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Abstract. In this article we study discontinuous Galerkin finite element discretizations of linear
second-order elliptic partial differential equations with Dirac delta right-hand side. In particular, as-
suming that the underlying computational mesh is quasi-uniform, we derive an a priori bound on the
error measured in terms of the L2-norm. Additionally, we develop residual-based a posteriori error
estimators that can be used within an adaptive mesh refinement framework. Numerical examples for
the symmetric interior penalty scheme are presented which confirm the theoretical results.
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1. Introduction

In this article, we will consider the numerical approximation of the boundary value model problem

−Δu = δx0 in Ω, (1.1)
u = 0 on ∂Ω, (1.2)

based on employing discontinuous Galerkin (DG) finite element discretizations. Here,Ω ⊂ R2 is an open bounded
polygonal domain, and δx0 denotes the Dirac delta distribution at some given point x0 ∈ Ω. Throughout, in
order to avoid technical difficulties due to corner singularities, we suppose that the domain Ω is convex (this
assumption can be relaxed in some parts of the article; this will be remarked on later). The weak formulation
of (1.1)–(1.2) is to find u ∈W 1,p

0 (Ω) such that

a(u, v) :=
∫
Ω

∇u · ∇v dx = v(x0) ∀v ∈W 1,q
0 (Ω), (1.3)
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with 1 ≤ p < 2, and 1
p + 1

q = 1. In this manuscript, for s ∈ N0 and t ≥ 1, W s,t(Ω) signifies the standard Sobolev
space of all functions whose (weak) derivatives up to order s are bounded in the Lt(Ω)-norm. Moreover,W s,t

0 (Ω)
is the subspace of functions belonging to W s,t(Ω) with zero trace along the boundary ∂Ω. If t = 2, we simply
write Hs(Ω) = W s,2(Ω). Following [3], Section 2, the above weak formulation is well-posed.

Second-order elliptic partial differential equations of the form (1.1)–(1.2) are employed, for instance, in the
modelling of diffusion processes, heat flow, structural mechanics applications, or electric potentials, whenever
point sources or loads occur. In addition, problems with a δ-source appear as dual problems in deriving point-
wise error estimates for finite element discretizations; see, e.g., [6,10,12]. From an analytical point of view, the
challenge in describing such problems in a proper manner lies in the fact that the Dirac δ-distribution in R2 does
not belong to H−1(Ω); thereby, the solution of (1.1)–(1.2) is not an H1-function. Consequently, the numerical
approximation of (1.1)–(1.2) by, for example, finite element methods, requires a non-standard analysis. Here,
in the context of conforming FEM, we mention the a priori results in [7, 17], as well as the a posteriori error
analysis in [3]. For DG approximations to low-regularity problems, see, e.g., [13, 19].

The focus of the current paper is to extend some of the results developed for standard FEM to the context of
discontinuous Galerkin methods. In particular, we shall derive a priori, as well as residual-based (global upper
and local lower) a posteriori error estimates with respect to the L2-norm. Whilst striving to keep matters rather
general, we will use the symmetric interior penalty discontinuous Galerkin method (SIPG), see [4, 9, 18], as
an example to illustrate our results. To the authors knowledge, the analytical results contained in this article
represent the first attempt to analyze DG methods for the numerical approximation of second-order elliptic
partial differential equations with a Dirac delta source.

The outline of the article is as follows: in Section 2, we recall some basic definitions for discontinuous Galerkin
discretizations. Then, in Section 3 the a priori error analysis of a general class of DG methods on quasi-uniform
meshes is presented. Section 4 presents the residual-based a posteriori error analysis. Subsequently, in Section 5
numerical experiments are undertaken to confirm the theoretical results. Finally, in Section 6 we add some
concluding remarks.

2. Discontinuous Galerkin methods

In this paper, we are interested in solving (1.1)–(1.2) numerically by means of suitable discontinuous Galerkin
discretizations. Before discussing these schemes, we will first introduce a suitable finite element mesh framework
for them.

2.1. Meshes, spaces, and element boundary operators

We consider shape-regular meshes T that partition Ω into open affine disjoint triangular or quadrilateral
elements {K}K∈T , i.e., Ω =

⋃
K∈T K. We suppose that T is constructed in such a manner that x0 lies in the

interior of some element K0 ∈ T . Furthermore, we permit meshes to be 1-irregular. Each element K ∈ T is an
image of the open reference triangle T̂ = {(x̂1, x̂2) : −1 < x̂1 < 1,−1 < x̂2 < −x̂1} or of the open reference
square Q̂ = (−1, 1)2, respectively. By hK , we denote the diameter of an element K ∈ T ; the elemental diameters
are stored in a vector h = [hK ]K∈T .

Moreover, we will define some suitable element boundary operators that are required for DG methods. To
this end, we denote by EI the set of all interior edges and by EB the set of all boundary edges in T . Additionally,
we set E = EI ∪ EB. The boundary ∂K of an element K and the sets ∂K \ ∂Ω and ∂K ∩ ∂Ω will be identified
in a natural way with the corresponding subsets of E .

