is computed by solving:{−Δ (
pk+1 − pk

)
= − �

Δt∇·uk+1, in Ω,
∂n

(
pk+1 − pk

)
= 0, on Γ, (4.4)

where � := min{ρ1, ρ2}.

Remark 4.1 (Discretization). Several comments are in order:

• The equations for the phase field and the velocity are weakly coupled, i.e. the only terms that couple these
two equations are 1

2ρ
′(φk)uk·uk+1, uk+1·∇φk and its boundary analogue uk+1

τ ∂τφ
k. In practice, it is pos-

sible to replace them with 1
2ρ

′(φk)|uk|2, uk·∇φk and uk
τ∂τφ

k, respectively. This would lead to a decoupled
formulation which we conjecture would require a CFL-like condition for stability. For the analysis of the
scheme we keep these two equations coupled. This coupling can be implemented, e.g., by using a fixed point
iterative scheme.

• We have added stabilizing terms A (φk+1 − φk
)

and B (φk+1 − φk
)

to the chemical potential equation and
boundary condition, respectively. These terms, formally, introduce an additional consistency error of order
AΔtφt and BΔtφt which are, respectively, of the same order as the error introduced by the explicit treatment
of the terms W ′(φ) and Θ′

fs(φ). The reader is referred to [35], where a similar stabilization term is added to
the chemical potential. This choice of stabilization parameters is nothing but a special case of the so-called
convexity splitting schemes, see [42].

• The decoupling of the velocity and pressure is obtained using a fractional time stepping technique based on
penalization of the divergence, as it was originally introduced in [19].

• By construction, the following bounds hold

� ≤ ρk+1 ≤ ρ, ∀k ≥ 0, (4.5)

with ρ = max{ρ1, ρ2} and � := min{ρ1, ρ2}.

The discrete energy law that this scheme satisfies is stated in the following:

Theorem 4.2 (Stability). Let f ≡ 0 and U ≡ 0. Assume that

1
2

sup
r∈R

|W ′′(r)| ≤ A, 1
2

sup
r∈R

|Θ′′
fs(r)| ≤ B.

Then, the solution {φk, μk,uk, pk}k≥0 of scheme (4.2)–(4.3) and (4.4) satisfies the following discrete energy
law,

‖σk+1uk+1‖2L2 + 2Δt
∥∥∥∥
√
η(φk+1)T(uk+1)

∥∥∥∥
2

L2

+
Δt2

�
‖∇pk+1‖2L2 +

Δt2

�

∥∥∇ (
pk − pk−1

)∥∥2

L2

+ 2Δt
∥∥∥∥
√
β(φk+1)uk+1

τ

∥∥∥∥
2

L2(Γ)

+ 2Δt‖
√
M(φk)∇μk+1‖2L2 + γδ‖∇φk+1‖2L2 + γδ‖∇ (

φk+1 − φk
) ‖2L2

+
2γ
δ

∫
Ω

W(φk+1) + 2αΔt
∥∥∥∥φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

∥∥∥∥
2

L2(Γ)

+ 2γ
∫

Γ

Θfs(φk+1)

≤ ‖σkuk‖2L2 +
Δt2

�
‖∇pk‖2L2 + γδ‖∇φk‖2L2 +

2γ
δ

∫
Ω

W(φk) + 2γ
∫

Γ

Θfs(φk), (4.6)

where σk :=
√
ρk.
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Proof. We proceed as in the proof of the continuous case, i.e. Theorem 3.1. Multiply the discrete momentum
equation (4.3) by 2Δtuk+1 and integrate. As it was noted in [19],

2(ρ�|uk+1|2 − ρkuk·uk+1) = |σk+1uk+1|2 − |σkuk|2 + |σk
(
uk+1 − uk

) |2.
Using integration by parts and the generalized Navier boundary condition,

−2Δt
∫

Ω

∇· (η(φk+1)T(uk+1)
) ·uk+1 = 2Δt

∫
Γ

β(φk+1)|uk+1
τ |2

+ 2αΔt
∫

Γ

(
φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

)
uk+1

τ ∂τφ
k

+ 2Δt‖
√
η(φk+1)T(uk+1)‖2L2 .

