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CONSISTENCY, ACCURACY AND ENTROPY BEHAVIOUR OF REMESHED
PARTICLE METHODS

Lisl Weynans
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Abstract. In this paper we analyze the consistency, the accuracy and some entropy properties of parti-
cle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet
and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with
remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods,
and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magni devised
recently in [G.-H. Cottet and A. Magni, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1367–1372] and
[A. Magni and G.-H. Cottet, J. Comput. Phys. 231 (2012) 152–172] TVD remeshing schemes for
particle methods. We extend these results to the nonlinear case with arbitrary velocity sign. We present
numerical results obtained with these new TVD particle methods for the Euler equations in the case of
the Sod shock tube. Then we prove that with these new TVD remeshing schemes the particle methods
converge toward the entropy solution of the scalar conservation law.
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1. Introduction

Particle methods are Lagrangian techniques that have been designed for advection-dominated physical prob-
lems. In this class of methods, the fluid is discretized on small masses concentrated on points: the particles,
which are moved in a Lagrangian way. The classical particle methods used in fluid dynamics are Smoothed
Particle Hydrodynamics (SPH) [2, 11, 25] introduced by Monaghan and Particle-In-Cell (PIC) methods [9, 12].
If nothing is done, the distribution of particles becomes less and less uniform as time goes on, because they
accumulate naturally in certain zones, for instance near strong gradients, and rarefy elsewhere. This phenomenon
can lead to a loss of accuracy. A common remedy to this problem consists in periodically creating new par-
ticles uniformly distributed by an interpolation of the values of the existing particles, what is usually called
remeshing the particles. The remeshing step creates new particles in a conservative way, by distributing the
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adrien.magni@imag.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2012

http://dx.doi.org/10.1051/m2an/2012019
http://www.esaim-m2an.org
http://www.edpsciences.org


58 L. WEYNANS AND A. MAGNI

quantities carried by the particles at the nodes of an underlying grid. The frequency at which the interpolation
must be performed depends on the simulated flow, but it is often chosen to remesh particles at each time step.
This choice allows to solve the non-convective part of the considered equations (pressure gradient, diffusion for
instance) with variables located on a grid, thus more easily as if they were irregularly distributed. The ability
of particle methods with remeshing to simulate satisfactorily fluid dynamics has been studied and validated in
the past: [5, 8, 16, 26, 27] for instance. More recent works include [4, 15, 29].

In [7] remeshed particle methods were rewritten as finite-difference methods and analyzed in this formalism.
For example the particle scheme corresponding to a second-order interpolation kernel named Λ2 was found to
be equivalent to the Lax-Wendroff scheme in the linear case, whereas in the nonlinear case it provided a new
finite-difference scheme. In this paper we keep on focusing on the finite-difference analysis of remeshed particles
methods, and study their properties of consistency, accuracy and convergence toward entropy solution on a
one-dimensional nonlinear scalar transport equation in an infinite domain:

∂tu + ∂x(g(u)u) = 0, t ≥ 0, −∞ < x < +∞. (1.1)

A convergence proof in Lp
loc has been established in [1] for a weighted particle method belonging to SPH methods

which are purely Lagrangian methods. In [17,18] are studied the convergence in L2 and L1 of renormalized SPH
methods. To our knowledge, such an analysis for remeshed particle methods has not been performed yet.
Moreover, thanks to the flux limiting, we will deal here with higher degree interpolation kernels than in the
latter references, where the kernels were assumed to be positive, and thus performed only linear interpolation.
In Section 2 we briefly recall the principles of remeshed particle methods, and the interpolation kernels that
are classically used to perform remeshing. In Section 3 we present how a finite-difference scheme can be derived
from the particle method with remeshing. Then we study the consistency and accuracy of remeshed particle
methods under a CFL condition. Cottet and Magni introduced recently in [6, 20, 21] a way to perform flux
limiting on particles schemes and make them TVD. In Section 4 we present how TVD remeshing schemes can
be built for nonlinear conservation laws with arbitrary sign of the particle velocity, and a numerical application
to the Euler equation. In Section 5 we study the convergence of these TVD particle methods toward the entropy
solution. This study is motivated by a numerical observation: contrary to some finite-difference schemes, as the
Lax-Wendroff scheme for instance, the particle methods with remeshing seem to converge toward the entropy
solution of the Burgers equation, as it is noticed in [6]. Using techniques inspired by [22], we prove that the new
TVD remeshing schemes converge in the L1

loc norm toward the entropy solution of the scalar conservation law.

2. Particle methods with remeshing

2.1. Particle discretization

Here we present how a particle method with remeshing can be introduced to solve the model transport
equation (1.1). If we express this equation using the Lagrangian derivative associated to the material velocity
g(u), that is,

du

dt
= ∂tu + g(u)∂xu,

we get
du

dt
+ ∂x(g(u))u = 0.

Let V (t) be a material volume element moving at the flow velocity. By applying the Reynolds theorem, we get

d
dt

(∫
V (t)

u dV

)
=

∫
V (t)

du

dt
dV +

∫
V (t)

u ∂x(g(u)) dV.
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Thus,

d
dt

(∫
V (t)

u dV

)
= 0.

Following this property, the particle discretization consists in cutting the fluid into small masses concentrated
on points: the particles. Each particle j has a location xj , carries the constant quantity mj = Vj uj , with Vj the
volume of the particle, and moves at velocity g(uj). The variables carried by the particles satisfy the equations

dmj

dt
= 0,

dxj

dt
= g(uj).

To solve this system with the particle method, one has to move particles during one time step and then
interpolate them on the nodes of the underlying uniform grid. All particles are initially located on the nodes
of a uniform grid, with space step Δx. The volumes of particles are equal to the cell volumes. We note xn

j the
location of particle j at time n Δt, un

j the value of u carried by the particle, and g̃(u)n
i the velocity at which

the particle is moved. g̃(u)n
i may be equal to g(un

i ) but not necessarily. An example will be given later. It may
also be a function of several variables providing a consistent approximation of g(u):

g̃(u)n
i = F (uj−m, . . . , uj+m). (2.1)

For consistency reasons that will appear in the proof of the consistency in Section 3.2 we impose that
F (u, . . . , u) = g(u).

2.2. Interpolation kernels

In this section we shortly review interpolation kernels commonly used for the class of particle methods
considered here. More details can be found in [5]. We only present one-dimensional interpolation kernels, because
very often interpolation kernels in higher dimensions are devised by tensorial products of one-dimensional
interpolation formulas.

Let a distribution of particles be indexed with q, located in xq, carrying quantities mq. For instance, in the
case of Euler equations for gas dynamics, mq can be the mass, the momentum or the total energy of particle q.
For incompressible flows, in the case of Vortex-In-Cell methods, mq is the vorticity. Let W be an interpolation
kernel. The remeshing process creates new particles at the nodes of a uniform underlying grid, with space step
Δx. The new quantities m̃i at grid points x̃i are computed from the former values with the formula

m̃i =
∑

q

mqW

(
x̃i − xq

Δx

)
· (2.2)

The usual interpolation kernels are symmetrical, so as not to favour one direction compared to the others. With
a Fourier analysis one can prove that the order of the interpolation is equal to the number of momenta preserved
by the new particle distribution, i.e., ∑

i

m̃i =
∑

q

mq,

∑
i

m̃i(x − x̃i) =
∑

q

mq(x − xq),

∑
i

m̃i(x − x̃i)2 =
∑

q

mq(x − xq)2.

. . .



60 L. WEYNANS AND A. MAGNI

This property is true up to the order M − 1 if the kernel W satisfies (see Sect. 7.2 in [5])∑
i

W

(
x − x̃i

Δx

)
x̃a

i = xa for all x and 0 ≤ a ≤ M − 1. (2.3)

A family of interpolation kernels can be built by imposing the conservation of a given number of momenta M
with a minimal number of grid points. Λ1 is the first kernel built with this principle, with M = 2. It preserves
the first two momenta of the particle distribution.

Λ1(x) =
{

1 − |x| if |x| ≤ 1
0 if |x| > 1.

This kernel is in practise very diffusive and is not very used by itself. The next interpolation kernel, preserving
the first three momenta of the particle distribution, is:

Λ2(x) =

⎧⎨
⎩

1 − x2 if |x| ≤ 1/2
(1 − |x|)(2 − |x|)/2 if 1/2 < |x| ≤ 3/2
0 if |x| ≥ 1.5.