Let K� and K� be two adjacent elements of T , and x an arbitrary point on the interior edge e ∈ EI given
by e = ∂K� ∩ ∂K�. Furthermore, let v and q be scalar- and vector-valued functions, respectively, that are
sufficiently smooth inside each element K�/�. By (v�/�, q�/�), we denote the traces of (v, q) on e taken from
within the interior of K�/�, respectively. Then, the averages of v and q at x ∈ e are given by

〈〈v〉〉 =
1
2
(v� + v�), 〈〈q〉〉 =

1
2
(q� + q�),
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respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v� nK�
+ v� nK�

, [[q]] = q� · nK�
+ q� · nK�

,

respectively. Here, for K ∈ T , we denote by nK the unit outward normal vector to ∂K. On a boundary edge
e ∈ EB, we set 〈〈v〉〉 = v, 〈〈q〉〉 = q and [[v]] = vn, with n denoting the unit outward normal vector on the
boundary ∂Ω.

2.2. DG discretizations

For a given finite element mesh T and a fixed polynomial degree � ≥ 1, let us consider the DG finite element
space

VDG(T ) = {v ∈ L2(Ω) : v|K ∈ S�(K) ∀K ∈ T }, (2.1)

where, for K ∈ T , S�(K) signifies either the space P�(K) of all polynomials of total degree at most � on K,
when K is a triangle, or the space Q�(K) of all polynomials of degree at most � in each coordinate direction,
when K is a quadrilateral.

Let us now consider a DG bilinear form aDG(·, ·) which discretizes the problem (1.1)–(1.2), i.e., we seek a
DG solution uDG ∈ VDG(T ) such that

aDG(uDG, v) = v(x0) ∀v ∈ VDG(T ). (2.2)

We assume that the matrix corresponding to aDG(·, ·) on VDG(T )×VDG(T ) is non-singular, so that the discrete
solution uDG is uniquely defined. Moreover, we suppose that aDG(·, ·) is of the form

aDG(w, v) =
∫
Ω

∇hw · ∇hv dx + F(w, v), (2.3)

where ∇h denotes the elementwise gradient, and F(·, ·) is a bilinear form featuring the numerical fluxes of the
DG scheme under consideration.

In order to give an example, we recall the symmetric interior penalty discontinuous Galerkin method (SIPG);
see, e.g., [4, 5, 15, 18]. More precisely, for a fixed parameter γ > 0, we define the DG form

aDG(w, v) =
∫
Ω

∇hw · ∇hv dx −
∫
E
〈〈∇hw〉〉 · [[v]] ds−

∫
E
[[w]] · 〈〈∇hv〉〉ds+ γ

∫
E
h−1[[w]] · [[v]] ds. (2.4)

Here, h ∈ L∞(E) is given by

h(x) =

{
min(hK�

, hK�
) for x ∈ ∂K� ∩ ∂K� ∈ EI ,

hK for x ∈ ∂K ∩ ∂Ω ∈ EB.

For sufficiently large γ > 0, the form aDG(·, ·) is coercive with respect to a suitable DG energy norm and hence,
using the SIPG form (2.4) in (2.2), the matrix corresponding to the bilinear form aDG(·, ·) is invertible; cf.,
e.g., [16].

3. Convergence behavior on quasi-uniform meshes

The aim of this section is to prove an a priori error estimate for the DG method (2.2) with respect to the
L2-norm. To this end, let us suppose that the mesh T is quasi-uniform, with mesh size h := maxK∈T hK , that
is, there exists a constant ρ ≥ 1 such that h ≤ ρ hK , for any element K ∈ T .
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3.1. A discrete δ-function

Following the approach [17], we commence by constructing a discrete approximation δh ∈ VDG(T ) of the
Dirac delta function δx0 . More precisely, let

δh :=

{
0 on Ω \K0,

δK0 on K0,

where K0 ∈ T is the unique element which x0 belongs to. We define δK0 ∈ S�(K0) by∫
K0

δK0v dx = v(x0) ∀v ∈ S�(K0).

Clearly, we have that ∫
Ω

δhv dx = v(x0) (3.1)

for any v ∈ VDG(T ). We now write Π�
K0

to be the L2-projection operator onto S�(K0); more precisely, given
w ∈ L2(K0), we define Π�

K0
w ∈ S�(K0) as follows:∫

K0

(w −Π�
K0
w)v dx = 0 ∀v ∈ S�(K0). (3.2)

Thereby,

‖δh‖L2(Ω) = sup
v∈L2(K0)

v �≡0

∫
K0

δhv dx

‖v‖L2(K0)

= sup
v∈L2(K0)

v �≡0

∫
K0

δhΠ
�
K0
v dx

‖v‖L2(K0)

· (3.3)

Now, using that ‖w‖L2(K0) ≥
∥∥Π�

K0
w
∥∥
L2(K0)

for any w ∈ L2(K0), we obtain

‖δh‖L2(Ω) ≤ sup
v∈L2(K0)

Π�
K0

v �≡0

∫
K0

δhΠ
�
K0
v dx∥∥Π�

K0
v
∥∥
L2(K0)

= sup
v∈L2(K0)

Π�
K0

v �≡0

∣∣Π�
K0
v(x0)

∣∣∥∥Π�
K0
v
∥∥
L2(K0)

≤ sup
v∈L2(K0)

Π�
K0

v �≡0

∥∥Π�
K0
v
∥∥
L∞(K0)∥∥Π�

K0
v
∥∥
L2(K0)

·

Furthermore, employing the inverse estimate

‖w‖L∞(K0)
≤ Ch−1

K0
‖w‖L2(K0)

∀w ∈ S�(K0), (3.4)

it follows that
‖δh‖L2(Ω) ≤ Ch−1

K0
. (3.5)

In addition, letting v ≡ 1 in (3.3) leads to

‖δh‖L2(Ω) ≥
v(x0)

‖v‖L2(K0)

=
1

‖1‖L2(K0)

≥ Ch−1
K0
. (3.6)

3.2. A priori error analysis

The function δh from (3.1) is used to define the ensuing auxiliary problem:

−ΔUh = δh in Ω,

Uh = 0 on ∂Ω.
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The standard weak formulation is to find Uh ∈ H1
0 (Ω) such that

a(Uh, v) =
∫
Ω

δhv dx ∀v ∈ H1
0 (Ω).

