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TEMPORAL CONVERGENCE OF A LOCALLY IMPLICIT DISCONTINUOUS
GALERKIN METHOD FOR MAXWELL’S EQUATIONS ∗

Ludovic Moya
1

Abstract. In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin
method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Partic-
ularly, we wonder whether the method retains its second-order ordinary differential equation (ODE)
convergence under stable simultaneous space-time grid refinement towards the true partial differential
equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce
order reduction

Mathematics Subject Classification. 65M12, 65M60, 78M10.

Received June 8, 2011. Revised December 30, 2011.
Published online March 27, 2012.

1. Introduction

Nowadays, many different types of methods exist for the numerical resolution of time-domain Maxwell’s
equations modeling electromagnetic wave propagation. The most prominent method among physicists and
engineers is still the finite difference time-domain (FDTD) method based on Yee’s scheme [31]. This popularity
is mainly due to its simplicity and efficiency in discretising simple domain problems. However, its inability to
effectively handle complex geometries has prompted to search for alternatives methods. Also one of the main
features of numerical methods based on finite element meshes like finite element time-domain (FETD) [17],
finite volume time-domain (FVTD) [24] or discontinuous Galerkin time-domain (DGTD) [5,10,14,15] methods
is the possibility of using locally refined and non-conformal space grids to easily deal with complex geometries.
In recent years there has been an increasing interest in the DGTD method. The latter is particularly well suited
to the design of hp-adaptive strategies (i.e. where the characteristic mesh size h and the interpolation degree p
change locally wherever it is needed) [8]. Thus the DGTD method can achieve a high order of accuracy and is
used in many applications [4, 15].

In the same time the choice of the temporal integration method is a crucial step for the global efficiency of the
numerical method. We distinguish two major families for the temporal integration: implicit and explicit methods.
An implicit integration method to numerically solve a time-dependent PDE leads in general to unconditional
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stability. Then the time step can be chosen arbitrarily large. However, implicit methods require the solution
of large linear systems resulting in a high computational effort. An explicit integration method results in less
computational effort per time step, but readily leads to unduly step size restrictions caused by the smallest grid
elements. For examples of implicit and explicit integration methods for the semi-discrete Maxwell’s equations
we refer to [3, 29] and [1, 10], respectively. A possible alternative to overcome step size limitation, induced by
local mesh refinements in explicit methods, is to use smaller time steps precisely where the smallest elements are
located, given by a local stability criterion. These local time-stepping techniques have been recently studied for
second-order wave equations discretized in space by continuous or discontinuous finite element methods in [6]
and more specifically for the time-domain Maxwell’s equations discretized in space by a discontinuous Galerkin
method in [11, 20, 26]. Considering the strengths of implicit and explicit methods, the authors of [7, 23, 27]
have proposed another alternative: locally implicit time integration methods. More precisely, the smallest grid
elements are treated implicitly and the remaining elements explicitly by a technique we call component splitting.
If the ratio of fine to coarse elements is small, the most severe step size restrictions are overcome. The counterpart
of this approach is having to solve per time step a linear system. But due to the assumed small fine to coarse cell
size ratio, the overhead will also be small while the solution can be advanced in time with step sizes determined
by the coarse elements. Consequently, these methods are particularly well suited if the local refinement is
strongly localized. Note that the method from [7,23] has been especially designed for a discontinuous Galerkin
discretization, while that from [27] covers the common spatial discretizations like finite-difference and various
finite-element discretizations.

In this paper we study the temporal convergence of the locally implicit DGTD method for Maxwell’s equations
initially proposed by Piperno in [23]. In particular we examine whether the method retains its second-order ODE
convergence towards the true PDE solution under stable simultaneous space-time grid refinement. This question
is legitimate because component splitting can cause order reduction.

The paper is organized as follows. Section 2 presents the problem and the notations. In Section 3 we intro-
duce the component splitting and the implicit-explicit method for time-domain Maxwell’s equations spatially
discretized with a discontinuous Galerkin method. This implicit-explicit integration method is a blend of the
explicit one-step second-order Leap-Frog scheme (LF2) and the implicit one-step second-order Crank-Nicolson
scheme (CN2). Next we study the temporal convergence order. The different steps of this convergence analysis
are the same as in [27] where the author proposes another implicit-explicit integration method for the semi-
discrete Maxwell’s equations. The latter method is also a blend of LF2 and CN2 and retains its second-order
ODE convergence towards the true PDE solution under stable simultaneous space-time grid refinement [27].
In Section 4 we give some numerical results for 2D Maxwell problems to illustrate the previous convergence
analysis. Section 5 concludes the paper with final remarks and future plans.

2. Problem statement

We consider time-domain Maxwell’s equations{
ε ∂tE = curl H − σE − JE ,

μ ∂tH = −curl E,
(2.1)

where E and H denote the electric and magnetic field, respectively. JE is the given source current and ε, μ
and σ are coefficients representing dielectric permittivity, magnetic permeability and conductivity, respectively.
After discretization in space by a DG method we obtain the semi-discrete Maxwell system⎧⎨

⎩
M ε ∂tE = SH − DE + M εfE ,

Mμ ∂tH = −ST E + MμfH ,
(2.2)

where, for convenience, we use the same notation for the electric and magnetic fields E and H as in the space-
continuous case. For more details on DG spatial discretization we refer to [7]. The matrices M ε, Mμ are the DG
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mass matrices which contain the values of the dielectric permittivity and magnetic permeability coefficient. The
matrix S emanates from the discretization of the curl operator. The matrix D is associated with the dissipative
conduction term −σE. Throughout D may be assumed symmetric positive semi-definite. The functions fE and
fH are associated with source terms. More precisely fE represents the given source current −JE , but fE and
fH may also contain Dirichlet boundary data.

We can give an equivalent formulation of (2.2) without mass matrix. As in [1] we introduce the Cholesky
factorizations

M ε = LMεLT
Mε and Mμ = LMμLT

Mμ , (2.3)

where LMε and LMμ are triangular matrices. Then with (2.2) we have
⎧⎨
⎩

LMεLT
Mε ∂tE = SH − DE + LMεLT

MεfE,

LMμLT
Mμ ∂tH = −ST E + LMμLT

MμfH .
(2.4)

Introducing Ẽ = LT
MεE and H̃ = LT

MμH , we get

⎧⎨
⎩

∂tẼ = L−1
Mε S (LT

Mμ)−1 H̃ − L−1
Mε D (LT

Mε)−1 Ẽ + LT
Mε fE ,

∂tH̃ = −L−1
Mμ ST (LT

Mε)−1 Ẽ + LT
Mμ fH .

