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COMPUTATION OF THE DRAG FORCE ON A SPHERE CLOSE TO A WALL

THE ROUGHNESS ISSUE
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Abstract. We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various
models for the roughness are considered, and a unified methodology is given to derive the corresponding
asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various
expressions that can be found in previous studies.
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1. Introduction

The dynamics of solid particles in a viscous fluid is crucial to many phenomena, such as blood flow, sedimenta-
tion or filtration. The drag force exerted by the fluid on the solids plays of course a central role in this dynamics.
It has been the matter of many theoretical studies, and has motivated recently several numerical works (see [19]
for a review). The first studies focused on the dynamics of a rigid sphere near a plane wall, that moves in a
Stokes flow under no-slip conditions: we refer to the pioneering works [5,7,21,22]. The main conclusion of these
works is that the drag force is inversely proportional to the distance h = h(t) between the sphere and the plane
at time t. The reduced ordinary differential equation that governs the movement of the sphere is then of the
type: ḧ+ ḣ/h = f , which prevents collision between the sphere and the wall in finite time. We quote that this
striking conclusion holds for any value of the fluid viscosity and of the sphere density. Moreover, it is still valid
for arbitrary solids with smooth surfaces, and it is still valid within an unsteady Navier-Stokes flow (see [12]).

This theoretical no-collision result, which goes against Archimedes’ principle, is clearly unrealistic at the scale
of macroscopic solids. Even at microscopic scales, “dry collisions” have been clearly recognized. Therefore, many
articles have tried to identify the flaw of the previous modelling, in order to circumvent the paradox. Among
possible flaws that have been suggested one can mention:

• the rigidity assumption. Elasticity, even weak could allow for solid contact: see [9];
• the no-slip condition, that is no longer valid when the distance between the solids is of the order of the mean

free path of the fluid particles: see [13];
• the incompressibility assumption: see [2].
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Figure 1. General notations.

We shall focus here on another very popular explanation for the no-collision paradox: roughness. The basic idea
is that nothing is as smooth as a plane or a sphere: irregularity of the surface can thus affect the fluid-solid
interaction. This credo has led to many experimental and theoretical studies, focusing on roughness-induced
effects on drag forces ([8, 18, 23]). Such studies will be discussed in the core of the paper.

We quote that the interest in roughness issues has been renewed these last years, notably in connection to
microfluidics. Indeed, it has been recognized that the classical no-slip boundary condition, which is relevant
at the macroscopic scale, may fail at the micro- or nanoscale. This happens for instance for some corrugated
hydrophobic surfaces, which trap gas bubbles in their humps and generate in this way substantial slip. More
generally, to determine the appropriate boundary condition at a rough surface is a matter of current debate. In
this context, if one has theoretical formulas that express how the drag force depends on the “rough” boundary
conditions, one may check experimentally through the force measurement what the right boundary condition
is. This interesting point of view is for instance developed in [16, 24].

The aim of this paper is to investigate mathematically and in a unified way the relation between the roughness
and the drag force. Namely, we study the evolution with time t of a rough solid S(t), falling towards a rough wall
P in a Stokes flow. We assume for simplicity that the solid moves by translating along the vertical axis r = 0,
where (r, θ, z) are cylindrical coordinates. We shall comment on this simplification later on. Various models for
the roughness are to be considered. In all models, the moving solid is described at time t by S(t) = h(t) +S for
a fixed S. We assume that S has its lower tip at r = 0, and that in the vicinity of its lower tip, its surface is
described by:

z = γS(r), r ≤ r0, θ ∈ (0, 2π)

for some r0 ≤ 1 and some Lipschitz function γS with γS(0) = 0, γS ≥ 0. Notice that the solid velocity is given
by ḣ(t) ez. Similarly, the wall P is described in cartesian coordinates (x, y, z), by

z = γP (x, y), (x, y) ∈ R
2,

for some Lipschitz function γP , with γP (0, 0) = 0, γP ≤ 0. Accordingly, we denote the fluid domain

F (t) :=
{
x = (x, y, z), x �∈ S(t), z > γP (x, y)

}
.

All these notations are summarized in Figure 1.
If u = u(t, x) = (ux(t, x), uy(t, x), uz(t, x)) and p = p(t, x) stand for the fluid velocity and pressure, the steady

Stokes equations read
−Δu+ ∇p = 0, div u = 0, t > 0, x ∈ F (t). (1.1)



COMPUTATION OF THE DRAG FORCE ON A SPHERE CLOSE TO A WALL 1203

We neglect gravity, as it plays no role in the discussion. Our goal is to study the force on the sphere, that is

Fd(t) :=
∫

∂S(t)

(2D(u)n− pn) dσ · ez. (1.2)

The notations n and D(u) refer to the normal vector pointing outside the fluid domain and the symmetric part
of the gradient respectively.

In order to determine Fd(t), one needs to specify the boundary conditions at the solid surface and at the
plane. In all our models of roughness, such conditions have the following general form:(

u− ḣ(t) ez

) · n|∂S(t) = 0,
(
u− ḣ(t) ez

)× n|∂S(t) = −2βS [D(u)n] × n|∂S(t) (1.3)

and
u · n|P = 0, u× n|P = −2βP [D(u)n] × n|P (1.4)

where βS , βP ∈ [0,+∞). These are boundary conditions of Navier type, the constants βP and βS being the slip
lengths. Of special importance is the case βS = βP = 0, which corresponds to the no-slip condition.

We model the roughness in three different ways (pictured in Fig. 2):

1. through a lack of differentiability. Namely, we consider a solid S which is axisymmetric around {r = 0}, and
satisfies

γS(r) := 1 −
√

1 − r2 + εr1+α, α ∈ [0, 1), r ≤ r0.

This means that the solid surface is locally a smooth sphere z = 1 − √
1 − r2, perturbed by a less regular

“rough profile” of amplitude ε. For α = 0, this profile is a spike, which has Lipschitz regularity. For α > 0,
the profile is differentiable, with a Hölder derivative. For simplicity, we do not consider any roughness on
the wall, and take the classical no-slip boundary conditions: γP = 0, βP = βS = 0;

2. through a slip condition. We consider the case of a ball S, of radius 1, falling vertically above a plane wall,
with positive slip coefficients:

γS(r) = 1 −
√

1 − r2, γP = 0, βS , βP > 0.

Let us stress that such modelling of the roughness by the addition of (small) slip is commonly used. It
is well-accepted in the context of rough hydrophobic surfaces [4], and a topic of debate in the context of
hydrophilic ones cf. [16, 24];

3. through a small parameter. Namely, the roughness is modelled through a small amplitude, high frequency
perturbation of a plane wall. That means P is described by the equation

z = γP (x, y) := εγ(x/ε, y/ε), ε	 1

for some periodic and smooth non-positive function γ(X,Y ), with γ(0, 0) = 0. In parallel, we assume that
there is no roughness on the solid surface (γS(r) = 1 − √

1 − r2), and impose classical no-slip conditions:
βS = βP = 0. Up to mathematical technicalities,variants of this model could be considered: for instance,
one could assume the same type of roughness for the sphere as for the plane.

Note that if we take the parameters ε, βS and βP to be zero in the previous models, we are back to the
classical situation of a curved and smooth solid falling towards a plane wall. The whole point is to derive the
next order terms that are involved in the expression of Fd. Note also that, in view of our models, the assumption
that the solid translates along r = 0 is natural. For the first two models, the whole geometry is axisymmetric.
For the third model, one can consider rough walls P ε that are symmetric with respect to x and y. In all these
configurations, if the initial velocity field of the solid is along r = 0, both the geometry and the Stokes flow
inherit strong symmetry properties, forcing the velocity field of the solid to be along r = 0 for all time. This
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Figure 2. Schematic pictures of our three roughness models.

turns to be very convenient for our mathematical analysis. Nevertheless, it could be much weakened, as will be
discussed in the conclusion of the paper.