The convective term is treated using (2.5).
Finally, the term

∫
Ω
∇p	·uk+1, is handled using the penalization equation as in [19,35,37]. Notice that, these

works are concerned with a no-slip boundary condition on the velocity. However, all that is needed for their
arguments to hold is an impermeability condition on the velocity (i.e. u·n = 0). For completeness, we repeat
the arguments. To begin with, notice that

−
∫

Ω

∇p	·uk+1 =
∫

Ω

∇ (
pk+1 − 2pk + pk−1

) ·uk+1 −
∫

Ω

∇pk+1·uk+1.

Multiply (4.4) by 2Δt2

�

(
pk+1 − 2pk + pk−1

)
and integrate. After integration by parts we apply the identity

2a(a− b) = a2 − b2 + (a− b)2 to obtain

− Δt2

�

[‖∇ (
pk+1 − pk

) ‖2L2 − ‖∇
(
pk − pk−1

) ‖2L2 + ‖∇ (
pk+1 − 2pk + pk−1

) ‖2L2

]
+ 2Δt

∫
Ω

uk+1·∇ (
pk+1 − 2pk + pk−1

)
= 0.

Multiply (4.4) by 2Δt2

� pk+1 and integrate. Using the identity mentioned before we get

Δt2

�

[‖∇pk+1‖2L2 − ‖∇pk‖2L2 + ‖∇ (
pk+1 − pk

) ‖2L2

]
= 2Δt

∫
Ω

uk+1·∇pk+1.

Take the difference between (4.4) at time steps k + 1 and k and multiply the result by pk+1 − 2pk + pk−1. An
application of the Cauchy Schwarz inequality and the lower bound of (4.5) allow us to obtain the following
estimate

Δt2

�
‖∇ (

pk+1 − 2pk + pk−1
) ‖2L2 ≤ �‖uk+1 − uk‖2L2 ≤ ‖σk

(
uk+1 − uk

) ‖2L2 ;

see [19] for details.
From the observations above, we arrive at

‖σk+1uk+1‖2L2 + 2Δt
∥∥∥∥
√
η(φk+1)T(uk+1)

∥∥∥∥
2

L2

+
Δt2

�
‖∇pk+1‖2L2 +

Δt2

�
‖∇ (

pk − pk−1
) ‖2L2

+ 2Δt
∥∥∥∥
√
β(φk+1)uk+1

τ

∥∥∥∥
2

L2(Γ)

+ 2αΔt
∫

Γ

(
φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

)
uk+1

τ ∂τφ
k

≤ 2Δt
∫

Ω

μk+1∇φk·uk+1 +
∫

Ω

ρ′(φk)
(
φk+1 − φk

)
uk·uk+1 + ‖σkuk‖2L2 +

Δt2

�
‖∇pk‖2L2 . (4.7)
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We multiply the phase field equation (first equation of (4.2)) by 2Δtμk+1 and integrate over Ω. Using the
impermeability condition M(φk)∂nμk+1 = 0 we obtain

2
∫

Ω

(
φk+1 − φk

)
μk+1 + 2Δt

∫
Ω

μk+1uk+1·∇φk = −2Δt‖
√
M(φk)∇μk+1‖2L2 .

Multiply the equation for the chemical potential (second equation of (4.2)) by −2(φk+1 − φk) and integrate
over Ω

−2
∫

Ω

(
φk+1 − φk

)
μk+1 = 2γδ

∫
Ω

Δφk+1
(
φk+1 − φk

)
− 2

γ

δ

(∫
Ω

W ′(φk)
(
φk+1 − φk

)
+A‖φk+1 − φk‖2L2

)
−
∫

Ω

ρ′(φk)
(
φk+1 − φk

)
uk·uk+1,

adding these two relations we obtain

− 2γδ
∫

Ω

Δφk+1
(
φk+1 − φk

)
+ 2

γ

δ

(∫
Ω

W ′(φk)
(
φk+1 − φk

)
+A‖φk+1 − φk‖2L2

)

+ 2Δt‖
√
M(φk)∇μk+1‖2L2 + 2Δt

∫
Ω

μk+1uk+1·∇φk = −
∫

Ω

ρ′(φk)
(
φk+1 − φk

)
uk·uk+1. (4.8)

Integrate by parts the first term on the left hand side of (4.8) and use the identity 2a(a− b) = a2− b2 +(a− b)2
to get

2γδ
∫

Ω

Δφk+1
(
φk+1 − φk

)
= 2γδ

∫
Γ

∂nφ
k+1

(
φk+1 − φk

) − γδ [‖∇φk+1‖2L2 − ‖∇φk‖2L2 + ‖∇ (
φk+1 − φk

) ‖2L2

]
.