(2.5)

Next we write
S̃ = L−1

Mε S (L−1
Mμ)T , D̃ = L−1

Mε D (L−1
Mε)T ,

f̃E = LT
Mε fE , f̃H = LT

Mμ fH ,
(2.6)

and note that
S̃T = [L−1

Mε S (L−1
Mμ)T ]T = L−1

Mμ [L−1
Mε S]T = L−1

Mμ ST (L−1
Mε)T . (2.7)

Thus we can write the semi-discrete Maxwell system equivalent to (2.2) as
⎧⎨
⎩

∂tẼ = S̃H̃ − D̃Ẽ + f̃E ,

∂tH̃ = −S̃T Ẽ + f̃H .
(2.8)

For convenience of notation and presentation we use the same notation in (2.2) and (2.8) i.e.
⎧⎨
⎩

∂tE = SH − DE + fE ,

∂tH = −ST E + fH .
(2.9)

We will proceed with (2.9), the meaning of E, H , S, D, fE and fH will always be clear from the context or will
be precised. In particular results obtained for (2.9) apply to (2.2) and vice versa. Note that S emanates from an
appropriate DG discretization for the Maxwell problem under consideration and further on we will prove that

S ∼ 1
h

, for h → 0, (2.10)

where the parameter h denotes the maximum diameter of the (non-uniform) grid elements. Throughout the
remainder we will assume initial values at time t = 0 and the source functions fE(t), fH(t) ∈ C2[0, T ] for an
interval [0, T ], so that E(t), H(t) ∈ C3[0, T ].
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3. The implicit-explicit DGTD method

The implicit-explicit integration considered in this note is issued from [7,23]. As we have previously mentioned
it is a blend of the second order LF2 scheme that we write in the three-stage form, emanating from Verlet’s
method, see [23] ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hn+ 1
2 − Hn

Δt/2
= −ST En + fH(tn),

En+1 − En

Δt
= SHn+ 1

2 − 1
2D(En+1 + En) + 1

2 (fE(tn+1) + fE(tn)),

Hn+1 − Hn+ 1
2

Δt/2
= −ST En+1 + fH(tn+1),

(3.1)

and the second order, unconditionally stable CN2 scheme that we also write in the three-stage form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hn+ 1
2 − Hn

Δt/2
= −ST En + fH(tn),

En+1 − En

Δt
= SHn+1 − 1

2D(En+1 + En) + 1
2 (fE(tn+1) + fE(tn)),

Hn+1 − Hn+ 1
2

Δt/2
= −ST En+1 + fH(tn+1).

(3.2)

which only differ in the middle stage in the time level for H (see [27]). Herein Δt = tn+1 − tn denotes the step
size and upper indices time levels, as usual.

3.1. Component splitting

The set of grid elements is assumed to be partitioned into two subsets: one made of the smallest elements
that will be treated implicitly using the CN2 method and the other one of the remaining elements that will be
treated explicitly with the LF2 method. In line with this splitting the problem unknowns are reordered as

E =

(
Ee

Ei

)
and H =

(
He

Hi

)
, (3.3)

where the indices i and e are associated to the elements of the subset treated implicitly and explicitly, respec-
tively. Likewise the semi-discrete curl operator S is split into the block form

S =

(
Se −Aei

−Aie Si

)
, (3.4)

for the specific meaning of the block-entries of S we refer to [7]. D is supposed to be split accordingly into

D =

(
De 0

0 Di

)
, (3.5)

and we write

fE =

⎛
⎝ fE

e

fE
i

⎞
⎠ , fH =

⎛
⎝ fH

e

fH
i

⎞
⎠ . (3.6)
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Inserting this splitting into (2.9) we obtain the system of ODEs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tEe = SeHe − AeiHi − DeEe + fE
e (t),

∂tEi = SiHi − AieHe − DiEi + fE
i (t),

∂tHe = −ST
e Ee + AT

ieEi + fH
e (t),

∂tHi = −ST
i Ei + AT

eiEe + fH
i (t).

(3.7)

3.2. The implicit-explicit time integration method

The implicit-explicit method proposed in [7, 23] is a blend of LF2 and CN2 applied to (3.7). It reads⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H
n+1/2
e − Hn

e

Δt/2
= −ST

e En
e + AT

ieE
n
i + fH

e (tn),

E
n+1/2
e − En

e

Δt/2
= SeH

n+1/2
e − AeiH

n
i − DeE

n
e + fE

e (tn),

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

En+1
i − En

i

Δt
= Si

(
Hn+1

i + Hn
i

2

)
− AieH

n+1/2
e

−Di

(
En+1

i + En
i

2

)
+

fE
i (tn+1) + fE

i (tn)
2

,

Hn+1
i − Hn

i

Δt
= −ST

i

(
En+1

i + En
i

2

)
+ AT

eiE
n+1/2
e +

fH
i (tn+1) + fH

i (tn)
2

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

En+1
e − E

n+1/2
e

Δt/2
= SeH

n+1/2
e − AeiH

n+1
i − DeE

n+1
e + fE

e (tn+1),

Hn+1
e − H

n+1/2
e

Δt/2
= −ST

e En+1
e + AT

ieE
n+1
i + fH

e (tn+1).

(3.8)

For the stability analysis of this method we refer to [7]. The proof is based on the conservation of a discrete
electromagnetic energy. It is proved that this energy is a positive quadratic form of the numerical unknowns
En

e , En
i , Hn

e and Hn
i under a condition on the time step size. Consequently the non-dissipative nature of the

method yields to the stability of the method.

3.3. Matrix behavior for h → 0

In this subsection we are interested in the behavior of the matrices in (3.8) for h → 0. This is an essential
point for convergence analysis because some of these matrices can lie at the origin of order reduction. Let us
consider the general case of dimension d (d = 1, 2 or 3). First we investigate the behavior of the matrices in the
formulation with the mass matrices. Thereafter we will be able to deduce the behavior of the matrices in (3.8).

We reintroduce the notation with a tilde for the elements involved in the formulation without mass matrix
(see (2.8)) in order to avoid confusion. The specific meaning of the block-entries of the different matrices involved
in the formulation with mass matrices can be found in [7]. First we observe that the mass matrices are only
composed of volumic terms, hence we have

M ε, Mμ � hd, for h → 0. (3.9)

Thus
LMε , LT

Mε , LMμ and LT
Mμ � h

d
2 , for h → 0. (3.10)
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The matrices Se and Si are composed of volumic and surfacic terms, hence

Se and Si � hd−1, for h → 0. (3.11)

The matrices Aei and Aie represent surfacic terms (interface matrices). Hence

Aei and Aie � hd−1, for h → 0 (3.12)

and from the block form of the matrix S (see (3.4)) we deduce with (3.11) and (3.12) that

S � hd−1, for h → 0. (3.13)

From (2.6) we get
S̃ = L−1

Mε S (L−1
Mμ)T , (3.14)

then with the behaviors above we deduce that for h → 0

S̃e, S̃i = O
(

1
h

)
,

Ãei, Ãie = O
(

1
h

)
,

(3.15)

and we have the expected behavior (2.10) for S̃.