The ambition of this paper is to provide a rigorous and general methodology to derive the drag term Fd, in
the regime of small distance h between the solid and the wall. This methodology, which relies on the calculus of
variations, will be explained in Section 2. Then, in Section 3, it will be applied to our first two models of rough
surfaces. In this way, we will extend results from former formal computations, notably those in [13, 18]. In the
last Section 4, we will turn to the third model of a small amplitude and high frequency boundary. This model is
of particular interest, as it is connected to the phenomenon of apparent slip, which is a topic of current interest
in fluid mechanics, see [17]. We will notably discuss the introduction of an effective slip length as a modelling
for hydrophilic rough surfaces.

2. Methodology for drag derivation

We present in this section a general approach to the derivation of the drag force Fd(t) on the solid sphere
S(t). We first remark that the geometric configuration at time t is entirely characterized by the distance h(t)
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between the lower tip of the solid and the origin x = 0. Thus, we can rewrite S(t) = Sh(t), F (t) = Fh(t), with
the family (Sh, Fh)h satisfying

Sh = h+ S, Fh =
{
x, x �∈ Sh, z > γP (x, y)

}
.

Moreover, considering the linear Stokes equation (1.1) and boundary conditions (1.3)–(1.4), we can write
u(t, x) = ḣ(t)uh(t)(x) and p(t, x) = ḣ(t)ph(t)(x) where uh, ph satisfy the steady problem

−Δuh + ∇ph = 0, div uh = 0, x ∈ Fh (2.1)

together with the boundary conditions

(
uh − ez

) · n|∂Sh
= 0,

(
uh − ez

)× n|∂Sh
= −2βS [D(uh)n] × n|∂Sh

(2.2)

and
uh · n|P = 0, uh × n|P = −2βP [D(uh)n] × n|∂P . (2.3)

Accordingly, we can write

Fd(t) = ḣ(t)Fh(t), Fh :=
∫

∂Sh

(2D(uh)n− phn) dσ · ez.

The problem is to determine the behaviour of Fh in the limit h → 0. Our method to address this problem has
three main steps:

1. In a first step, we express the drag Fh as the minimum of some energy functional. One can do it using
the variational interpretation of (2.1)–(2.3). It allows to identify for all our models of roughness an energy
functional Eh and a set of “admissible fields” Ah such that

Fh = min
u∈Ah

Eh(u).

The explicit definitions of Eh and Ah will be given at the end of this section;
2. in a second step, we rely on the minimization problem introduced in step 1 to find an accurate lower bound for

Fh. Namely, we choose some appropriate energy functional Ẽh ≤ Eh and some appropriate set of admissible
fields Ãh ⊃ Ah for which we can compute explicitly the minimimum and corresponding minimizer ũ. In this
way, we get

Ẽh(ũ) = min
u∈Ãh

Ẽh(u) ≤ min
u∈Ah

Eh(u) = Fh

which yields a lower bound. Of course, the relaxed functional Ẽh and admissible set Ãh must remain close
enough to the original ones, in order for this lower bound to be accurate. We will make them explicit for
our various roughness models later on;

3. in a third step, we choose some appropriate field ǔ ∈ Ah so that

Fh = min
u∈Ah

Eh(u) ≤ Eh(ǔ)

provides an accurate upper bound for the drag (that is with the same type of behaviour as the lower one).
In many cases, as will be seen later on, the minimizer ũ ∈ Ãh of the second step generally belongs to the
original set of admissible fields Ah, or at least can be slightly modified to belong to Ah. Thus, one can take
in general ǔ ≈ ũ.
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Our goal in the present paper is to apply this methodology to have a better understanding of roughness
effects. In this section, we carry out step 1, that is the formulation of the drag in terms of some minimization
problem. This step is very general, and independent of the roughness issue. In the next sections, when turning
to steps 2 and 3, each roughness model will of course require specific calculations.

To link the drag to an extremum problem, we must distinguish between the case of no slip (βS = βP = 0)
and the case of non-zero slip (βS > 0, βP > 0).

• In the case of no-slip, the divergence free-condition implies∫
Fh

|∇uh|2 = 2
∫

Fh

|D(uh)|2.

Hence, multiplying the Stokes equation (2.1) by uh and integrating over the fluid domain Fh, we obtain
by Stokes formula

2
∫

Fh

|D(uh)|2 =
∫

∂Sh∪P

(2D(uh)n− phn) · uh dσ =
∫

∂Sh

(2D(uh)n− phn) dσ · ez = Fh.

Moreover, we know that equation (2.1) (together with the boundary conditions (2.2)–(2.3)) is the Euler
equation of a minimization problem. Namely,∫

Fh

|∇uh|2 = min
{∫

Fh

|∇u|2, u ∈ H1
loc(Fh), ∇ · u = 0, u|P = 0, u|Sh

= ez

}
.

(We remind that the Sobolev space H1
loc is the space of fields u that are locally square integrable, with

distributional derivative ∇u also locally square integrable)3.
Indeed, if u has the properties mentioned above, then u − uh is zero along the boundary ∂Sh ∪ P . So,

multiplying (1.1) by u− uh and integrating by parts, we end up with∫
Fh

|∇uh|2 =
∫

Fh

∇uh :∇u ≤
(∫

Fh

|∇uh|2
)1/2 (∫

Fh

|∇u|2
)1/2

,

using the Cauchy-Schwarz inequality. The characterization of uh follows, and eventually yields that Fh =
minu∈Ah

Eh(u), with

Eh(u) :=
∫

Fh

|∇u|2, Ah :=
{
u ∈ H1

loc(Fh), ∇ · u = 0, u|P = 0, u|∂Sh
= ez

}
. (2.4)

• In the case of positive slip lengths βS , βP , the minimization problem and the computation that leads to it
are slightly different. In particular, the set of admissible fields will be this time

Ah :=
{
u ∈ H1

loc(Fh), ∇ · u = 0, u · n|P = 0, (u − ez) · n|∂Sh
= 0
}
.

Let w be some divergence-free vector field tangent to the boundary: w · n = 0 at ∂Sh ∪ P. Multiplying the
Stokes equation for uh by w, we obtain after integrating by parts:∫

Fh

2D(uh) : D(w) +
1
βS

∫
∂Sh

((uh − ez) × n) · (w × n) dσ +
1
βP

∫
P

(uh × n) · (w × n) dσ = 0. (2.5)

In order to recover full gradients instead of symmetric gradients, we proceed as follows. First, we remind the
following identity of differential geometry (see for instance [6], Lem. 1, p. 233):

D(w̃)n× n =
1
2
∂nw̃ × n+

1
2
w̃ × n at ∂Sh (2.6)

3 As no abstract theory is needed in the remainder of the article, such mathematical details can be skipped without harm.
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for any smooth w̃ satisfying w̃ ·n = 0 at ∂Sh. The last term at the r.h.s is connected to the curvature of ∂S,
which is simply 1 by our choice of S. Similarly,

D(w̃)n× n =
1
2
∂nw̃ × n at P (2.7)

for any smooth w̃ satisfying w̃ · n = 0 at P . Let now v be some smooth field in Ah. Writing

Δv = div (∇v), respectively Δv = 2div (D(v)),

and testing against some smooth w satisfying w · n = 0 at ∂Sh ∪ P , we obtain∫
Fh

Δv · w = −
∫

Fh

∇v : ∇w +
∫

∂Sh

(∂nv × n) · (w × n) +
∫

P

(∂nv × n) · (w × n),

= −
∫

Fh

∇v : ∇w +
∫

∂Sh

(∂n(v − ez) × n) · (w × n) +
∫

P

(∂nv × n) · (w × n),

respectively∫
Fh

Δv · w = −
∫

Fh

2D(v) : D(w) +
∫

∂Sh

(2D(v − ez)n× n) · (w × n) +
∫

P

(2D(v)n× n) · (w × n).