The integral involving the derivative of the Ginzburg Landau potential is treated, as in [37], using a Taylor
expansion,

W(φk+1)−W(φk) =W ′(φk)
(
φk+1 − φk

)
+
W ′′(ϕk

1)
2

(
φk+1 − φk

)2
,

for some ϕk
1 . From these observations (4.8) can be equivalently rewritten as

2Δt
∫

Ω

μk+1uk+1∇φk + 2Δt‖
√
M(φk)∇μk+1‖2L2 + γδ‖∇φk+1‖2L2 + γδ‖∇ (

φk+1 − φk
) ‖2L2

+ 2
γ

δ

∫
Ω

W(φk+1) + 2
γ

δ

∫
Ω

(
A− W

′′(ϕk
1)

2

)(
φk+1 − φk

)2
= γδ‖∇φk‖2L2

+ 2
γ

δ

∫
Ω

W(φk) + 2γδ
∫

Γ

∂nφ
k+1

(
φk+1 − φk

)− ∫
Ω

ρ′(φk)
(
φk+1 − φk

)
uk·uk+1. (4.9)

Adding (4.7) and (4.9) we obtain

‖σk+1uk+1‖2L2 + 2Δt
∥∥∥∥
√
η(φk+1)T(uk+1)

∥∥∥∥
2

L2

+
Δt2

�
‖∇pk+1‖2L2 +

Δt2

�
‖∇ (

pk − pk−1
) ‖2L2

+ 2Δt‖
√
M(φk)∇μk+1‖2L2 + γδ‖∇φk+1‖2L2 + γδ‖∇ (

φk+1 − φk
) ‖2L2

+ 2
γ

δ

∫
Ω

W(φk+1) + 2Δt
∥∥∥∥
√
β(φk+1)uk+1

τ

∥∥∥∥
2

L2(Γ)

+ 2
γ

δ

∫
Ω

(
A− W

′′(ϕk
1)

2

)(
φk+1 − φk

)2

+ 2αΔt
∫

Γ

(
φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

)
uk+1

τ ∂τφ
k ≤ ‖σkuk‖2L2 +

Δt2

�
‖∇pk‖2L2 + γδ‖∇φk‖2L2

+ 2
γ

δ

∫
Ω

W(φk) + 2γδ
∫

Γ

∂nφ
k+1

(
φk+1 − φk

)
.
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Using the boundary condition on the phase variable (third equation of (4.2)), we can rewrite the last term on
the right hand side of this inequality as follows:

−γδ∂nφk+1 = α

(
φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

)
+ γ

(
Θ′

fs(φ
k) + B (φk+1 − φk

))
,

Using a Taylor expansion for Θ′
fs we then arrive at

‖σk+1uk+1‖2L2 + 2Δt
∥∥∥∥
√
η(φk+1)T(uk+1)

∥∥∥∥
2

L2

+
Δt2

�
‖∇pk+1‖2L2 +

Δt2

�
‖∇ (

pk − pk−1
) ‖2L2

+ 2Δt‖
√
M(φk)∇μk+1‖2L2 + γδ‖∇φk+1‖2L2 + γδ‖∇ (

φk+1 − φk
) ‖2L2

+ 2
γ

δ

∫
Ω

W(φk+1) + 2Δt
∥∥∥∥
√
β(φk+1)uk+1

τ

∥∥∥∥
2

L2(Γ)

+ 2αΔt
∥∥∥∥φk+1 − φk

Δt
+ uk+1

τ ∂τφ
k

∥∥∥∥
2

L2(Γ)

+ 2γ
∫

Γ

Θfs(φk+1) + 2γ
∫

Γ

(
B − Θ′′

fs(ϕ
k
2)

2

)(
φk+1 − φk

)2
+ 2

γ

δ

∫
Ω

(
A− W

′′(ϕk
1)

2

)(
φk+1 − φk

)2

≤ ‖σkuk‖2L2 +
Δt2

�
‖∇pk‖2L2 + γδ‖∇φk‖2L2 + 2

γ

δ

∫
Ω

W(φk) + 2γ
∫

Γ

Θfs(φk).