3.4. Temporal convergence

In this section we are interested in the PDE convergence of method (3.8). More precisely, we will examine
whether the method retains its second-order ODE convergence under stable simultaneous space-time grid refine-
ment Δt � h, h → 0 towards the true PDE solution. This is not a priori clear due to the component splitting
which can introduce order reduction through error constants which grow with h−1, for h → 0.

This section is organized in four subsections. In Section 3.4.1 we will eliminate the intermediate values
of (3.8) to get an equivalent one step formula from tn to tn+1 that we will use for our convergence analysis. In
Section 3.4.2 we will introduce the perturbed method obtained by substituting the true PDE solution restricted
to the assumed space grid into (3.7), and defects (space-time truncation errors) obtained by substituting this
true PDE solution into the equivalent one step formula of our method. In Section 3.4.3 we will define the
common one-step recurrence relation for the global error. In Section 3.4.4 we will point out the order reduction
mentioned above. Finally in Section 3.4.5 we will see that this order reduction, affecting the local error, may
(partly) cancel in the transition from the local to the global error.

3.4.1. Elimination of intermediates values

First we treat He. From the first and last equations of (3.8) we get

H
n+ 1

2
e = Hn

e − Δt

2
ST

e En
e +

Δt

2
AT

ieE
n
i +

Δt

2
fH

e (tn),

H
n+ 1

2
e = Hn+1

e +
Δt

2
ST

e En+1
e − Δt

2
AT

ieE
n+1
i +

Δt

2
fH

e (tn+1).
(3.16)

Inserting the first equation of (3.16) into the last equation of (3.8) yields

Hn+1
e = Hn

e − Δt

2
ST

e (En
e + En+1

e ) +
Δt

2
AT

ie(E
n
i + En+1

i ) +
Δt

2
(fH

e (tn) + fH
e (tn+1)). (3.17)
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Next we treat Ee. From the second and fifth equations of (3.8) we get

E
n+ 1

2
e = En

e +
Δt

2
SeH

n+ 1
2

e − Δt

2
AeiH

n
i − Δt

2
DeE

n
e +

Δt

2
fE

e (tn),

E
n+ 1

2
e = En+1

e − Δt

2
SeH

n+ 1
2

e +
Δt

2
AeiH

n+1
i +

Δt

2
DeE

n+1
e − Δt

2
fE

e (tn+1).
(3.18)

Inserting the first equation of (3.18) and half of each expression of (3.16) for H
n+ 1

2
e into the fifth equation

of (3.8) yields

En+1
e = En

e +
Δt

2
Se(Hn

e + Hn+1
e ) − Δt

2
Aei(Hn

i + Hn+1
i ) − Δt

2
De(En

e + En+1
e ) +

Δt

2
(fE

e (tn) + fE
e (tn+1))

+
Δt2

4
Se(−ST

e En
e + AT

ieE
n
i ) +

Δt2

4
Se(ST

e En+1
e − AT

ieE
n+1
i ) +

Δt2

4
Se(fH

e (tn) + fH
e (tn+1)).

(3.19)

Now we consider Hi. Inserting half of each expression of (3.18) for E
n+ 1

2
e in the fourth equation of (3.8) gives

Hn+1
i = Hn

i − Δt

2
ST

i (En
i + En+1

i ) +
Δt

2
AT

ei(E
n
e + En+1

e ) +
Δt

2
(fH

i (tn) + fH
i (tn+1))

+
Δt2

4
AT

eiAei(Hn+1
i − Hn

i ) +
Δt2

4
AT

eiDe(En+1
e − En

e ) +
Δt2

4
AT

ei(f
E
e (tn) + fE

e (tn+1)). (3.20)

Finally we treat Ei. Inserting half of each expression of (3.16) for H
n+ 1

2
e in the third equation of (3.8) yields

En+1
i = En

i +
Δt

2
Si(Hn

i + Hn+1
i ) − Δt

2
Aie(Hn

e + Hn+1
e ) − Δt

2
Di(En

i + En+1
i ) +

Δt

2
(fE

i (tn) + fE
i (tn+1))

−Δt2

4
Aie(−ST

e En
e + AT

ieE
n
i ) − Δt2

4
Aie(ST

e En+1
e − AT

ieE
n+1
i ) − Δt2

4
Aie(fH

e (tn) + fH
e (tn+1)).

(3.21)
The equivalent method of (3.8) with its intermediate values eliminated thus reads

En+1
e = En

e +
Δt

2
Se(Hn

e + Hn+1
e ) − Δt

2
Aei(Hn

i + Hn+1
i ) − Δt

2
De(En

e + En+1
e ) +

Δt

2
(fE

e (tn) + fE
e (tn+1))

+
Δt2

4
Se[(−ST

e En
e + AT

ieE
n
i ) − (ST

e En+1
e − AT

ieE
n+1
i )] +

Δt2

4
Se(fH

e (tn) + fH
e (tn+1)),

En+1
i = En

i +
Δt

2
Si(Hn

i + Hn+1
i ) − Δt

2
Aie(Hn

e + Hn+1
e ) − Δt

2
Di(En

i + En+1
i ) +

Δt

2
(fE

i (tn) + fE
i (tn+1))

−Δt2

4
Aie[(−ST

e En
e + AT

ieE
n
i ) − (ST

e En+1
e − AT

ieE
n+1
i )] − Δt2

4
Aie(fH

e (tn) + fH
e (tn+1)),

Hn+1
e = Hn

e − Δt

2
ST

e (En
e + En+1

e ) +
Δt

2
AT

ie(E
n
i + En+1

i ) +
Δt

2
(fH

e (tn) + fH
e (tn+1)),

Hn+1
i = Hn

i − Δt

2
ST

i (En
i + En+1

i ) +
Δt

2
AT

ei(E
n
e + En+1

e ) +
Δt

2
(fH

i (tn) + fH
i (tn+1))

+
Δt2

4
AT

eiAei(Hn+1
i − Hn

i ) +
Δt2

4
AT

ei[De(En+1
e − En

e ) + (fE
e (tn) + fE

e (tn+1))].

