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s∗-COMPRESSIBILITY OF THE DISCRETE HARTREE-FOCK EQUATION

Heinz-Jürgen Flad
1

and Reinhold Schneider
1

Abstract. The Hartree-Fock equation is widely accepted as the basic model of electronic structure
calculation which serves as a canonical starting point for more sophisticated many-particle models. We
have studied the s∗-compressibility for Galerkin discretizations of the Hartree-Fock equation in wavelet
bases. Our focus is on the compression of Galerkin matrices from nuclear Coulomb potentials and
nonlinear terms in the Fock operator which hitherto has not been discussed in the literature. It can be
shown that the s∗-compressibility is in accordance with convergence rates obtained from best N-term
approximation for solutions of the Hartree-Fock equation. This is a necessary requirement in order to
achieve numerical solutions for these equations with optimal complexity using the recently developed
adaptive wavelet algorithms of Cohen, Dahmen and DeVore.
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1. Introduction

1.1. The Hartree-Fock model in a nutshell

Many important applications of quantum theory in chemistry can be traced back to solutions of the stationary
electronic Schrödinger equation within the Born-Oppenheimer approximation, neglecting relativistic effects. The
Schrödinger equation for a system of N electrons exposed to the stationary electrostatic field of K nuclei at
sites {Ai}i=1,K ⊂ R

3 with charges {Zi}i=1,K corresponds to a symmetry restricted eigenvalue problem

HΨi = EiΨi with Ψi ∈ H1
e

(
(R3 × {±1/2})N

)
(1.1)

with respect to the nonrelativistic electronic Hamiltonian

H = −1
2

N∑
i=1

Δi −
K∑

k=1

N∑
i=1

Zk

|xi − Ak| +
N∑

i<j

1
|xi − xj | · (1.2)

A symmetry constraint that enters via Pauli’s principle can be most easily expressed by introducing spin
degrees of freedom into the electron coordinates, i.e., xi := (xi, ξi) with xi ∈ R

3 and ξi ∈ {±1/2}. In this case
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Pauli’s principle requires the wavefunction to be antisymmetric with respect to the permutation of two electron
coordinates, i.e.,

Ψ(. . . ,xi, . . . ,xj , . . .) = −Ψ(. . . ,xj , . . . ,xi, . . .).

Approximate many-electron wavefunctions can be obtained by taking the exterior tensor product

det[φi(xj)]
j=1,...,N
i∈(i1,...iN ) :=

1√
N !

φi1 ∧ φi2 ∧ . . . ∧ φiN ,

of N orthonormal single-electron wavefunctions {φi}i∈(i1,...iN ) with φi ∈ H1(R3 × {±1/2}). In quantum chem-
istry, these exterior products are denoted as Slater determinants. The nonlinear subset of all N -electron Slater
determinants

ΓN :=
{
Φ | Φ := det[φi(xj)]

j=1,...,N
i∈(i1,...iN ) with φi ∈ H1(R3 × {±1/2}) and 〈φi|φj〉 = δi,j

}
provides the basis for the Hartree-Fock model which is defined as a rank-1 approximation for the many-electron
wavefunction which minimizes the Rayleigh-Ritz variational energy

Φ0 = argminΦ∈ΓN

〈Φ|HΦ〉
〈Φ|Φ〉 · (1.3)

Existence of a minimizer Φ0 has been demonstrated in [29, 30], however no uniqueness results are presently
known. For notational simplicity, we restrict ourselves to the closed shell Hartree-Fock model, where the eigen-
functions are assumed to be real functions of the form φi(x)χ(ξ) with the same spatial part for both spins
{±1/2}. The variational problem (1.3) leads to the nonlinear Hartree-Fock equation

hφi = εi φi, (1.4)

with single-particle Hamiltonian

h = −1
2
Δ−

K∑
k=1

Zk

|x − Ak| + VH(x) − U, (1.5)

the so-called Fock operator, which contains the Hartree potential

VH(x) = 2
N/2∑
i=1

∫
R3

|φi(y)|2
|x − y| d3y, (1.6)

and the nonlocal exchange operator

Uv(x) =
N/2∑
i=1

∫
R3

φi(x)φi(y)v(y)
|x − y| d3y, (1.7)

where only those eigenfunctions enter into the nonlinear terms (1.6) and (1.7) of the Fock operator which belong
to the lowest N/2 eigenvalues.