Since, by assumption

A ≥ 1
2
|W ′′(ϕk

1)|, B ≥ 1
2
|Θ′′

fs(ϕ
k
2)|,

we obtain the result. �

Remark 4.3 (Stabilization parameters). Notice that, in Theorem 4.2, the conditions on the stabilization
parameters A and B do not depend on the time step Δt. Given the definitions of W and Θfs, the follow-
ing inequalities hold:

A ≥ 1, B ≥ π2

2
·

The restriction imposed on A for stability is similar to the one obtained in previous works. See, for example, [35,
36]. As discussed in there, it is also possible to obtain conditionally stable schemes for A = 0. However, the
time-step restriction is quite severe, e.g. Δt = O(δ4). In the numerical experiments of Section 6 we set the
stabilization parameters as small as their constraints allow.

5. Space discretization

In this section we introduce a fully discrete version of the above described splitting algorithm. To this end,
let h > 0 be a space discretization parameter. We introduce finite dimensional spaces Wh ⊂ H1(Ω), Xh ⊂ V,
where

V :=
{
v ∈ H1(Ω) : v·n|Γ = 0

}
,

and Mh ⊂ H1∫
=0(Ω). The spaces Xh and Mh are assumed to be compatible, in the sense that they satisfy the

so-called discrete LBB condition. That is, there is a constant c independent of h such that

sup
vh∈Xh

∫
Ω
qh∇·vh

‖vh‖H1
≥ c‖qh‖L2 , ∀qh ∈Mh.

Examples of these spaces can be found, e.g. in [7, 12, 16].
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To simplify notation, we shall denote by 〈·, ·〉 the L2(Ω)-inner product and by [·, ·] the L2(Γ)-inner product.
Moreover, for any sequence {ϕk}

dϕk+1 = ϕk+1 − ϕk.

The algorithm begins with a standard initialization step, that is we set φ0
h ∈ Wh, u0

h ∈ Xh and p0
h ∈ Mh as

suitable approximations to φ|t=0, u|t=0 and p|t=0, respectively. Then, for k ≥ 0 we advance in several steps:

Phase field and chemical potential: Find φk+1
h , μk+1

h ∈Wh that solve

〈
dφk+1

h

Δt
, ψh

〉
+ 〈uk+1

h ·∇φk
h, ψh〉+ 〈M(φk

h)∇μk+1
h ,∇ψh〉 = 0, ∀ψh ∈ Wh, (5.1)

〈μk+1
h , ψ̄h〉 = γδ〈∇φk+1

h ,∇ψ̄h〉+ γ

δ

〈W ′(φk
h) +Adφk+1

h , ψ̄h

〉
+

1
2
〈ρ′(φk

h)uk
h·uk+1

h , ψ̄h〉

+ α

[
dφk+1

h

Δt
+ uk+1

hτ ∂τφ
k
h, ψ̄h

]
+ γ

[
Θ′

fs(φ
k
h) + Bdφk+1

h , ψ̄h

] ∀ψ̄h ∈Wh. (5.2)

Auxiliary variables: Define

φ̂h(x) =

{
φk+1

h (x), |φk+1
h (x)| ≤ 1,

sgn(φk+1
h (x)), |φk+1

h (x)| > 1,
x ∈ Ω,

and ρk+1
h = ρ(φ̂h). Define also

ρ�
h =

1
2
(ρk+1

h + ρk
h), p	

h = 2pk
h − pk−1

h . (5.3)

Velocity: Find uk+1
h ∈ Xh that solves

〈
ρ�

hu
k+1
h − ρk

hu
k
h

Δt
+ (ρk

hu
k
h·∇)uk+1

h +
1
2
∇·(ρk

hu
k
h)uk+1

h ,vh

〉
+
〈
η(φk+1

h )T(uk+1
h ),T(vh)