Since Ω is convex, the Laplace operator Δ : H2(Ω) ∩H1
0 (Ω) → L2(Ω) is an isomorphism; see, e.g., [8, 11]. In

particular, ∥∥Δ−1
∥∥
L2(Ω)→H2(Ω)∩H1

0 (Ω)
<∞. (3.7)

Thus, we have ∥∥Uh∥∥
H2(Ω)

≤ C ‖δh‖L2(Ω) . (3.8)

Referring to [17], the following error bound holds∥∥u− Uh
∥∥
L2(Ω)

≤ Ch, (3.9)

where u is the solution of (1.1)–(1.2), and C > 0 is a constant depending on the distance of x0 to ∂Ω.
In addition, using (3.1), we notice that the DG solution uDG from (2.2) satisfies

aDG(uDG, v) = v(x0) =
∫
Ω

δhv dx

for any v ∈ VDG(T ). Consequently, uDG can be seen to be the DG approximation of Uh. Hence, provided
that (3.7) holds, we may assume that we have the estimate∥∥Uh − uDG

∥∥
L2(Ω)

≤ Ch2
∥∥Uh∥∥

H2(Ω)
. (3.10)

Indeed, this bound is true for various DG schemes in the literature (such as, for instance, the SIPG method (2.4));
see [5]. Thus, employing (3.5) we conclude that∥∥Uh − uDG

∥∥
L2(Ω)

≤ Ch2 ‖δh‖L2(Ω) ≤ Ch. (3.11)

Thereby, exploiting the triangle inequality, gives

‖u− uDG‖L2(Ω) ≤
∥∥u− Uh

∥∥
L2(Ω)

+
∥∥Uh − uDG

∥∥
L2(Ω)

; (3.12)

inserting the bounds (3.9) and (3.11) into (3.12), we deduce the following result.

Theorem 3.1. Let T be a quasi-uniform mesh of mesh size h. Furthermore, suppose that (3.7), as well as the
L2-error estimate (3.10) hold. Then, we have the following a priori error bound

‖u− uDG‖L2(Ω) ≤ Ch,

where u and uDG are the solutions of (1.1)–(1.2) and (2.2), respectively, and C > 0 is a constant independent
of h.

Remark 3.2. We remark that the above error bound may be improved on meshes that are appropriately graded
about the point x0; see [2].

4. Residual-based A POSTERIORI error analysis

We now proceed by developing an L2-norm a posteriori error analysis of the DG schemes defined in (2.2).
Here, we derive both general upper and (local) lower bounds on the error measured in terms of the L2-norm.
Additionally, in order to present a specific example, the general results will be applied to the SIPG method.
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4.1. Upper bound

For any p ∈ L2(Ω), let us consider the dual problem

−Δψ = p in Ω, (4.1)
ψ = 0 on ∂Ω. (4.2)

The weak formulation reads: find ψ ∈ H1
0 (Ω) such that

a(ψ, v) =
∫
Ω

pv dx ∀v ∈ H1
0 (Ω),

where a(·, ·) is the bilinear form defined in (1.3). By (3.7), we have the elliptic regularity estimate

‖ψ‖H2(Ω) ≤ C ‖p‖L2(Ω) . (4.3)

For the L2-norm of the error u− uDG in the DG discretization, we may write

‖u− uDG‖L2(Ω) = sup
p∈L2(Ω)

p �≡0

∫
Ω

(u− uDG)p dx

‖p‖L2(Ω)

· (4.4)

Here, for the integral we have∫
Ω

(u − uDG)p dx = a(u, ψ) +
∫
Ω

uDGΔψ dx = ψ(x0) +
∫
Ω

uDGΔψ dx.

Twofold integration by parts (element by element) of the last term results in∫
Ω

uDGΔψ dx = −
∑
K∈T

∫
K

∇uDG · ∇ψ dx +
∑
K∈T

∫
∂K

(∇ψ · nK)uDG ds

=
∑
K∈T

∫
K

ψΔuDG dx −
∑
K∈T

∫
∂K

(∇uDG · nK)ψ ds+
∑
K∈T

∫
∂K

(∇ψ · nK)uDG ds.

Furthermore, applying some elementary calculations, we obtain∫
Ω

uDGΔψ dx =
∑
K∈T

∫
K

ψΔuDG dx −
∫
EI

[[∇huDG]]ψ ds+
∫
E
[[uDG]] · ∇ψ ds.

