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DISTINGUISHING AND INTEGRATING ALEATORIC AND EPISTEMIC
VARIATION IN UNCERTAINTY QUANTIFICATION ∗

Kamaljit Chowdhary1 and Paul Dupuis2

Abstract. Much of uncertainty quantification to date has focused on determining the effect of variables
modeled probabilistically, and with a known distribution, on some physical or engineering system. We
develop methods to obtain information on the system when the distributions of some variables are
known exactly, others are known only approximately, and perhaps others are not modeled as random
variables at all. The main tool used is the duality between risk-sensitive integrals and relative entropy,
and we obtain explicit bounds on standard performance measures (variances, exceedance probabilities)
over families of distributions whose distance from a nominal distribution is measured by relative entropy.
The evaluation of the risk-sensitive expectations is based on polynomial chaos expansions, which help
keep the computational aspects tractable.
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1. Introduction

Uncertainty quantification refers to a broad set of techniques for understanding the impact of uncertainties in
complicated mechanical, physical, and computational systems. In this context “uncertainty” can take on many
meanings, but we follow the convention of dividing uncertainty into aleatoric and epistemic categories. In short,
aleatoric uncertainty refers to inherent uncertainty due to stochastic or probabilistic variability. This type of
uncertainty is irreducible in that there will always be positive variance since the underlying variables are truly
random. Epistemic uncertainty refers to limited knowledge we may have about the model or system. This type of
uncertainty is reducible in that if we have more information, e.g., take more measurements, then this type of
uncertainty can be reduced. However, for many problems where uncertainty quantification is important, the
acquisition of data is difficult or expensive. The epistemic uncertainty cannot be removed entirely, and so one
needs modeling and computational techniques which can also accommodate this form of uncertainty.
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Much of the work to date has focused on aleatoric uncertainty and what one might call the propagation
of uncertainty. Here, one characterizes uncertainty concerning one or more elements of a physical system via
some probability distribution, and attempts to quantify how that uncertainty will be propagated throughout the
system under its constitutive equations and laws. The simplest and most straightforward method to characterize
this output distribution would be to sample from the input probability distribution, solve the system equations,
and thereby produce output samples (i.e., standard Monte Carlo). Although this is very simple conceptually,
it can be far from practical, especially when it is computationally intensive to construct the mapping that
takes input variables to output. Straightforward schemes such as Monte Carlo would require that the system
be solved for each sample of the random variable, a situation that is often not practical. In recent years efficient
computational methods have been developed to calculate particular functionals of the induced distribution that
may be required for a particular application (e.g., covariances or error probabilities). Most recently, polynomial
chaos has become popular as an efficient method for approximating the distribution of the output variable.

We note that random variables with a well-defined and given distribution are often used in this context even
when there is no justification for their use, as in the case of modeling error. In other words, it is (perhaps
implicitly) assumed that epistemic uncertainty can be modeled by aleatoric uncertainty. One reason is that,
at least as they have been developed to date, most computational techniques (e.g., polynomial chaos and
Monte Carlo) are based on the assumption that the user can identify some “appropriate” distribution for each
uncertain aspect of the system, regardless of the type of uncertainty, aleatoric or epistemic. If one is interested
in just basic qualitative properties of the system then this may not be a central issue, since virtually any
model of uncertainty will give information on the sensitivities of the system. However, when the intended use of
uncertainty quantification is for regulatory assessment or some other application where performance measures
are sensitive to distributional assumptions, the issue becomes much more important, and one should carefully
distinguish how one accounts for the two types of uncertainty.

The aim of the present paper is to describe an approach that (i) logically distinguishes those aspects of uncer-
tainty that are treated as stochastic variability from other forms of uncertainty, (ii) in cases where a stochastic
model is theoretically valid but for which determination of the distribution is not practical, gives bounds for
performance measures that are valid for explicitly identified families of distributions, and (iii) is computation-
ally feasible if ordinary uncertainty propagation is feasible. The intended audience is broad, including numerical
analysts interested in robust performance bounds as well as applied probabilists for whom certain computa-
tional aspects of uncertainty quantification may be novel. Since a typical reader might not be familiar with the
terminology and methods from both fields, we have included background material for both the probabilistic and
numerical analysis approaches used to make the paper broadly accessible.

The paper is organized as follows. In Section 2 we further discuss the distinction between aleatoric and
epistemic uncertainty, and explain some of the limitations to achieving useful performance bounds in the presence
of epistemic uncertainty. Section 3 introduces risk-sensitive performance measures and discusses their robust
properties. Several hybrid forms are introduced that are more useful than the simplest form when both aleatoric
and epistemic uncertainties are present. Various properties of the risk-sensitive measures that are useful in
applications (monotonicity, optimization) are also discussed. Section 4 presents numerical examples, reviews the
computational methods used to evaluate the risk-sensitive performance measures, and finishes with a Section
of discussion and conclusions.

2. Aleatoric and epistemic uncertainties

As noted in the Introduction, uncertainty can be divided into two categories, aleatoric and epistemic. From
the perspective of mathematical formulation and modeling, aleatoric uncertainty is in some sense simpler. In
contrast, epistemic uncertainty can mean different things in different contexts. Lack of knowledge is an ambiguous
term that encompasses many different scenarios.

To illustrate, we consider an elementary example. Consider a system described by some well-posed partial
differential equation (PDE), but with an uncertain boundary condition. The boundary condition is expressed in
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terms of a random variableX (e.g., ux(0, t) = X) with a particular fixed distribution, and the numerical analysis
problem is to characterize the induced distribution of the solution to the PDE at some time and location (e.g.,
u(x0, t0;X)). Suppose we know that the boundary condition is properly modeled as a random variable, but we
do not know the correct value of some parameter in that distribution. For example, based on a central limit
type argument, one might claim the distribution is known to be Gaussian, but still unknown are the “true”
mean and/or variance. In this case, the lack of knowledge is this missing information about the parameters of
the distribution. The lack of information regarding these parameters is a form of epistemic uncertainty. Hence
in this example aleatoric and epistemic uncertainty are mingled. Assuming that samples are available, one could
use the empirical mean and variance from data to approximate the true mean and variance, and thus reduce this
uncertainty. However, in the common situation where sampling is necessarily limited, some epistemic uncertainty
is inherent in the model due to practical limitations on data acquisition and modeling.

Another type of epistemic uncertainty is the omission of important aspects of the system model. This form is
possibly the most difficult to quantify. For example, there might be a hidden random variable in the true physical
system. In the PDE example we have assumed the boundary condition is modeled via a random variable, but
there may be other coefficients in the true physical system that are random, but are modeled as constants.
It is also frequently true that the mathematical model used for the system is only approximately true. For
example, the model might simplify the geometry of the true system, nonlinearities may be approximated by
linear relations, etc. In the context of the PDE example, boundary conditions of Dirichlet form were chosen,
when in fact a more realistic model might use a mixed form (e.g., Robin boundary conditions).

For almost all forms of epistemic uncertainty there is little justification for the use of random variables to
model the uncertainty. Nonetheless, it is common practice to do just that, and in practice randomness and
random variables are used in many situations to account for errors in the physical model or modeling ignorance.
The reasons were mentioned previously–that basic distributional properties of the output (e.g., variance) will
still provide a reasonable sensitivity analysis for the problem, and existing computational methods are largely
based on aleatoric uncertainty. However, with little justification for the use of any particular distribution
(or even the use of randomness at all), in more critical applications one may insist on rigorous bounds on
performance that are valid for a particular family of distributions. In the extreme case where no probabilistic
model is considered acceptable, one may wish to only prescribe bounds on certain parameters, and then obtain
tight bounds on performance over all values of the parameters that satisfy the bounds.

Thus there are many different types of uncertainty that one should account for in an analysis of the effects of
uncertainty. These include: (i) aleatoric with known distribution; (ii) aleatoric with partly known distribution
(mingled aleatoric and epistemic); (iii) epistemic for which one is willing to model by a family of aleatoric
uncertainties, and (iv) epistemic where one is only willing to place bounds on the uncertainties. As remarked in
the Introduction, this paper will introduce an approach that allows these uncertainties to be handled within a
single framework that can exploit computational methods originally developed just for the treatment of aleatoric
uncertainties.

3. Duality for exponential integrals

Our development of performance measures that distinguish forms of uncertainty, and which in particular
allow for robustness with respect to epistemic uncertainties, depends on a duality relation between exponential
integrals and relative entropy. Its first use along these lines but with regard to estimation appears to be in [1],
and for optimization in [3]. We first state the basic duality result, and then define two functionals which will
allow aleatoric and epistemic uncertainties to be analyzed simultaneously but at the same time distinguished.