〉

−
〈
p	

h,∇·vh

〉
+
[
β(φk+1

h )uk+1
hτ ,vhτ

]
+ α

[
dφk+1

h

Δt
+ uk+1

h ∂τφ
k
h,vhτ∂τφ

k
h

]
=
〈
ρk+1

h fk+1,vh

〉

+
〈
μk+1

h ∇φk
h,vh

〉
+

1
2

〈
ρ′(φk

h)
dφk+1

h

Δt
uk

h,vh

〉
+
[
β(φk+1

h )Uτ ,vhτ

]
, ∀vh ∈ Xh. (5.4)

Penalization: The new pressure pk+1
h solves

〈∇dpk+1
h ,∇qh

〉
= − �

Δt

〈∇·uk+1
h , qh

〉
, ∀qh ∈Mh. (5.5)
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Corollary 5.1 (Fully discrete stability). Let f ≡ 0 and U ≡ 0. Under the conditions of Theorem 4.2, this
scheme satisfies the following discrete energy law:

‖σk+1
h uk+1

h ‖2L2 + 2Δt‖
√
η(φk+1

h )T(uk+1
h )‖2L2 + 2Δt‖

√
β(φk+1

h )uk+1
hτ ‖2L2(Γ) +

Δt2

�
‖∇pk+1

h ‖2L2

+
Δt2

�
‖∇dpk

h‖2L2 + 2Δt‖
√
M(φk

h)∇μk+1
h ‖2L2 + γδ‖∇φk+1

h ‖2L2 + γδ‖∇dφk+1
h ‖2L2 + 2

γ

δ

∫
Ω

W(φk+1
h )

+ 2γ
∫

Γ

Θfs(φk+1
h ) + 2αΔt

∥∥∥∥∥dφk+1
h

Δt
+ uk+1

h ∂τφ
k
h

∥∥∥∥∥
2

L2(Γ)

≤ ‖σk
hu

k
h‖2L2 +

Δt2

�
‖∇pk

h‖2L2 + γδ‖∇φk
h‖2L2

+ 2
γ

δ

∫
Ω

W(φk
h) + 2γ

∫
Γ

Θfs(φk
h) (5.6)

Proof. Set vh = 2Δtuk+1
h in (5.4), ψh = 2Δtμk+1

h in (5.1) and ψ̄h = 2dφk+1
h in (5.2), respectively. Repeat the

steps used to obtain Theorem 4.2. �

The importance of the energy law stated in Corollary 5.1 is not only that the numerical scheme possesses
desirable properties. In addition, this serves as a formal a priori estimate from which existence of solutions for
problem (5.1)–(5.5) can be obtained. This is the content of the following:

Theorem 5.2 (Existence of discrete solutions). Under the setting of Corollary 5.1, the scheme (5.1)–(5.5)
always has a solution. Moreover, any solution satisfies the discrete energy law (5.6).

Proof. Reference [29] provides a detailed proof of existence of fully discrete solutions for a more general model
that includes the one presented here. Hence, we only sketch the steps. The main idea is to use the Leray–Schauder
theorem [43]. To do so we, on the basis of (5.1)–(5.5), introduce a map (φh, μh,uh, ph) �→ (φ̂h, μ̂h, ûh, p̂h) such
that any fixed point is, by construction, a solution to our problem. Simply put this map is obtained by doing
the following replacements:

(5.1) φk+1
h ← φ̂h, μk+1

h ← μ̂h and uk+1
h ← uh.

(5.2) μk+1
h ← μ̂h, uk+1

h ← uh. The variable φk+1
h is replaced by φh when it is multiplied by the stabilization

parameters A and B; in all other places it is replaced by φ̂h.
(5.3) φk+1

h ← φh.
(5.4) All the variables at level k+1 that appear on the left hand side are replaced by their hatted counterpart,

except when φk+1
h serves as argument for a material function. The ones on the right hand side by the

unhatted one.
(5.5) pk+1

h ← p̂h and uk+1
h ← ûh.