(3.22)
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3.4.2. The perturbed method and defects for the PDE solution

Let Eh
e (t) denote at time t the true solution of the PDE problem restricted to the assumed space grid that we

have approximated with the semi-discrete system (3.7). Eh
e (tn) thus represents the vector that is approximated

by En
e . Assume the same notation for Ei, He and Hi. Substituting Eh

e (t), Eh
i (t), Hh

e (t) and Hh
i (t) into (3.7)

reveals the spatial truncation errors

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

Eh
e (t) = SeH

h
e (t) − AeiH

h
i (t) − DeE

h
e (t) + fE

e (t) + σE
e (t),

d
dt

Eh
i (t) = SiH

h
i (t) − AieH

h
e (t) − DiE

h
i (t) + fE

i (t) + σE
i (t),

d
dt

Hh
e (t) = −ST

e Eh
e (t) + AT

ieE
h
i (t) + fH

e (t) + σH
e (t),

d
dt

Hh
i (t) = −ST

i Eh
i + AT

eiE
h
e (t) + fH

i (t) + σH
i (t),

(3.23)

where σE
e (t), σE

i (t), σH
e (t) and σH

i (t) denote the spatial truncation errors.
Substituting Eh

e (t), Eh
i (t), Hh

e (t) and Hh
i (t) into (3.22) reveals the defects for the PDE solution (space-time

truncation errors) and gives what we call the perturbed method

Eh
e (tn+1) = Eh

e (tn) +
Δt

2
Se(Hh

e (tn) + Hh
e (tn+1)) − Δt

2
Aei(Hh

i (tn) + Hh
i (tn+1))

−Δt

2
De(Eh

e (tn) + Eh
e (tn+1)) +

Δt

2
(fE

e (tn) + fE
e (tn+1))

+
Δt2

4
Se[(−ST

e Eh
e (tn) + AT

ieE
h
i (tn)) − (ST

e Eh
e (tn+1) − AT

ieE
h
i (tn+1))]

+
Δt2

4
Se(fH

e (tn) + fH
e (tn+1)) + Δt δE

e,n,

Eh
i (tn+1) = Eh

i (tn) +
Δt

2
Si(Hh

i (tn) + Hh
i (tn+1)) − Δt

2
Aie(Hh

e (tn) + Hh
e (tn+1))

−Δt

2
Di(Eh

i (tn) + Eh
i (tn+1)) +

Δt

2
(fE

i (tn) + fE
i (tn+1))

−Δt2

4
Aie[(−ST

e Eh
e (tn) + AT

ieE
h
i (tn)) − (ST

e Eh
e (tn+1) − AT

ieE
h
i (tn+1))]

−Δt2

4
Aie(fH

e (tn) + fH
e (tn+1)) + Δt δE

i,n,

Hh
e (tn+1) = Hh

e (tn) − Δt

2
ST

e (Eh
e (tn) + Eh

e (tn+1)) +
Δt

2
AT

ie(E
h
i (tn) + Eh

i (tn+1))

+
Δt

2
(fH

e (tn) + fH
e (tn+1)) + Δt δH

e,n,

Hh
i (tn+1) = Hh

i (tn) − Δt

2
ST

i (Eh
i (tn) + Eh

i (tn+1)) +
Δt

2
AT

ei(E
h
e (tn) + Eh

e (tn+1)) +
Δt

2
(fH

i (tn) + fH
i (tn+1))

+
Δt2

4
AT

eiAei(Hh
i (tn+1) − Hh

i (tn))

+
Δt2

4
AT

ei[De(Eh
e (tn+1) − Eh

e (tn)) + (fE
e (tn) + fE

e (tn+1))] + Δt δH
i,n,

(3.24)
where δE

e,n, δE
i,n, δH

e,n and δH
i,n denote the defects for the PDE solution.
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Eliminating all source term contributions fE
e , fE

i , fH
e and fH

i (3.23) yields

δE
e,n = δEh

e
+

Δt

4
Se

d
dt

(Hh
e (tn+1) − Hh

e (tn)) +
1
2
(σE

e (tn) + σE
e (tn+1)) +

Δt

4
Se(σH

e (tn) + σH
e (tn+1)),

δE
i,n = δEh

i
− Δt

4
Aie

d
dt

(Hh
e (tn+1) − Hh

e (tn)) +
1
2
(σE

i (tn) + σE
i (tn+1)) − Δt

4
Aie(σH

e (tn) + σH
e (tn+1)),

δH
e,n = δHh

e
+

1
2
(σH

e (tn) + σH
e (tn+1))

δH
i,n = δHh

i
− Δt

4
AT

eiSe(Hh
e (tn+1) − Hh

e (tn)) +
Δt

4
AT

ei

d
dt

(Eh
e (tn+1) − Eh

e (tn))

+
1
2
(σH

i (tn) + σH
i (tn+1)) +

Δt

4
AT

ei(σ
E
e (tn) + σE

e (tn+1)),

(3.25)

where δEh
e

denotes the implicit trapezoidal (CN) rule defect (see [27]) for variable Eh
e (similarly for Eh

i , Hh
e and

Hh
i ), i.e.

δEh
e
(t) =

Eh
e (t + Δt) − Eh

e (t)
Δt

− 1
2

d
dt

(Eh
e (t + Δt) + Eh

e (t)). (3.26)

3.4.3. The error scheme

Let εE
e,n = Eh

e (tn)−En
e denote the global error (similarly we introduce εE

i,n, εH
e,n and εH

i,n). Substracting (3.22)
and (3.24) we obtain the error scheme

εE
e,n+1 = εE

e,n +
Δt

2
Se(εH

e,n + εH
e,n+1) −

Δt

2
Aei(εH

i,n + εH
i,n+1) −

Δt

2
De(εE

e,n + εE
e,n+1)

+
Δt2

4
Se[(−ST

e εE
e,n + AT

ieε
E
i,n) − (ST

e εE
e,n+1 − AT

ieε
E
i,n+1)] + Δt δE

e,n,

εE
i,n+1 = εE

i,n +
Δt

2
Si(εH

i,n + εH
i,n+1) −

Δt

2
Aie(εH

e,n + εH
e,n+1) −

Δt

2
Di(εE

i,n + εE
i,n+1)

−Δt2

4
Aie[(−ST

e εE
e,n + AT

ieε
E
i,n) − (ST

e εE
e,n+1 − AT

ieε
E
i,n+1)] + Δt δE

i,n,

εH
e,n+1 = εH

e,n − Δt

2
ST

e (εE
e,n + εE

e,n+1) +
Δt

2
AT

ie(ε
E
i,n + εE

i,n+1) + Δt δH
e,n,

εH
i,n+1 = εH

i,n − Δt

2
ST

i (εE
i,n + εE

i,n+1) +
Δt

2
AT

ei(ε
E
e,n + εE

e,n+1)

+
Δt2

4
AT

eiAei(εH
i,n+1 − εH

i,n) +
Δt2

4
AT

eiDe(εE
e,n+1 − εE

e,n) + Δt δH
i,n.