Combining the last two identities, we get∫
Fh

2D(v) : D(w) =
∫

Fh

∇v : ∇w +
∫

∂Sh

(2D(v − ez)n× n) · (w × n) +
∫

P

(2D(v)n× n) · (w × n)

−
∫

∂Sh

(∂n(v − ez) × n) · (w × n) −
∫

P

(∂nv × n) · (w × n).

Applying (2.6) (with w̃ = v − ez) and (2.7) (with w̃ = v) leads to∫
Fh

2D(v) : D(w) =
∫

Fh

∇v : ∇w +
∫

∂Sh

((v − ez) × n) · (w × n).

We take v = uh and combine the last equality with (2.5). We obtain∫
Fh

∇uh : ∇w +
(

1
βS

+ 1
)∫

∂Sh

((uh − ez) × n) · (w × n) +
1
βP

∫
P

(uh × n) · (w × n) = 0.

Eventually, we take w = uh − u with u ∈ Ah, and substitute into the last equality to obtain

∫
Fh

|∇uh|2 +
(

1
βS

+ 1
)∫

∂Sh

|(uh − ez) × n|2 dσ +
1
βP

∫
P

|uh × n|2 dσ =
∫

Fh

∇uh : ∇u

+
(

1
βS

+ 1
)∫

∂Sh

((uh − ez) × n) · ((u− ez) × n) dσ +
1
βP

∫
P

(uh × n) · (u× n)dσ.

Use of the Cauchy-Schwarz inequality and of the Young inequality
√
ab ≤ 1

2 (a+ b) leaves us with

∫
Fh

|∇uh|2 +
(

1
βS

+ 1
)∫

∂Sh

|(uh − ez) × n|2 dσ +
1
βP

∫
P

|uh × n|2 dσ

≤
∫

Fh

|∇u|2 +
(

1
βS

+ 1
)∫

∂Sh

|(u− ez) × n|2 dσ +
1
βP

∫
P

|u× n|2 dσ.
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Thus, we have this time that Fh = minu∈Ah
Eh(u), with

Eh(u) :=
∫

Fh

|∇u|2 +
(

1
βS

+ 1
)∫

∂Sh

|(u − ez) × n|2 +
1
βP

∫
P

|u× n|2,

Ah :=
{
u ∈ H1

loc(Fh), ∇ · u = 0, u · n|P = 0, (u− ez) · n|∂Sh
= 0
}
.

(2.8)

We note that contrary to the no-slip case, only the impermeability condition is included in the definition of the
space Ah. It can be shown that the Euler equation for the latter minimizing problem includes the boundary
conditions (2.2)–(2.3) on the tangential part of the velocity-field by standard integration by parts as in the no-
slip case. For brevity, we shall replace the coefficient 1/βS +1 by 1/βS in what follows. This means that we shall
include curvature effects in the slip coefficient. The characterization of the drag through energy functionals (2.4)
and (2.8) will be applied to our first two roughness models in the next section.

3. Application to various roughness models

In this section, we detail the steps 2 and 3 of our methodology, both in the case of a non-smooth boundary
(model 1) and in the case of slip boundary conditions (model 2).

3.1. The case of non-smooth solids

As emphasized in the introduction, we consider here the case of an axisymmetric solid S, whose boundary is
described near its lower tip by

γS(r) = 1 −
√

1 − r2 + εr1+α, α ∈ [0, 1], r ≤ r0.

The wall is flat, and no slip conditions are imposed at all boundaries. The drag is given by

Fh = min
u∈Ah

Eh(u),

with the energy Eh and the set of admissible fields Ah given in (2.4).
As the fluid domain Fh is invariant by rotations around ez, much can be said about the minimizer u = uh.

Indeed, for any rotation Rθ around ez, RθuhR−θ still belongs to Ah, and has the same energy as uh. Uniqueness
of this minimizer yields

Rθ uh(R−θx) = uh(x), ∀ x ∈ Fh. (3.1)

This means that uh has the following structure:

uh = uh,r(r, z)er + uh,θ(r, z)eθ + uh,z(r, z)ez,

where (r, θ, z), resp. (er, eθ, ez) are the cylindrical coordinates, resp. the cylindrical vector basis. One then
remarks that vh = uh,r(r, z)er + uh,z(r, z)ez still belongs to Ah, with Eh(vh) ≤ Eh(uh). Again, by uniqueness
of the minimizer, we get uh = vh and uh,θ = 0. Thus, the divergence free condition resumes to

1
r
∂r(ruh,r) + ∂zuh,z = 0.

Together with the boundary condition uh,z(r, 0) = 0, it leads to

uh = −∂zφ er +
1
r
∂r(rφ) ez , (3.2)

with streamfunction φ(r, z) := − ∫ z

0
uh,r(r, z′) dz′. The boundary conditions on φ are

∂zφ|∂S = ∂zφ|P = 0, ∂r(rφ)|∂S = r, φ|P = 0. (3.3)
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Thus, we can without restriction include these last conditions in the set of admissible fields: instead of the
original definition in (2.8), we take

Ah :=
{
u ∈ H1

loc(Fh), u = −∂zφ er +
1
r
∂r(rφ) ez for some φ satisfying (3.3)

}
.

We quote that the boundary conditions on φ at ∂S yield

∂zφ(r, h+ γS(r)) = 0, ∂r(rφ)(r, h + γS(r)) = r, r < r0.

They imply in turn that φ(r, h + γS(r)) = r
2 + c

r for some constant c. As φ(r, z) = − ∫ z

0
ur(r, z′) dz′ is regular

enough near r = 0, we deduce c = 0. Eventually

∂zφ(r, h+ γS(r)) = 0, φ(r, h+ γS(r)) =
r

2
, r < r0,

∂zφ(r, 0) = 0, φ(r, 0) = 0, r < r0.
(3.4)

From there, we obtain an accurate lower bound as follows. Noticing that

|∇u|2 = |∂rzφ|2 + |∂zφ/r|2 + |∂zzφ|2 + |∂r[∂r(rφ)/r]|2 + |∂rz(rφ)/r|2 .

we anticipate that in the limit of small h, most of the energy Eh will come from a neighborhood of the lower tip
of the sphere

F 0
h := {r < r0, 0 < z < h+ γS(r)}, (3.5)

and will be due to the z derivatives of the stream function φ. Accordingly, we introduce the following relaxed
minimizing set and energy functional:

Ãh :=
{
u ∈ H1(F 0

h ), u = −∂zφer +
1
r
∂r(rφ)ez for some φ satisfying (3.4)

}
,

Ẽh :=
∫

F 0
h

|∂zur|2 =
∫

F 0
h

|∂2
zφ|2.

(3.6)

From the Euler equation ∂4
zφ = 0 and the boundary conditions (3.4), it follows easily that the latter minimum

is realized with

φ̃h(r, z) =
r

2
Φ

(
z

h+ γS(r)

)
, where Φ(t) = t2(3 − 2t), ∀ t ∈ [0, 1]

and has for value:

F̃h = 6π
∫ r0

0

r3dr
(h+ γS(r))3

· (3.7)

We emphasize that this formula is general for no-slip boundary conditions. It does not require any special
assumption on the solid surface. In the case γS(r) = 1 −√

1 − r2 + εr1+α, our lower bound satisfies

F̃h = 6π
∫ r0

0

r3dr
(h+ r2

2 + ε r1+α +O(r4))3

=
6π
h

I
(
εh

α−1
2

)
+ O(J (εh

α−1
2 , h)) +O(1)

where

I (β) :=
∫ ∞

0

s3ds
(1 + s2

2 + βs1+α)3
, J (β, h) :=

∫ r0/
√

h

0

s7ds
(1 + s2

2 + βs1+α)4
· (3.8)
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The computation of the asymptotic behaviours of I and J is detailed in Appendix A. It yields the following
results:

• when β 	 1, we obtain:

I (β) =
1

1 + λαβ
+O(β2), J (β, h) = O(| ln(h)|) (3.9)

with an explicit constant λα given in the appendix;
• when β � 1, we have:

I (β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μαβ
− 4

1+α +O
(

1
β3

)
, for α > 1

3 ,

9
4

ln(β)
β3 +O

(
1

β3

)
, for α = 1

3 ,

μαβ
− 2

1−α +O
(

1
β3

)
, for α < 1

3 ,

(3.10)

where the value of μα is also provided in the appendix. As regards the remainder, we have the following
bound:

J (β, h) = O

(∣∣∣∣∣ ln(β) +
1 − α

2
ln(h)

∣∣∣∣∣
)
.