This map is affine, hence it is well defined. The next step is to obtain bounds on this operator, which are
obtained as in the proof of Corollary 5.1. This allows us to conclude. See [29] for details. �

6. Numerical experiments

We now illustrate the performance of the method developed in previous Sections in a series of numerical
examples. All the computations have been performed with the help of the deal.II library (see [2,3]). The space
discretization is obtained using Q2 elements for the phase variable and Taylor–Hood (i.e. (Q2,Q1)) for the
velocity-pressure. In order to properly resolve the interfacial layer, the mesh is computed adaptively. The level
of refinement and local mesh sizes will be indicated in each test case. The time step is set initially to Δt = 10−3

and it is reduced if a local CFL-like condition is violated i.e.

Δt = min

{
10−3,

1
2

max
K∈Th

{
h

3/2
K

‖uh‖L∞(K)

}}
.
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The reason to impose such a restriction on the time step is in order to avoid having to solve the weakly coupled
problem as explained in Remark 4.1.

6.1. Symmetric Couette flow

The first example is motivated by [15, 31]. We consider a variant of a Couette flow for a two phase fluid.
The geometry consists of the rectangle Ω = (−3, 3) × (0, 1). A velocity V ex (respectively −V ex) is imposed
on the top (respectively bottom) sides of the rectangle. Notice that to obtain a true Couette flow periodicity
conditions should have been imposed on these sides. However, due to implementation reasons we did not do
this, instead we apply the generalized Navier boundary condition. The initial configuration of the fluid is such
that the heavier fluid occupies (−1, 1) × (0, 1) and the lighter the rest of the domain. The fluid is initially at
rest.

The results of [15, 31] are restricted to the matched density case. While certainly our method is capable of
handling this, we prefer to show the effect of the variable density. The material parameters are the following:
ρ1/ρ2 = 10, η1 = η2 = 10, β1 = β2 = 1.5, M1 = M2 = 0.01, α = 10−2, γ = 10 and θs = 90◦. The shear velocity
is V = 1.5. The interface thickness is 2.5×10−2. The local mesh size away from the interface is about 0.125 and
near the interface 8× 10−3. The result for times t = 0, 0.5, 1, 1.5, 1.75, 2 is shown in Figure 1. As expected, the
higher density leads to smaller displacements due to the bigger inertia of the fluid. Moreover, since the surface
tension is sufficiently big, the interface evolves from a flat surface to a curved one.

6.2. Asymmetric Couette flow

As a second example, we consider an asymmetric variant of the case of Section 6.1. In this case, however,
β2 = 0.6, γ = 1 and θs = 68◦. The interface thickness is 2.5× 10−2. The evolution for times 0.5, 1, 1.5, 1.75, 2
and 2.5 is shown in Figure 2. As we can see, the smaller, compared to Section 6.1, value of the surface tension
is not sufficient to prevent a significant movement of the interface.

We also consider a different initial profile. The rest of the configuration is the same as in the previous case.
The result is shown in Figure 3.

6.3. Droplet relaxation

The next test case takes inspiration from [26] and [10]. We consider the spreading of a droplet over a wall
under the action of gravity and surface tension. We investigate the result of two competing effects: surface
tension, which tends to keep the droplet round; and gravity, which flattens the droplet. In all the test-cases the
material parameters are ρ1 = 1, ρ2 = 100, η1 = 10, η2 = 1, β1 = β2 = 1.5, θs = 68◦, M1 = M2 = 10−2, and
α = 10−2. The interface thickness is δ = 2.5 × 10−2. The computational domain is Ω = (−1, 1) × (0, 1) and
the mesh is adaptively refined to resolve the transitional layer and it is such that the local mesh size near the
interface is about 8× 10−3 and away from it 3× 10−2.

We first consider the case when the surface tension is small compared to gravity. To be precise, we set γ = 1.
Figure 4 shows the evolution of the interface of a droplet initially shaped like half a circle without gravity. Due
to the difference between the initial angle and the static one (the uncompensated Young stress), the interface
moves until the contact angle equals the static one, which happens at about time t = 3.3. The evolution under
the action of gravity is shown in Figure 5. As we can see, if gravity is present, the surface tension is not sufficient
to preserve the shape of the droplet and it turns into a pool of heavier fluid on the bottom of the container.