Although successfully used in the past, this kernel has the drawback of being very dispersive. This is partially
explained by the fact that it is not continuous: a small error on the location of a particle can thus result in a
large error on the values of the particles created by the interpolation step. The following interpolation kernels of
this family, Λ3 and Λ4, need respectively four and five grid points and preserve one or two additionnal momenta.

Other interpolation kernels can be built by successive convolutions of Λ1. They are of increasing regularity,
but only preserve the first two momenta thus it is only possible to perform linear interpolation with them. The
kernel M3, which is C1, is traditionnally referred to as the TSC (triangular-shaped cloud) interpolation function
in particle-in-cell methods.

M3(x) =

⎧⎨
⎩

1/2(x + 3/2)2 − 3/2(x + 1/2)2 if |x| ≤ 1/2
1/2(−|x|+ 3/2)2 if 1/2 ≤ |x| ≤ 3/2
0 if |x| > 3/2.

M4 and M5 are the following kernels of this family, respectively C2 and C3. Monaghan [24] devised the well
known M ′

4 kernel with a Richardson extrapolation from a linear combination of M4 and its derivative.

M ′
4(x) =

⎧⎨
⎩

1 − 5x2/2 + 3|x|3/2 if |x| ≤ 1
(2 − |x|)2(1 − |x|)/2 if 1 < |x| ≤ 2
0 if |x| ≥ 2.

This kernel is C1 and preserves the first three momenta.

3. Consistency and accuracy of particle methods with remeshing

3.1. Results

Following the notations introduced in Section 2.1, let un
j denote the value carried by the particle initially

located on grid point j, at time nΔt. It is possible to express un+1
j as a function of the un

i .

Proposition 3.1. If we note g̃(u)n
i the velocity used to move the particle i between the times n Δt and (n+1)Δt,

and Λ the interpolation kernel used for the remeshing step, we can express the particle method with remeshing
as a finite-difference scheme:

un+1
j =

∑
i

un
i Λ

(
j − i − Δt g̃(u)n

i

Δx

)
· (3.1)
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Remark 3.2. In the latter formula, we use the symbol
∑

i

without specifying to which interval belong the i

indices. Because the interpolation kernel considered here have all compact supports, but of various sizes, this
notation avoids us to specify the support of the considered interpolation kernel.

Proof. The location of the particle i after being moved is

x̃i = xi + Δt g̃(u)n
i .

The particles are remeshed on the same uniform grid as the one on which they were initially defined. Thus the
locations of the new particles are again the nodes of the grid, and their volumes are all equal to Δx. The new
particle distribution is computed from the old one with the interpolation formula

mn+1
j =

∑
i

mn
i Λ

(
xj − x̃i

Δx

)
·

We can re-write the latter equation as

un+1
j V n+1

j =
∑

i

un
i V n

i Λ

(
xj − xi − Δt g̃(u)n

i

Δx

)
·

As V n+1
j = V n

i = Δx this equation simplifies to

un+1
j =

∑
i

un
i Λ

(
xj − xi − Δt g̃(u)n

i

Δx

)
,

xi and xj being the nodes of a uniform grid, with space step Δx, we have

xj − xi

Δx
= j − i.

We finally get

un+1
j =

∑
i

un
i Λ

(
j − i − Δt

Δx
g̃(u)n

i

)
· �

We recognize the form of a finite-difference or finite-volume scheme. For example, if we develop this formula
with the kernel Λ2 in the linear case g(u) = a > 0, with the CFL condition |a Δt

Δx | < 1
2 , we get the Lax-Wendroff

scheme. Monaghan [23] had already noticed a similarity between particle methods and finite-difference methods.
In [10], Wee et Ghoniem used an analysis similar to ours to build modified interpolation kernels taking into
account diffusion terms. The formula (3.1) is difficult to interpret by itself, because the weights associated to
the values un

i are expressed with the kernel Λ. But it is possible to obtain several properties of the particle
scheme only with the knowledge of the number of momenta preserved by the interpolation kernel Λ. The first
one adresses the consistency of particle methods:

Proposition 3.3. Let Λ be an interpolation kernel piecewise polynomial of degree N with compact support, which
preserves at least the first two momenta. The scheme (3.1) can be written in a conservative form consistent with
equation (1.1).

To solve a flow where shocks may appear, it is crucial that the numerical scheme can be written in conservative
form consistent with the equation to solve. In hyperbolic problems this property ensures the scheme to satisfy
the discrete Rankine-Hugoniot conditions across discontinuities. Thus, if the scheme is converging, it converges
necessarily toward a weak solution of the considered equation. At the contrary, a non-conservative scheme used
to solve conservation laws will have a problematic convergence, as addressed in [3, 14].



62 L. WEYNANS AND A. MAGNI

One can distinguish two kinds of interpolation kernels: kernels whose support size is an even integer (for
example kernels Λ1, Λ3, M4 and M ′

4), and kernels whose support size is odd (for example Λ2 and M3). For the
sake of brevity, in the following we will call them respectively kernels with even or odd support. The finite-
difference stencil provided by kernels with even support varies with the sign of the velocity of the particles. For
this reason these kernels suffer from problems of consistency in the finite-difference sense (visible through an
analysis of the truncation error) if the velocity of the particles changes sign, as it is proved in [20, 21]. On the
contrary, kernels with odd support like Λ2 are defined on intervals [k − 1/2, k + 1/2], and the formula used to
interpolate a particle on a grid point does not depend on the velocity of the particle. Under a CFL condition
|g(uj) Δt

Δx | < 1
2 , these kernels do not suffer from consistency problems. In the following we will therefore focus

our study on kernels with odd support. The second property that we will prove adresses the accuracy of particle
schemes:

Proposition 3.4. Let Λ be an interpolation kernel with odd support, piecewise polynomial of degree N ,
which preserves the first M momenta, and u a solution of equation (1.1). For a given n ≥ 0, we denote
un

j = u(j Δx, n Δt). If we suppose that the functions u et g̃ are at least of class CM−1, and the CFL con-
dition |g(uj) Δt

Δx | < 1
2 is satisfied, then un+1

j defined by (3.1) satisfies

un+1
j =

M−1∑
i=0

Δti

i!
(−1)i ∂

i(ug̃i)
∂xi

(jΔx, nΔt) + O(ΔxM ). (3.2)

This property is also satisfied by kernels with even support, if the sign of the velocity of the particles is constant.
In this case actually, the stencil used to remesh the particles does not change, and the reasoning is the same as
for kernels with odd support. The Proofs of Propositions 3.3 et 3.4 are detailed in Section 3.2.

The formula (3.2) allows us to evaluate the accuracy of the particle method with respect to time and space.
We assume that Δx and Δt are proportional. If we take g̃(u) = g(u), the truncation error En+1

j is

En+1
j =

u(jΔx, (n + 1)Δt) − un+1
j

Δt

=
u(jΔx, (n + 1)Δt − u(jΔx, nΔt))

dt
+ ∂x(g(u)u)(jΔx, nΔt)

−Δt

2
∂xx(g(u)2u)(jΔx, nΔt) + O(Δx2)

= ∂tu(jΔx, nΔt) +
Δt

2
∂ttu(jΔx, nΔt) + ∂x(g(u)u)(jΔx, nΔt)

−Δt

2
∂xx(g(u)2u)(jΔx, nΔt) + O(Δx2) + O(Δt2)

= O(Δt).

The scheme is thus first-order accurate even if the interpolation kernel preserves a higher number of momenta,
because of the non-zero term ∂ttu−∂xx(g(u)2u). Actually, the choice g̃(u) = g(u) consists in moving the particle
during the time step Δt with its velocity evaluated at the beginning of the time step

x̃j = xj + Δt g(uj).