1.2. Galerkin discretization of the Hartree-Fock equations

Gaussian-type atomic centered basis functions [25] are by far the most popular basis sets in electronic struc-
ture calculations. Amongst others, Gaussian-type basis functions have the significant advantage that all integrals
required for a Galerkin discretization of the Fock operator can be evaluated analytically. Despite their tremen-
dous success in applications, only little is known about their approximation properties [5, 28]. This is mainly
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due to the fact that these bases represent essentially overcomplete frames which are best described in terms of
a nonlinear approximation theory. Another related obstacle for a rigorous analysis is that they are not stable
in the sense of a Riesz basis in our envisaged Hilbert spaces L2 and H1. Alternative discretization schemes for
the Hartree-Fock equation based on finite differences [1,27] or finite elements [3,24] have been rarely studied in
the literature. Nevertheless these methods achieved unsurpassed accuracies for linear molecules and served as
benchmarks for the development of Gaussian basis sets. Within the last decade wavelets attracted considerable
interest in electronic structure calculations. Most of this work has been done in the context of density func-
tional theory [2,14,18,23,31]. However Yanai et al. [38] report very accurate Hartree-Fock calculations for some
small molecules. A significant advantage of wavelets over Gaussian-type basis functions is that they provide
stable basis sets which enable the adaptive approximation of singularities and compression schemes for Galerkin
discretizations of a large class of Calderón-Zygmund and pseudo-differential operators [33]. Within the present
work, we want to study compression schemes for wavelet Galerkin discretizations of the Fock operator. This is
a necessary prerequisite for the adaptive wavelet algorithms of Cohen et al. [10]. The Fock operator resembles
to a pseudo-differential operator, however, due to the presence of additional point like Coulomb singularities at
the nuclei, the symbols do not belong to the standard classes which requires an extended calculus for pseudo-
differential operators on manifolds with conical singularities, cf. [13]. As a consequence the compression schemes
developed e.g. in reference [33] are not immediately applicable and require further adaptive refinement schemes
which have been studied within the present work.

1.3. Some remarks on post Hartree-Fock models

On a first glance the Hartree-Fock model seems to be a rather crude approximation for many-electron sys-
tems. However, in many applications it turned out to be amazingly accurate. This is far from obvious from
a mathematical point of view and it was only recently that the work of Yserentant shed some light on the
remarkable success of the Hartree-Fock model. It was proven by Yserentant [39] that solutions of the many-
particle Schrödinger equation (1.1) belong to Sobolev spaces of mixed partial derivatives. This is the basic
regularity condition for sparse grids or hyperbolic cross approximations [7] which enable low-rank tensor prod-
uct approximations for generically high-dimensional many-particle problems. In this sense Hartree-Fock can be
considered as the best rank-one approximation with respect to the total energy. Despite its amazing accuracy,
the limitations of the Hartree-Fock model become clear if one considers the small energy differences which are
of relevance for chemical phenomena. Let us just mention the binding energy of a certain chemical bond which
typically represents only a small fraction of the total energy of a molecule. In order to achieve chemical accuracy
it is therefore necessary to go beyond Hartree-Fock and to consider more sophisticated many-particle models.
Nevertheless, Hartree-Fock remains an essential ingredient of these models. In a more formal sense this can be
seen from the appearance of tensor product Fock operators which enter into the equations. We just want to
mention Møller-Plesset perturbation theory [25], where the Hamiltonian (1.2) is split up into

H = H0 +H1 with H0 =
N∑

i=1

hi,

where hi, with i = 1, . . . , N , are Fock operators acting on the variables xi. Actually, the Hamiltonian H0 has to
be considered as a sum of tensor products I1⊗ . . .⊗hi⊗ . . .⊗ IN of a Fock operator and identities. Second-order
Møller-Plesset perturbation theory in a spin-free formalism can be written as a system of integro-differential
equations [35, 36] of the form

(h1 + h2 − εi − εj) τ±i,j(x1,x2) = −Q
1

|x1 − x2| (φi(x1)φj(x2) ± φj(x1)φi(x2)) ,

where for each pair of occupied Hartree-Fock orbitals φi, φj , with i, j ≤ N
2 , different pair-correlation functions

τ±i,j with respect to singlet (+) and triplet (−) states exist. The operator Q is a projection operator on the
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virtual two-particle space, i.e., Q := (1 − q1) ⊗ (1 − q2) with ql :=
∑N/2

i=1 |φi〉〈φi|, where l = 1, 2 refers to the
operator acting on the coordinates of the first and second electron, respectively. Any admissible pair-correlation
function must satisfy the constraint

Qτ±i,j(x1,x2) = τ±i,j(x1,x2).