Back to the drag force, (3.9) and (3.10) yield the following lower bound: for β = εh
α−1

2 	 1

F̃h =
6π

h+ λαεh
α+1

2

(1 +O (β)) + O(| ln(h)|) (3.11)

and for β = εh
α−1

2 � 1

F̃h =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

6πμα

ε
4

1+α h
3α−1
α+1

(
1 + β

1−3α
1+α

)
+O(| ln(h)|), for α > 1

3 ,

9π| ln(h)|
2 ε3 +O

(
| ln(ε)|

ε3

)
, for α = 1

3 ,

6πμα

ε
2

1−α

(
1 + β

3α−1
1+α

)
+O(| ln(ε)|), for α < 1

3 ·

(3.12)

Note that the expression given in the case α < 1/3 only matters when ε 	 1 (otherwise, one can just retain
that F̃h = O(1)).

This concludes our study of a lower bound for the drag. Such bound is accurate, as we can with minor
modifications obtain a similar upper bound. Indeed, for h small enough, it is possible to construct a regular
stream function φ̌h = φ̌h(r, z) defined on Fh, equalling φ̃h say on F 0

h ∩ {r < r0/2}, such that

ǔh = ∇× (φ̌heθ) ∈ Ah, (3.13)

and such that ∫
Fh

|∂2
z φ̌h|2 =

∫
F 0

h

|∂2
z φ̃h|2 + O(1), uniformly in h and ε. (3.14)

The construction of such φ̌h follows closely the one in article [11], Section 4.1, performed in the 2d case. The
idea is to introduce

• a truncation function χ = χ(r, z) that satisfies

χ = 1 for 0 ≤ r ≤ r0
2
, 0 ≤ z ≤ r0

2
, χ = 0 for r > r0, z > r0;
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• a regular fonction ψ which satisfies

ψ =
r

2
in a small neighborhood of S,

ψ = 0 in a small neighborhood of P ∩
{
r ≥ r0

2

}
·

Then, the function φ̌h, which equals 1 on Sh and is given by

φ̌h(r, z) = (1 − χ(r, z))ψ(r, z − h) + χ(r, z) φ̃h(r, z) in Fh

satisfies all requirements (still for h small enough). We quote that the remainder term in (3.14) is uniformly
bounded, because no singularity is created outside of the contact zone (that is outside a vicinity of r = 0).
Eventually, we have:

Fh ≤ Eh(ǔh)

= F̃h +
∫

Fh

[
|∂rzφ̌h|2 + |∂zφ̌h/r|2 + |∂r[∂r(rφ̌h)/r]|2 + |∂rz(rφ̌h)/r|2

]
+ O(1)

= F̃h +
∫

F 0
h

[
|∂rzφ̃h|2 + |∂zφ̃h/r|2 + |∂r[∂r(rφ̃h)/r]|2 + |∂rz(rφ̃h)/r|2

]
+ O(1).

The computation of the integral terms at the r.h.s. follows the lines of Appendix A. It yields some
O(min(| ln(h)|, | ln(ε)|)) error term. The main reason for these integrals to be lower order terms is that in
the “curved” contact zone, the typical lengthscales in z and r are respectively h and

√
h, so that z-derivatives

are more singular than r-derivatives. Eventually,

Fh = F̃h + O (min(| ln(ε)|, | ln(h)|)) .
We stress that this modelling of the roughness solves the famous no-collision paradox discussed in the introduc-
tion. Indeed, as h goes to zero for a given ε, β goes to infinity and the roughness effect yields a drag force Fh

which is always bounded by cε h−γ for some γ < 1. In particular, it is weaker than in the smooth case. Back to
the o.d.e.

ḧ + ḣFh = 0

which governs the solid dynamics, integration from time 0 to time t leads to

ḣ(t) = ḣ(0) +
∫ h(0)

h(t)

Fh′ dh′.

For an initial speed ḣ(0) negative enough, ḣ(t) remains uniformly negative, because the integral at the r.h.s. is
O(h(t)1−γ + h(0)1−γ) = O(1). This makes h to cancel in finite time.

3.2. The case of slip boundary conditions

We turn in this paragraph to our second model, in which roughness is involved through slip coefficients. We
want to have a close approximation of Fh = minAh

Eh, where this time Ah and Eh are defined in (2.8). We still
have a rotational invariance in this case, so that we can again reduce Ah by restricting to velocity fields of the
type

u = −∂zφ er +
1
r
∂r[rφ] ez .

The impermeability condition at P yields again

φ(r, 0) = 0, ∀ r ∈ (0, r0). (3.15)
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As regards ∂S, we have for all r ∈ (0, r0)

ez · n =
1√

1 + |γ′S(r)|2 ,

u · n =
1√

1 + |γ′S(r)|2
(
γ′S(r)∂zφ(r, h+ γS(r)) +

1
r
∂r(rφ)(s, h + γS(r))

)
,

=
1√

1 + |γ′S(r)|2
1
r

d
dr

[rφ(r, h + γS(r))],

(3.16)

so that the impermeability condition leads to

φ(r, h+ γS(r)) =
r

2
, ∀ r ∈ (0, r0). (3.17)

Accordingly, we introduce the relaxed set

Ãh :=
{
u ∈ H1(F 0

h ), u = −∂zφ er +
1
r
∂r[rφ] ez , φ satisfying (3.15) and (3.17)

}
,

with F 0
h defined in the previous section. We then need to define the relaxed energy Ẽh. As in the previous

section, we shall keep only ∂zzφ in the gradient terms. But we shall not change the boundary integrals involved
in (2.8). Therefore, we compute:

• on P , u× n = ∂zφ eθ;
• on ∂S ∩ {r < r0}, because of (3.16)–(3.17), (u − ez) × n =

√
1 + |γ′S(r)|2∂zφ eθ.

Hence, we introduce the approximate energy

Ẽh :=
∫

F 0
h∩{r<r0}

|∂zzφ(r, z)|2rdrdθdz + 2π
∫ r0

0

[
(1 + |γ′S(r)|2) 3

2

βS
|∂zφ(r, h+ γS(r))|2 +

1
βP

|∂zφ(r, 0)|2
]
rdr.

The corresponding mimimization problem is easy, because it amounts to find, for each value of r < r0, the
minimizer of the functional

Ẽh(r) =
∫ h+γS(r)

0

|φ′′r (z)|2dz +

[
(1 + |γ′S(r)|2) 3

2

βS
|φ′r(h+ γS(r))|2 +

1
βP

|φ′r(0)|2
]

over functions φr = φr(z) satisfying the inhomogeneous Dirichlet conditions

φr(0) = 0, φr(h+ γS(r)) =
r

2
·

This is a one-dimensional minimization problem, with Euler equation φ
(4)
r = 0, endowed with above Dirichlet

conditions, plus Robin type condition on φ′r :

φ′′r (h+ γS(r)) +
(1 + |γ′S(r)|2) 3

2

βS
φ′r(h+ γS(r)) = 0,

φ′′r (0) − 1
βP

φ′r(0) = 0.