It is an explicit first-order Euler scheme, and consequently the particle moving is also order one. Therefore,
in order to increase the scheme accuracy, the velocity of particles during time step Δt needs to be evaluated
with a better accuracy. In [7] was introduced a new Runge-Kutta 2 advancing scheme for the particles, allowing
to recover in the nonlinear case a second-order accuracy. The idea is to use the velocity of the particle at the
middle of the time step, at t + Δt

2 . Because this value is not exactly known, it is replaced by a second-order
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approximation: g(u + Δt
2

du
dt ). Thus we move the particles at velocity

g̃(u) = g

(
u +

Δt

2
du

dt

)
, (3.3)

that is,

x̃j = xj + Δt g

(
u +

Δt

2
du

dt

)
x=xj

·

Proposition 3.5. For smooth enough solutions, the particle scheme (3.1) computed with the corrected
velocity (3.3) is second-order accurate if Λ preserves at least the first three momenta.

Proof. The scheme truncation error becomes

En+1
j =

u(jΔx, (n + 1)Δt) − un+1
j

Δt

= ∂tu(jΔx, nΔt) +
Δt

2
∂ttu(jΔx, nΔt) + ∂x(g(u +

Δt

2
du

dt
)u)(jΔx, nΔt)

−Δt

2
∂xx(g(u +

Δt

2
du

dt
)2u)(jΔx, nΔt) + O(Δx2)

= ∂tu(jΔx, nΔt) +
Δt

2
∂ttu(jΔx, nΔt) + ∂x(g(u)u)(jΔx, nΔt)

+
Δt

2
∂x(

du

dt
ug′(u))(jΔx, nΔt) − Δt

2
∂xx(g(u)2u)(jΔx, nΔt) + O(Δx2).

We want to prove that the sum ∂ttu + ∂x(du
dt ug′(u)) − ∂xx(g(u)2u) vanishes. Indeed,

∂ttu = −∂tx(g(u)u) = −∂x(g′(u)u ∂tu + g(u)∂tu) = ∂x

[
(g′(u)u + g(u))∂x(g(u)u)

]
,

du

dt
= −∂x(g(u)),

and we check that

∂x

[
(g′(u)u + g(u))∂x(g(u)u)

]− ∂x

(
∂x(g(u))ug′(u)

)
− ∂xx(g(u)2u) = 0.

Thus we obtain
En+1

j = O(Δx2). �

3.2. Proof of Propositions 3.3 and 3.4

We present in this subsection the Proofs of Propositions 3.3 and 3.4 in the case of a kernel with odd support.
These proofs are based on the fact that interpolation kernels preserve a certain number of momenta. We begin
with the proof of a lemma that will be used in the following.

Lemma 3.6. Let Λ be an interpolation kernel with odd support, piecewise polynomial and preserving the first
M momenta as in (2.3). For all m and i such that 0 ≤ i ≤ M − 1, we have∑

k

kiΛ(m)(k) = (−1)i i! δm
i . (3.4)
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Proof. As Λ preserves the first M momenta, we rewrite the formula (2.3) with x̃k = k and Δx = 1.∑
k

kiΛ(k − x) = xi 0 ≤ i ≤ M − 1.

Because Λ has an odd support, it is differentiable on each interval [k − 1/2, k + 1/2], and we deduce from the
latter formula that

if i = 0 and m > 0
∑

k

kiΛ(m)(k − x) = 0,

if i = m = 0
∑

k

kiΛ(m)(k − x) =
∑

k

Λ(k − x) = 1,

if i �= 0 and 0 ≤ m ≤ i
∑

k

ki(−1)mΛ(m)(k − x) = i(i − 1) . . . (i − m + 1)xi−m,

if i �= 0 and m > i
∑

k

ki(−1)mΛ(m)(k − x) = 0.

Thus, for x = 0 we have

if i = 0 and m > 0
∑

kiΛ(m)(k) = 0,

if i = m = 0
∑

k

kiΛ(k) = 1,

if i �= 0 and m �= i
∑

k

kiΛ(m)(k) = 0,

if i �= 0 and m = i
∑

k

kiΛ(m)(k) = (−1)ii!. �

Proof of Proposition 3.3. Consistency of the scheme:

Let u be a smooth solution of equation ∂tu + ∂x(g(u)u) = 0 for a given initial condition. Let us denote

un
j = u(jΔx, nΔt) for all n ≥ 0 and j.

We consider formula (3.1) written in a slightly different form, namely,

uj
n+1 =

∑
k

un
j+k Λ

(
k +

Δt

Δx
g̃(u)n

j+k

)
. (3.5)

For the sake of clarity we note g̃j+k = g̃(u)n
j+k, uj = un

j and λ = Δt
Δx . Formula (3.5) becomes

uj
n+1 =

∑
k

uj+k Λ(k + λg̃j+k).

Let N be the degree of Λ. The kernel Λ being differentiable on each interval [k − 1/2, k + 1/2], and because of
the CFL condition, we can develop each term in a Taylor expansion

Λ
(
k + λg̃j+k

)
=

N∑
i=0

Λ(i)(k)
i!

(
λg̃j+k

)i
.

We deduce from the latter that

un+1
j =

∑
k

N∑
i=0

λi

i!
Λ(i)(k)uj+kg̃i

j+k. (3.6)
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As we have assumed that the support of Λ is compact, it can be included in [−d, d], with d an integer, and
equation (3.6) can be re-written as

un+1
j =

d∑
k=−d,k �=0

[
N∑

i=0

uj+k
λi

i!
Λ(i)(k)g̃i

j+k

]
+

[
N∑

i=0

uj
λi

i!
Λ(i)(0)g̃i

j

]
.

As
∑

k

Λ(k + x) = 1, we have

Λ(i)(0) = δi
0 −

∑
k �=0

Λ(i)(k).

Thus,

un+1
j = uj +

d∑
k=−d,k �=0

N∑
i=0

λi

i!
Λ(i)(k)

[
uj+kg̃i

j+k − uj g̃
i
j

]
,

un+1
j = uj +

d∑
k=1

N∑
i=0

λi

i!

[
Λ(i)(k)

[
uj+kg̃i

j+k − uj g̃
i
j

]
+ Λ(i)(−k)

[
uj−kg̃i

j−k − uj g̃
i
j

]]
.

We notice that

uj+kg̃i
j+k − uj g̃

i
j =

k∑
a=1

uj+ag̃i
j+a −

k−1∑
a=0

uj+ag̃i
j+a,

uj−kg̃i
j−k − uj g̃

i
j = −

0∑
a=−k+1

uj+ag̃i
j+a +

−1∑
a=−k

uj+ag̃i
j+a.

Thus,

un+1
j = uj +

d∑
k=1

N∑
i=0

λi

i!

[
Λ(i)(k)

[
k∑

a=1

uj+ag̃i
j+a −

k−1∑
a=0

uj+ag̃i
j+a

]

+Λ(i)(−k)

[
−

0∑
a=−k+1

uj+ag̃i
j+a +

−1∑
a=−k

uj+ag̃i
j+a

]]
.

We can then write
un+1

j = uj − λ
[
G(uj+d, . . . , uj−d+1) − G(uj+d−1, . . . , uj−d)

]
,

with

G(uj+d, . . . , uj−d+1) = −
d∑

k=1

N∑
i=0

λi−1

i!

[
Λ(i)(k)

k∑
a=1

uj+ag̃i
j+a − Λ(i)(−k)

0∑
a=−k+1

uj+ag̃i
j+a

]
.

Consequently the scheme (3.1) can be written in conservative form. Moreover,

G(u, . . . , u) = −
d∑

k=1

N∑
i=0

λi−1

i!

[
Λ(i)(k)

k∑
a=1

ug(u)i − Λ(i)(−k)
0∑

a=−k+1

ug(u)i

]

= −
d∑

k=1

N∑
i=0

ug(u)i λ
i−1

i!

[
kΛ(i)(k) − kΛ(i)(−k)

]
.
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According to Lemma 3.6, we have then
G(u, . . . , u) = ug(u).

The scheme (3.1) is therefore consistent with equation (1.1).

Proof of Proposition 3.4. Accuracy of the scheme:
We start again from formula (3.5)

uj
n+1 =

∑
k

uj+k Λ(k + λg̃j+k).

The kernel Λ being differentiable on each interval [k − 1/2, k + 1/2], we have

Λ
(
k + λg̃j+k

)
=

N∑
i=0

Λ(i)(k)
i!

(
λg̃j+k

)i
.

Thus,

un+1
j =

∑
k

N∑
i=0

λi

i!
Λ(i)(k)uj+kg̃i

j+k.