The general duality is stated for random variables that take values in a Polish metric space (i.e., a complete,
separable metric space) X . The associated σ-algebra is the Borel σ-algebra. A typical example of X for our
purposes is a closed subset of some Euclidean space R

d. Let P(X ) denote the collection of probability measures
on X , and let μ ∈ P(X ). Given any ν ∈ P(X ) that is absolutely continuous with respect to μ, we define the
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relative entropy of ν with respect to μ by

R (ν ‖μ ) =
∫
X

log
(

dν
dμ

(x)
)
ν(dx)

whenever log(dν/dμ(x)) is integrable with respect to ν. In all other cases R (ν ‖μ ) is defined to be ∞.
Relative entropy defines a mapping (ν, μ) → R (ν ‖μ ) from P(X )2 to R ∪ ∞. This mapping has a number

of very attractive properties. For example, relative entropy is non-negative, with R (ν ‖μ ) = 0 if and only if
ν = μ. In addition, the mapping is jointly convex and lower semicontinuous [2], Lemma 1.4.3. It is important
to note, however, that relative entropy is not a true metric since it is not symmetric, nor does it satisfy the
triangle inequality. A property of particular interest for our purposes is the following variational formula for
exponential integrals, which can be considered as an infinite-dimensional version of the Legendre transform.
Given any bounded and continuous function F : X → R and any c ∈ (0,∞),

Λc
.=

1
c

log
∫
X

ecF (x)μ(dx) = sup
ν∈P(X )

[
−1
c
R (ν ‖μ ) +

∫
X
F (x)ν(dx)

]
. (3.1)

For a proof see [2], Proposition 1.4.2. The duality continues to hold as stated if F is bounded from above,
and also when bounded from below if one restricts the supremum to ν ∈ P(X ) for which R (ν ‖μ ) < ∞ [2],
Proposition 4.5.1.

As an elementary example on how such a formula can be useful, suppose that F is a performance measure
(e.g., variance or an error probability), and that μ is a model for some random phenomena. We consider μ to
be the nominal model, e.g., our best guess3. However, we are uncertain if this is the correct model, and would
like a measure of performance that also holds for alternative models, but with a penalty for deviation from the
nominal model. Λc is just such a performance measure, since by (3.1), for any alternative model ν the bound∫

X
F (x)ν(dx) ≤ Λc +

1
c
R (ν ‖μ ) (3.2)

applies. Hence we obtain bounds on performance over a family of alternative models. The parameter c allows
one to balance robustness with respect to possible model inaccuracies against tighter bounds. In particular, as c
tends to 0, Λc converges to

∫
X F (x)μ(dx), which is the performance measure under the nominal model, but in

the limit the bound is meaningful only when ν = μ.
Suppose that a bound on performance over a specific family of distributions is needed. Let R∗ denote the

maximum of relative entropy with respect to the nominal model over this family. Then the tightest possible
bound is obtained by minimizing

Λc +
1
c
R∗

over c > 0. We show in Proposition 3.3 below that this function has only one local minimum over c ∈ (0,∞],
and thus the global minimum is easy to compute.

Functionals of the exponential form that appears in the definition of Λc are sometimes called risk-sensitive
because the exponential amplifies the effect of any large values of the performance measure F . In the next two
sections we consider two hybrid risk-sensitive functionals that will allow aleatoric and epistemic variables to be
combined and yet distinguished.

3.1. Two hybrid forms

In this section and the next random variables with a known distribution will take values in a Polish space
X . Variables whose distribution is not known or are otherwise of the epistemic variety take values in the Polish
metric space Y.

3This is similar to the prior distribution in the Bayesian framework.
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The performance measure of interest for some given problem is assumed to be of the form∫
X

∫
Y
F (x, y)λ(dy)ν(dx), (3.3)

where ν (resp., λ) is a probability measure on X (resp., Y). If X and Y are independent random variables with
distributions ν and λ, then F (X,Y ) represents both the performance measure (e.g., a second moment) as well
as the underlying physical or mechanical system that maps these aleatoric and epistemic inputs into outputs.
Now, let μ and γ represent the nominal distribution of X and Y , resp., while ν and λ represent the alternative
probability distributions of X and Y , resp. Applying (3.2) to the joint measures μ × γ (nominal) and ν × λ
(alternative), we obtain bounds on the performance measure∫

X

∫
Y
F (x, y)λ(dy)ν(dx) ≤ 1

c
R (λ ‖γ ) +

1
c
R (ν ‖μ ) + Λc (3.4)

where the ordinary risk-sensitive performance measure is

Λc =
1
c

log
∫
X

∫
Y

ecF (x,y)γ(dy)μ(dx). (3.5)

Since the distribution of X is known, we can take ν = μ so that (3.4) now becomes∫
X

∫
Y
F (x, y)λ(dy)ν(dx) ≤ 1

c
R (λ ‖γ ) + Λc. (3.6)

While (3.6) seems to give upper bounds on the performance measure under uncertainty in the distribution of Y
only, the measure (3.5) does not distinguish the variables according to type (aleatoric or epistemic). In fact, the
risk-sensitive performance measure (3.5) is the same in both (3.4) and (3.6). Therefore, the use of a risk-sensitive
form (3.5) is not well motivated for the aleatoric variables. Indeed, use of this measure will give bounds that
are robust with respect to variations on a distribution that is known (as can be seen in (3.4)), and obviously
such bounds are not as tight as possible.

The first form we consider for a hybrid measure is

Λ1
c =

1
c

log
∫
Y

e
∫
X cF (x,y)μ(dx)γ(dy). (3.7)

Note that by Jensen’s inequality (applied to the convex function exp), this is smaller than (and in general
strictly smaller than) Λc. Using the relative entropy representation for exponential integrals given in (3.1) [but
with Y in place of X and letting

∫
X cF (x, y)μ(dx) be the cost function], it follows that for any distribution θ(dy)∫

Y

∫
X
F (x, y)μ(dx)θ(dy) ≤ 1

c
R (θ(dy) ‖γ(dy) ) + Λ1

c . (3.8)

This gives a bound on the performance measure for an arbitrary distribution of Y , but with the distribution ofX
equal to the known true distribution. The distributions thus play very different roles. In particular, we think of γ
as a nominal distribution of Y , which should be distinguished from a possible true distribution. The risk sensitive
functional Λ1

c , whose numerical evaluation can be carried out by a variety of methods (including polynomial
chaos expansion as discussed below), is based on the nominal distribution. Through the relative entropy duality,
it will yield various bounds (depending on c) on a families of distributions, with the relative entropy distance
the key metric. Ideally one would consider the smallest family that contains the “true” distribution (if it exists),
and get the tightest bound by optimizing over c. With the hybrid risk-sensitive formulation, μ is allowed to be
both the nominal (computational) distribution and also the true distribution.
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The second form one could consider for a hybrid measure is

Λ2
c =

1
c

∫
X

[
log
∫
Y

ecF (x,y)γ(dy)
]
μ(dx). (3.9)

Note that by Jensen’s inequality (applied now to the concave function log), this is again in general strictly
smaller than Λc. The relative entropy representation for exponential integrals gives∫

Y
F (x, y)θ(dy|x) ≤ 1

c
R (θ(dy|x) ‖γ(dy) ) +

1
c

log
∫
Y

ecF (x,y)γ(dy).

Here θ(dy|x) is any stochastic kernel on Y given X , which is essentially a conditional distribution on Y given
X = x (for the precise definition see [2], p. 35). Integrating over X gives∫

X

∫
Y
F (x, y)θ(dy|x)μ(dx) ≤ 1

c

∫
X
R (θ(dy|x) ‖γ(dy) )μ(dx) + Λ2

c .

In the case where θ(dy|x) is independent of x, we obtain∫
X

∫
Y
F (x, y)θ(dy)μ(dx) ≤ 1

c
R (θ(dy) ‖γ(dy) ) + Λ2

c .

Note that the second hybrid cost gives a more general bound, in that it allows the alternative distribution
on Y (i.e., θ(dy|x)) to depend on the value taken by X . This additional flexibility comes at a cost, and indeed
we will show in the next Section that the following inequalities hold (typically in a strict fashion):∫

X

∫
Y
F (x, y)γ(dy)μ(dx) ≤ Λ1

c ≤ Λ2
c ≤ Λc. (3.10)

Hence if one is concerned with performance bounds for distributions on Y that do not depend on the variable X ,
then the tightest bound is obtained using Λ1

c .
Before studying properties of the risk-sensitive measures, we note some elementary generalizations that are

possible. Suppose that the nominal distribution of X and Y is not of product form. In the setting of the first
form, we could let γ be the marginal distribution of Y and let μ(dx|y) be the conditional distribution of X
given Y = y. Using the extended definition

Λ̄1
c =

1
c

log
∫
Y

e
∫
X cF (x,y)μ(dx|y)γ(dy),

we obtain the bound ∫
Y

∫
X
F (x, y)μ(dx|y)θ(dy) ≤ 1

c
R (θ(dy) ‖γ(dy) ) + Λ̄1

c.

For the second form, we let μ be the marginal distribution of X and let γ(dy|x) be the conditional distribution
of Y given X = x. With the definition

Λ̄2
c =

1
c

∫
X

[
log
∫
Y

ecF (x,y)γ(dy|x)
]
μ(dx),

we obtain ∫
X

∫
Y
F (x, y)θ(dy|x)μ(dx) ≤ 1

c

∫
X
R (θ(dy|x) ‖γ(dy|x) )μ(dx) + Λ̄2

c .