After a few computations, the minimum of Ẽh is obtained for

φ̃h(r, z) =
r

2
Φ

(
r,

z

h+ γS(r)

)
,
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where Φ(r, t) is the polynomial of degree 3 in t given by

Φ(r, t) := − 2 (αS + αS αP + αP )
12 + 4 (αS + αP ) + αP αS

t3 +
3 (2 + αS) αP

12 + 4 (αS + αP ) + αP αS
t2

+
6 (2 + αS)

12 + 4 (αS + αP ) + αP αS
t,

(3.18)

where:

αS = αS(r) :=
(1 + |γ′S(r)|2) 3

2 (h+ γS(r))
βS

, αP = αP (r) :=
(h+ γS(r))

βP
·

Note that the coefficients of Φ are uniformly bounded in αS , αP , that is in r < r0, βP , βS , h. In the limiting case
βS = βP = 0 (no-slip limit), we obtain formally Φ(t) = −2t3 + 3t2, in agreement with the computations of the
previous section.

We now turn to the lower bound

F̃h = min
Ãh

Ẽh

= 2π
∫ r0

0

[∫ 1

0

|∂ttΦ(r, s)|2ds+ αS |∂tΦ(r, 1)|2 + αP |∂tΦ(r, 0)|2
]

r3dr
(h+ γS(r))3

·

We make the last integral more explicit by replacing Φ by its value. We obtain

F̃h =
π

2

∫ r0

0

(I1(r) + I2(r))
r3dr

(h+ γS(r))3

where the integrands I1 and I2 are given by

I1 :=
12
(
α2

S α2
P + 5 (α2

S αP + α2
P αS) + 4 (α2

S + α2
P ) + 20αS αP

)
(12 + 4 (αS + αP ) + αSαP )2

I2 :=
144 (αS + αP )

(12 + 4 (αS + αP ) + αSαP )2
·

Note that I1 and I2 are uniformly bounded in αS , αP , that is in r < r0, βP , βS , h. Thus, expanding γS , we
obtain:

F̃h =
π

2

∫ r0

0

(I1(r) + I2(r))
r3dr

(h+ r2

2 )3
+ O(J (0, h))

=
π

2

∫ r0

0

(I1(r) + I2(r))
r3dr

(h+ r2

2 )3
+ O(| ln(h)|)

(3.19)

where J (0, h) was introduced in (3.8) and shown to be O(| ln(h)|). We must now distinguish between two cases,
depending on the behaviour of h/βS and h/βP :

1. either h/βS or h/βP is of order 1 or larger. Then, either αS or αP is of order 1 or larger. It follows that

c ≤ I1(r) + I2(r) ≤ C,

for all r < r0, where the constants c, C are uniform with respect to all parameters. We then deduce from (3.19)
that

c′

h
≤ F̃h ≤ C′

h
·

Note that in the limiting case βS = βP = 0 (no-slip limit), we obtain formally:

αS = αP = +∞, I1 = 12, I2 = 0, F̃h =
6π
h
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recovering the classical result. We also emphasize that the regime considered here includes the case where
one of the slip coefficients is zero. In particular, the drag force is stronger than c′/h in such a case, preventing
any collision;

2. both h/βS and h/βP are small. This case requires more care. We first notice that

αP =
1
βP

(
h+

r2

2
+O(r4)

)
, αS =

1
βS

(
h+

r2

2
+O(r2(h+ r2))

)
. (3.20)

From there, for r0 and h small enough, we get

c J1(r) ≤ I1(r) ≤ C J1(r), J1(r) :=
(

aP

1 + aP
+

aS

1 + aS

)2

where c, C > 0 and

aP (r) :=
1
βP

(
h+

r2

2

)
, aS(r) :=

1
βS

(
h+

r2

2

)
· (3.21)

Then, with the change of variable r =
√
hu , we write

∫ r0

0

J1(r)
r3dr

(h+ r2

2 )3
=

1
h

∫ 1
2
√

h

0

(
h/βP

(
1 + u2/2

)
1 + h/βP (1 + u2/2)

+
h/βS

(
1 + u2/2

)
1 + h/βS (1 + u2/2)

)2
u3du

(1 + u2/2)3
·

In the regime of small h/βP and h/βS, we get that this last integral is o(1/βP + 1/βS). Finally, all of this
leads to

π

2

∫ r0

0

I1(r)
r3dr

(h+ r2

2 )3
= o(1/βP + 1/βS). (3.22)

It now remains to evaluate the contribution of I2, which will yield the leading behaviour of F̃h. The use
of (3.20) gives first

π

2

∫ r0

0

I2(r)
r3dr

(h+ r2

2 )3
=

π

2

∫ r0

0

144 (aS + aP )

(12 + 4 (aS + aP ) + aSaP )2
r3dr

(h+ r2

2 )3
+ O(1/βP + 1/βS).

Then, straightforward manipulations show that

(
aS

(1 + c1 aS)2
+

aP

(1 + c1 aP )2

)
+ O(J1(r)) ≤ 144 (aS + aP )

(12 + 4 (aS + aP ) + aSaP )2

≤
(

aS

(1 + c2 aS)2
+

aP

(1 + c2 aP )2

)
+ O(J1(r))
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for some c1, c2 > 0. As seen in the treatment of I1, the O(J1(r)) term will only contribute to the drag
through a o(1/βP + 1/βS) term. The main contribution of I2 to the drag will be governed by

π

2

∫ r0

0

(
aS

(1 + c aS)2
+

aP

(1 + c aP )2

)
r3dr

(h+ r2

2 )3

=
π

2h

∫ 1
2
√

h

0

(
h/βS

(
1 + u2/2

)
(1 + c h/βS (1 + u2/2))2

+
h/βP

(
1 + u2/2

)
(1 + c h/βP (1 + u2/2))2

)
u3du

(1 + u2

2 )3

= π

{
1
βS

∫ 1+ 1
4h

1

(x− 1)dx
(1 + c h/βS x)2 x2

+
1
βP

∫ 1+ 1
4h

1

(x − 1)dx
(1 + c h/βP x)2 x2

}

= π

{
1
βS

∫ 1+ 1
4h

1

dx
(1 + c h/βS x)2 x

+
1
βP

∫ 1+ 1
4h

1

dx
(1 + c h/βP x)2 x

}
+O(1/βP + 1/βS)

= π

(
1
βS

+
1
βP

)
| ln(h)| + O(1/βP + 1/βS)

through standard manipulations. It yields eventually

π

2

∫ r0

0

I2(r)
r3dr

(h+ r2

2 )3
= π

(
1
βS

+
1
βP

)
| ln(h)| + O(1/βP + 1/βS). (3.23)

Combining (3.19), (3.22) and (3.23), we end up with the following lower bound for the drag:

F̃h = π

(
1
βS

+
1
βP

)
| ln(h)| +O(1/βP + 1/βS) +O(| ln(h)|).

This lower bound is similar to the one derived by Hocking (see [13]).
This concludes our study of a lower bound for the drag. Hence, it remains to obtain a similar upper bound.