(3.27)

Let

εn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εE
e,n

εE
i,n

εH
e,n

εH
i,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and δn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δE
e,n

δE
i,n

δH
e,n

δH
i,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.28)

then from (3.27) we can write the global error in a more compact form (one-step recurrence relation)

εn+1 = Rεn + Δtρn, R = R−1
L RR, ρn = R−1

L δn, (3.29)
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where

RL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I +
Δt

2
De − Δt2

4
SeS

T
e

Δt2

4
SeA

T
ie −Δt

2
Se

Δt

2
Aei

Δt2

4
AieS

T
e I +

Δt

2
Di − Δt2

4
AieA

T
ie

Δt

2
Aie −Δt

2
Si

Δt

2
ST

e −Δt

2
AT

ie I 0

−Δt

2
AT

ei −
Δt2

4
AT

eiDe
Δt

2
ST

i 0 I − Δt2

4
AT

eiAei

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.30)

RR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I − Δt

2
De − Δt2

4
SeS

T
e

Δt2

4
SeA

T
ie

Δt

2
Se −Δt

2
Aei

Δt2

4
AieS

T
e I − Δt

2
Di − Δt2

4
AieA

T
ie −Δt

2
Aie

Δt

2
Si

−Δt

2
ST

e

Δt

2
AT

ie I 0

Δt

2
AT

ei −
Δt2

4
AT

eiDe −Δt

2
ST

i 0 I − Δt2

4
AT

eiAei

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.31)

and εn, Δtρn and δn are respectively the (space-time) global, local and truncation errors.
Note that the recursion (3.29) has the standard form (see v.g. [16]) for the convergence analysis of one-step

integration methods. It transfers local errors to the global error, essentially by adding all local errors. Indeed,
for a given time interval [0, T ] we make the usual stability hypothesis

‖Rn‖ ≤ K for h → 0 and n ≥ 0, nΔt ≤ T. (3.32)

On the other hand the elaboration of the error recursion (3.29) gives

εn = Rnε0 + Rn−1Δtρ0 + . . . + RΔtρn−2 + Δtρn−1, (3.33)

which leads directly (with (3.32)) to

‖εn‖ ≤ K‖ε0‖ + KΔt

n−1∑
j=0

‖ρj‖ for nΔt ≤ T. (3.34)

Recall that ρj = R−1
L δj and because we assume stability we may consider RL inversely bounded for Δt ∼ h,

h → 0. Consequently if δj = O(Δtk) we have ‖ρj‖ ≤ CΔtk. Assuming ε0 = 0, we deduce from (3.34) that

‖εn‖ ≤ K̃Δtk for nΔt ≤ T, (3.35)

with constant K̃ = KTC.

3.4.4. Error analysis

We assume that the true PDE solutions Eh
e , Eh

i , Hh
e and Hh

i are sufficiently differentiable. Then we can
Taylor expand the trapezoidal rule defect (3.26) at the symmetry point tn+1/2 to get

δEh
e
(tn) =

∑
j=2′

−j

2j(j + 1)!
(Δt)jEh(j+1)

e , (3.36)

where j = 2′ means even values for j only and E
h(j)
e denotes the j-th derivative of Eh

e (t) at time t = tn+1/2.
We obtain similar expressions for δEh

i
(tn), δHh

e
(tn) and δHh

i
(tn). Note that these defects start with Δt2 and



TEMPORAL CONVERGENCE OF LOCALLY IMPLICIT DG METHOD FOR MAXWELL 1235

the third solution derivative of the true PDE solution (in the first section we have assumed that the true PDE
solution is three times differentiable). We conclude that the trapezoidal rule defects are O(Δt2) for Δt ∼ h and
h → 0. Then, from (3.25), we write the truncation error as follows

δn = bn + O(Δt2), (3.37)

where

bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

bE
e,n

bE
i,n

bH
e,n

bH
i,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δt

4
Se

d
dt

(
Hh

e (tn+1) − Hh
e (tn)

)
−Δt

4
Aie

d
dt

(
Hh

e (tn+1) − Hh
e (tn)

)
0

−Δt

4
AT

eiSe

(
Hh

e (tn+1) − Hh
e (tn)

)
+

Δt

4
AT

ei

d
dt

(
Eh

e (tn+1) − Eh
e (tn)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.38)

and O(Δt2) contains the trapezoidal rule defects. Note that we have voluntarily omitted the spatial error parts
contained in the σE

e , σE
i , σH

e , σH
i contributions from (3.25) because our interest lies in temporal convergence

order. Further carrying these spatial error contributions only complicates the formulas and will not lead to
different conclusions for the temporal errors.

Next we Taylor expand the components of bn at the symmetry point tn+1/2

bE
e,n =

Δt

4
Se

∑
j=1′

1
2j−1j!

(Δt)jHh(j+1)
e ,

bE
i,n = −Δt

4
Aie

∑
j=1′

1
2j−1j!

(Δt)jHh(j+1)
e ,

bH
i,n = −Δt

4
AT

eiSe

∑
j=1′

1
2j−1j!

(Δt)jHh(j)
e +

Δt

4
AT

ei

∑
j=1′

1
2j−1j!

(Δt)jEh(j+1)
e ,

(3.39)

where j = 1′ means odd values for j only. For a fixed spatial dimension we find the expected second-order ODE
convergence, since Se, Aie and AT

ei are bounded for fixed dimension. Indeed, with (3.39) we have bn = O(Δt2)
and because we assume stability we may consider RL inversely bounded, consequently ρn = R−1

L δn = O(Δt2)
and we conclude that we have the second-order convergence for a fixed dimension.

Now we observe, with (3.15), that under stable simultaneous space-time refinement, Δt ∼ h and h → 0, we
might lose one unit of Δt in bE

e,n and bE
i,n (due to Se and Aie, respectively) and two units of Δt in bH

i,n (due to
the product AT

eiSe in the first terms). Then bn = O(1), for Δt ∼ h and h → 0 and with (3.35) we should expect
a severe order reduction. However, as mentioned in [27], this result is based on standard local error analysis and
in the transition from local to global errors it can happen that the order reduction for local errors is (partly)
canceled. Often this cancellation can be shown to exist through a transformation of the global error recurrence
to one by which we may gain one unit of Δt in the transformed local error.

3.4.5. A transformed global error recursion

The transformation used in [27] emanates from [16], Lemma II.2.3. We write the latter for our one-step global
error recursion (3.29) and stability assumption (3.32)

Lemma 3.1. Suppose the local error Δρn can be written as

Δtρn = (I − R)ξn + ηn,
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with ‖ξn‖ ≤ CΔtk, ‖ηn‖ ≤ CΔtk+1 and ‖ξn+1 − ξn‖ ≤ CΔtk+1 for all n. Then there is a constant C′ > 0,
depending on C, K and T , such that ‖εn‖ ≤ C′Δtk for nΔt ≤ T .