It is indeed sometimes useful to allow the distribution of one type of variable to depend on the value taken
by the other type of variable. As an elementary example, consider the situation where an aleatoric variable
appears in a system, and while it is known that this variable has a Gaussian distribution with mean zero, the
variance of the variable is however not known. Then the variance itself might be modeled as an uncertainty
whose distribution is not known precisely, i.e., as an epistemic uncertainty. In this case Λ̄1

c would be the relevant
risk-sensitive formulation. An example of this sort is presented in Section 4.2.2.
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Remark 3.1. In problems of regulatory assessment epistemic uncertainty can pose a unique set of challenges.
The collection of data and model validation are often particularly difficult or expensive, while at the same time
stringent bounds on performance might be demanded. In these circumstances, the framework presented here,
wherein tight bounds are obtained for a known family of alternative models, would seem very natural. Prior to
the collection of data or testing of samples to determine compliance, all critical elements of the model, including
selection of the nominal model, size of the family of alternative models allowed by the relative entropy bounds,
and the performance measures that would be required to hold uniformly for this family, would all be determined
by negotiation among the interested parties. This would allow various competing needs (e.g., expense of model
validation versus adequate protection of consumers) to be balanced according to the interests of the participants.

3.2. Properties of the risk-sensitive forms

In this section we prove properties of the two hybrid risk-sensitive forms. In particular we derive an inequality
relating the two, and study the limit as c → ∞. For the results to hold as stated we often need F be bounded
from below. This is a mild assumption. Indeed, standard measures of performance such as second moments and
error probabilities satisfy this condition.

The first proposition shows the inequality between the two hybrid forms.

Proposition 3.2. Assume that F is bounded from below and consider the functionals defined in (3.3)–(3.9).
Then the inequalities (3.10) hold.

Proof. The only inequality which does not follow from Jensen’s inequality is Λ1
c ≤ Λ2

c . The relative entropy
duality as stated in (3.1) applied to Λ1

c gives

Λ1
c = sup

θ∈P(Y)

[∫
Y

∫
X
F (x, y)μ(dx)θ(dy) − 1

c
R (θ(dy) ‖γ(dy) )

]
,

where P(Y) is the space of probability measures on Y. The same representation applied to

1
c

log
∫
Y

ecF (x,y)γ(dy)

gives
1
c

log
∫
Y

ecF (x,y)γ(dy) = sup
θ∈P(Y)

[∫
Y
F (x, y)θ(dy) − 1

c
R (θ(dy) ‖γ(dy) )

]
.

The supremum operation in the last display can be done in such a way that an optimizing (or near optimizing)
θ is a Borel measurable function of x, i.e., a stochastic kernel θ(dy|x) on Y given X [2]. Let P(Y|X ) denote the
space of such stochastic kernels. Integrating the last display with respect to μ gives

Λ2
c = sup

θ∈P(Y|X )

[∫
X

∫
Y
F (x, y)θ(dy|x)μ(dx) − 1

c

∫
X
R (θ(dy|x) ‖γ(dy) )μ(dx)

]
.

Since P(Y) ⊂ P(Y|X ), Λ2
c ≥ Λ1

c follows. �

The next proposition shows how to obtain bounds on the performance over a family of distributions defined
in terms of a maximum relative entropy B.

Proposition 3.3. Consider the functionals defined in (3.5)–(3.9), and let D = {c : Λc <∞} (resp., Di ={
c : Λi

c <∞} , i = 1, 2). Assume that the interior of D (resp., Di) is nonempty. Then Λc (resp., Λi
c) is differen-

tiable on the interior of D (resp., Di). Assume also that F is bounded from below by zero. Then c 
→ Λc (resp.,
c 
→ Λi

c) is nondecreasing for c ≥ 0. Let B > 0 be given. Then there is a unique c ∈ (0,∞] at which

c 
→ 1
c
B + Λc

(
resp.,

1
c
B + Λi

c

)
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c

H(c)

c

cH ′(c) − H(c)

Figure 1. f(c) is monotone increasing.

attains a local minimum, where the statement that the minimum occurs at c = ∞ means that Λc + B/c > Λ∞
for a well defined limit Λ∞ and all c <∞.

Proof. To simplify we give the proof only for the case of Λc and omit the y variable. Thus we consider
Λc = 1

c log
∫
X ecF (x)μ(dx). Proofs for the other functionals are analogous. It is well known that H(c) =

log
∫
X ecF (x)μ(dx) is a convex function taking values in R∪{∞}, and strictly convex and infinitely differentiable

on the interior of {c : H(c) <∞} (see, e.g., [6]).
Next we prove the monotonicity. Differentiating gives

H
′
(c) =

∫
X F (x)ecF (x)μ(dx)∫

X ecF (x)μ(dx)
·

Since F ≥ 0 the derivative is non-negative, and convexity implies it is non-decreasing. Using

1
c
H(c) =

1
c

(H(c) −H(0)) =
1
c

∫ c

0

H
′
(s)ds,

it follows that Λc = H(c)/c is nondecreasing for c ≥ 0.
First assume that M .= supD = ∞, and observe that

d
dc

[
1
c
B +

1
c
H(c)

]
=

1
c2

[
−B + cH

′
(c) −H(c)

]
.

Since H is strictly convex and H
′
(0) ≥ 0, the mapping f(c) 
→ cH

′
(c)−H(c) is monotone increasing and takes

the value 0 at c = 0 (see Fig. 1).
Let K denote the limit of f(c) as c→ ∞. If K = ∞ then there is a unique solution to

cH
′
(c) −H(c) = B,

and we are done. The same is true if 0 ≤ B < K. Hence the only case left is when B ≥ K. In this case
(B + H(c))/c is monotone decreasing for all c ∈ [0,∞). Since H(c)/c ≥ H

′
(0) ≥ 0, there is a well-defined

limit Λ∞ that is necessarily the minimum.



ALEATORIC AND EPISTEMIC UQ 643

Next assume that M .= supD ∈ (0,∞). We claim that in this case cH
′
(c)−H(c) ↑ ∞ as c ↑M , and therefore

we can argue just as before. By monotone convergence it must be that H(c) ↑ ∞ as c ↑M , which implies that
necessarily H

′
(c) ↑ ∞ as c ↑M . To prove the claim, let 0 < β < c < M . Then since H

′
(s) is increasing

H(c) =
∫ c

0

H
′
(s)ds ≤ βH

′
(β) + (c− β)H

′
(c).

This implies
cH

′
(c) −H(c) ≥ β

[
H

′
(c) −H

′
(β)
]
.

Letting c ↑M and using that β > 0, the claim is proved, thus completing the proof of the theorem. �

Next, we consider the sense in which the infimum over c of right hand side of (3.2) provides a tight bound
on the performance measure. To simplify we give the proof only for the case of Λc and omit the y variable. The
proofs for the hybrid forms (e.g., (3.8)) are analogous.

Theorem 3.4. Consider the functional defined in (3.1) and assume the conditions of Proposition 3.3. Suppose
that L ∈ R, B ∈ [0,∞) are given, and that c∗ <∞ minimizes

c 
→ 1
c
Bc + Λc

so that 1
c∗B + Λc∗ < ∞. Define FB

.= {γ ∈ P(X ) : R(γ ‖μ ) ≤ B}, i.e., the family of alternative distributions
on X . Then for all ν ∈ FB, ∫

X
F (x)ν(dx) ≤ L⇔ 1

c∗
B + Λc∗ ≤ L.

Proof. If 1
c∗B+Λc∗ ≤ L then, by (3.2),

∫
X F (x)ν(dx) ≤ L for all ν ∈ FB. For the other direction, we will show

that there exists a ν(dx) ∈ FB such that∫
X
F (x)ν(dx) =

1
c∗
B + Λc∗ .

Hence, if 1
c∗B + Λc∗ > L, then, for at least one ν(dx) ∈ FB,

∫
X F (x)ν(dx) > L.

First, recall from (3.1) that for any given c ∈ (0,∞)

Λc = sup
ν∈P(X )

[
−1
c
R(ν ‖μ ) +

∫
X
F (x)ν(dx)

]
.

The supremum is achieved at νc(dx) = ecF (x)μ(dx)/Z(c), where Z(c) =
∫
X ecF (x)μ(dx) [2], Proposition 1.4.2.

Thus ∫
X
F (x)νc∗(dx) =

1
c∗
R(νc∗ ‖μ ) + Λc∗ .

By the previous proposition, c∗ < ∞ must lie in the interior of D. Therefore, we can differentiate 1
cB + Λc

with respect to c, and we get that c∗ satisfies

− 1
(c∗)2

log
∫
X

ec∗F (x)μ(dx) +
1
c∗

1
Z(c∗)

∫
X
F (x)ecF (x)μ(dx) − B

(c∗)2
= 0. (3.11)

Also,

R(νc∗ ‖μ ) =
∫
X

[c∗F (x) − logZ(c∗)]
Z(c∗)

ec∗Fμ(dx)

=
1

Z(c∗)

∫
X
c∗F (x)ec∗F (x)μ(dx) − logZ(c∗),
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and so
1

(c∗)2
R(νc∗ ‖μ ) =

1
Z(c∗)

∫
c∗F ec∗F dμ− 1

(c∗)2
logZ(c∗). (3.12)

Comparing (3.11) and (3.12) we have R(νc∗ ‖μ ) = B and therefore νc∗ ∈ FB. �

In the context of regulatory assessment, it may be required that the performance measure of interest be no
greater than a particular value, e.g., L. What this theorem tells us is that the performance measure will pass
the regulatory criteria for a given family of alternative distributions, if and only if the upper bound also passes
the regulatory criteria. If the upper bound fails to pass the regulatory requirement, all we can say is that there
exists at least one distribution in the given family of alternative distributions that fails this criteria. It may very
well be that there are distributions within the family that actually pass the regulatory criteria, but, as a whole,
the family fails to satisfy the requirement.