One could develop the same approach as in the previous section. Namely, one could look for some suitable
extension φ̌h of φ̃h, with similar behaviour for its energy. However, due to the elaborate expression (3.18), this
would lead to tedious computations. We overcome this technical difficulty as follows:

1. when h/βP or h/βS is of order 1 or larger, we take ǔh = ∇× (φ̌heθ), with the “no-slip” streamfunction φ̌h

built in the previous section. We obtain with this choice some O(1/h) upper bound as expected;
2. when h/βP and h/βS are small, a good way to recover the right asymptotic behaviour is to set ǔh :=

∇× [φ̌h(r, z)eθ] with

φ̌h(r, z) :=
r

2
Φ

(
r,

z

h+ γS(r)

)
,

in F 0
h , where

Φ(r, t) :=
(

1
1 + αP

+
1

1 + αS

)
t

2
+
(

αP

1 + αP
+

αS

1 + αS

)
t2

2
·

We extend then φ̌h to the whole of Fh with a stream function having bounded gradients. Calculations similar
to the previous ones yield:

Eh(ǔh) = π

(
1
βS

+
1
βP

)
| ln(h)| +O(1/βP + 1/βS) + O(| lnh|)

where we insist that the O(| ln h|) is uniform with respect to βP and βS . In particular, in the realistic regime
of small slip lengths, we obtain the exact same leading behaviour for the lower and upper bounds. For the
sake of brevity, we leave the details to the reader.
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4. The case of a corrugated wall

In this section, we focus on the third model of roughness described in the introduction, in which the wall has
a small amplitude and high frequency oscillation: namely,

z = εγ
(x
ε
,
y

ε

)
, ε > 0, γ = γ(X,Y ) 1-periodic, γ ≤ 0, max γ = γ(0, 0) = 0.

We remind that the solid is assumed to be smooth, and that no-slip conditions hold both at the solid surface
and the wall. We shall pay special attention to the regime ε 	 h 	 1, that is when the distance between the
solid and the wall is much greater than the size of the roughness. We quote that this is the only regime for
which this modelling of the roughness is relevant. Indeed, when h becomes comparable to ε, a rescaling in space
by a factor 1/ε brings back to the classical situation of smooth boundaries. From this point of view, the model
we consider in this section is peculiar: it does not allow to conclude anything about the possibility of collisions
for a given small roughness size ε. However, we believe that it is still interesting from a purely computational
point of view.

Such roughness model with a small parameter is very popular, as it allows for multiscale analysis. This
analysis has been notably performed in the context of wall laws. In this context, the idea is to replace the rough
boundary by a flat one, and to impose there some good homogenized boundary condition, that expresses the
mean effect of roughness. This homogenization problem has been considered by physicists since the early 90’s,
through numerics and explicit calculations for special geometries: see for instance [20]. It has been adressed
later on in some mathematical works, based on homogenization theory. We refer to [1,14] for periodic patterns
of roughness, and to [3, 10] for random roughness. The conclusion of these works is that, for small enough ε,
one can replace the oscillating boundary by the flat one {z = 0}, and impose there some Navier-type boundary
condition:

uz = 0, (ux, uy) = εB ∂z(ux, uy)

for some two by two positive matrix B, which is sometimes called the “mobility tensor”. There has been a recent
interest on qualitative properties of this tensor, for instance for shape optimization in microfluidics, cf. [15].

Another frequent idea is that a slip condition amounts to a no-slip condition at a shifted wall. Combining
this idea with the previous one, some recent articles have suggested a drag force of the type Fh ∼ 1

h+βε for
some positive β: see [16, 18]. We will discuss this result in a rigorous manner here.

First, one can use the methodology of Section 2 to derive some lower and upper bounds.

• As regards the lower bound, let us show that

Fh ≥ 6π
h+ λε

+ O(| ln(h+ λε)|), for λ := −minγ > 0.

Indeed, we have
Fh = min

u∈Ah

Eh(u)

where Eh(u) and Ah are given by (2.4). Let us now define

Pλ := {z = −ελ}, Fλ
h := {x, x �∈ Sh, z > −ελ}.

Any field u of Ah can be extended by zero below the rough wall so that it can be seen as an element of the
larger set

Ãh :=
{
u ∈ H1

loc(F
λ
h ), ∇ · u = 0, u|P λ = 0, u|∂Sh

= ez

}
.

Then, obviously,
Fh ≥ min

u∈Ãh

Eh(u).

But the r.h.s of this inequality is exactly the drag force associated to the (smooth) solid Sh and the (smooth)
plane Pλ. As the distance between the two is h+ λε, we deduce the expected lower bound;
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• with similar arguments, one has the upper bound:

Fh ≤ 6π
h

+ O(| ln(h)|).

Indeed, let us define this time

P 0 := {z = 0}, F 0
h := {x, x �∈ Sh, z > 0}.

Let u0
h be the Stokes flow in the smooth domain F 0

h . As the distance between Sh and P 0 is h, the drag force
satisfies ∫

F 0
h

|∇u0
h|2 =

6π
h

+ O(| ln(h)|).

Now, u0
h can be extended by zero below P 0 and defines in this way an element of Ah. In particular, Fh ≤∫

Fh
|∇u0

h|2.
Hence, our methodology allows to derive quickly the inequalities

6π
h+ λε

+ O(| ln(h+ λε)|) ≤ Fh ≤ 6π
h

+ O(| ln(h)|).

Interestingly, these bounds are satisfied for any regime of parameters ε and h. In particular, it provides the right
asymptotic when ε and h are of the same order.

Nevertheless, when ε 	 h, it is fair to notice that a multiscale analysis gives a much refined description of
the drag. For the sake of completeness, we briefly present it here. It relies on an asymptotic expansion of the
Stokes flow uh = uε

h with respect to ε. This expansion has already been described in close contexts, for instance
in [14], and we only recall its main elements. To keep track of the ε dependency, we write P ε instead of P , F ε

h

instead of Fh. We denote again P 0 and F 0
h their smooth counterparts.

The basic idea is to build an approximate solution uε
h,app(x) of (2.1)–(2.3), in the form of an expansion in

powers of ε:

uε
h,app(x) = u0

h(x) + ε

(
u1

h(x) + U1
h(x, y, x/ε)

)
+ . . . + εN

(
uN

h (x) + UN
h (x, y, x/ε)

)
. (4.1)

Each term of this expansion has two parts:

• a regular part ui
h = ui

h(x) which models the macroscopic variations of the solution;
• a boundary layer correction U i

h = U i
h(x, y,X), which accounts for the fast variations of the solution near

the oscillating boundary. Hence, it depends on the macroscopic variables x, y, but also on the microscopic
variable X = x/ε. It is defined for all

x, y ∈ R
2, X = (X,Y, Z) such that Z > γ(X,Y ).

Moreover, U i
h is periodic in X,Y (due to the periodicity of the rough bondary γ in X,Y ) and satisfies

limU i
h(x, y,X, Y, Z) = 0, as Z → +∞.

Back to the original variable x, this last condition corresponds to a boundary layer of typical size ε near the
rough wall P .

Accordingly, the corresponding pressure field should read

pε
h,app(x) = p0

h(x) + P 0
h (x, y, x/ε) + ε

(
p1

h(x) + P 1
h (x, y, x/ε)

)
+ . . .
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We remind here briefly how to derive the O(1) and O(ε) terms, which is enough for our purpose. This kind of
derivation (with expansions of boundary layer type) has been performed in various contexts (Laplace, Stokes,
Navier-Stokes equations). For more details, one can refer to [1, 3, 14].

First, if we inject the above expansions in (2.1)–(2.3), and let Z → +∞, we obtain by standard manipulations
that

−Δu0
h + ∇p0

h = 0 and div u0
h = 0 in F 0

h , u0
h|∂Sh

= ez, u0
h|P 0 = 0.

Thus, we recover as expected that the leading term of the expansion is the Stokes flow without roughness. We
then extend u0

h and p0
h by zero below P 0, so that they are defined over the whole F ε

h . Such extensions trivially
satisfy the Stokes equation for z < 0, as well as the no-slip condition at P ε. Moreover, the velocity is continuous
across the plane {z = 0}. But there is a O(1) jump in the normal derivative. This explains the introduction of
a boundary layer corrector with amplitude O(ε). Indeed, its gradient has amplitude O(1), and allows to correct
this artificial jump.