The proof can be found in [16].
First we assume for Δt ∼ h, h → 0 that

AT
eiSeH

h(1)
e = O

(
1

Δt

)
· (3.40)

Consequently we get bn = O(Δt) (in this case bH
i,n = O(Δt), see (3.39)). With the above-mentioned Lemma we

can assume that if the local error Δtρn allows a decomposition

Δtρn = (I − R)ξn + ηn (3.41)

such that ξn = O(Δt2), ηn = O(Δt3) for Δt ∼ h, h → 0, then we have the desired second-order convergence for
εn. So we need to verify (3.41), or equivalently,

Δtδn = (RL − RR)ξn + RLηn, (3.42)

such that ξn = O(Δt2), ηn = O(Δt3) for Δt ∼ h, h → 0.
Now we deal with the condition ηn = O(Δt3). Recall that δn = bn + O(Δt2), then (3.42) can be written as

Δt(bn + O(Δt2)) = (RL − RR)ξn + RLηn. (3.43)

Furthermore, RL is inversely bounded, then by assigning the O(Δt2) terms present in (3.43) multiplied by
Δt R−1

L for ηn (i.e. ηn = Δt R−1
L O(Δt2)), we have ηn = O(Δt3). Consequently, we deduce from Lemma 3.1

that we have the desired second-order convergence if a vector ξn exists such that ξn = O(Δt2) for Δt ∼ h,
h → 0 and

Δtbn = (RL − RR)ξn, i.e. (3.44)

⎛
⎜⎜⎜⎜⎜⎜⎝

De 0 −Se Aei

0 Di Aie −Si

ST
e −AT

ie 0 0

−AT
ei ST

i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξE
e,n

ξE
i,n

ξH
e,n

ξH
i,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

bE
e,n

bE
i,n

bH
e,n

bH
i,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.45)

Equivalently, we have second-order convergence if a vector ξn = [(ξE
n )T , (ξH

n )T ]T exists such that ξn = O(Δt2)
for Δt ∼ h, h → 0 and

DξE
n − SξH

n = bE
n ,

ST ξE
n = bH

n ,
(3.46)

where ξE
n =

[
(ξE

e,n)T , (ξE
i,n)T

]T , ξH
n =

[
(ξH

e,n)T , (ξH
i,n)T

]T , bE
n =

[
(bE

e,n)T , (bE
i,n)T

]T , bH
n =

[
(bH

e,n)T , (bH
i,n)T

]T .
Now we will check the existence of a such vector ξn. At this stage of the derivation we must be careful

because the matrix S is not necessarily a square matrix (in 2D this is not the case) and consequently S may
no be invertible. More precisely, if we denote ndof the number of degrees of freedom, and if we consider the
two-dimensional transversal magnetic (TM) model, then the size of the matrix S is ndof × 2ndof . That is why
we now use the notion of pseudo inverse.
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Definition 3.2. Let A ∈ Rm×n, b ∈ Rm, x ∈ Rn and A+ the Moore-Penrose pseudo inverse of A which is a
generalization of the inverse and exists for any m × n matrix. If A has full rank, then

A+ = A−1 (m = n)
A+ = AT (AAT )−1 (m < n),
A+ = (AT A)−1AT (m > n),

(3.47)

and the solution of Ax = b is x = A+b.

Assume the size of the matrix S is m × n with m ≤ n (the case m > n can be treated similarly). With the
second equation of (3.46) and the above definition we derive

ξE
n = (ST )+bH

n . (3.48)

With (2.10) we have
(ST )+ = (SST )−1S ∼ h, for h → 0, (3.49)

and recall that bH
e,n = 0 and bH

i,n = O(Δt) (due to the initial assumption (3.40)) for Δt ∼ h, h → 0. Then we
conclude with (3.48) and (3.49) that for Δt ∼ h, h → 0

ξE
n = O(Δt2). (3.50)

From the first equation of (3.46) we get

ξH
n = −S+(bE

n − DξE
n ), (3.51)

and with (2.10) we get
S+ = ST (SST )−1 ∼ h, for h → 0. (3.52)

Recalling that bE
e,n = O(Δt), bE

i,n = O(Δt) and ξE
n = O(Δt2), we conclude from (3.51) and (3.52) that for

Δt ∼ h, h → 0

if D = 0 (no conduction term − σE) or D = O(hk) with k ≥ −1, then ξH
n = O(Δt2). (3.53)

With (3.50) and (3.53) we conclude that ξn =
[
(ξE

n )T , (ξH
n )T

]T = O(Δt2) for Δt ∼ h, h → 0 and consequently
through the Lemma 3.1 we have the second-order convergence uniformly in h under the assumption (3.40). Note
that if we do not assume (3.40) (i.e. bn = O(1)) a similar proof, based on the same Lemma, only guarantees
the first-order convergence. We can now state the following theorem

Theorem 3.3. Let fH(t), fE(t) ∈ C2[0, T ] and suppose a Lax-Richtmyer stable space-time grid refinement
Δt ∼ h, h → 0. On [0, T ] the approximations Hn

e , Hn
i , En

e and En
i of method (3.8) then converge to Hh

e (t),
Hh

i (t), Eh
e (t) and Eh

i (t)

(i) at least at first order;
(ii) at least at second order, if in addition AT

eiSeH
h(1)
e (t) = O(Δt−1) for h → 0.

To sum up, we can guarantee at least the first-order convergence of method (3.8). As might be feared,
component splitting can be detrimental to the temporal convergence order (order reduction). We have also put
forward a sufficient condition (3.40) on the the true solution of the PDE problem for second-order convergence.
However it would have been better if this sufficient condition could be controlled through the source term,
because in general the true solution is of course not (a priori) known.
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4. Numerical results

In this section we will conduct numerical tests in two dimensions by considering a wave propagation problem
for which an analytical solution is available (see Sect. 4.1). Section 4.2 is devoted to the numerical convergence
analysis of the locally implicit method (3.8). First in the ODE sense (i.e. on a fixed mesh) to illustrate that
the method retains indeed its second-order convergence in time. Then in the PDE sense (i.e. for a simultaneous
stable space-time grid refinement) to illustrate the reduction by one in the temporal convergence order, proved
theoretically in Section 3.4. In the latter case we will also considered the second-order method (3.1) to ensure
that the reduction order is due to component splitting and not to the spatial discretization itself. Finally in
Section 4.3 we will present an overview of the influence of the reduction order on the efficiency of the locally
implicit method, when high order approximation polynomials are used within the DG method. For that purpose
we will also considered the methods (3.1)–(3.8).

4.1. Simulation setting

We solve the two-dimensional (2D) transverse magnetic (TM) model for the components Ez(x, y, t),
Hx(x, y, t) and Hy(x, y, t) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ
∂Hx

∂t
= −∂Ez

∂y
,

μ
∂Hy

∂t
=

∂Ez

∂x
,

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz − Jz

E .

(4.1)

In the following, we set ε = μ = 1 and σ = 0. Equations (4.1) are space discretized using a DG method
formulated on quadrangular and triangular meshes, see Figure 1. In the preliminary implementation of this
DG method, the approximation of the electromagnetic field components within a quadrangle ci or a triangle τi

relies on a nodal Ql or Pl interpolation method, respectively. The a priori convergence analysis for this DGTD
method based on a centered numerical flux and formulated on simplicial meshes shows that the convergence
rate is O(hl) for a l-th interpolation order [10]. A quadrangle ci is characterized by the discretization parameters
(Δxi, Δyi) and a triangle τi by its height hi. The critical step size, denoted Δtc, used in the numerical tests is
given by

Δtc =

⎧⎪⎪⎨
⎪⎪⎩

CFL√
1

Δx2
k

+
1

Δy2
k

, on quadrangular meshes,

CFL × hmin
k , on triangular meshes,

(4.2)

where the parameters (Δxk, Δyk) characterize the smallest quadrangle ck treated explicitly and hmin
k the

smallest height of a triangle τk inside the region treated explicitly. The value of the CFL number corre-
sponds to the numerical stability, i.e. the limit beyond which we observe a growth of the discrete energy.
Finally for the component splitting we choose to treat implicitly the elements inside the red regions (see Fig. 1).