For any ψh ∈ VDG(T ), there holds

ψh(x0) = aDG(uDG, ψh) =
∫
Ω

∇huDG · ∇hψh dx + F(uDG, ψh);

cf. (2.3). An elementwise integration by parts and elementary manipulations as before, yield that∫
Ω

∇huDG · ∇hψh dx = −
∑
K∈T

∫
K

ψhΔuDG dx +
∑
K∈T

∫
∂K

(∇uDG · nK)ψh ds

= −
∑
K∈T

∫
K

ψhΔuDG dx +
∫
E
〈〈∇huDG〉〉 · [[ψh]] ds+

∫
EI

[[∇huDG]]〈〈ψh〉〉ds.
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Therefore, we obtain that∫
Ω

(u− uDG)p dx = (ψ − ψh)(x0) +
∑
K∈T

∫
K

(ψ − ψh)ΔuDG dx

−
∫
EI

[[∇huDG]]〈〈ψ − ψh〉〉ds+ R[uDG, ψ](ψh),

where
R[uDG, ψ](ψh) =

∫
E
〈〈∇huDG〉〉 · [[ψh]] ds+

∫
E
[[uDG]] · ∇ψ ds+ F(uDG, ψh) (4.5)

is a residual term. We make the assumption that

|R[uDG, ψ](ψh)| ≤ CΥ (uDG)|||ψ − ψh|||h, (4.6)

where C > 0 is a constant independent of h, Υ (uDG) is a computable quantity, and ||| · |||h is a semi-norm such
that we can find an interpolant ψh ∈ VDG(T ) of the solution ψ of (4.1)–(4.2) with

h−2
K0

sup
x∈K0

|(ψ − ψh)(x)|2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2

L2(K) +
∑
K∈T

h−2
K ‖∇(ψ − ψh)‖2

L2(K) + |||ψ − ψh|||2h ≤ C ‖ψ‖2
H2(Ω) ,

(4.7)
for a constant C > 0 independent of h. Here, K0 ∈ T is again the element containing the point x0 which the
δ-distribution δx0 from (1.1) is centered at.

In order to proceed, we recall the L2-projection onto S�(K0) from (3.2). Then, applying (3.1), gives

(ψ − ψh)(x0) = (ψ −Π�
K0
ψ)(x0) +Π�

K0
(ψ − ψh)(x0)

= (ψ −Π�
K0
ψ)(x0) +

∫
K0

Π�
K0

(ψ − ψh)δh dx

= (ψ −Π�
K0
ψ)(x0) +

∫
K0

(ψ − ψh)δh dx.

Hence,∫
Ω

(u−uDG)p dx = (ψ−Π�
K0
ψ)(x0)+

∑
K∈T

∫
K

(ψ−ψh)(ΔuDG+δh) dx−
∫
EI

[[∇huDG]]〈〈ψ−ψh〉〉ds+R[uDG, ψ](ψh).

Therefore, using (4.6), it follows that∣∣∣∣ ∫
Ω

(u− uDG)p dx

∣∣∣∣ ≤ sup
x∈K0

∣∣(Π�
K0
ψ − ψ)(x)

∣∣+ ∑
K∈T

‖ψ − ψh‖L2(K) ‖ΔuDG + δh‖L2(K)

+
∥∥∥h 3

2 [[∇huDG]]
∥∥∥
L2(EI)

∥∥∥h− 3
2 〈〈ψ − ψh〉〉

∥∥∥
L2(EI)

+ CΥ (uDG)|||ψ − ψh|||h

≤ C

(
h2
K0

+
∑
K∈T

h4
K ‖ΔuDG + δh‖2

L2(K) +
∥∥∥h 3

2 [[∇huDG]]
∥∥∥2

L2(EI)
+ Υ (uDG)2

) 1
2

×
(
h−2
K0

sup
x∈K0

∣∣(ψ −Π�
K0
ψ)(x)

∣∣2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2

L2(K) +
∥∥∥h− 3

2 〈〈ψ − ψh〉〉
∥∥∥2

L2(EI)
+ |||ψ − ψh|||2h

) 1
2

.

Here, employing a standard trace inequality, we notice that∥∥∥h− 3
2 〈〈ψ − ψh〉〉

∥∥∥2

L2(EI)
≤ C

∑
K∈T

h−3
K ‖ψ − ψh‖2

L2(∂K\∂Ω)

≤ C
∑
K∈T

(
h−4
K ‖ψ − ψh‖2

L2(K) + h−2
K ‖∇(ψ − ψh)‖2

L2(K)

)
.
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Furthermore,
sup

x∈K0

∣∣(ψ −Π�
K0
ψ)(x)

∣∣ ≤ sup
x∈K0

|(ψ − ψh)(x)| + sup
x∈K0

∣∣Π�
K0

(ψ − ψh)(x)
∣∣ .

Applying the inverse estimate (3.4), leads to

sup
x∈K0

∣∣Π�
K0

(ψ − ψh)(x)
∣∣ ≤ Ch−1

K0

∥∥Π�
K0

(ψ − ψh)
∥∥
L2(K0)

≤ Ch−1
K0

‖ψ − ψh‖L2(K0)
.

It follows that∣∣∣∣ ∫
Ω

(u− uDG)p dx

∣∣∣∣ ≤ C

(
h2
K0

+
∑
K∈T

h4
K ‖ΔuDG + δh‖2

L2(K) +
∑
K∈T

h3
K ‖[[∇huDG]]‖2

L2(∂K\∂Ω) + Υ (uDG)2
) 1

2

×
(
h−2
K0

sup
x∈K0

|(ψ − ψh)(x)|2 +
∑
K∈T

h−4
K ‖ψ − ψh‖2

L2(K) +
∑
K∈T

h−2
K ‖∇(ψ − ψh)‖2

L2(K) + |||ψ − ψh|||2h
) 1

2

.

Recalling (4.7), this becomes

∣∣∣∣ ∫
Ω

(u− uDG)p dx

∣∣∣∣ ≤ C

(
h2
K0

+ Υ (uDG)2 +
∑
K∈T

η̃K

) 1
2

‖ψ‖H2(Ω) ,

where, for each K ∈ T , the local error indicator η̃K is given by

η̃K := h4
K ‖ΔuDG + δh‖2

L2(K) + h3
K ‖[[∇huDG]]‖2

L2(∂K\∂Ω) .