Let us introduce the following notations:

Vh(x, y,X) := u1
h(x, y, 0) + U1

h(x, y,X), Z > γ(X,Y ),

Ph(x, y,X) := P 0
h (x, y,X) − p0

h(x, y, 0), Z > 0,

Ph(x, y,X) := P 0
h (x, y,X), 0 > Z > γ(X,Y ).

Note that, following the expansion (4.1), u0(x, y, 0)+ εVh(x, y, x/ε) should be an approximation of the whole
flow in the boundary layer. Plugging (4.1) into the equations, we derive formally the following Stokes system:

⎧⎪⎪⎨
⎪⎪⎩

−ΔXVh + ∇XPh = 0, Z > γ(X,Y ), Z �= 0,

∇X · Vh = 0, Z > γ(X,Y ), Z �= 0,

Vh = 0, Z = γ(X,Y ),

together with the jump conditions

Vh|Z=0+ − Vh|Z=0− = 0, (∂ZVh − PheZ) |Z=0+ − (∂ZVh − PheZ) |Z=0− = −∂zu
0
h(x, y, 0).

Again, we stress that these jump conditions ensure the smoothness of the whole flow across the artificial
boundary {z = 0}. Note that by the divergence-free condition ∂zu

0
h,z(x, y, 0) = 0, so that only the horizontal

components of ∂zu
0
h(x, y, 0) are non-zero. Let us also point out that the variables x, y are just parameters in

the system. In other words, one has

Vh(x, y,X) = V(X)∂zu
0
h(x, y, 0), Ph(x, y,X) = P(X) · ∂zu

0
h(x, y, 0)

for some 3-by-3 matrix function V and some 3d vector P which satisfy the (matricial) Stokes system
⎧⎪⎪⎨
⎪⎪⎩

−ΔXV + ∇XP = 0, Z > γ(X,Y ),

∇X · V = 0, Z > γ(X,Y ),

V = 0, Z = γ(X,Y ),

(4.2)

together with

V|Z=0+ − V|Z=0− = 0, (∂ZV − P ⊗ eZ) |Z=0+ − (∂ZV − P ⊗ eZ) |Z=0− = −
(

1 0 0
0 1 0
0 0 0

)
.
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This system of pde’s, depending only on X, with periodic boundary conditions in the horizontal variable X,Y ,
has been extensively studied. We remind the following proposition, extracted from [14]:

Proposition 4.1. The solution V of system (4.2) converges exponentially at infinity, that is

|V(X,Y, Z)− V∞| ≤ C e−δZ

for some constant 3-by-3 matrix V∞ and some δ > 0. Moreover, V∞ is of the form

V∞ =

⎛
⎝ B 0

0
0 0 0

⎞
⎠

for some symmetric positive definite 2-by-2 matrix B.

The non-zero block B is sometimes called the mobility tensor, see [15]. We stress that B is symmetric and
definite positive, so diagonalizable in an orthonormal basis with positive eigenvalues. This fact will be used
below.

Back to Vh, we obtain that(
Vh,x, Vh,y

)
(x, y,X) → B ∂z

(
u0

h,x, u
0
h,y

)
(x, y, 0), Vh,z(x, y,X) → 0, as Z → +∞.

As the boundary layer correction U1
h should decay at infinity, we obtain the boundary condition for the macro-

scopic correction u1
h at P 0. That is

(u1
h,x, u

1
h,y) = B∂z

(
u0

h,x, u
0
h,y

)
, u1

h,z = 0, at P 0. (4.3)

Together with the Stokes equations

−Δu1
h + ∇p1

h = 0 and div u1
h = 0 in F 0

h ,

and the boundary condition at the solid surface

u1
h|∂Sh

= 0

this determines u1
h, and ends the derivation of the O(ε) term of the expansion. The next order terms solve the

same kind of equations, with inhomogeneous data coming from lower order profile.
In a second step, one can show rigorously that the approximate solution uε

h,app is close to the exact solution
uε

h. Indeed, introducing the differences

v := uε
h,app − uε

h, and q := pε
h,app − pε

h

leads to
−Δv + ∇q = Rε

h, divv = rε
h, v|∂Sh

= ϕε
h,

with remainder terms Rε
h, rε

h and ϕε
h. For instance, the boundary data ϕε

h is due to the boundary layer terms
U i(x, x/ε), that do not vanish at ∂Sh. We stress that the assumption ε 	 h is crucial for these remainders
to be small. First, the boundary layer corrections decay exponentially over a typical lengthscale ε. To make it
exponentially small at ∂Sh, one needs ε 	 h. Moreover, all other remainder terms are small with respect to ε,
but diverging with respect to h. Very roughly, they behave like O((ε/h)N ) where N is the number of terms in
the expansion (4.1). The diverging powers of h come from taking derivatives of the ui

h, which are singular with
respect to h. Again, the smallness condition ε	 h is necessary.
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From there, as the remainder terms are small, one can through energy estimates deduce the smallness of v,
that is uε

h ≈ uε
h,app. In particular, for ε small enough compared to h, the drag force on ∂Sh reads

Fh =
∫

∂Sh

(
∂uε

h

∂n
− pε

hn

)
· ez =

∫
∂Sh

(
∂(u0

h + εu1
h)

∂n
− (p0

h + εp1
h)n
)
· ez + o(ε). (4.4)

Moreover, it is easily seen that the fields ǔε
h := u0

h + εu1
h, p̌ε

h := p0
h + εp1

h satisfy the Stokes equation in F 0
h ,

together with the boundary conditions

ǔε
h|∂Sh

= ez, and ǔε
h,z|P 0 = 0,

(
ǔε

h,x, ǔ
ε
h,y

) |P 0 = εB ∂z

(
u0

h,x, u
0
h,y

) |P 0 .

By the axisymmetry of F 0
h , Rθ u

0
h = u0

hRθ for any horizontal rotation Rθ. As B is symmetric definite positive,
this allows us to assume, up to a change of orthonormal basis, that B is diagonal with positive coefficients βx, βy.
Now, there are two ways to make formula (4.4) more explicit.
• On one hand, one can write the latter boundary condition as a slip condition of Navier type:(

ǔε
h,x, ǔ

ε
h,y

) |P 0 = εB ∂z

(
ǔε

h,x, ǔ
ε
h,y

) |P 0 + o(ε).

This is the so-called phenomenon of apparent slip, see [17]. In the isotropic case β := βx = βy, one can use
the bounds on the drag force derived in Section 3. In the regime ε−1h� 1, this yields:

c

h
≤ Fh ≤ C

h
, c, C > 0; (4.5)

• on the other hand, the drag force reads

Fh ≈
∫

∂Sh

(
∂u0

h

∂n
− p0

hn

)
· ez + ε

∫
∂Sh

(
∂u1

h

∂n
− p1

hn

)
· ez.

Testing the Stokes equation for u1
h with u0

h, we can express the second term at the r.h.s. differently, that is

Fh =
∫

∂Sh

(
∂u0

h

∂n
− p0

hn

)
· ez + ε

∫
F 0

h

∇u1
h : ∇u0

h.