We consider the propagation of an eigenmode in a unitary perfectly electrically conducting (PEC) cavity. In
this problem there is no source term i.e. Jz

E = 0 in (4.1) and the exact solution is given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hx(x, y, t) = −kπ

ω
sin(lπx) cos(kπy) sin(ωt),

Hy(x, y, t) =
lπ

ω
cos(lπx) sin(kπy) sin(ωt),

Ez(x, y, t) = sin(lπx) sin(kπy) cos(ωt),

(4.3)
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Figure 1. Examples of uniform/non-uniform, quadrangular/triangular meshes used in nu-
merical tests.

where the resonance frequencies are given by

ω = π
√

k2 + l2. (4.4)

For numerical tests we put k = l = 1 and we initialize the electromagnetic field with the exact analytical solution
at t = 0 i.e. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Hx(x, y, t = 0) = 0,

Hy(x, y, t = 0) = 0,

Ez(x, y, t = 0) = sin(πx) sin(πy).

(4.5)
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Figure 2. Temporal convergence (in the ODE sense) of the method (3.8) based on DGTD-Q2

method.

For the boundary conditions, we consider a PEC cavity such that the tangential component of the electric field
vanishes on the boundaries

n × Ez = 0 on ∂Ω, (4.6)

where the domain Ω = [0, 1]2 (the unitary PEC cavity) and n denotes the unit outward normal to ∂Ω.

4.2. Numerical convergence analysis

Throughout this subsection the total simulation time T is set to T = 3.34×10−9 s, and we use the DGTD-Q2

and DGTD-P2 methods so that the spatial error is not detrimental to the temporal convergence orders. For our
integration method and the chosen spatial DG scheme the numerical CFL number, used in (4.2), is equal to
0.24 and 0.20 for DGTD-Q2 and DGTD-P2 methods, respectively.

4.2.1. Convergence in the ODE sense

To estimate the temporal convergence in the ODE sense we fix the discretization in space and we measure
the electromagnetic field for different time steps (denotes by WΔt) at the final time T . We plot the sup-norm of
WΔt/n(T ) – WΔt/2n(T ) as a function of Δt/n, in logarithmic scale. The use of the logarithmic scale allows to
visualize the convergence rates as the slopes of the curves with ◦-marker and �–marker for uniform and non-
uniform meshes, respectively. The dashed line has slope two for second-order convergence. The results given in
Figure 2 and Table 1 clearly confirm the expected behavior i.e. the second-order convergence of the method (3.8)
for Δt → 0 on a fixed space grid.
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Table 1. Temporal convergence (in the ODE sense), on uniform and non-uniform quadrangular
meshes, of the method (3.8) based on the DGTD-Q2 method.

n Δt/n → Δt/2n ‖ WΔt/n(T ) − WΔt/2n(T ) ‖∞
Uniform Non-uniform

1 0.0169 → 0.0085 8.5000e-3 2.0000e-3
2 0.0085 → 0.0042 1.9000e-3 6.8912e-4
4 0.0042 → 0.0021 4.8669e-4 1.5110e-4
8 0.0021 → 0.0011 1.2186e-4 3.6888e-5
Conv. rate 2.0249 1.9394

4.2.2. Convergence in the PDE sense

First we conducted numerical investigations to check whether the condition (3.40) is satisfied. The following
results have been obtained for Δt ∼ h, h → 0

AT
eiSeH

h(1)
e =

{O(Δt−1.3), for uniform meshes,

O(Δt−1.2), for non-uniform meshes.
(4.7)

Consequently the condition (3.40) is not satisfied and we expect to observe a reduction PDE order by one.
The possible loss in accuracy could originate from the spatial discretization itself, regardless of compo-

nent splitting. To eliminate this latter possibility we also repeat the numerical tests using the fully explicit
method (3.1). Furthermore in [2] the authors have proven that DG methods on conformal tetrahedral/triangular
meshes are spurious-free when the approximation spaces are made of elementwise polynomials of degree l in each
variable or local Nédélec elements of the first type of degree l [21]. They also remarked that this remains true for
the local Nédélec elements of the first type of degree l on conformal hexahedral/quadrilateral meshes but not
for elementwise polynomials of degree l in each variable or local Nédélec elements of the second type of degree
l [22]. In the latter case spurious modes can appear. Similarly the methods (3.8)–(3.1) with a DG-Q2 spatial
discretization on quadrangular meshes can produce spurious modes. Therefore, we have also conducted numer-
ical tests on triangular meshes (see Fig. 1) with a DG-P2 spatial approximation to ensure that the reduction of
convergence is not due to the emergence of spurious modes, but indeed to component splitting.

To estimate the temporal convergence in the PDE sense we measure the maximal L2-norm of the error for
different meshes of increased resolution. We plot this error as a function of the square root of the number of
degrees of freedom (DOF), in logarithmic scale. The obtained results, given in Figure 3 and Table 2, clearly
confirm the theoretical behavior i.e. the first-order convergence of the method (3.8) and the second-order of (3.1),
for Δt ∼ h, h → 0; except for (3.1) on non-uniform quadrangular meshes where we observe a super-convergence
phenomenon (about 2.8 instead of 2.0).

4.3. High order approximation within the DG method

An attractive feature of the DG approach is the ability to easily increase the spatial convergence order. The
reduction by one of the PDE order for the locally implicit method (3.8) raises the question of the efficiency of
the method when high order approximation polynomials are used within the DG method. We have conducted a
numerical investigation for the propagation of an eigenmode in a unitary PEC cavity (4.3). The total simulation
time T is set to T = 5 × 10−8 s which corresponds to a propagation of the initial wave over 10 wavelengths.
Note that the simulation time was chosen large enough in order that if we observe the evolution of the L2-norm
error during time, the oscillations and the growth of the latter become very small from a time less than the final
time. We plot the maximal L2-norm error as a function of the mesh spacing h and the total number of DOF
for the DGTD-P1,2,3,4 methods on uniform triangular meshes. The critical time step Δtc is determined by (4.2)
where the numerical CFL number is given in Table 3.
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Figure 3. Temporal convergence (in the PDE sense), on uniform and non-uniform meshes, of
methods (3.8) and (3.1) based on DGTD-Q2 (on left) and DGTD-P2 (on right) methods.

Table 2. Temporal convergence (in the PDE sense), on uniform and non-uniform quadrangu-
lar/triangular meshes (top/bottom), of methods (3.8) and (3.1) based on DGTD-P2 method.