One of the situations of interest when aleatoric and epistemic variables appear simultaneously is the case
where all that is known regarding the epistemic variables are bounds. It turns out that this problem is well
posed (i.e., the relevant performance criteria are finite) essentially in those cases where Λ1

∞ < ∞. In fact,
when this is the case the value of Λ1

∞ can be used to establish optimal bounds subject to the constraint on
the epistemic variables. For simplicity, we assume that the set A appearing in the statement of the following
theorem is bounded and that γ, the nominal distribution for the epistemic variables, is the uniform distribution
(in the limit c → ∞ the precise form of the nominal distribution is not important, and in fact it is only the
support of the distribution that matters in the limit (see the remark after the Theorem)). If A is not bounded
one can use an appropriate distribution whose support is all of A (e.g., the exponential distribution could be
used for A = [0,∞). The choice of γ as uniform when A is bounded is simplest and also one that is convenient
for most uses. A related statement holds for Λ2∞, but it is not as useful (at least in this setting), since Λ1∞ ≤ Λ2∞.

Theorem 3.5. Let X and Y be subsets of a finite dimensional Euclidean space. Suppose that A ⊂ Y is bounded
and the closure of its interior and that γ is the uniform distribution on A. Assume that F is lower semicontinuous
in y for each x ∈ X and bounded from below. Define the risk-sensitive functional Λ1

c by (3.7) and let Λ1∞ =
limc→∞ Λ1

c. Then

sup
y∈A

∫
X
F (x, y)μ(dx) = Λ1

∞.

Proof. Since cΛ1
c is convex the limit of Λ1

c is well defined, though it might take the value ∞. We give the proof
for the case Λ1

∞ <∞. The extension to the case Λ1
∞ = ∞ is straightforward.

We first prove that the left side of the last display is bounded above by the right side. Fix any ȳ ∈ A◦, the
interior of A. For small ε > 0 let Bε be the ball in A about ȳ of volume ε, and let M be the volume of A. Let
θ(dy) be the measure whose density with respect to Lebesgue measure is 1/ε on Bε, and zero elsewhere. Then

R (θ(dy) ‖γ(dy) ) =
∫

Bε

log [(1/ε)/(1/M)] θ(dy)

= (1/ε) log [(1/ε)/(1/M)] .

Then (3.8) gives ∫
X

∫
Bε

F (x, y)θ(dy)μ(dx) ≤ 1
c

(1/ε) log [(1/ε)/(1/M)] + Λ1
c . (3.13)

Since y → F (x, y) is lower semicontinuous

lim inf
ε→0

∫
Bε

F (x, y)θ(dy) ≥ F (x, ȳ).
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Letting first c → ∞ and then ε → 0 in (3.13), Fatou’s lemma gives
∫
X F (x, ȳ)μ(dx) ≤ Λ1∞. Since ȳ ∈ A◦ is

arbitrary, the lower semicontinuity and another use of Fatou give the bound for all y ∈ A.
For the reverse inequality, we use the fact that the minimizing measure in the definition of Λ1

c exists. In fact,∫
Y

∫
X
F (x, y)μ(dx)θ∗c (dy) =

1
c
R (θ∗c (dy) ‖γ(dy) ) + Λ1

c

precisely at θ∗ defined by

dθ∗c (·)
dγ(·) (y) = e

∫
X cF (x,y)μ(dx)

/∫
A

e
∫
X cF (x,y)μ(dx)γ(dy)

(see [2], Prop. 1.4.2). By the non-negativity of relative entropy

Λ1
∞ = lim

c→∞Λ1
c

≤ lim sup
c→∞

∫
Y

∫
X
F (x, y)μ(dx)θ∗c (dy)

≤ sup
y∈A

∫
X
F (x, y)μ(dx). �

Remark 3.6. The set A need not be bounded, nor must the uniform distribution be used. Indeed, assume
only that γ(dy) has a density f(y) such that f(y) ≥ α > 0 for y ∈ Bε. Then

R (θ(dy) ‖γ(dy) ) ≤
∫

Bε

log [(1/ε)/α] θ(dy)

= (1/ε) log [1/(εα)] ,

and the result still holds.

4. Examples and computational methods

To indicate how the robust performance bounds might be used in practice, we present some numerical exam-
ples, which illustrate the relationship between the different risk sensitive integrals and the relevant techniques
and computational issues. We first review the polynomial chaos techniques that are used to compute the risk-
sensitive integrals. The reader familiar with this material can skip to the next section.

Remark 4.1. Although previously the random variables with known and unknown distributions were denoted
by X and Y , in the rest of the paper these random variables will be denoted by Z1 and Z2. This is done to
free up x and y to be spatial variables in various PDE and related equations that might be used to define the
mapping F .

4.1. Review of polynomial chaos methods

This Section reviews the polynomial chaos method that we use to compute the risk-sensitive integrals. The
reader familiar with this material can skip to Section 4.2, or refer to [5] for a more comprehensive treatment. It
should also be noted that one need not use polynomial chaos methods for the calculation of the risk-sensitive
integrals. Various Monte Carlo type techniques can certainly be applied. However, for the examples in this
paper, we found that polynomial chaos methods worked better (higher accuracy with a smaller number of
sample points) than straightforward Monte Carlo integration.

To calculate risk sensitive integrals, one could use Monte Carlo integration, which requires evaluating
F (Z1, Z2) for many replicas of (Z1, Z2). Because the order of convergence for Monte Carlo integration is
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O(N−1/2), where N is the number of sample points, this method can take a long time to converge(though
not necessarily for the given examples), and so we utilize generalized polynomial chaos (gPC) methods to ap-
proximate F (z1, z2) and evaluate various statistical properties of F (Z1, Z2) (see, for example [11]). We briefly
recall the mathematical framework of polynomial chaos methods, along with a simple example in one dimension.

Let (Ω,A ,P) be a probability space where Ω is the sample space, A the associated σ-algebra, and P the
probability measure on A. Define a random vector Z(ω) .= (Z1(ω), . . . , ZN(ω)) ∈ R

N on this probability space.
Consider a d-dimensional bounded domain D ⊂ R

d with boundary ∂D and let t ∈ [0, T ], T ∈ (0,∞). We
consider random fields u(t, x;Z(ω)) : D̄ × [0, T ]×Ω → R that are defined by requiring that for a.e. ω ∈ Ω

L(t, x, u;Z(ω)) = f(t, x;Z(ω)), (x, t, ω) ∈ D × [0, T ]×Ω,

subject to the boundary and initial conditions

B(t, x, u;Z(ω)) = g(t, x;Z(ω)), (x, t, ω) ∈ ∂D × [0, T ]×Ω,

u(t, x;Z(ω)) = u0(x;Z(ω)), (x, t, ω) ∈ D × {0} ×Ω.

Here x = (x1, ..., xd) ∈ R
d, L is a linear or nonlinear differential operator, and B is a boundary operator. We

assume for simplicity that a unique classical sense solution exists to the differential equation and/or boundary
conditions. Note that for the first two examples of the last Section the problem involves only time dependence,
and hence there is neither a spatial variable nor a boundary condition.

We assume that {Zi}N
i=1 are independent random variables, with support {Γi}N

i=1 and with probability density
functions {ρi(zi)}N

i=1, respectively. Hence the joint density is ρ(z) =
∏

N
i=1ρi(zi). Let Ω be the canonical space∏N

i=1 Γi, in which case Z(ω) = ω and we identify ω with z. Thus the equations above become

L(t, x, u; z) = f(t, x; z), (x, t, z) ∈ D × [0, T ]×Ω, (4.1)

subject to the boundary and initial conditions

B(t, x, u; z) = g(t, x; z), (x, t, z) ∈ ∂D × [0, T ]×Ω, (4.2)
u(t, x; z) = u0(x; z), (x, t, z) ∈ D × {0} ×Ω.

We consider approximating the mapping as a function of the stochastic variable, i.e., z → u(t, x; z) at some
particular (t, x), via a finite sum of orthogonal basis functions.

We first define finite dimensional subspaces for L2(Γi) according to

WPi

i =
{
v : Γi → R : v ∈ span {φi,m(zi)}Pi

m=0

}
, i = 1, ..., N.

Here Pi is the highest degree of the polynomial basis function, and {φi,m(zi)} are a set of orthonormal polyno-
mials with respect to the weight ρi, i.e., for m �= n∫

Γi

φi,m(zi)φi,n(zi)ρi(zi)dzi = 0

and ∫
Γi

φ2
i,n(zi)ρi(zi)dzi = 1.