We define (fi)j+k = uj+k g̃i
j+k and develop these terms in a Taylor series

(fi)j+k =
M−1∑
a=0

∂a(fi)
∂xa

(xj)
kaΔxa

a!
+ O(ΔxM ).

Thus,

un+1
j =

∑
k

N∑
i=0

λi

i!

M−1∑
a=0

kaΔxa

a!
Λ(i)(k)

∂a(fi)
∂xa

(xj) + O(ΔxM ),

and we swap the order of summation to yield

un+1
j =

N∑
i=0

λi

i!

M−1∑
a=0

Δxa

a!
∂a(fi)
∂xa

(xj)
∑

k

kaΛ(i)(k) + O(ΔxM ).

With the results of Lemma 3.6, we simplify the latter expression as

un+1
j =

M−1∑
i=0

λi

i!
Δxi

i!

[
∂i(fi)
∂xi

(xj)(−1)ii!

]
+ O(ΔxM )

=
M−1∑
i=0

λi

i!
(−1)iΔxi ∂

i
(
ug̃(u)i

)
∂xi

(xj) + O(ΔxM ).

4. TVD remeshing formulas

Recently Cottet and Magni derived in [6,20,21] TVD remeshing formulas for particle methods. This subsection
gives the principles to construct TVD remeshing formulas based on the Λ2 kernel in the nonlinear case and for
CFL conditions less than 1/2, avoiding consistency problems evocated in [21]. Examples are given for Burgers
and Euler equations.
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j

Space

Time

t

t+dt

xx −1 x 1

γ(y )β(y )α(y )

Figure 1. Λ2 remeshing formulas, 0 < λg̃ < 1/2.

j

Space

Time

t+dt

t
xx −1 x 1

γ
′
(y )β

′
(y )α

′
(y )

Figure 2. Λ2 remeshing formulas, −1/2 < λg̃ < 0.

4.1. Principle of TVD remeshing schemes

Let the velocity be positive (0 < λg̃ < 1/2). The remeshing of a particle with the Λ2 kernel is equivalent to
assigning the weights ⎧⎨

⎩
α(yj) = αj = yj (yj − 1) /2
β(yj) = βj = 1 − y2

j

γ(yj) = γj = yj (yj + 1) /2
(4.1)

to the amount carried by the particle and redistribute it on the neighbouring grid points. This is depicted in
Figure 1, where yj = λg̃j is the relative distance between the remeshed particle j and the grid point at the left.
The scheme resulting from the Λ2 remeshing (4.1) at the grid point xj and the time tn = n Δt is

un+1
j =

∑
k

un
j+k Λ2 (k + λg̃j+k) = γj−1 un

j−1 + βj un
j + αj+1 un

j+1. (4.2)

If now the velocity is negative (−1/2 < λg̃ < 0) as shown in Figure 2, the weights are⎧⎨
⎩

α
′
(yj) = α(yj − 1)

β
′
(yj) = β(yj − 1)

γ
′
(yj) = γ(yj − 1)

(4.3)

and the scheme is
un+1

j = γ
′
j−1 un

j−1 + β
′
j un

j + α
′
j+1 un

j+1. (4.4)

Since yj = λg̃j + 1, (4.2) is equivalent to (4.4) and a unique scheme is given at the point xj independently
of the velocity sign. The order of accuracy is two, and the drawback of this scheme is to be not TVD, therefore
creating spurious oscillations. In order to have a TVD scheme, it is possible to introduce some numerical diffusion
in (4.2) by adding a parameter σ to the remeshing formulas (4.1)–(4.3). This new formula (4.5) is called M̄3,
in reference to the M3 formula obtained when σ = 1/8 and used in traditional Particle In Cell methods. The
interpolation kernel M̄3 preserves the first two momenta and thus provides order one accuracy. The value of
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σ will be evaluated in Section 4.2 to ensure the TVD property of the M̄3 scheme.⎧⎨
⎩

αM3(yj) = yj (yj − 1) /2 + σ, αM3′
(yj) = αM3(yj − 1)

βM3(yj) = 1 − y2
j − 2σ, βM3′

(yj) = βM3(yj − 1)
γM3(yj) = yj (yj + 1) /2 + σ, γM3′

(yj) = γM3(yj − 1).
(4.5)

A TVD remeshing formula of order two in smooth regions can be built introducing a limiter φ to combine the
TVD formula M̄3 (obtained when φ = 0) and the second order Λ2 formula (φ = 1). The weights (4.1) and (4.3)
must be replaced respectively by (4.6) if 0 < λg̃ < 1/2 and (4.7) if −1/2 < λg̃ < 0.⎧⎨

⎩
αTV D(yj , φ) = yj (yj − 1) /2 + σ

(
1 − φj−1/2

)
βTV D(yj , φ) = 1 − y2

j − σ
(
1 − φj−1/2

)− σ
(
1 − φj+1/2

)
γTV D(yj , φ) = yj (yj + 1) /2 + σ

(
1 − φj+1/2

)
,

(4.6)

⎧⎨
⎩

αTV D′
(yj , φ̄) = αTV D(yj − 1, φ̄)

βTV D′
(yj , φ̄) = βTV D(yj − 1, φ̄)

γTV D′
(yj , φ̄) = γTV D(yj − 1, φ̄).

(4.7)

The limiters φj±1/2 = φ
(
rj±1/2

)
with rj+1/2 = (uj − uj−1) / (uj+1 − uj), rj−1/2 = (uj−1 − uj−2) / (uj − uj−1)

and φ̄j±1/2 = φ
(
r̄j±1/2

)
with r̄j+1/2 = (uj+2 − uj+1) / (uj+1 − uj), r̄j−1/2 = (uj+1 − uj) / (uj − uj−1) will be

calculated in Section 4.3 to ensure the TVD property of the scheme for all grid points xj .
In the case of a velocity changing sign, we must take care about the limiters. φ(r) �= φ(r̄) so the scheme in

some grid points is different of (4.2) and (4.4). To overcome this difficulty it is possible to replace formulas (4.6)–
(4.7) to remesh some specific particles. More precisely, if the particle j − 1 has a positive velocity and j has a
negative velocity, this particle must be remeshed by the formulas⎧⎪⎨

⎪⎩
αTV D′

j = (yj − 1) ((yj − 1) − 1) /2 + σ
(
1 − φ

(
rj−1/2

))
βTV D′

j = 1 − (yj − 1)2 − σ
(
1 − φ

(
rj−1/2

))− σ
(
1 − φ

(
r̄j+1/2

))
γTV D′

j = (yj − 1) ((yj − 1) + 1) /2 + σ
(
1 − φ

(
r̄j+1/2

))
.

(4.8)

In the same way, if j − 1 has a negative velocity and j is a particle with positive velocity, it must be remeshed
with ⎧⎪⎨

⎪⎩
αTV D

j = yj (yj − 1) /2 + σ
(
1 − φ

(
r̄j−1/2

))
βTV D

j = 1 − y2
j − σ

(
1 − φ

(
r̄j−1/2

))− σ
(
1 − φ

(
rj+1/2

))
γTV D

j = yj (yj + 1) /2 + σ
(
1 − φ

(
rj+1/2

))
.

(4.9)

Remark 4.1. The TVD remeshing formulas (4.6)–(4.9) are still consistent with an order one accuracy at least,
and conservative since the sum of the weights used to remesh any particle is one.

4.2. The TVD scheme M̄3

We give the proof of the TVD property of the M̄3 scheme discussing on the value of the parameter σ. This
parameter can be viewed as an artificial viscosity since when σ = 0 the M̄3 scheme reduced to the Λ2 scheme,
and to the M3 scheme when σ = 1/8. Let f and h be the two following functions

f(u, g(u)) = λgu (λg + 1)
h(u, g(u)) = λgu (λg − 1) .

(4.10)

Let us define Δfj+1/2 = fj+1 − fj , Δfj−1/2 = fj − fj−1, and the same notation holds replacing f by h or u. If
the particles are remeshed with the formulas (4.6)–(4.7), the scheme at the grid point xj is

un+1
j = un

j + Cj+1/2

(
un

j+1 − un
j

)− Dj−1/2

(
un

j − un
j−1

)
, (4.11)
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with ⎧⎨
⎩

Cj+1/2 = σ + 1
2

Δhj+1/2

Δuj+1/2

Dj−1/2 = σ + 1
2

Δfj−1/2

Δuj−1/2
+ σ

(
φj+1/2

rj+1/2
− φj−1/2

)
,

(4.12)

and following the Taylor-Lagrange formula, there exists ũ ∈]uj−1, uj [ and ˜̃u ∈]uj−1, uj [ such as⎧⎨
⎩

Cj−1/2 = σ + 1
2h

′
(˜̃u)

Dj−1/2 = σ + 1
2f

′
(ũ) + σ

(
φj+1/2

rj+1/2
− φj−1/2

)
.