Thereby, for any constant κ > 0, defining the error indicators

ηκ,K := h4
K ‖ΔuDG + δh‖2

L2(K) + h3
K ‖[[∇huDG]]‖2

L2(∂K\∂Ω) + κ2hK ‖[[uDG]]‖2
L2(∂K) , (4.8)

noting that [[u]]|E = 0 (for u ∈ W 1,p
0 (Ω)), employing the elliptic regularity bound (4.3), and recalling (4.4),

yields the following result.

Theorem 4.1. Let uDG be the DG solution given by (2.2) and ψ be the solution of (4.1)–(4.2). Assume that
the residual R[uDG, ψ](ψh) defined in (4.5) satisfies (4.6) and (4.7) for some semi-norm ||| · |||h and some inter-
polant ψh ∈ VDG(T ). Then, the a posteriori error estimate holds

‖u− uDG‖2
L2(Ω) + κ2

∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(E)
≤ C

(
h2
K0

+ Υ (uDG)2 +
∑
K∈T

ηκ,K

)
, (4.9)

where ηκ,K, K ∈ T , are the local error indicators defined in (4.8). The constant C > 0 is independent of h
and κ.

Remark 4.2. The two equivalent terms
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
and

∑
K∈T hK ‖[[uDG]]‖2

L2(∂K) have been added

on both sides of the a posteriori error estimate (4.9) since the extended L2-norm

‖u− uDG‖2
0,h ≡ ‖u− uDG‖2

L2(Ω) + κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)

of the error appears to be a suitable norm for proving local lower a posteriori error estimates; see the subsequent
section.
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4.2. Local lower estimates

Whilst our result in the previous section proves the reliability of the proposed a posteriori error estimator,
we now focus on efficiency bounds in the sequel. We note that the convexity of the domain Ω is not required in
this part of the article.

Let us consider the individual terms in the error indicator ηκ,K , K ∈ T , from (4.8).

Proposition 4.3. For each K ∈ T , the lower error bounds

‖ΔuDG + δh‖L2(K0)
≤ Ch−2

K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
,

and

‖ΔuDG + δh‖L2(K) ≤ Ch−2
K ‖u− uDG‖L2(K) , K ∈ T \ {K0},

hold.

Proof. For each element K ∈ T we define a smooth bubble function bK on K that satisfies

supp bK ⊆ K, bK ≥ 0, sup
x∈K

bK(x) = 1, bK |∂K = 0, ∇bK |∂K = 0. (4.10)

Then, focusing on K0 first and using the equivalence of norms in finite dimensional spaces, we have that

C ‖ΔuDG + δh‖2
L2(K0)

≤
∫
K0

v(ΔuDG + δh) dx =
∫
Ω

(δh − δx0)v dx +
∫
K0

vΔ(uDG − u) dx,

where v := bK(ΔuDG + δh). Noticing that v|∂K0 = 0 and

∇v|∂K0 = bK |∂K0∇(ΔuDG + δh)|∂K0 + ∇bK |∂K0(ΔuDG + δh)|∂K0 = 0,

integrating by parts twice in the second integral yields

C ‖ΔuDG + δh‖2
L2(K0)

≤
∫
Ω

(δh − δx0)v dx +
∫
K0

Δv(uDG − u) dx

≤
(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖v‖H2(K0)

.

Again, due to equivalence of norms in finite dimensional spaces, and scaling, we have

‖v‖H2(K0)
≤ Ch−2

K0
‖v‖L2(K0)

.

Hence,

C ‖ΔuDG + δh‖2
L2(K0)

≤ h−2
K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖v‖L2(K0)

≤ h−2
K0

(
‖δh − δx0‖H−2(Ω) + ‖u− uDG‖L2(K0)

)
‖ΔuDG + δh‖L2(K0)

.

Dividing both sides of the above inequality by ‖ΔuDG + δh‖L2(K0)
proves the proposition for K0.
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For K ∈ T \ {K0} we let v = bKΔuDG and notice that δh|K = 0 and v(x0) = 0. Thence,

C ‖ΔuDG + δh‖2
L2(K) = C ‖ΔuDG‖2

L2(K) ≤
∫
K

vΔuDG dx =
∫
K

vΔ(uDG − u) dx.

The remainder of the proof is very similar as before. �

Proposition 4.4. On K0, the following local lower bound holds

hK0 ≤ C
(
‖u− uDG‖L2(K0)

+ ‖δh − δx0‖H−2(Ω)

)
.

Proof. On the element K0 consider a smooth bubble function bK0 that satisfies the properties (4.10) as well as

bK0(x0) = 1, ‖bK0‖L2(K0)
≤ 1

2
‖δh‖−1

L2(K0)
= O(hK0), ‖ΔbK0‖L2(K0)

≤ Ch−1
K0
.

Due to (3.5) and (3.6), this construction is possible by choosing a bubble function possessing a sufficiently small
support in K0. Then,

1 =
∫
Ω

δx0bK0 dx =
∫
K0

∇(u − uDG) · ∇bK0 dx +
∫
K0

∇uDG · ∇bK0 dx.