The orthonormal basis representation is determined by the probability density function ρi. For example, if the
density is uniform or Gaussian, then Legendre or Hermite orthogonal polynomials, respectively, are used. A
table of polynomial basis functions and their respective distributions is listed at the end of this section (also
see [8]). A finite dimensional subspace for L2(Γ ), where Γ .= Γ1 × · · · × ΓN = Ω, can either be defined as

WP
N =

⊗
|P|≤P

WPi

i
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where the tensor product is over all combinations of the multi-index P = (P1, . . . , PN ) ∈ N
N
0 with |P| =∑N

i=1 Pi ≤ P , or

W̃P
N =

N⊗
i=1

WP
i .

Thus, WP
N is the space of N -variate orthogonal polynomials of total degree at most P , whereas W̃P

N is the full
tensor product of the one-dimensional polynomial spaces with each highest degree P . Note that dim(WP

N ) =(
N+P

P

)
and dim(W̃P

N ) = (P + 1)N , and that for large N ,
(
N+P

P

)� (P + 1)N . Since our examples only consider
N = 2, we will use the full tensor product space, W̃P

N . Let Φj(z), j = 1, . . . ,M denote the elements of W̃P
N ,

where M = dim(W̃P
N ).

There are two standard methods for constructing gPC approximations, referred to as the stochastic Galerkin
method (see, e.g., [8]) and the stochastic collocation method (see, e.g., [9]). Since the calculations presented
below use only the collocation method, we restrict discussion to this method. With stochastic collocation, we
first consider an approximation to the solution u(t, x; z) in terms of a Lagrange interpolant of the form

v(t, x; z) =
Np∑
k=1

v(t, x; zk)Lk(z), (4.3)

where Lk(z) is a Lagrange polynomial of degree dim(WP
N ), satisfies Lk(zl) = δkl, and {zk}Np

k=1 are a set of
prescribed nodes in the N -dimensional space Γ . We require that the residuals

R(t, x; z) .= L(t, x, v; z) − f(t, x; z)

RBC(t, x; z) .= B(t, x, v; z) − g(t, x; z)

RIC(x; z) .= v(0, x; z) − u0(x; z)

vanish at the collocation points {zk}Np

k=1, i.e.,

L(t, x, v(t, x; zk); zk) − f(t, x; zk) = 0, for k = 1, . . . , Np

B(t, x, v(t, x; zk); zk) − g(t, x; zk) = 0, for k = 1, . . . , Np

v(0, x; zk) − u0(x; zk) = 0, for k = 1, . . . , Np.

Thus, the stochastic collocation method produces a set of Np decoupled equations, where each value of v(t, x; zk)
coincides with the exact solution u(t, x; z) for the given zk, since both satisfy the same equations.

Once the values of {v(t, x; zk)}Np

k=1 have been determined at the collocation points, one can construct a gPC
approximation in the orthogonal basis representation in the form

v(t, x; z) =
M∑

j=1

v̂j(t, x)Φj(z), (4.4)

which, under certain conditions, will be equivalent to the Lagrange basis formulation. The coefficients {v̂j}M
j=1

can be determined by inverting a Vandermonde matrix, where invertibility is dependent on the choice of col-
location points. If one chooses quadrature or cubature4 points for the collocation points, then invertibility

4cubature points just refers to quadratures in more than one dimension.
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is guaranteed. Furthermore, if the cubature rule is exact up to polynomials of degree 2M , inversion of the
Vandermonde matrix is not necessary5, and the coefficients {v̂j}M

j=1 can be computed by evaluating

v̂j(t, x) =
Np∑
k=1

v(t, x; zk)Φj(zk)wk, (4.5)

where {wk}Np

k=1 are the respective weights according to the choice of quadrature or cubature points.
Statistical information is easy to obtain from the form (4.4). For example,

Ez[v(t, x; z)] =
∫

Γ

⎛
⎝ M∑

j=1

v̂j(t, x)Φj(z)

⎞
⎠ ρ(z)dz = v̂1(t, x)

and

Ez[(v(t, x; z))2] =
∫

Γ

⎛
⎝ M∑

j=1

v̂j(t, x)Φj(z)

⎞
⎠

2

ρ(z)dz =
M∑

j=1

v̂j(t, x)2

as a consequence of the orthonormality. Other statistical information, such as higher moments and sensitivity
coefficients, are also easily calculated (see [8]). The ease with which one can calculate such moments explains
why orthogonal representation (4.4) is preferred over the Lagrange form (4.3).

To illustrate the approach, we look at a simplified version of Example 4.2. Let g(z2) = u0, so that the only
uncertainty is in the decay rate k, which depends on the random variable Z. The simplified problem becomes

d
dt
u(t) = −k(z)u(t), u(0) = u0,

where u(t; z) denotes the solution parameterized by z, with z a point in the range of Z. Requiring that the
residuals vanish at the collocation points {zn}Np

n=1 gives

R(t; zn) =
d
dt
v(t; zn) + k(zn)v(t; zn) = 0

and
RIC(zn) = v(0; zn) − u0 = 0.

Note that there are indeed Np decoupled equations, which are solved independently for each n. Here the solutions
are exact:

v(t; zn) = u0e−k(zn)t, for = 1, . . . , Np.

One can then obtain the approximation (4.4) with respect to the orthogonal basis, assuming that the appropriate
collocation points and weights have been chosen.

We illustrate this example with k(z) = z and Z ∼ N (μ = 0, σ2 = 1). Here the {Φj}M
j=1 are the Hermite

polynomials, which are orthonormal with respect to the weighting function ρ(z) = e−(z−μ)2/2σ2
/σ

√
2π with

support Γ = (−∞,+∞). Figure 2 shows the stochastic collocation approximation v(1, z) at t = 1 as a function
of z, with Np = 2, 3, 4, 5, versus the exact solution uexact(1, z) = e−z. Note that the collocation approximation
is an interpolation of the exact solution at Np points.

Figure 3 shows the relative error between the exact and approximated mean and variance in a semilog plot.
The linear decrease in relative error on the semilog plot implies an exponential decay in the error. Errors become
a constant at the limits of the accuracy of the numerical scheme.

5This is especially useful if the Vandermonde matrix is ill-conditioned.
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Figure 2. Interpolated solutions versus the exact solution at t = 1.

2 3 4 5 6 7 8 9 10 11
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P

er
ro

r

 

 
mean error
variance error

Figure 3. Relative errors.

4.2. Numerical examples and interpretation

We now discuss numerical calculation of the risk-sensitive integrals. For convenience, we recall the three
types of risk-sensitive integrals introduced in Section 3.1, the ordinary risk sensitive cost Λc and the two hybrid



650 K. CHOWDHARY AND P. DUPUIS

integrals Λ1
c and Λ2

c:

Λc =
1
c

log
∫
Z1

∫
Z2

ecF (z1,z2)γ(dz2)μ(dz1), (4.6)

Λ1
c =

1
c

log
∫
Z2

e
∫
Z1

cF (z1,z2)μ(dz1)γ(dz2),

Λ2
c =

1
c

∫
Z1

[
log
∫
Z2

ecF (z1,z2)γ(dz2)
]
μ(dz1),

where Z1,Z2 are the range spaces for the random variables Z1, Z2, respectively. Recall the relationships Λ1
c ≤

Λ2
c ≤ Λc. It is assumed that the distribution of Z1 is known, but this is not true for Z2. Instead, we assume

there is a nominal distribution, or best guess, for Z2, i.e, γ(dz2).
In the stochastic collocation approach, we replace F (z1, z2) in (4.6) with a polynomial interpolant, F̃ (z1, z2),

determined by the full tensor product of the one dimensional collocation points, {z1,i}N1,q

i=1 ⊗{z2,i}N2,q

i=1 in Z1×Z2.
Thus

F̃ (z1, z2) =
M∑

j=1

F̂j(t, x)Φj(z1, z2),

where M = N1,q ·N2,q , Φj is the full tensor product basis, and F̂j(t, x) is computed using (4.5). From here, one
can efficiently compute the risk sensitive integrals (4.6) via either Monte Carlo sampling or quadrature. For both
methods, once the samples or quadrature points have been chosen, one can calculate the risk sensitive integrals
for different values of c without resampling or choosing different quadrature points. Hence, it is computationally
inexpensive to compute the risk sensitive integral for different values of c. Note that for higher dimensions, a
sparse grid is preferred and, in most cases, necessary for these types of computations. It is typical to use the
Smolyak algorithm to generate these sparse grids, which are based on a one dimensional quadrature rule (for
example, see Sect. 4.1.2 in [7] for a more detailed explanation and further references).

In this paper, we opt for the numerical quadrature approach. Since F̃ (z1, z2) can be evaluated very quickly, we
can compute the risk sensitive integrals with high accuracy and efficiency using a high order quadrature rule. The
number of quadrature points chosen to compute the risk sensitive integrals need not be the same as the number
of collocation points used in computing the coefficients of the gPC expansion, though the type of quadrature
points is the same. For example, if we were to use Legendre-Gauss quadrature points to evaluate the gPC
coefficients, we would again use Legendre-Gauss quadrature points to calculate the risk sensitive integrals. In
the examples presented below a much larger number of quadrature points are used to compute the risk sensitive
integrals. To avoid confusion, to the set of quadrature points used to evaluate the risk sensitive integrals is
denoted by {z̃1,i}Ñ1,q

i=1 ⊗ {z̃2,i}Ñ2,q

i=1 , i.e., the full tensor product of one dimensional quadrature points. In the
examples, Ñ1,q and Ñ2,q equal 28, while N1,q and N2,q are 8 for smooth F and 12 when F is an indicator
functions.