# DOF Max. error in L2-norm # DOF Max. error in L2-norm

(unif. quadrangular Locally implicit Fully explicit (non-unif. quadrangular Locally implicit Fully explicit

meshes) method (3.8) method (3.1) meshes) method (3.8) method (3.1)

900 1.2000e-3 5.7020e-4 900 1.1000e-3 5.7274e-4

3600 5.4236e-4 1.3695e-4 3600 5.2066e-4 8.3295e-5

8100 3.5759e-4 6.0818e-5 8100 3.3373e-4 2.5979e-5

14 400 2.7164e-4 3.4116e-5 14 400 2.3845e-4 1.1239e-5

Conv. rate 1.0762 2.0315 1.0991 2.8329

# DOF Max. error in L2-norm # DOF Max. error in L2-norm

(unif. triangular Locally implicit Fully explicit (non-unif. triangular Locally implicit Fully explicit

meshes) method (3.8) method (3.1) meshes) method (3.8) method (3.1)

1200 2.3990e-3 2.1098e-3 3840 5.9380e-4 5.2875e-4

4800 9.6905e-4 5.4487e-4 8640 3.2121e-4 2.3662e-4

10 800 6.7305e-4 2.4522e-4 15 360 2.2685e-4 1.3354e-4

19 200 5.4399e-4 1.3502e-4 24 000 1.8200e-4 8.5705e-5

Conv. rate 1.0817 1.9775 1.2988 1.9859

Table 3. Numerical value of the CFL number in (4.2), for triangular meshes.

Method DGTD-P4 DGTD-P3 DGTD-P2 DGTD-P1

Numerical CFL 0.09 0.13 0.20 0.30
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Table 4. Rate of decrease of the error relatively to the polynomial degree, for methods (3.8)–
(3.1), for a fixed number of DOF to 10 000

(
errorL2(Pl) = [1 − r(Pk, Pl)] × errorL2(Pk)

)
.

r(Pk, Pl) |errorL2(Pk) − errorL2(Pl)| / |errorL2(Pk)|
Method (3.8) Method (3.1)

r(P2, P3) 0.14 0.34
r(P2, P4) 0.28 0.52
r(P3, P4) 0.17 0.28

Table 5. Rate of decrease of the error relatively to the polynomial degree, for meth-
ods (3.8)–(3.1), for a fixed error tolerance to 10−3

(
DOF (Pl) = [1 − r(Pk, Pl)] × DOF (Pk)

)
.

r(Pk, Pl) |DOF (Pk) − DOF (Pl)| / |DOF (Pk)|
Method (3.8) Method (3.1)

r(P2, P3) 0.11 0.34
r(P2, P4) 0.33 0.52
r(P3, P4) 0.26 0.28

We observe in Figure 4 that for a given error the locally implicit method needs a finer grid or significantly more
DOF compared to the fully explicit case. In other words the method (3.8) needs more points per wavelength.
We have also indicated in Tables 4, 5 the rates of decrease of the error relatively to the polynomial degree for
both methods, for a given error tolerance (L2-norm error = 10−3) or a given total number of DOF (=10 000).
As expected these rates are lower for (3.8) than for (3.1).

Because of its first order temporal convergence, an high order spatial discretization is less advantageous
for method (3.8) than for the fully explicit method (3.1) which retains its second-order PDE convergence.
Nevertheless increasing the polynomial order remains relatively useful for improving the accuracy as shown in
Figure 4 and Tables 4, 5. Furthermore, as previously mentioned in the introduction, another attractive feature
of th DG approach is to handle geometrical details by using locally refined space grids. Consequently we can
expect that the higher cost of the locally implicit method compared to the fully explicit method (in the sense
of number of ppw for a given error) can be partly compensated because the unduly large step size restriction
of (3.1) is overcome when a local refinement is necessary for a practical time dependent problem.

5. Conclusion and future work

In this paper, we have shown that component splitting can be detrimental to the temporal convergence
uniformaly in h of a locally implicit DG method. We have presented a sufficient condition (see (3.40)) on the
true PDE solution to recover the second-order convergence. Thus in the general case we can only guarantee
first-order convergence. Numerical investigations have been conducted to illustrate this last theoretical result
in 2D by considering a wave propagation problem for which an analytical solution is available. Note that the
aim of these tests was not to illustrate the computational efficiency of the locally implicit DG method (for that
purpose see [7]) but the temporal convergence order of the method (3.8) in the ODE and PDE senses (i.e. for
Δt → 0 on a fixed space grid and Δt ∼ h, h → 0, respectively).

In this paper we have mentioned another component splitting method from [27] which cover the common
spatial discretizations like finite difference and various finite element discretizations. We plan to compare the
latter with the implicit-explicit integration method from [7,23] for a DG discretization on unstructured meshes.
The objective will be to illustrate the practical virtue of both component splitting methods using locally refined
space grids, and to highlight the most efficient one which then can be advocated for future use.
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Figure 4. Maximal L2-norm error as function of the mesh spacing h and the total number
of DOF (left – right) for methods (3.8)–(3.1) (top – bottom) based on DGTD-P1,2,3,4 spatial
discretization.

In Section 4.3 we have seen that the reduction by one in the PDE convergence order for the method (3.8) does
not allow to fully exploit the gain in accuracy and efficiency that one can expect when the interpolation order is
increased. Thus a future objective is to examine higher order implicit-explicit methods. Several strategies based
on one of the schemes from [23, 27] can be envisaged. One possibility is to exploit composition methods [13],
known to be accurate with well-designed composition coefficients [19, 25, 32] to minimize truncation errors.
Note that these composition methods with orders beyond two are restricted to problems with small (non-stiff)
dissipative terms [1]. Furthermore in the presence of source functions, the convergence order may be lower
than the chosen composition order [28]. In the latter reference the author used the scheme (3.1) as the basis
method in composition and a source function perturbation to solve Maxwell’s equations. With this perturbed
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scheme the author obtained at least a third-order scheme, and a fourth-order one with additional sufficient
conditions. Another possibility is to rely on local or global Richardson extrapolations [1, 9, 12, 18, 30] which
are easy to implement and straightforward to parallelize. These high order extensions are well-known in the
numerical solution of ODEs and have been already considered with (3.1) as the basis methods to solve damped
Maxwell equations [1]. With Dirichlet boundary conditions the authors of [1] observed that the global approach
does not suffer from order reduction; this is not the case of composition methods and local extrapolations.
However when the reduction order is inevitable, they advocate the local approach that allows to eliminate error
terms instantaneously. The fact that these different methods, with an implicit-explicit approach, retain their
ODE convergence order for simultaneous space-time grid refinement towards the true PDE solution is doubtful.
Moreover, due to their accuracy, a comparison with high order local time stepping approaches, as in [11, 26],
will certainly be very interesting.
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