(4.13)

The scheme M̄3 is reached doing φ = 0 in (4.13). Following the Harten theorem [13], the scheme (4.11) will be
TVD if {

Cj−1/2 ≥ 0

0 ≤ Dj−1/2 ≤ 1 − Cj−1/2.
(4.14)

Or if for all u ⎧⎪⎪⎨
⎪⎪⎩

σ + 1
2h

′
(u) ≥ 0

σ + 1
2f

′
(u) ≥ 0

2σ + 1
2f

′
(u) + 1

2h
′
(u) ≤ 1,

(4.15)

which is written again ⎧⎪⎪⎨
⎪⎪⎩

σ + 1
2λg (λg − 1) + 1

2g
′
(u)λu (2λg − 1) ≥ 0

σ + 1
2λg (λg + 1) + 1

2g
′
(u)λu (2λg + 1) ≥ 0

2σ + λ2g2 + 2g
′
(u)λ2gu ≤ 1.

(4.16)

Assuming { |λg| ≤ C

|λg
′ | ≤ C′,

(4.17)

we have
1
2

∣∣∣f ′
∣∣∣ =

1
2

∣∣∣h′∣∣∣
≤ 1

2
|λg|2 +

1
2
|λg| + 1

2
|u|

∣∣∣λg
′
∣∣∣ + |λg|

∣∣∣λg
′
∣∣∣ |u|

≤ 1
2

C (C + 1) +
1
2

C
′
max |u| (1 + 2C)

≤ σ

(4.18)

if C and C
′
max |u| are small enough. So, {

1
2 |f

′ | ≤ σ

1
2 |h

′ | ≤ σ,
(4.19)

and choosing σ = 1/4, ⎧⎪⎨
⎪⎩

1
2

(
|f ′ | + |h′ |

)
≤ 2σ = 1/2

1
2

(
|f ′ | + |h′ |

)
≤ 1 − 2σ = 1/2,

(4.20)

the scheme M̄3 is TVD. This proof holds in the general case, but requires some constraint on the velocity field
and its derivative: (4.17) with C and C

′
max |u| small enough. When the velocity field is given, an optimal value

of σ can be determined with the CFL condition corresponding. We study the case of the Burgers and the Euler
equations.
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4.2.1. Burgers equation

Let us consider the Burgers equation, i.e., g(u) = u/2. Since g
′
(u) = 1/2 there exists two constants C and

C
′
satisfying (4.17) under a CFL condition. Knowing the velocity g, it is possible to find an optimal parameter

σ giving rise to the largest CFL condition under the TVD constraint for scheme M̄3.
Indeed, the conditions (4.16) becomes ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σ ≥ 1

2λu − 3
8 (λu)2

σ ≥ − 1
2λu − 3

8 (λu)2

σ ≤ 1
2 − 3

8 (λu)2 .

(4.21)

Setting c = λ
(

u
2

)
and according to the two first inequalities of (4.21), σ ≥ 1/6 if |c| ≥ 1

3 . According to the last
condition, CFL condition must be max|c| ≤ √

2/3 � 0.47 to have σ ≤ 1/6, and then we choose σ = 1/6.

Remark 4.2. If σ = 1/4 the CFL condition is reduced to 1/
√

6 = 0.41 and the M̄3 formula is more diffusive
than with σ = 1/6.

4.2.2. Euler equations

Let be u1 = ρ, u2 = ρu and u3 = ρE. Then, the Euler equations are written⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t + ∂

∂x

(
u1

u2
u1

)
= 0

∂u2
∂t + ∂

∂x

(
u2

u2
u1

)
= − ∂p

∂x

∂u3
∂t + ∂

∂x

(
u3

u2
u1

)
= − ∂

∂x

(
p u2

u1

)
p = (γ − 1)

(
u3 − 1

2
u2
2

u1

)
.

(4.22)

These equations are solved using a two-step splitting method. The presssure effects are solved in a Lagrange
step and the convective part is solved in an advection step [29]. We are interested in this last step which consists
to advect particles to the velocity g(u1, u2, u3) = u2/u1 and remesh them on a grid with TVD formulas. In this
paragraph, we find optimal parameters σ to construct TVD formulas M̄3 allowing the largest CFL condition.
The limiters used in the remeshing formulas (4.6)–(4.7) will be constructed in Section 4.3.

Since the optimal parameter depends on the amount u carried by the particles, the calculation must be
done for the three equations of the system (4.22). Let us consider the first equation. u = u1, g = u2/u1 and
g

′
= −u2/u2

1, so with c = λu2/u1 (4.16) becomes⎧⎪⎪⎨
⎪⎪⎩

σ − 1
2c2 ≥ 0

σ − 1
2c2 ≥ 0

2σ − c2 ≤ 1.

(4.23)

To ensure the consistency of the Λ2 remeshing [21] −1/2 ≤ c ≤ 1/2, the CFL condition is max|c| ≤ 1/2 and
σ = 1/8.

In the same way, for the second equation of (4.22), u = u2, g = u2/u1, g
′
= 1/u1 and (4.16) becomes⎧⎪⎪⎨

⎪⎪⎩
σ + 3

2c2 − c ≥ 0

σ + 3
2c2 + c ≥ 0

2σ + 3c2 ≤ 1.

(4.24)
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As for Burgers equation, the optimal value for the parameter σ is 1/6 and the CFL condition is max|c| ≤ √
2/3.

Finally, for the energy equation, u = u3, g = u2/u1 and g
′
= 0. So (4.16) becomes⎧⎪⎪⎨

⎪⎪⎩
σ + 1

2c2 − 1
2c ≥ 0

σ + 1
2c2 + 1

2c ≥ 0

2σ + c2 ≤ 1,

(4.25)

and the optimal parameter is σ = 1/8 allowing a CFL condition of
√

3/2 which is reduced to 1/2 for the
consistency.

We want to use the same parameter σ to remesh ρ, ρ u or ρ E with the M̄3 formula. So we chose the smallest
value of sigma, i.e., σ = 1/6, and the CFL condition is max|c| ≤ √

2/3.

4.3. Calculation of the limiter φ(r)

Let us assume the velocity g ≥ 0. The limiters are built from (4.11)–(4.13) using again the Harten theorem [13].
Assuming that the parameter σ is chosen to have a M̄3 scheme TVD as explained in Section 4.2, then the
coefficient Cj−1/2 given in (4.12) is positive from the conditions (4.14). So the scheme (4.11) obtained using the
Λ2-TVD remeshing formulas (4.6)–(4.7) will be TVD if

0 ≤ Dj−1/2 ≤ 1 − Cj−1/2. (4.26)

This condition is written again

0 ≤ 1 +
1
2σ

f
′
(u) − φj−1/2 +

φj+1/2

rj+1/2
≤ 1

σ
− 1 − 1

2σ
h

′
(u), (4.27)

which is verified if the limiters satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ≤ φj−1/2 ≤ 1 + 1
2σ f

′
(u)

= 1 + 1
2σ λ2g2 + 1

σλ2gg
′
u + 1

2σλg + 1
2σλg

′
u

0 ≤ φj+1/2/rj+1/2 ≤ 1
σ − 1 − 1

2σ h
′
(u)

= 1
σ − 2 − 1

σ λ2g2 − 2
σλ2gg

′
u.

(4.28)

If the velocity g ≤ 0, the coefficients Cj+1/2 and Dj−1/2 can be chosen in order to introduce the slope ratio
r̄j−1/2 = Δuj+1/2/Δuj−1/2: ⎧⎨

⎩
Cj+1/2 = σ + 1

2

Δhj+1/2

Δuj+1/2
+ σ

(
φj−1/2

r̄j−1/2
− φj+1/2

)
Dj−1/2 = σ + 1

2

Δfj−1/2

Δuj−1/2
·

(4.29)

The limiters are built by imposing 0 ≤ Cj+1/2 ≤ 1 − Dj+1/2,{
0 ≤ φj+1/2 ≤ 1 + 1

2σ λ2g2 + 1
σλ2gg

′
u− 1

2σλg− 1
2σ λg

′
u

0 ≤ φj−1/2/r̄j−1/2 ≤ 1
σ − 2 − 1

σ λ2g2 − 2
σλ2gg

′
u.