We also implemented the Monte Carlo approach, but observed that numerical quadrature gave a much
better approximation for the same computational effort, at least for our examples. It should also be noted
that a variation on traditional Monte Carlo is needed for the hybrid forms of the risk sensitive integrals.
For the original risk-sensitive cost function (3.5), the standard approach is to use many independent samples
of the pair (Z1, Z2). This produces an estimate which has a mean square error of O(N−1/2), where N is the
total number of Monte Carlo samples. However, for the first hybrid form (3.7), one must approximate the
inner integral

∫
X cF (z1, z2)μ(dz1) for every fixed sample of Z2. Thus one has to simulate more Z1 samples

than Z2 samples. Similarly, to compute the second form of the hybrid (3.9), one must approximate the inner
integral

∫
Y ecF (z1,z2)γ(dz2) for every fixed Z1. In particular, for both hybrid forms one does not simply choose

independent samples of (Z1, Z2).
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4.2.1. Independent aleatoric and epistemic uncertainties

When the aleatoric and nominal epistemic variables are independent, the numerical quadrature approach
would evaluate the risk sensitive integrals via the formulas

Λc ≈ 1
c

log

⎛
⎝Ñ1,q∑

i=1

Ñ2,q∑
j=1

ecF (z̃1,i, z̃2,j)w̃1,iw̃2,j

⎞
⎠ (4.7)

Λ1
c ≈ 1

c
log

⎛
⎝Ñ2,q∑

j=1

e

(∑ Ñ1,q
i=1 cF (z̃1,i, z̃2,j)w̃1,i

)
w̃2,j

⎞
⎠

Λ2
c ≈ 1

c

Ñ1,q∑
i=1

⎛
⎝log

Ñ2,q∑
j=1

ecF (z̃1,i,z̃2,j)w̃2,j

⎞
⎠ w̃1,i.

where {z̃1,i, w̃1,i}Ñ1,q

i=1 , {z̃2,i, w̃2,i}Ñ2,q

i=1 are the pairs of quadrature points and weights chosen based on the under-
lying distribution.6

The first example is taken from [10] and involves a simple ODE. The example is convenient because analytic
solutions to the risk-sensitive integrals can be obtained, and then compared with the numerical approximations
described in the next section. The second example is a random oscillator, where the stochastic parameters are
the spring and dampening coefficients. The third example involves a heat equation with random heat capacity
and thermal conductivity.

Example 4.2. We consider F (Z1, Z2) defined in terms of the solution of the ODE

d
dt
u(t) = −k(z1)u(t), u(0) = g(z2),

where k and g are known functions. Letting u(t; z1, z2) denote the solution parameterized by (z1, z2), set
F (Z1, Z2) = h(u(t;Z1, Z2)), where typical choices of h are h(u) = u, h(u) = u2, h(u) = 1{a ≤ u ≤ b}.

Here we take k(z1) = z1, g(z2) = z2, let Z1 ∼ U [0, 1], Z2 ∼ U [0, 1], and compute risk sensitive integrals for
F (z1, z2) = [u(1; z1, z2)]2, and F (z1, z2) = 1 {0.8 ≤ u(1; z1, z2) ≤ 1}. Hence the goal is to obtain robust bounds
on the second moment and the probability that the solution to the stochastic ODE falls within the interval
[0.8, 1] at time t = 1, respectively. Note that the indicator function is not smooth, and thus more collocation
points are required to obtain an accurate approximation. We choose a Legendre polynomial basis for both Z1

and Z2 and use the Legendre–Gauss quadrature points and weights for each dimension.
Figures 4 and 5 show the approximations as a function of c for F (u) = u2 and F (u) = 1{0.8 ≤ u ≤ 1},

respectively. As expected Λ1
c gives the best bounds, while the original form Λc gives the worst upper bounds of

the three.
The plots also suggest what happens as c→ ∞. The measure Λc is expected to yield robust bounds if one is

uncertain regarding the distributions of both random variables Z1 and Z2, and limc→∞ Λc represents the tightest
upper bound on performance if we know nothing about these random variables except for their support. In this
case, the limit in Figure 5 appears to be 1, which means that for some choice of z1 and z2, u(1; z1, z2) ∈ [0.8, 1].
Hence without more information on the distributions of Z1, Z2 we do not obtain information other than this
from this performance bound. On the other hand, limc→∞ Λi

c for i = 1, 2 is strictly less than 1 and thus by
Theorem 3.5 gives a meaningful performance bound when the only information available about Z2 is its support.
Note also that while Λ1

c and Λ2
c seem close for F (u) = u2, the differ considerably for F (u) = 1{0.8 ≤ u ≤ 1}.

6In some of the examples below, the function of interest, F , is more easy to evaluate than surrogate F̃ . In these cases, the point
is merely to illustrate the use and accuracy of gPC surrogate models.
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Figure 4. Example 4.2, Λc,
{
Λi

c

}2

i=1
for F (u) = u2.
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Figure 5. Example 4.2, Λc,
{
Λi

c

}2

i=1
for F (u) = 1{0.8 ≤ u ≤ 1}.

In Figures 6 and 7 we display the relative error |Λi
c − Λi

c,exact|/
∣∣Λi

c,exact

∣∣ between the three risk sensitive
integrals and the exact solution at c = 30 and c = 60 as a function of the number of quadrature points, N q.
The exact solutions were calculated by reducing the risk-sensitive integrals to one-dimensional integrals, and
then using an adaptive quadrature method. We note that the rate of convergence is significantly slower for
F (u) = 1{0.8 ≤ u ≤ 1} than F (u) = u2. This is not surprising since the former is discontinuous. Also, the
calculation of risk-sensitive integrals for F (u) = 1{0.8 ≤ u ≤ 1} is not as sensitive to large c values when
compared to F (u) = u2. In the former case, because 0 ≤ F (u) ≤ 1, large values of c do not significantly affect
the growth of the exponents in the risk-sensitive integrals which could cause large round-off errors. However,
with F (u) = u2, this is not the case, and Figure 7 shows that there is a reduction in accuracy between c = 30 and
c = 60 for the same number of quadrature points. Finally, Figure 7 also reveals which risk-sensitive integrals are
are the slowest to converge, for a fixed c. In order from slowest to fastest convergence, we have Λc, Λ

2
c , and Λ1

c .
The reason that Λ1

c converges more quickly than Λc or Λ2
c is due to the summation of the exponential terms
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Figure 6. Example 4.2, relative error for Λc,
{
Λi

c

}2

i=1
with F (u) = 1{0.8 ≤ u ≤ 1} for c = 30

(left) vs. c = 60 (right) for different values of N q = 5, . . . , 60.
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Figure 7. Example 4.2, relative error for Λc,
{
Λi

c

}2

i=1
with F (u) = u2 for c = 30 (left) vs.

c = 60 (right) for different values of N q = 3, . . . , 15.

in (4.7) for large values of c. The calculation of Λ1
c involves half as many computations of exponential terms

(since the summation is in the exponent), which is the main source of the loss in accuracy for large values of c.
Next we consider the problem of computing the value of c which minimizes c 
→ 1

cB + Λi
c for i = 0, 1, 2.7

Here B is a maximum relative entropy distance that will be allowed between the “true” distribution, θ(dz2), and
the nominal distribution, γ(dz2), and the minimization produces the tightest possible bounds. For the example,
suppose that the family of distributions for which bounds are to be valid includes θ(dz2) ∼ beta(α = 1.5, β =
1.5), which implies B ≈ 0.0484. In this example B ≤ f(c) .= c d

dcH
i(c) −H(c) for some c, where Hi(c) .= cΛi

c.
As shown in Proposition 3.3, this implies there is a unique local minimum for c ∈ (0,∞). See Figures 8 and 9.
Alternatively, if B > f(c) for all c, then Proposition 3.3 implies the minimum is achieved in the limit as c→ ∞.

7Note that the risk sensitive integrals are infinite for c = 0. Thus in the numerical calculations, we actually compute c starting
from 0.01.
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Figure 8. Example 4.2, 1
c (B + Λc),

{
1
c (B + Λi

c)
}2

i=1
with F (u) = u2.
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Figure 9. Example 4.2, 1
c (B + Λc),

{
1
c (B + Λi

c)
}2

i=1
with F (u) = 1{0.8 ≤ u ≤ 1}.

From Figure 9 we find a minimum for 1
cB + Λ1

c of approximately 0.04 at c ≈ 5.12. Thus for all distributions
on Z2 whose relative entropy distance to U [0, 1] is less than 0.0484, the probability that the solution to the
random ODE falls between 0.8 and 1 at time 1 is less than 0.04.