Testing the Stokes equation for u0
h with u1

h, we obtain

Fh =
∫

∂Sh

(
∂u0

h

∂n
− p0

hn

)
· ez + ε

∫
P 0
u1

h ·
(
∂u0

h

∂n
− p0

hn

)

=
∫

∂Sh

(
∂u0

h

∂n
− p0

hn

)
· ez − ε

∫
P 0

(
βx|∂zu

0
h,x|2 + βy|∂zu

0
h,y|2

)
where the last line comes from the boundary conditions (4.3). Using again the symmetry properties of u0

h,
we obtain that

Fh ≈
∫

∂Sh

(
∂u0

h

∂n
− p0

hn

)
· ez − ε β

∫
P 0

(|∂zu
0
h,x|2 + |∂zu

0
h,y|2

)
, β :=

βx + βy

2
· (4.6)

But this last expression can be seen as the drag force created by a Stokes flow uβ
h, between the solid Sh and

a shifted wall Pβ := z = −ε β. Indeed, following [18], we get∫
∂Sh

(
∂uβ

h

∂n
− pβ

hn

)
· ez =

∫
∂Sh

(
∂uβ

h

∂n
− pβ

hn

)
· u0

h

=
∫

F 0
h

∇uβ
h : ∇u0

h

=
∫

∂S0
h

ez ·
(
∂u0

h

∂n
− p0

hn

)
+
∫

P 0
uβ

h ·
(
∂u0

h

∂n
− p0

hn

)
·
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Using that

uβ
h(x, y, 0) = uβ

h(x, y,−εβ) + εβ∂zu
β(x, y,−εβ) + o(ε) = εβ∂zu

0
h(x, y, 0) + o(ε)

we recover the same expression as in (4.6). This interpretation of the roughness effect as a shift of the smooth
wall yields

Fh ≈ 6π
h+ εβ

· (4.7)

Note that formula (4.5) and (4.7) are coherent, since we are here within the asymptotics ε	 h	 1. As pointed
out at the beginning of this paragraph, these formula do not apply to the single limit h→ 0 (for a given ε).

5. Final comments

Through our variational point of view on the drag problem, we have been able to derive accurate expressions
for the drag force, depending on the modelling and amount of roughness at the sphere or at the plane. These
expressions are synthetized in Table 1.

The configurations that we have investigated are fairly simple, both with respect to the geometry (axisymme-
try assumption, boundary described by a graph) and to the solid dynamics (vertical translation). This simplicity
makes the mathematical analysis easier, but is not necessary. Indeed, our derivation of the drag asymptotics
relies on “local” arguments. In other words, for a small distance h between the solid and the wall, the singular
part of the drag force (obtained through our approximate minimizer ũh) depends only on a small zone between
the tip of the solid and the wall (that is F 0

h , see (3.5)). On this basis, we believe that, as long as the character-
istics of the solid and wall regions close to contact do not change with time (similar C1,α regularity for the first
case, similar slip length for the second case), our expressions for the drag force remain relevant. Nevertheless,
the mathematical justification of this claim may become very intricate. Of course, the worst situation is when
the solid and wall surfaces have some regions with distinct roughness properties, that alternatively get close to
contact.

As regards the third model of roughness, let us stress again that it makes sense only in the regime ε	 h	 1:
indeed, as soon as h ∼ ε, there is no separation of scales anymore, and by setting the zoom factor to 1/ε, one is
back to the classical situation of smooth solids. One could also wonder if the isotropy assumption that is made
on the roughness (with typical size ε in any direction) is a big restriction. This is not so. Indeed, the isotropic
scaling is the richest one (in the sense of asymptotic expansions), as it keeps all terms in the boundary layer
equations. All other anisotropic limits can be seen as degenerate subcases of the isotropic one.

Let us finally point out that the present paper is helpful at least with regards to two problems:

• the “no-collision” paradox. We have shown rigorously that accounting for roughness (through a lack of
smoothness or a Navier type boundary condition) depletes the singularity of the drag force, resulting in
a possible collision in finite time. The main point is that one can solve the no-collision issue within the
macroscopic Navier-Stokes model: there is no need to refer to a molecular behaviour;

• the determination of the right hydrodynamic boundary conditions. As mentioned in the introduction, the de-
termination of the right boundary condition at a rough boundary is a topic of active research in microfluidics
(see [16,24]). One idea to progress on this issue is to make experiments and to measure the drag force exerted
on a small sphere close to the rough boundary. Then, one can compare the asymptotics of this measured drag
to the asymptotics of theoretical drags issued from different wall laws. By providing an accurate expression
for the theoretical drags, our paper can serve as a basis to such investigations. Let us stress that, with the
expression of the drag force, one has access to other measurable quantities. For instance, one can compute
collision times, by solving the ordinary differential equation

ḧ + ḣFh = f

where Fh is the normalized drag, and f accounts for other forcings, such as gravity or buoyancy.
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Appendix A. Asymptotics of I and J
In this appendix, we detail the computation of I(β) and J (β, h) defined in (3.8) depending on the values

of β.
Case β 	 1. When β is small, we expand with respect to β:

s3

(1 + s2

2 + βs1+α)3
=

s3

(1 + s2

2 )3
− 3β

s4+α

(1 + s2

2 )4
+O

(
β2 s5+2α

(1 + s2

2 )5

)
·

This yields:

I(β) =
∫ ∞

0

s3 ds
(1 + s2

2 )3
− β

∫ ∞

0

3s4+α ds
(1 + s2

2 )4
+O

(
β2
)

where routine calculations yield:

∫ ∞

0

s3 ds
(1 + s2

2 )3
= 1,

∫ ∞

0

3s4+α ds
(1 + s2

2 )4
=

2
α+1

2 π(3 + α)(1 − α2)
8 cos

(
πα
2

) =: λα. (A.1)

Replacing in I(β), we obtain,

I(β) = 1 − λαβ +O(β2) =
1

1 + λαβ
+O(β2).

Case β � 1. When β is large, we split I(β) = I0(β) + I∞(β) where:

I0(β) =
∫ 1

0

s3 ds
(1 + s2

2 + βs1+α)3
, I∞

β =
∫ ∞

1

s3 ds
(1 + s2

2 + βs1+α)3
·

To compute I∞(β), we set s = β
1

1−α s̃ and expand the integrand with respect to 1/(β
2

1−α ). This yields:

I∞(β) =
1

β
2

1−α

∫ ∞

β
− 1

1−α

s̃3 ds̃
( s̃2

2 + s̃1+α)3
+O

(
1
β4

)
·

We distinguish between three cases:

(I.1) for α > 1/3, I∞(β) = O

(
1
β3

)
;

(I.2) for α = 1/3, I∞(β) =
3
2

ln(β)
β3

+ O

(
1
β3

)
;

(I.3) for α < 1/3, I∞(β) =
μα

β
2

1−α

+ O

(
1
β3

)
, μα :=

∫ ∞

0

s̃3 ds̃
( s̃2

2 + s̃1+α)3
.

In I0(β), we set u = βs1+α and expand the integrand w.r.t. 1/β
1

1+α . This yields:

I0(β) =
1

(1 + α)β
4

1+α

∫ β

0

u
3−α
1+α du

(1 + u)3
+O

(
1
β4

)
,

with:

(J.1) for α < 1/3, I0(β) = O

(
1
β3

)
;
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(J.2) for α = 1/3, I0(β) =
3
4

ln(β)
β3

+ O

(
1
β3

)
;

(J.3) for α > 1/3, I0(β) =
μα

β
4

1+α

+ O

(
1
β3

)
, μα :=

1
1 + α

∫ ∞

0

u
3−α
1+α du

(1 + u)3
·

We obtain (3.10) comparing the values of I0(β) and I∞(β) in the three cases α < 1/3, α = 1/3 and α > 1/3.
It remains to handle the remainder term J (β, h). As previously, we split it into J 0(β, h) +J∞(β, h) where:

J 0(β, h) =
∫ 1

0

s7ds
(1 + s2

2 + βs1+α)4
= O(1), J∞(β, h) =

∫ r0/
√

h

1

s7ds
(1 + s2

2 + βs1+α)4
·

We set s = β
1

1−α s̃ in the last integral. This yields:

J∞(β, h) ≤
∫ r0/(

√
hβ1/(1−α))

1/β1/(1−α)

s̃7ds
( s̃2

2 + s̃1+α)4
=

{
O(| ln(h)|) if β 	 1

O(| ln(β) + 1−α
2 ln h|) if β � 1.
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