(4.30)

In the case of a velocity changing sign, particles are remeshed by the formulas (4.8) and (4.9). Then the
scheme obtained on the grid point xj is

un+1
j = un

j + 1
2 (hj+1 − hj) + σ

(
un

j+1 − un
j

)− 1
2 (fj − fj−1) − σ

(
un

j − un
j−1

)
−σ

[
φ( ¯rj+1/2)

(
un

j+1 − un
j

)− φ(rj−1/2)
(
un

j − un
j−1

)]
.

(4.31)
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This scheme will be TVD if ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ + 1
2f

′ − σφj−1/2(r) ≥ 0

σ + 1
2h

′ − σφj+1/2 (r̄) ≥ 0

2σ + 1
2

(
f

′
+ h

′
)
− σ

(
φj+1/2 (r̄) + φj+1/2(r)

) ≤ 1.

(4.32)

The first equation is satisfied since (4.28) holds and the second also with (4.30). The last is also satisfied by
virtue of inequality (4.26),

2σ +
1
2

(
f

′
+ h

′)− σφ (r̄) ≤ 1 − σ
φ (r̄)

r̄
≤ 1 + σφ(r), (4.33)

since

−φ (r̄)
r̄

≤ 0 ≤ φ (r) . (4.34)

So, the scheme obtained in the case of a velocity changing sign is TVD if (4.28) and (4.30) hold.

4.3.1. Examples

As in Section 4.2, let us look at the case of the Burgers equation and the Euler equations. For the Burgers
equation, g(u) = u/2, g

′
(u) = 1/2, and σ = 1/6, so always with c = λg equations (4.28) and (4.30) are written{

0 ≤ φ ≤ 1 ≤ 1 + 9c2 + 6|c|
0 ≤ φ ≤ r

(
4 − 18c2

)
.

(4.35)

Then the limiter is built in order to be as large as possible

φ (r) = max
{
0, min

[
1 + 9 max c2 + 6 max |c|, (4 − 18 max c2

)
r
]}

, (4.36)

or
φ (r) = max

{
0, min

[
1,

(
4 − 18 max c2

)
r
]}

, (4.37)

and r = r̄ if the velocity g of the remeshed particle is negative.
For the Euler equations, σ = 1/6. So, for the first equation (mass balance), (4.28)–(4.30) becomes{

0 ≤ φ ≤ 1 − 1
2σ c2 = 1 − 3c2

0 ≤ φ ≤ r
(

1
σ − 2

)
= 4r ≤ r

(
1
σ

(
1 + c2

)− 2
)
.

(4.38)

For the second Euler equation (momentum conservation), (4.28)–(4.30) becomes⎧⎪⎪⎨
⎪⎪⎩

0 ≤ φ ≤ 1 ≤ 1 + 3
2σ c2 + 1

σ c = 1 + 9c2 + 6c, c ≥ 0

0 ≤ φ ≤ 1 ≤ 1 + 3
2σ c2 − 1

σ c = 1 + 9c2 − 6c, c ≤ 0

0 ≤ φ ≤ r
(

1
σ − 2

)− 3
σ c2 = r

(
4 − 18c2

)
,

(4.39)

and for the last equation (energy conservation), (4.28)–(4.30) becomes⎧⎪⎪⎨
⎪⎪⎩

0 ≤ φ ≤ 1 ≤ 1 + 1
2σ c2 + 1

2σ c = 1 + 3c2 + 3c, c ≥ 0

0 ≤ φ ≤ 1 ≤ 1 + 1
2σ c2 − 1

2σ c = 1 + 3c2 − 3c, c ≤ 0

0 ≤ φ ≤ r
(

1
σ

(
1 − c2

)− 2
)

= r
(
4 − 6c2

)
.

(4.40)
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We have chosen to remesh the variables ρ, ρu and ρE by the same formula. To do this, the same limiter must
be used in (4.6)–(4.7), so it must satisfy in the same time inequalities (4.38)–(4.40). Setting

r
(1)
j+1/2 =

Δρj−1/2

Δρj+1/2
, r

(2)
j+1/2 =

Δ (ρu)j−1/2

Δ (ρu)j+1/2

, r
(3)
j+1/2 =

Δ (ρE)j−1/2

Δ (ρE)j+1/2

, (4.41)

and

r̄
(1)
j−1/2 =

Δρj+1/2

Δρj−1/2
, r̄

(2)
j−1/2 =

Δ (ρu)j+1/2

Δ (ρu)j−1/2

, r̄
(3)
j−1/2 =

Δ (ρE)j+1/2

Δ (ρE)j−1/2

, (4.42)

the limiter is built like this:

φ
(
r(1), r(2), r(3)

)
= max

{
0, min

[
1 − 3 max c2, 4r(1),

(
4 − 18 max c2

)
r(2),

(
4 − 6 max c2

)
r(3)

]}
, (4.43)

replacing r with r̄ for negative velocities.

4.4. Numerical validation: Sod shock tube

In this section we present numerical results for the TVD particle methods applied to the one-dimensional
Euler equations. We address the classical test case [28] of a shock tube initially made up two compartments,
each containing a perfect gas (γ = 1.4). The initial conditions are

U(x, 0) = 0
ρ(x, 0) = 1 if 0 ≤ x ≤ 0.5

0.125 if 0.5 < x ≤ 1
P (x, 0) = 2.5 (γ − 1) if 0 ≤ x ≤ 0.5

0.25 (γ − 1) if 0.5 < x ≤ 1.

We solve the Euler equations using a splitting between the Lagrangian step, where are taken into account pressure
effects, and the advection step, during which the particles are moved and remeshed. The Lagrangian step is
solved with an approximate Riemann solver (acoustic approximation) with a limited MUSCL reconstruction.
In Figure 3 are presented the results at t = 0.2 for the density, velocity, pressure and thermal energy. The
oscillations near the discontinuities observed in [29] that were created by classical interpolation kernels as Λ2,
Λ3 or M ′

4 have disappeared.

5. Convergence of TVD particle methods toward entropy solution

In this section we address the convergence of TVD particle schemes as defined in previous section toward the
unique entropy solution of equation (1.1). In the remaining of the section we make the following assumptions:

– the initial condition u0 of equation (1.1) has its total variation bounded: TV (u0) < +∞ and is bounded in
L∞-norm;

– the function g is of class C1(R).

Let us give more details about how the numerical scheme that we study is defined. We denote xj = jΔx,
xj+1/2 = (j + 1/2)Δx and tn = nΔt. We suppose that Δt et Δx are proportional to each other: Δt

Δx = λ
with λ a constant. The sequence (un

j )n≥0,j∈Z is defined by recurrence by equation (3.1) and the initial sequence
(u0

j)n≥0,j∈Z is defined by

u0
j =

1
Δx

∫ xj+1/2

xj−1/2

u0(x)dx, for j ∈ Z.
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Figure 3. Sod shock tube, solution obtained with 100 particles compared to exact solution
(solid line), from left to right and from top to bottom: density, velocity, pressure, thermal
energy.

Because we have assumed that TV (u0) < +∞, we have also on the discrete level

∑
j

|u0
j+1 − u0

j | < +∞.

We define the piecewise constant function

uΔx(x, t) = un
j , for (x, t) ∈ [xj+1/2, xj−1/2) × [tn, tn+1).

The velocity of the particles is evaluated with second-order accuracy, in order that a particle scheme with a
second-order kernel is really second-order. We consider the TVD particle scheme built with the kernels Λ2 and
M̄3 as presented in Section 4. If we name G2

j+1/2 the flux of the Λ2 kernel, and Ḡ3
j+1/2 the flux of the M̄3

kernel, the TVD particle scheme can be expressed as

un+1
j = uj − λ

[
(1 − φj+1/2)G2

j+1/2 + φj+1/2 Ḡ3
j+1/2 − (1 − φj−1/2)G2

j−1/2 − φj−1/2 Ḡ3
j−1/2

]
.
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With the expression of the flux obtained in Section 3, this can be re-written as

un+1
j = uj −

d∑
k=1

N∑
i=0

λi

i!