Note that the minimum is at different values of c for the three different integrals, but the minimum is always
the smallest for the first form of the hybrid. In the case when the minimum occurs at some c <∞, the minimum
is easily calculated, since this is a one-dimensional unconstrained minimization problem (for example, one can
use a golden method search algorithm, such as MATLAB’s fminbnd function). In the case when the minimum
occurs in the limit as c → ∞, in order to find the minimum, one can iterate Λi

c until the successive iterations
differ by less than a prescribed tolerance.

The second example is a random oscillator, where the stochastic parameters are the spring and dampening
coefficients.
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Figure 10. Example 4.3, Λc,
{
Λi

c

}2

i=1
for F (u) = 1{u ≤ 2}.

Example 4.3. We consider F (Z1, Z2) defined in terms of the solution of the ODE

d2

dt2
u(t) + γ(z2)

d
dt
u(t) + k(z1)u(t) = f(t), u(0) = u0, u′(0) = u′0,

where k and γ are known functions, which represent the spring and dampening coefficients, respectively. The
outcome of interest is whether or not the position of the random oscillator falls within a specified range, [a, b],
at a specified time, tcritical. Letting u(t; z1, z2) denote the solution parameterized by (z1, z2), set F (Z1, Z2) =
1{a ≤ u(tcritical;Z1, Z2) ≤ b}.

Here we consider the random oscillator with k(z1) = 4z1, γ(z2) = z2/5, and f(t) = 10 cos(10t) + 3, and
choose Z1 ∼ beta(α = 5, β = 5), Z2 ∼ beta(α = 5, β = 5), tcritical = 4, and [a, b] = (−∞, 2]. Here we use
the Gauss–Jacobi quadrature points and weights. In this example we are concerned with the position of the
oscillator at a critical time. Figure 10 plots the risk sensitive integrals for Example 4.3 with F (u) = 1{u ≤ 2}.
Figure 11 depicts c 
→ 1

c (B + Λi
c), where B = R (θ(dz2) ‖γ(dz2) ) ≈ .0587, with θ(dz2) ∼ beta(α = 10, β = 10).

Finally, the third example involves a heat equation with random heat capacity and thermal conductivity.

Example 4.4. We consider F (Z1, Z2) defined in terms of the solution of the PDE

d
dt
u(t, x) =

k(u; z1)
m(z2)

d2

dx2
u(t, x), u(0, x) = u0(x)

on x ∈ (0, L) with boundary conditions

−k(u; z1)
d
dx
u(t, 0) = q,

d
dx
u(t, L) = 0.

Here k and m are the thermal conductivity and heat capacity, respectively. Note that in this example, the
randomness affects the diffusivity and the boundary conditions. We are interested in the probability that the
material exceeds a particular temperature, Tcritical, at the time tfinal and at some point x� ∈ [0, L]. Letting
u(t; z1, z2) denote the solution parameterized by (z1, z2), set F (Z1, Z2) = 1{u(tfinal, x

�;Z1, Z2) ≥ Tcritical}.
Here we consider the random heat equation with (nonlinear) Neumann boundary conditions. We use k(u, z1) =

z1 + (1.5 × 10−7)u, m(z2) = (10−6)z2, q = 0.35, L = 1.90, u0(x) = 25, and Tcritical = 980, x� = 0, tfinal = 1000,
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Figure 11. Example 4.3, 1
c (B + Λc),

{
1
c (B + Λi

c)
}2

i=1
with F (u) = 1{u ≤ 2}.
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Figure 12. Example 4.4, 1
c (B + Λc),

{
1
c (B + Λi

c)
}2

i=1
for F (u) = 1{u ≥ Tcritical}.

and set F (Z1, Z2) = 1{u(tfinal, x
�;Z1, Z2) ≥ Tcritical}. For the random variables, we introduce two independent

random variables Z̃1 ∼ beta(α = 5, β = 5), Z̃2 ∼ beta(α = 5, β = 5) and let Z1 = (2 × 10−3)Z̃1 + 3 × 10−3,
Z2 = (0.11)Z̃2 + 0.30. Figures 12 and 13 plot the risk sensitive integrals as a function of c and illustrate
c → 1

c (B + Λi
c), where B = R (θ(dz2) ‖γ(dz2) ) ≈ 0.0587. and with θ(dz2) ∼ beta(α = 10, β = 10). Again, we

use the Gauss–Jacobi quadrature points and weights.

4.2.2. Dependent aleatoric and epistemic uncertainties

In this section we consider problems where the distribution of Z1 can depend on the value of Z2, or vice
versa. In the case when Z1 depends on Z2, we use the following inequality, which holds for the alternative of
the first hybrid form (see the discussion in Sect. 3.1):∫

Z2

∫
Z1

F (z1, z2)μ(dz1|z2)θ(dz2) ≤ 1
c
R (θ(dz2) ‖γ(dz2) ) + Λ̄1

c ,
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Figure 13. Example 4.4, 1
c (B + Λc),

{
1
c (B + Λi

c)
}2

i=1
with F (u) = 1{u ≥ Tcritical}.

where

Λ̄1
c =

1
c

log
∫
Z2

exp
(∫

Z1

cF (z1, z2)μ(dz1|z2)
)
γ(dz2).

Recall that the relative entropy term 1
cR (θ(dz2) ‖γ(dz2) ) represents our lack of knowledge about the distribution

of Z2, i.e., the epistemic uncertainty where we want robustness, whereas Z1 represents aleatoric uncertainty.
A question that now arises is whether or not it is still possible to use gPC methods to evaluate this integral.
Consider the example with Z2 ∼ U [0, 1] and Z1 ∼ N(Z2, 1), so that Z1 is Gaussian with variance 1 and mean Z2.
Certainly Z1 and Z2 are not independent random variables. However, we can introduce an auxiliary normal
random variable Z ∼ N (0, 1), and write Z1

.= Z +Z2, where Z2 and Z are independent random variables. Now
we consider G(Z,Z2) instead of F (Z1, Z2), and note that G(Z,Z2) = F (Z + Z2, Z2). Furthermore, Λ̄1

c can be
written as

Λ̄1
c =

1
c

log
∫
Z2

exp
(∫

Z
cG(z, z2)μ(dz)

)
γ(dz2).

Hence, Λ̄1
c can be calculated just like Λ1

c via a gPC approximation. Similar results hold for the case when Z2

depends on Z1, but the epistemic uncertainty is in Z2.
In general, as long as we can find a smooth, invertible mapping from (Z1, Z2) to an independent pair of

random variables, one can evaluate the integrals as before. Figures 14 and 15 show the performance of risk
sensitive integrals for dependent random variables as above for Example 4.2 and with F (u) = 1{1/2 ≤ u ≤ 1}.

4.3. Discussion and Conclusion

There exist alternative methods for integrating aleatoric and epistemic variation in uncertainty quantification.
The most straightforward techniques amount to treating the aleatoric and epistemic variables separately, and
perform nested iterations, iterating over a finite collection of epistemic parameters on the outer loop, then
sampling over aleatoric variables on the inner loop [4]. From this, one can plot the ensemble of cumulative
distribution functions to visualize the family of distributions, sometimes called horsetail plots. For example,
suppose the aleatoric random variable is Gaussian with an epistemic mean, where all we know about this
epistemic variable is its support (X ∼ N (Y, 1), Y ∈ [a, b]). Then, for a set of N values contained within the
known support (outer iteration), {Yi = yi : yi ∈ [a, b]}N

i=1, one can compute the performance (inner iteration)
based on the corresponding set of input distributions, {Xi : Xi ∼ N (yi, 1)}N

i=1.
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Figure 14. Example 4.2, Λ̄1
c for F (u) = 1{1/2 ≤ u ≤ 1}.
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Figure 15. Example 4.2, 1
c (B + Λ̄1

c) F (u) = 1{1/2 ≤ u ≤ 1}, and θ ∼ N (0.8, 1).

Alternatively, one can consider a Bayesian approach, and introduce hyperparameters (epistemic uncertain-
ties) on known distributions (aleatoric uncertainties) in order to integrate both types into system modeling.
For example, suppose the aleatoric random variable is Gaussian with an epistemic mean, where now we assume
this epistemic variable takes on a uniform distribution (X ∼ N (Y, 1), Y ∼ U [a, b]). In the parametric Bayesian
approach, if one wants bounds for a collection of distributions on the epistemic variables each joint distribu-
tion must be sampled separately. In contrast to the nested iteration approach, the Bayesian hyperparameter
approach produces a quantity that averages the epistemic uncertainty. Our approach gives tight upper bounds
on performance measures under alternative distributions, without sampling under the various alternative joint
distributions.