Integration by parts, leads to

1 = −
∫
K0

(u− uDG)ΔbK0 dx −
∫
K0

bK0ΔuDG dx

= −
∫
K0

(u− uDG)ΔbK0 dx −
∫
K0

(δh +ΔuDG)bK0 dx +
∫
K0

δhbK0 dx

≤ ‖u− uDG‖L2(K0)
‖ΔbK0‖L2(K0) + ‖δh +ΔuDG‖L2(K0)

‖bK0‖L2(K0)
+ ‖δh‖L2(K0)

‖bK0‖L2(K0)

≤ Ch−1
K0

‖u− uDG‖L2(K0) + ChK0 ‖δh +ΔuDG‖L2(K0)
+

1
2
·

This implies the bound

hK0 ≤ C
(
‖u− uDG‖L2(K0)

+ h2
K0

‖δh +ΔuDG‖L2(K0)

)
.

Invoking the bound from Proposition 4.3 shows the estimate. �

In order to bound the term ‖[[∇huDG]]‖L2(∂K\∂Ω) from (4.8) we assume that the mesh T is regular (i.e., it
does not contain any hanging nodes).

Proposition 4.5. Let T be regular. Consider two elements K�,K� ∈ T that share an interface e = (∂K� ∩
∂K�)◦ ∈ EI. We let ωe := (K� ∪K�)◦. Then, the lower bound holds∥∥∥h 3

2 [[∇uDG]]
∥∥∥
L2(e)

≤ C

(
‖u− uDG‖L2(ωe) +

∥∥∥h 1
2 [[u− uDG]]

∥∥∥
L2(e)

+ ‖δh − δx0‖H−2(Ω)

)
.

Proof. Pursuing a similar approach as in [13, 14] (i.e., by choosing a suitable smooth nonnegative cut-off func-
tion on ωe and by applying norm equivalences in finite dimensional spaces), we find an auxiliary function
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χe ∈ H1
0 (ωe) ∩C∞(ωe) (which depends on the function [[∇uDG]]|e) with the following properties:

χe|∂ωe = 0, ∇χe|∂ωe = 0, [[∇χe]]|e = 0,

as well as

‖[[∇uDG]]‖2
L2(e) ≤ C

∫
e

χe[[∇uDG]] ds,

and ∥∥∥h− 1
2∇χe

∥∥∥
L2(e)

+
∥∥h−2χe

∥∥
L2(ωe)

+ ‖χe‖H2(ωe) ≤ C
∥∥∥h− 3

2 [[∇uDG]]
∥∥∥
L2(e)

. (4.11)

Then, we have

C ‖[[∇uDG]]‖2
L2(e) ≤

∫
e

χe[[∇uDG]] ds =
∫
∂K�

χe(∇uDG · nK�
) ds+

∫
∂K�

χe(∇uDG · nK�
) ds.

Applying Green’s formula, we obtain

C ‖[[∇uDG]]‖2
L2(e) ≤

∫
ωe

∇χe · ∇huDG dx +
∫
ωe

χeΔhuDG dx

= −
∫
ωe

∇χe · ∇h(u− uDG) dx +
∫
ωe

χe(ΔhuDG + δh) dx −
∫
ωe

(δh − δx0)χe dx,

where Δh signifies the elementwise Laplacian. Integrating by parts we get

−
∫
ωe

∇χe · ∇h(u− uDG) dx = −
∫
e

∇χe · [[u− uDG]] ds+
∫
ωe

(u− uDG)Δhχe dx.

Thence,

‖[[∇uDG]]‖2
L2(e) ≤ C

(∥∥∥h− 1
2∇χe

∥∥∥
L2(e)

∥∥∥h 1
2 [[u− uDG]]

∥∥∥
L2(e)

+ ‖u− uDG‖L2(ωe) ‖Δhχe‖L2(ωe)

+ ‖χe‖L2(ωe) ‖ΔhuDG + δh‖L2(ωe) + ‖δh − δx0‖H−2(Ω) ‖χe‖H2(ωe)

)
.

Furthermore, we have

‖[[∇uDG]]‖2
L2(e) ≤ C

(∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(e)
+ ‖u− uDG‖2

L2(ωe) +
∥∥h2(ΔhuDG + δh)

∥∥2

L2(ωe)

+ ‖δh − δx0‖
2
H−2(Ω)

) 1
2 ×

(∥∥∥h− 1
2∇χe

∥∥∥2

L2(e)
+
∥∥h−2χe

∥∥2

L2(ωe)
+ ‖χe‖2

H2(ωe)

) 1
2

.

Using (4.11), and recalling the previous Proposition 4.3, it follows that

‖[[∇uDG]]‖2
L2(e) ≤ C

(∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(e)
+ ‖u− uDG‖2

L2(ωe) + ‖δh − δx0‖
2
H−2(Ω)

) 1
2

× ‖h− 3
2 [[∇uDG]]‖L2(e).

Now, noting that h|ωe ∼ hK�
∼ hK�

, completes the proof. �
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Finally, we have the identity∥∥∥h 1
2 [[uDG]]

∥∥∥
L2(∂K)

=
∥∥∥h 1

2 [[u− uDG]]
∥∥∥
L2(∂K)

, K ∈ T , (4.12)

by observing again that [[u]]|E = 0.