To illustrate the opposite case, that is, when the surface tension effects are dominant, we set γ = 50. Figure 6
shows the evolution of the interface without the action of gravity and Figure 7 under its action. In both cases a
stationary shape is reached at about time t = 1.1. As it is illustrated in Figure 8 the surface tension effects are
so dominant that the final position of the interface is basically the same for both cases. Moreover, as it is also
seen from Figure 8, the contact angle changes during evolution. Although this is a controversial issue, we just
want to point out that this model allows for such effects.
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Figure 1. Symmetric Couette flow. The evolution of the interface is shown at times 0, 0.5,
1, 1.5, 1.75 and 2. The arrows represent the velocity. The dotted line is the initial position
of the interface. The material parameters are: ρ1/ρ2 = 10, η1 = η2 = 10, β1 = β2 = 1.5,
M1 = M2 = 0.01, α = 10−2, γ = 10 and θs = 90◦ and V = 1.5. The interface thickness is
2.5× 10−2.
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Figure 2. Asymmetric Couette flow with straight initial profile. The evolution of the interface
is shown at times 0.5, 1, 1.5, 1.75, 2 and 2.5. The arrows represent the velocity. The dotted line
is the initial position of the interface. The material parameters are ρ1/ρ2 = 10, η1 = η2 = 10,
β1 = 1.5, β2 = 0.6, M1 = M2 = 0.01, α = 10−2, γ = 1 and θs = 68◦. The shear velocity is
V = 1.5. The interface thickness is 2.5× 10−2.
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Figure 3. Asymmetric Couette flow with curved initial profile. The evolution of the interface
is shown at times 0, 0.5, 1, 1.5, 2 and 2.5. The arrows represent the velocity. The dotted line
is the initial position of the interface. The material parameters are ρ1/ρ2 = 10, η1 = η2 = 10,
β1 = 1.5, β2 = 0.6, M1 = M2 = 0.01, α = 10−2, γ = 1 and θs = 68◦. The shear velocity is
V = 1.5. The interface thickness is 2.5× 10−2.
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Figure 4. Evolution of a droplet with γ = 1, θs = 68◦ without gravity. The interface is shown
at times 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 5. Arrows represent the velocity field. ρ2/ρ1 = 100,
η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2. The interface thickness is
δ = 2.5× 10−2.
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Figure 5. Evolution of a droplet with γ = 1, θs = 68◦ with gravity. The interface is shown at
times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5. Arrows represent the velocity field. ρ2/ρ1 = 100,
η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2. The interface thickness is
δ = 2.5× 10−2.
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Figure 6. Evolution of a droplet with γ = 50, θs = 68◦ without gravity. The interface is shown
at times 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 5. Arrows represent the velocity field. ρ2/ρ1 = 100,
η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2. The interface thickness is
δ = 2.5× 10−2.
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Figure 7. Evolution of a droplet with γ = 50, θs = 68◦ with gravity. The interface is shown
at times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5. Arrows represent the velocity field. ρ2/ρ1 = 100,
η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2. The interface thickness is
δ = 2.5× 10−2.
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Figure 8. Comparison of the final state for a droplet for γ = 50 and θs = 68◦ with and
without gravity. ρ2/ρ1 = 100, η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2.
The interface thickness is δ = 2.5 × 10−2. The black dotted line is the initial position of the
interface. The black solid line is the final position of the interface under the action of gravity
and the blue solid line the final position without gravity. Notice that, since the value of the
surface tension is significantly large in comparison to gravity, the stationary shapes with and
without gravity are the same and the contact angle changes in time.

6.4. A Perturbed surface

As in [26], we consider the evolution of a perturbed surface. The initial profile is given (in polar coordinates
(r, ϕ)) by a perturbed semicircle r = 0.5 + 0.05 sin(8ϕ). The material parameters are as in Section 6.3 with
γ = 10 and θs = 60◦. The evolution is shown in Figure 9. As we can see, there is an initial period of time with
fast dynamics, in which the surface tension rounds the interface. After which the droplet relaxes in a much
similar way to Section 6.3.