Most recently, in a paper by Xiu et al. [10], an approach to dealing with epistemic uncertainty via polynomial
chaos methods was developed. In [10], epistemic uncertainty meant that the true distribution of the underlying
stochastic parameters was not known precisely. Here we compare our method of handling this type of epistemic
uncertainty to theirs.
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The approach taken in [10] is based on stochastic collocation approximation. Specifically, the differential
equation of interest was solved on a generic collocation grid on the sample space of the random variables. This
is in contrast to standard uses of stochastic collocation for uncertainty quantification, where the collocation
grid is chosen in accordance with the (assumed known) underlying distribution. Of course the reason for the
particular choice of basis polynomials and quadrature points is to obtain optimal (spectral) convergence with
respect to the L2 weighted error. In the approach of [10], regardless of what is the “true” (and assumed unknown)
distribution, one chooses grid points with respect to the L2 weighted norm with constant weight (e.g., Legendre-
Gauss quadrature weights), even if the original space is unbounded. One then solves the differential equation
at these collocation points and constructs the interpolating polynomial of the approximation. Hence, the gPC
approximation converges optimally in the L2 norm only if the underlying distribution is uniform. For non-
uniform random variables the approximation will still converge point-wise as the number of collocation points
increases (see Sect. 5 in [10]).

Once the interpolated approximation is obtained, one can determine the mean, variance, probabilities, and so
on with respect to various underlying distributions on the parameters via Monte Carlo or other methods. The
benefits are still large, in that one need not evaluate the differential equation for every Monte Carlo sample,
but instead evaluates a much simpler approximation via a finite sum of polynomial basis functions. However,
information can be obtained only by fixing a choice for the underlying distribution. Also, depending on which
underlying distribution is used, the errors in the function approximation will have a greater or smaller effect.

In this paper we have developed an approach in which performance bounds can be calculated for the mean,
variance, probabilities, and so on with respect to all distributions that are within a particular relative entropy
distance from the nominal distribution, and the bounds are optimal for that class of distributions. In addition
to providing performance bounds on a class of distributions defined by their relative entropy distance, the
limit c → ∞ is particularly interesting in that it gives tight bounds on epistemic uncertainties where one
assumes nothing about the underlying distribution of certain variables except their support. In addition, the
method one can efficiently handle both aleatoric and epistemic uncertainty simultaneously. More precisely,
by computing certain hybrid forms of a risk-sensitive expectation we obtain tight performance bounds that
distinguish between variables with known distribution and variables with unknown distribution or other forms
of epistemic uncertainty. In particular, the scenarios to which the method applies include (i) aleatoric with known
distribution; (ii) aleatoric with partly known distribution (mingled aleatoric and epistemic); (iii) epistemic for
which one is willing to model by a family of aleatoric uncertainties, and (iv) epistemic where one is only willing
to place bounds on the uncertainties. For all the examples we have considered (including those presented in the
paper), approximation of the required risk-sensitive integrals can be done via gPC methods using roughly the
same computational effort as would be required to compute the corresponding ordinary performance measures
using the nominal probability distributions.

Appendix A. Distribution for Polynomial Basis

Here we list some of the most common distributions, both continuous and discrete, and their corresponding
gPC basis representations (see [8]).

Distribution gPC polynomial basis
Gaussian Hermite
Gamma Laguerre

Beta Jacobi
Uniform Legendre
Poisson Charlier
Binomial Krawtchouk

Negative Binomial Meixner
Hypergeometric Hahn



660 K. CHOWDHARY AND P. DUPUIS

Appendix B. Relative Entropy Formulas

In this section we evaluate relative entropies for some of the most common types of distributions listed in
Table 4.3. Since most of the distributions listed in this table fall within the exponential family, we start with
the general form

fX(x; θ) = h(x) exp

(
s∑

i=1

ηi(θ)Ti(x) −A(η1(θ), ..., ηs(θ))

)
, (B.1)

where Ti(x), h(x), ηi(θ), and A(θ) are known functions, θ = (θ1, ..., θd)T is the parameter of the family.

Example B.1. For Gaussian distributions θ = (μ, σ)T , where μ is the mean and σ is the variance. This is put
in the general form by setting

θ = (μ, σ)T , η =
(
μ

σ2
,
−1
2σ2

)T

, h(x) =
1√
2π
, T (x) = (x, x2)T ,

A(η(θ)) =
μ2

2σ2
+ log |σ| = − η2

1

4η2
+

1
2

log
∣∣∣∣ 1
2η2

∣∣∣∣ ,
producing

fX(x;μ, σ) =
1√

2πσ2
e−(x−μ)2/2σ2

.

We now state the relative entropy formula for distributions which have a probability density function given by
the form of exponential family in (B.1). The relative entropy between a probability measure P with density p(x)
and another probability measure Q with density q(x) is given by

R(P ‖Q ) =
∫

Γ

p(x) log
p(x)
q(x)

dx (B.2)

whenever P is absolutely continuous with respect to Q, where Γ is the support of p and q. In all other cases it
is defined to be ∞.

A simplified version of the relative entropy formula for distributions from the same exponential family type
is available. Suppose that q(x) and p(x) have the same h, ηi, Ti, A, but with different parameters θ1 and θ2

(note that θ1 and θ2 are vectors). If we associate q(x) with θ1 and p(x) with θ2, then it can be shown that the
relative entropy formula reduces to

R(P ‖Q) =
s∑

i=1

(ηi(θ2) − ηi(θ1))
∫

Γ

Ti(x)p(x)dx −A(η(θ2)) +A(η(θ1)). (B.3)

Gaussian. If Q = N(μ1, σ1) and P = N(μ2, σ2), then using the fact that
∫
T1(x)p(x)dx = μ2 and∫

T2(x)p(x)dx = μ2
2 + σ2

2 , we get

R(P ‖Q ) =
1

2σ2
1

(
(μ2

1 − μ2
2) + (σ2 − σ1)

)
+ log

σ1

σ2
. (B.4)

Beta. For the beta distribution, the parameters in the exponential family are given by

η = (α− 1, β − 1)T , T = (log(x), log(1 − x))T , h(x) = 1, A = log
Γ (α)Γ (β)
Γ (α+ β)
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where
fX(x;α, β) =

Γ (α)Γ (β)
Γ (α+ β)

xα−1(1 − x)β−1, 0 < x < 1, α, β > 1.

Another form of the beta distribution, which is more closely related to the Jacobi polynomials, is given by

f̃X(k; α̃, β̃) =
(1 − x)α̃(1 + x)β̃

2α̃+β̃+1B(α̃+ 1, β̃ + 1)
, −1 < x < 1, α̃, β̃ > −1,

where B(α, β) = Γ (α)Γ (β)/Γ (α + β) is the beta function. Note that the relation between the two is simply a
rescaling and a variable substitution given by α̃ = β − 1, β̃ = α− 1. We will use the primary form to determine
the relative entropy formula. Letting P = beta(α2, β2) and Q = beta(α1, β1),∫ 1

0

T1(x)p(x)dx = ψ(α2) − ψ(α2 + β2),
∫

Γ

T2(x)p(x)dx = ψ(β2) − ψ(α2 + β2),

where ψ(x) is known as the digamma function, or the zeroth order of the polygamma function. Then,

R(P ‖Q ) = (α2 − α1)(ψ(α2) − ψ(α2 + β2))

+ (β2 − β1)(ψ(β2) − ψ(α2 + β2)) + log
B(α1, β1)
B(a2, β2)

·

Gamma. Here we have

η = (−β, α− 1)T , T = (x, log(x))T , h(x) = 1, A = logΓ (α) − α log β

If P = gamma(α2, β2), Q = gamma(α1, β1), where αi, βi are the so-called shape parameters, then

R(P ‖Q) =
α1

β1
(β2 − β1) + (α1 − α2)(ψ(α1)) − log(β1)) + log

Γ (α2)βα1
1

Γ (α1)βa2
2

·

Binomial. Here

η = (−β, α− 1)T , T = (x, log(x))T , h(x) = 1, A = logΓ (α) − α log β.

If P = binomial(n, p2), Q = binomial(n, p1), then

R(P ‖Q) = log
pμ1
1 (1 − p2)μ1−n

pμ1
2 (1 − p1)μ1−n

, μ1 = np1.

Poisson. In this case
η = logλ, T = x, h(x) =

1
x!
, A = λ

If P = Poisson(λ2), Q = Poisson(λ1), then the relative entropy distance is

R(P ‖Q) = λ1 − λ2 + λ2 log
λ2

λ1
.

Note that relative entropy formula is invariant under shifting and scaling of both distributions simultaneously.
In fact, suppose that ψ and its inverse are both well defined and measurable, X and Y have distributions P
and Q, and that ψ(X) and ψ(Y ) have distributions P̄ and Q̄. Then [2], Lemma E.2.1 R(P̄

∥∥Q̄ ) = R(P ‖Q ). A
list of relative entropy formulas follows.
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Distribution R((·)2
∥∥(·)1 )

Gaussian 1
2σ2

1

[
(μ2

1 − μ2
2) + (σ2 − σ1)

]
+ log σ1

σ2

Beta/Uniform
(α2 − α1) [ψ(α2) − ψ(α2 + β2)]

+(β2 − β1) [ψ(β2) − ψ(α2 + β2)] + log B(α1,β1)
B(α2,β2)

Gamma
α1
β1

(β2 − β1) + (α1 − α2) [ψ(α1) − log β1]

+ log [Γ (α2)β
α1
1 /Γ (α1)β

α2
2 ]

Binomial log
[
pμ1
1 (1 − p2)

μ1−n
/
pμ1
2 (1 − p1)

μ1−n
]

Poisson λ1 − λ2 + λ2 log λ2
λ1
.
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