Remark 4.6. The term ‖δh − δx0‖H−2(Ω) appearing in the lower error estimates above takes the role of a data
approximation term. We note that∫

Ω

(δx0 − δh)ψ dx = (ψ − ψh)(x0) −
∫
Ω

δh(ψ − ψh)

≤ sup
x∈K0

|(ψ − ψh)(x)| + ‖δh‖L2(K0)
‖ψ − ψh‖L2(K0)

for any ψ ∈ H2(Ω) and any ψh ∈ VDG(T ). Let us choose ψh ∈ S1(K), K ∈ T , to be an interpolant that satisfies
the standard approximation estimate

h−2
K ‖ψ − ψh‖2

L2(K) + ‖∇(ψ − ψh)‖2
L2(K) ≤ Ch2

K ‖ψ‖2
H2(K) , K ∈ T . (4.13)

Evidently, since ∇2ψh ≡ 0 on each element, we additionally have that∥∥∇2(ψ − ψh)
∥∥
L2(K)

≤ C ‖ψ‖H2(K) , (4.14)

where the constant C > 0 is independent of h. Furthermore, due to the continuous Sobolev embeddingH2(Ω) ↪→
L∞(Ω) (see, e.g., [1]), and by using a scaling argument, we conclude that

sup
x∈K

|(ψ − ψh)(x)| ≤ ChK ‖ψ‖H2(K) . (4.15)

Therefore, using the above bounds, together with (3.5), we obtain∫
Ω

(δx0 − δh)ψ dx ≤ ChK0 ‖ψ‖H2(K0)

for a constant C > 0 independent of h. Therefore,

‖δx0 − δh‖H−2(Ω) = sup
ψ∈H2(Ω),ψ �≡0

∫
Ω

(δx0 − δh)ψ dx

‖ψ‖H2(Ω)

≤ ChK0 .

4.3. Application to the SIPG method

We will now apply Theorem 4.1 to the SIPG method (2.4). More precisely, the quantity Υ (uDG) from (4.6)
will be defined explicitly. To this end, we start by noticing that the numerical fluxes in the SIPG form aDG(·, ·)
from (2.4) satisfy

F(uDG, ψh) = −
∫
E
〈〈∇huDG〉〉 · [[ψh]] ds−

∫
E
[[uDG]] · 〈〈∇hψh〉〉ds+ γ

∫
E
h−1[[uDG]] · [[ψh]] ds

for any ψh ∈ VDG(T ). Consequently, the residual R from (4.5) satisfies

R[uDG, ψ](ψh) =
∫
E
[[uDG]] · 〈〈∇h(ψ − ψh)〉〉ds + γ

∫
E
h−1[[uDG]] · [[ψh]] ds.
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Using that ψ ∈ H1
0 (Ω), we notice that [[ψ]] = 0 on E . Therefore, we obtain

|R[uDG, ψ](ψh)| ≤
∣∣∣∣∫

E
[[uDG]] · 〈〈∇h(ψ − ψh)〉〉ds

∣∣∣∣+ ∣∣∣∣γ ∫
E
h−1[[uDG]] · [[ψ − ψh]] ds

∣∣∣∣
≤
∥∥∥h 1

2 [[uDG]]
∥∥∥
L2(E)

∥∥∥h− 1
2 〈〈∇h(ψ − ψh)〉〉

∥∥∥
L2(E)

+
∥∥∥γh 1

2 [[uDG]]
∥∥∥
L2(E)

∥∥∥h− 3
2 [[ψ − ψh]]

∥∥∥
L2(E)

.

Employing the Cauchy-Schwarz inequality, this implies (4.6), with

Υ (uDG) :=
√

1 + γ2
∥∥∥h 1

2 [[uDG]]
∥∥∥
L2(E)

≤ C
√

1 + γ2

(∑
K∈T

hK ‖[[uDG]]‖2
L2(∂K)

) 1
2

, (4.16)

and

|||ψ − ψh|||2h :=
∥∥∥h− 1

2 〈〈∇h(ψ − ψh)〉〉
∥∥∥2

L2(E)
+
∥∥∥h− 3

2 [[ψ − ψh]]
∥∥∥2

L2(E)

≤ C
∑
K∈T

(
h−3
K ‖ψ − ψh‖2

L2(∂K) + h−1
K ‖∇(ψ − ψh)‖2

L2(∂K)

)
.

Applying the trace inequality, with scaling, yields

|||ψ − ψh|||2h ≤ C
∑
K∈T

(
h−4
K ‖ψ − ψh‖2

L2(K) + h−2
K ‖∇(ψ − ψh)‖2

L2(K) +
∥∥∇2(ψ − ψh)

∥∥2

L2(K)

)
.

We choose ψh ∈ VDG(T ) to be an interpolant of ψ that fulfils the bounds (4.13)–(4.15); this then implies
that (4.7) holds.

Thus, employing Theorem 4.1 and recalling (4.16), we deduce the following result.

Theorem 4.7. The SIPG method (2.4) for the numerical approximation of (1.1)–(1.2) satisfies the a posteriori
error estimate

‖u− uDG‖2
L2(Ω) + κ2

∥∥∥h 1
2 [[u− uDG]]

∥∥∥2

L2(E)
≤ C

(
h2
K0

+
∑
K∈T

ηSIPG
κ,K

)
, (4.17)

where

ηSIPG
κ,K := h4

K ‖ΔuDG + δh‖2
L2(K) + h3

K ‖[[∇huDG]]‖2
L2(∂K\∂Ω) + (1 + γ2 + κ2)hK ‖[[uDG]]‖2

L2(∂K) ,

for any K ∈ T , and any constant κ > 0. Here, C > 0 is a constant independent of h, uDG, γ, and of κ.

Remark 4.8. Local lower a posteriori error estimates for the SIPG scheme are given by the generally valid
estimates from Section 4.2. Evidently, a sensible choice of κ is given by κ ∼ γ. This will ensure the equivalence
of the terms

κ2
∥∥∥h 1

2 [[u− uDG]]
∥∥∥2

L2(E)
∼ (1 + γ2 + κ2)

∑
K∈T

hK ‖[[uDG]]‖2
L2(∂K)

appearing on the left and right-hand side of the a posteriori error estimate (4.17), respectively; cf. (4.12).