A similar consideration applies to coupled cluster methods where Hartree-Fock wavefunctions are almost
exclusively taken as a reference. In summary it’s fair to say that the Galerkin discretization of the Fock operator
in post Hartree-Fock models remains an important issue for their computational complexity. In our future work
we want to extend the present analysis to these models and study the s∗-compressibility of many-particle
Hamiltonians.

Over the past years tremendous progress has been made concerning very accurate post Hartree-Fock calcu-
lations for medium sized molecules using explicitly correlated models [26]. These highly accurate calculations,
however, require Hartree-Fock benchmarks of similar accuracy. Within the standard setting of Gaussian-type
basis sets it is difficult to achieve a guaranteed prescribed accuracy. Therefore, in the near future it is reasonable
to expect an increasing demand for Hartree-Fock calculations using systematic basis sets, like (multi) wavelets,
where this goal can be actually achieved, cf. [4,38]. It is in this regime where the present work has its significance
and provides a guideline for the development of adaptive algorithms with guaranteed accuracy.

2. s∗-compressibility of the Fock matrix

2.1. Scope and relevance for actual calculations

Before entering into technicalities of s∗-compressibility and best N -term approximation, a few words are in
order concerning the scope and practical relevance of our work. Presently, the Hartree-Fock model represents
the common basis for large parts of ab initio quantum chemistry. Because of its intrinsic asymptotic character,
s∗-compressibility is of relevance for applications aiming at high accuracies. In the following asymptotic analysis
no attention has been given to the actual magnitude of constants which appear in our estimates. Systematic
adaptive bases entail potentially large constants and for calculations aiming at moderate accuracies they are
therefore often outperformed by Gaussian-type basis sets. The latter, however, do not permit a systematic error
control which is essential for calculations where a prescribed accuracy must be achieved.

For practical purposes it might be advantageous to deviate somewhat from the pure doctrin of mathematical
rigour and allow for hybrids between Gaussian-type and wavelet bases, cf. [21]. This enables in particular an
efficient approximation in the neighbourhood of nuclei. Another possibility are pseudopotentials [19] where
bare nuclear potentials together with chemically inert core electrons are replaced by effective potentials which
are more regular than the original singular Coulomb potentials. In the present work we do not consider such
modified approaches. Either they require a different kind of approximation theory, like hybrid bases, or basically
uncontroled approximations are introduced as in the case of pseudopotentials.

2.2. Some technical prerequisites

Within the present work, we focus on compression schemes for the Galerkin discretization of the Fock operator
which enable the application of adaptive wavelet algorithms for the solution of the Hartree-Fock equation with
optimal computational complexity. The adaptive wavelet algorithm for linear equations from reference [10]
has been recently generalized to eigenvalue problems [11, 32] which can be applied within the self-consistent
iteration schemes usually employed for the numerical solution of the Hartree-Fock equation. These algorithms
rest on two pillars, one is the compression of Galerkin matrices and the other is the best N -term approximation
of solutions. In our previous work, we have studied best N -term approximation spaces for solutions of the
Hartree-Fock equation [15]. The purpose of the present work is to demonstrate the existence of compression
schemes with error estimates compatible with the convergence rates obtained from best N -term approximation
theory. It is obvious that different parts of the Fock operator (1.5) require different compression schemes, i.e.,
the Laplacian, the various local singular potentials and the nonlocal exchange operator have to be considered
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separately. Although a lot of work has been already devoted to study the compressibility of Galerkin matrices
for a large class of operators, electronic structure calculations pose an additional difficulty due to the presence of
various kinds of singularities in the Fock operator (1.5) at the locations of the nuclei. Compression schemes for
typical integral operators so far considered in the mathematical literature [33] take into account only diagonal
singularities.

In the following we consider the Galerkin discretization of the Fock operator in an isotropic 3d-wavelet basis

γ
(1)
j,a (x) = ψj,a1(x1) ϕj,a2(x2) ϕj,a3(x3),

...
γ

(4)
j,a (x) = ψj,a1(x1) ψj,a2(x2) ϕj,a3(x3), (2.1)

...
γ

(7)
j,a (x) = ψj,a1(x1) ψj,a2(x2) ψj,a3(x3),

which correspond to tensor products of univariate wavelets ψj,a(x) = 2
1
2 jψ(2jx − a) and scaling functions

ϕj,a(x) = 2
1
2 jϕ(2jx − a) on the same level j. We assume that the univariate wavelets represent Riesz bases in