[
(1 − φj+1/2)

(
−Λ

(i)
2 (k)

k∑
a=1

uj+ag̃i
j+a + Λ

(i)
2 (−k)

0∑
a=−k+1

uj+ag̃i
j+a

)

+φj+1/2

(
−M̄3

(i)(k)
k∑

a=1

uj+ag̃i
j+a + M̄3

(i)(−k)
0∑

a=−k+1

uj+ag̃i
j+a

)

−(1 − φj−1/2)

(
−Λ

(i)
2 (k)

k−1∑
a=0

uj+ag̃i
j+a + Λ

(i)
2 (−k)

−1∑
a=−k

uj+ag̃i
j+a

)

−φj−1/2

(
−M̄3

(i)(k)
k−1∑
a=0

uj+ag̃i
j+a + M̄3

(i)(−k)
−1∑

a=−k

uj+ag̃i
j+a

)]
.

Therefore we can write for the expression of such a TVD particle scheme

un+1
j =

d∑
k=−d

un
j+kΛ̄(k, φj−1/2, φj+1/2, λg̃j+k). (5.1)

The remeshing weights depend on the values of the other neighbouring particles, through the limiting function φ.
The two interpolation kernels used in this nonlinear combination can in fact be any interpolation kernel pre-
serving the first two momenta and giving TVD remeshing formulas, and any other more accurate interpolation
kernel, as long as the combination of their fluxes is TVD and consistent.

Proposition 5.1. The particle scheme defined by (5.1), built as a TVD combination of the kernels Λ2 and M̄3

as described in 4, and satisfying the CFL condition

λ|g̃(un
k )| < 1/2 and λ|g(un

k )| < 1/2 for all (k, n)

converges in L1
loc-norm to the unique entropy solution of (1.1).

Proof. We first need to prove that the TVD particle scheme is stable in L∞(R+ ×R) norm. In that purpose we
assume that the particle scheme is not stable in this norm and show that it leads to a contradiction. Without
loss of generality one can assume for example that, for all M > 0, there exist n0, j0 such that un0

j0
> M . Because

the particle scheme can be written in conservative form, we have

Δx
∑

j

un+1
j = Δx

∑
k

u0
k.

There exists necessarily an index j1 such that un0
j1

<
M

2
. Thus,

∑
j

|un0
j+1 − un0

j | ≥ |un0
j0

− un0
j1
| ≥ M

2
,

which is not possible if we choose M such that
M

2
>

∑
j

|u0
j+1 − u0

j |. Therefore the TVD particle scheme in

bounded in L∞(R+ × R) norm, and thus also bounded in L1(Ω) for every bounded open set Ω ∈ R
+ × R.

Now we want to prove that for every bounded open set Ω ∈ R
+ × R the total variation of the scheme over

Ω is bounded. Cottet and Magni have devised their flux limited particle method in order to have∑
j

|un+1
j+1 − un+1

j | ≤
∑

j

|un
j+1 − un

j |.
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We use a result in [19], saying that if a conservative scheme with a Lipschtiz-continuous flux satisfies the property∑
k

|un+1
j+1 − un+1

j | ≤
∑

k

|un
j+1 − un

j |, then the total variation of the scheme is bounded. The flux G1
j+1/2 +

φj+1/2(G2
j+1/2 − G1

j+1/2) with G1
j+1/2 and G2

j+1/2 defined as in Section 3.2 is locally Lipschitz-continuous, and
the scheme is stable in L∞(R+ × R) norm. Thus the total variation of the scheme is bounded.

Now we follow the type of reasoning presented in [19]: we consider a sequence of numerical approximations
u(Δxi) obtained with the particle scheme with grid parameters Δxi tending to zero when i tends to infinity. We
assume that this sequence does not converge in L1(Ω) toward u the entropy solution of (1.1), and show that
this assumption leads to a contradiction. If the particle scheme does not converge toward u, then there exists
some ε > 0 and a subsequence u(Δ̃xi) such that:

||u(Δ̃xi) − u||L1(Ω) > ε for all i.

Because u(Δ̃xi) is bounded in L1(Ω) ∩ TV (Ω), and because of the Helly theorem, one can extract a subsub-
sequence u(Δ̄xi) that converges in L1(Ω). Let us call ū the limit of u(Δ̄xi). The particle scheme is bounded in
L∞(R+ × R) norm, can be written in conservative form consistent with equation (1.1), thus because of the
Lax-Wendroff theorem, ū is necessarily a weak solution of (1.1).

Now we want to prove that ū satisfies a weak entropy inequality for all Kruzkov entropies, i.e., for all
φ ∈ C1

0 (R+ × R), φ ≥ 0, for all K ∈ R,

∫ +∞

0

∫ +∞

−∞
{∂tφ|ū − K| + sgn(ū − K)

(
g(ū)ū − g(K)K

)
∂xφ} dxdt +

∫ +∞

−∞
|ū(0, x) − K|∂xφ(0, x) dx ≥ 0.

This will be possible thanks to the form of the particle scheme: the new particle values are expressed as a
weighted sum of the old values, unlike finite-difference schemes like the Lax-Wendroff scheme. We define

(I) =
∞∑

n=0

∑
j

1
Δt

[
φn

j |un+1
j − K| − φn

j

∑
k

sgn(un
k − K)[un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

− KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))]

]
ΔxΔt,

with φ ∈ C1
0 (R+ ×R) a positive function whose support is included in [−D, D]× [0, T ]. We firstly want to prove

that

lim
Δt→0

(I) = −
∫ +∞

0

∫ +∞

−∞
{∂tφ|ū−K|+sgn(ū−K)(g(ū)ū−g(K)K)∂xφ} dxdt−

∫ +∞

−∞
|ū(0, x)−K| ∂xφ(0, x) dx,

and secondly that
lim

Δt→0
(I) ≤ 0.

By exchanging the indices j and k and making a change of variable on k we get

(I) =
∞∑

n=0

∑
j

1
Δt

[
φn

j |un+1
j − K| − sgn(un

j − K)un
j

∑
k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j )

+ sgn(un
j − K)K

∑
k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]
ΔxΔt.
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With a change of variables for indices n, the equation becomes

(I) =
∞∑

n=1

∑
j

1
Δt

[
φn−1

j |un
j − K| − sgn(un

j − K)un
j

∑
k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j )

+sgn(un
j − K)K

∑
k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]
ΔxΔt

− 1
Δt

∑
j

[
sgn(u0

j − K)u0
j

∑
k

φ0
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃0

j )

−sgn(u0
j − K)K

∑
k

φ0
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]
ΔxΔt.

The idea is to recognize in the terms
∑

k φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j ) a discrete approximation of
φ(xj , t

n) − Δt g(un
j )∂xφ(xj , Δt). The TVD remeshing scheme is obtained by combining the fluxes of a linear

interpolation kernel, which gives a first-order scheme, and another kernel which provides at least second-order
interpolation. The resulting scheme is thus at least first-order accurate on every grid point. Therefore, we can
write as in the Proof of Proposition 3.4 in Section 3∑

k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j ) = φ(xj , t
n) − Δtg(un

j ) ∂xφ(xj , t
n) + O(Δt2)

∑
k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K)) = φ(xj , t

n) − Δtg(K) ∂xφ(xj , t
n) + O(Δt2).

Therefore when Δt tends to zero

(I) → −
∫ +∞

0

∫ +∞

−∞
∂tφ|u − K| + sgn(u − K)(g(u)u − g(K)K)∂xφ dxdt −

∫ +∞

−∞
|u(0, x) − K| ∂xφ(0, x) dx.

Now we want to prove that limΔt→0(I) ≤ 0. By noting Φ the maximum of |φ| on [−D, D] × [0, T ] we have

(I) ≤ Φ

T/Δt∑
n=0

Δt
∑

j,jΔx∈[−D,D]

∣∣∣∣∣|un+1
j − K| −

∑
k

sgn(un
k − K)[un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))]

∣∣∣∣∣Δx.