Remark 4.9. We note that the convexity of Ω is not essential in the a posteriori error analysis above. In the
non-convex case, however, the presence of possible corner singularities in the solution ψ of (4.1)–(4.2) implies
that ψ ∈W 2,p(Ω) for some p < 2 rather than ψ ∈ H2(Ω); see, e.g., [11]. Consequently, a refined analysis based
on Lp spaces is required. This can again be done along the lines of [3]; cf. also [19].
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Figure 1. Initial mesh, consisting of 988 elements.

10
2

10
3

10
4

10
3

10
2

10
1

10
0

(Degrees of Freedom)1/2

||u u
DG

||
L

2
( )

||u u
DG

||
0,h

O(h)

(a)

10
2

10
3

10
4

10
3

10
2

10
1

(Degrees of Freedom)1/2

||u u
DG

||
L

2
( )

||u u
DG

||
0,h

O(h)

(b)

Figure 2. Convergence of ‖u−uDG‖L2(Ω) and ‖u−uDG‖0,h on quasi-uniform triangular meshes
with (a) � = 1; (b) � = 2.

5. Numerical examples

We consider the case when the computational domain Ω is the unit disc, i.e., Ω = {x ∈ R2 : |x| < 1}. Setting
x0 = 0, the analytical solution to (1.1)–(1.2) is the fundamental solution of the Laplace equation; namely,

u(x) = − 1
2π

ln |x|.

Our numerical experiments are based on the SIPG method (2.4); here, we choose γ = κ = 10. Firstly, we
investigate the asymptotic convergence of the SIPG method on a sequence of successively finer quasi-uniform
unstructured triangular meshes for � = 1, 2. The initial mesh consists of 988 elements; cf. Figure 1. Here, curved
elements have not been employed on the boundary of the computational domain; however, when elements which
lie on the boundary are refined, then new nodal points are automatically placed on the circular boundary of the
domain. In Figure 2 we present a comparison of the L2(Ω)-norm, as well as the extended L2(Ω)-norm defined
in Remark 4.2, of the error u− uDG for � = 1, 2, as the initial mesh is uniformly refined. Here, we observe that
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Figure 3. (a) Comparison of the actual and estimated extended L2(Ω)-norm of the error with
respect to the number of degrees of freedom; (b) effectivity indices.

(asymptotically) ‖u−uDG‖L2(Ω) converges to zero at the rate O(h) as h tends to zero, cf. Theorem 3.1. Similar
behavior of the norm ‖u− uDG‖0,h is also observed asymptotically.

Secondly, we now investigate the performance of the a posteriori error estimate derived in Theorem 4.7 within
an automatic h-version adaptive refinement procedure which is based on 1-irregular triangular elements, with
� = 1. The h-adaptive meshes are constructed by marking the elements for refinement/derefinement according
to the size of the local error indicators defined on the right-hand side of (4.17); this is done by employing
the fixed fraction strategy. This involves choosing two numbers ϕref and ϕderef in the interval (0, 100) with
ϕderef + ϕref < 100, ordering the local refinement indicators, according to their size, and then refining those
elements κ which correspond to ϕref% of the largest entries in the ordered sequence, and derefining those
elements κ which correspond to the ϕderef% of the smallest entries in this ordered sequence; further variations
on this strategy, with dynamically varying ϕref and ϕderef , are also possible. For the purposes of this section,
we set refinement and derefinement fractions ϕref and ϕderef , respectively, equal to 25% and 10%, respectively.
In two-dimensions, this leads to roughly a doubling of the number of degrees of freedom in the underlying finite
element space at each refinement step.

The initial starting mesh for adaptive refinement is the same one depicted in Figure 1. In Figure 3a we show
the history of the actual and estimated extended L2(Ω)-norm of the error on each of the meshes generated
based on employing h-adaptive mesh refinement. Here, we observe that the a posteriori bound over-estimates
the true error by a consistent factor. Indeed, the effectivity index tends to a value of around 4 as the mesh is
adaptively refined, cf. Figure 3b. In Figure 4 we plot the meshes overlayed onto the corresponding computed
DG solution after 0 (initial mesh), 2, 4, 6, 8, and 9 adaptive refinement steps have been undertaken. Here, we
observe that the mesh has been significantly refined in the vicinity of the origin of the computational domain,
where the delta-source term is centered, as expected.

6. Conclusions

In this article we have developed both the a priori and a posteriori error analysis of a general class of
DG finite element methods for the numerical approximation of linear second-order elliptic partial differential
equations with Dirac delta right-hand side. In particular, the a priori bound indicates that the L2-norm of the
discretization error converges to zero at the rate O(h) as the mesh size h tends to zero. Secondly, computable
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(a) (b)

(c) (d)

(e) (f)

Figure 4. DG solution and mesh. (a) Initial mesh, with 988 elements; (b) 2 adaptive refine-
ments, with 3358 elements; (c) 4 adaptive refinements, with 11 032 elements; (d) 6 adaptive
refinements, with 33 538 elements; (e) 8 adaptive refinements, with 96 646 elements; (f) 9 adap-
tive refinements, with 162 259 elements.
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residual-based a posteriori error indicators have been derived when the error is measured in terms of an extended
L2-norm; the use of this norm facilitates the derivation of local lower bounds. These theoretical results have
been confirmed numerically; in particular, the a posteriori error bound has been employed within an automatic
adaptive mesh refinement algorithm.
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