6.5. A Drop on an inclined plane

Our last example studies the evolution of a droplet on an inclined plane under the action of gravity. The
computational domain is

Ω = (0, 1)2 ∪ {(x, y) ∈ R2 : x ∈ (−1, 0) y > |x|} .
The evolution at times 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34 is shown in Figure 10.
The local mesh size away from the interface is about 10−2 and near it 8× 10−3. The material parameters are
ρ1/ρ2 = 50, η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−3. γ = 10, θs = 90◦. The time
step is set to Δt = 5 × 10−4 and the interface thickness equals δ = 10−2. As we can see, the high value of the
surface tension forces the droplet to adopt a certain shape before it is able to move a considerable distance.
Since our model does not take into consideration contact angle hysteresis (see [9,41]), the droplet starts sliding
instantaneously and keeps sliding. The same behavior can be observed for different inclination angles. For
brevity, we do not show these results. Finally, it is worth noticing that the method is such that no special
treatment for the interface is needed when it passes through the angle on the boundary which, clearly, indicates
the robustness of the proposed scheme.

6.6. Mass conservation

One of the biggest concerns of practitioners regarding two-phase fluid simulation is mass conservation.
Figure 11 is a plot of the area of the region {φk

h > 0} against time, in the example of Section 6.5. This, if
rescaled properly, can be interpreted as the mass of the droplet. As we can see, although the scheme does not
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Figure 9. Evolution of an initially perturbed circular profile. The interface is shown at times
0, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2. Arrows represent the velocity field. ρ2/ρ1 = 100, η2/η1 = 1/10,
β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−2. γ = 10, θs = 60◦. The interface thickness is
δ = 2.5× 10−2.

preserve exactly the mass of the droplet, the relative variation between the initial and final areas is rather small,
namely ∣∣∣∫{φ|t=0>0}−

∫
{φ|t=T >0}

∣∣∣∫
{φ|t=0>0}

× 100% =
|0.128315− 0.126055|

0.128315
× 100% = 1.76%.

It is interesting to notice the spike on the mass of the droplet at the time when it becomes in contact with
the intersection between the inclined and horizontal surfaces. The whole derivation of the generalized Navier
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Figure 10. A droplet on an inclined plane. The evolution is shown at times 0, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34. Arrows represent the velocity field and the black
dotted line is the position of the interface at the beginning of the computations. The material
parameters are ρ1/ρ2 = 50, η2/η1 = 1/10, β1 = β2 = 1.5, M1 = M2 = 10−2, and α = 10−3.
γ = 10, θs = 90◦ The interface thickness is δ = 10−2.

boundary condition is based on the assumption that the surface is smooth enough so that it has a well defined
normal, which is not the case at this point. The scheme, however, is able to handle this.

For comparison, Figure 12 shows the area of the region {φk
h > 0} for the example in Section 6.4. In this case,

the total change of mass is

∣∣∣∫{φ|t=0>0}−
∫
{φ|t=T >0}

∣∣∣∫
{φ|t=0>0}

× 100% =
|0.372043− 0.374964|

0.372043
× 100% = 0.79%.
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Figure 11. Total mass of the droplet vs. time for the problem of Section 6.5. The relative loss
of mass is less than 1.76%.

Figure 12. Total mass of the droplet vs. time for the problem of Section 6.4. The change in
mass is less than 0.79%.

7. Conclusions and perspectives

In this work we have proposed a diffuse interface model for the movement of contact lines which consists
of a Cahn Hilliard Navier Stokes system with nonstandard boundary conditions, and showed that this model
has a natural energy law. We have proposed an efficient discretization technique based on operator splitting for
Cahn Hilliard and fractional time-stepping based on penalization of the divergence for the Navier Stokes part.
We showed that this scheme is unconditionally stable and presented a few numerical simulations to assess the
capability of the developed approach.

We believe that the possible extensions of this approach are numerous. For instance, the addition of the
so-called contact angle hysteresis (pinning) to the model is currently under investigation. This process is of
crucial importance for practical applications. Moreover, we have developed a diffuse interface formulation for
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the problem of electrowetting on dielectric where this model is but a component of a much larger system of
equations that describe this process. These results have been reported in [29].

Acknowledgements. The author would like to express his gratitude to Ricardo H. Nochetto (University of Maryland) for
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the quality of the presentation.
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