We define

(Bn) =
∑

j,jΔx∈[−D,D]

∣∣∣∣∣|un+1
j − K| −

∑
k

sgn(un
k − K)

[
un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]∣∣∣∣∣Δx.

We want to prove that (Bn) tends to zero when Δx tends to zero. Because of the definition of the particle
scheme (5.1)

(Bn) =
∑

j,jΔx∈[−D,D]

∣∣∣∣∣
∣∣∣∣∣∑

k

un
k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − K

∣∣∣∣∣
−

∑
k

sgn(un
k − K)

[
un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) − KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))

]∣∣∣∣∣Δx.
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The kernels involved in the formula of Λ have a compact support, and we have assumed that a CFL condition
was satisfied. So there exists a real S such that

Λ̄(k − j, φj−1/2, φj+1/2, λg̃k) = 0 if k − j > S.

Let η > 0 be a real such that SΔx < η ∀Δx. Because u is locally bounded, for all ε > 0 there exists
uε ∈ C1([−D − η, D + η] × [0, T ]) such that

||u(t, .) − uε(t, .)||L1([−D−η,D+η]) ≤ ε.

We split (Bn) into several terms.

(Bn) ≤
∑

j,jΔx∈[−D,D]

∣∣∣∣∣∑
k

(un
k − uε(xk, tn))Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )

∣∣∣∣∣Δx

︸ ︷︷ ︸
(a)

+
∑

j,jΔx∈[−D,D]

∣∣∣∣∣∑
k

uε(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) − uε(xj , t

n)

∣∣∣∣∣Δx

︸ ︷︷ ︸
(b)

+
∑

j,jΔx∈[−D,D]

∣∣∣∣∣sgn(uε(xj , t
n) − K)(uε(xj , t

n) − K)Δx

︸ ︷︷ ︸
(c)

−
∑

k

sgn(uε(xk, tn) − K)
(
uε(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )

︸ ︷︷ ︸
(c)

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
)∣∣∣∣∣︸ ︷︷ ︸

(c)

+
∑

j,jΔx∈[−D,D]

∣∣∣∣∣∑
k

sgn(uε(xk, tn) − K)
[
uε(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )

︸ ︷︷ ︸
(d)

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]

︸ ︷︷ ︸
(d)

−sgn(un
k − K)

[
un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) − KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))

]∣∣∣∣∣Δx

︸ ︷︷ ︸
(d)

.
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The first term can be bounded as

(a) ≤
∑

j,jΔx∈[−D,D]

∑
k

|un
k − uε(xk, tn)||Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )|Δx

≤
∑

k,kΔx∈[−D−SΔx,D+SΔx]

|un
k − uε(xk, tn)|

∑
j,|j−k|≤S

|Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )|Δx

≤ 2S||Λ̄||∞
∑

k,kΔx∈[−D−SΔx,D+SΔx]

|un
k − uε(xk, tn)|Δx

≤ 2S||Λ̄||∞
∫ D+(S+1/2)Δx

−D−(S+1/2)Δx

|uΔx(x, t) − uε(x, t)| dx

+ 2S||Λ̄||∞
∑

k,kΔx∈[−D−SΔx,D+SΔx]

∣∣∣∣∣
∫ (k+1/2)Δx

(k−1/2)Δx

uε(x, t) − uε(xk, tn) dx

∣∣∣∣∣.
Thus (a) tends to zero when Δx tend to zero. One can prove similarly that (d) tends to zero. The term (b) can
be rewritten

(b) =
∑

j,jΔx∈[−D,D]

∣∣∣∣∣∑
k

uε(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) −

∑
k

uε(xj , t
n))Λj,k(k − j + λg̃k)

+
∑

k

uε(xj , t
n)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − uε(xj , t
n)

∑
k

Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
j )

︸ ︷︷ ︸
=1

∣∣∣∣∣Δx.

The term
∑

k Λ̄(k−j, φj−1/2, φj+1/2, λg̃n
j ) is equal to 1 because if we consider the TVD remeshing formula (5.1)

with un
k = u for all k then

un+1
j =

∑
k

uΛ̄(k − j, φj−1/2, φj+1/2, λg̃(u)).

We have, due to the property of consistency of the fluxes: un+1
j = u. Thus,∑

k

Λ̄(k − j, φj−1/2, φj+1/2, λg̃(u)) = 1.

We split (b) into two terms.

(b) ≤
∑

j,jΔx∈[−D,D]

∑
k

∣∣∣uε(xk, tn) − uε(xj , t
n)

∣∣∣∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

∣∣∣Δx

︸ ︷︷ ︸
(1)

+
∑

j,jΔx∈[−D,D]

∣∣∣∑
k

uε(xj , t
n)

∣∣∣∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

j )
∣∣∣Δx

︸ ︷︷ ︸
(2)

.

The first one can be bounded by

(1) ≤
∑

k,kΔx∈[−D−SΔx,D+SΔx]

∑
j,|j−k|≤S

∣∣∣uε(xk, tn) − uε(xj , t
n)

∣∣∣ ∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

∣∣∣Δx.
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The function uε belongs to C1([−D − η, D + η] × [0, T ]), thus there exists a real K such that:

∀x, y ∈ [−D − η, D + η] |uε(x, t) − uε(y, t)| ≤ K|x − y|.
Consequently,

(1) ≤ ||Λ̄||∞
∑

k,kΔx∈[−D−SΔx,D+SΔx]

∑
j,|j−k|≤S

K
∣∣∣k − j

∣∣∣ Δx2

≤ 2S2||Λ̄||∞K
∑

k,kΔx∈[−D−SΔx,D+SΔx]

Δx2 ≤ 4S2||Λ̄||∞K

(
D

Δx
+ S

)
Δx2.

Therefore (1) tends to zero when Δt tends to zero. The second term can be bounded by

(2) ≤ ||uε||∞
∑

j,jΔx∈[−D,D]

∑
k,kΔx∈[−D−SΔx,D+SΔx]

∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

−Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
j )

∣∣∣Δx

≤ ||uε||∞
∑

k,kΔx∈[−D−SΔx,D+SΔx]

∑
j,|j−k|≤S

∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃k)

−Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uε(xk, tn)))
∣∣∣Δx

+
∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uε(xk, tn))) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uε(xj , t

n))
∣∣∣Δx

+
∣∣∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uε(xj , t

n))) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃j)
∣∣∣Δx.

We have assumed that
λ|g̃(un

k )| < 1/2 and λ|g(un
k )| < 1/2 for all (k, n).

Λ̄ is of class C1. The function g is also of class C1(R). We have assumed that the scheme converges in L1
loc when

Δx and Δt tend to zero. We conclude that (2), thus (b), tend to zero when Δx and Δt tend to zero. With the
same kind of reasoning we could also prove that (c) tends to zero.

We conclude that the limit ū satisfies for all φ ∈ C1
0 (R+ × R), for all K ∈ R

−
∫ +∞

0

∫ +∞

−∞
{∂tφ|u − K| + sgn(u − K)(g(u)u − g(K)K)∂xφ} dxdt −

∫ +∞

−∞
|u(0, x) − K| ∂xφ(0, x) dx ≤ 0.

Therefore ū is the unique entropy solution of (1.1), which contradicts the initial assumption. We conclude that
the TVD particle scheme (5.1) converges in L1(Ω) to the unique entropy solution of (1.1). �

6. Conclusion

We have studied the consistency and accuracy properties of remeshed particle methods in the case of a
scalar one-dimensional conservation law. The accuracy of the particle scheme depends on the accuracy of the
interpolation kernel used. In the linear case, if the interpolation kernel preserves the first M momenta then
the particle scheme is of order M − 1. In the nonlinear case, the particle scheme is a priori only of order one,
because of the first-order evaluation of the particle moving, unless a correction of the evaluation of the particle
velocities is used. Cottet and Magni [6] introduced recently TVD remeshing schemes for particle-grid methods.
We have extended the construction of these new TVD particle schemes to nonlinear conservation laws with a
possible change of velocity sign, with application to Burgers and Euler equations. Numerical results obtained
in the case of the Sod shock tube for the Euler equations have been presented. Then we have proved that with
these new TVD remeshing schemes the particle schemes converge toward the entropy solution. The perspectives
of this work are the application of the TVD particle schemes to systems of conservation laws, for instance more
complex 2D and 3D compressible flows like hydrodynamic instabilities.
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