L2(R) and, after rescaling, in H1(R). According to our definition, the 3d-wavelets have a different number of
vanishing moments, r, 2r or 3r, depending on the number of univariate wavelets, with r vanishing moments,
in the tensor product. In the remaining part of the paper, we skip the superscripts γ(1)...(7), which specify the
type of 3d-wavelet, in our notation. Instead, w.l.o.g. the following estimates assume only the minimal number
r of vanishing moments. Within the present work, we require the univariate wavelets to have compact support
and satisfy the common regularity assumption [34], i.e., a Bernstein inequality

‖γj,a‖W t∞ � 2( 3
2+t)j for t ∈ [0, s], (2.2)

with respect to the Sobolev space

W t
∞(Ω) := {u ∈ L∞(Ω) : ∂αu ∈ L∞(Ω) for |α| ≤ t},

defined on an open subset Ω of R
3. For convenience we assume r ≥ s+1. Here and in the following a � b means

that a ≤ Cb for some constant C which is independent of variables or parameters on which a, b may depend
on. Similarly a � b means that the quantities can be bounded by some multiple of each other. Furthemore, we
have used the standard short-hand notation for mixed partial derivatives

∂α :=
∂α1

∂xα1
1

∂α2

∂xα2
2

∂α3

∂xα3
3

,

with absolute value of the multi-index |α| := α1 +α2 +α3. The Bernstein inequality is typically satisfied e.g. for
univariate spline wavelets.

In order to obtain our basic estimates, we will frequently use the following propositions.

Proposition 2.1. Given a function f(x) with x ∈ R
3 and an isotropic 3d-wavelet γj,a with r ≥ s+1 vanishing

moments in the i’th direction. Suppose f belongs to W t
∞(supp γj,a) for 0 ≤ t ≤ r, then∣∣∣∣∣∣

∫
R3

f(x) γj,a(x)d3x

∣∣∣∣∣∣ � 2−(t+ 3
2 )j‖∂t

if‖L∞(supp γj,a)

≤ 2−(t+ 3
2 )j‖f‖W t∞(supp γj,a).

Proof. The proof is a direct consequence of the vanishing moment property and Taylor’s theorem using the
integral representation for the remainder of the Taylor series, see e.g. [6] for details. �
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Proposition 2.2. Suppose f has compact support Ω and belongs to W t∞(R3), with t ≥ 1, then∣∣∣∣∣∣∂t+1
i

∫
Ω

f(y)
|x − y|d

3y

∣∣∣∣∣∣ �
∥∥∂t

if
∥∥

L∞(Ω)

∫
Ω

1
|x − y|2 d3y. (2.3)

Proof. From Poisson’s equation and f ∈ W t∞(R3) it follows that in a distributional sense

∂t
if(x) = ∂t

iΔ

∫
Ω

f(y)
|x − y|d

3y = Δ∂t
i

∫
Ω

f(y)
|x − y|d

3y,

and therefore

∂t
i

∫
Ω

f(y)
|x − y|d

3y =
∫
Ω

∂t
if(y)

|x − y|d
3y.

Since ∂t
if ∈ L∞(Ω) the left side actually belongs to C1(R3) and we can differentiate once more according to

Lemma 4.1 in reference [20] to get the estimate (2.3). �

Proposition 2.3. Suppose f belongs to W s∞(Ω), with s ≥ 1, for a bounded open Lipschitz domain Ω with
possibly disconnected boundary ∂Ω. Let Ω furthermore be a quasi-convex set which means that each pair of
points x,y can be joined by a rectifiable path such that the length of the path is bounded by a constant multiple
of |x − y|. Then for x ∈ Ω, the t’th order derivatives of the potential for t ≤ s+ 1 satisfy the estimates∣∣∣∣∣∣∂t

i

∫
Ω

f(y)
|x − y|d

3y

∣∣∣∣∣∣ �
∥∥∂t−1

i f
∥∥

L∞(Ω)

∫
Ω

1
|x − y|2 d3y +

t−2∑
l=0

∥∥∂l
if
∥∥

L∞(Ω)

∫
∂Ω

1
|x − y|t−l

dsy. (2.4)

If x /∈ Ω the estimate is valid for t ≤ s.

Proof. For a Lipschitz domain Cs−1,1(Ω) = W s∞(Ω) [20] and therefore we can recursively calculate derivatives
under the integral sign, cf. [17], according to the formula

∂t−1
i

∫
Ω

f(y)
|x − y|d

3y = ∂t−1
i

∫
Ωx

f(y + x)
|y| d3y

=
∫
Ω

∂t−1
i f(y)
|x− y| d3y −

t−2∑
l=0

∫
∂Ω

∂lf(y)∂t−2−l
x

1
|x − y|eindsy,

for t ≤ s, where ei denotes the unit vector along the i’th coordinate axis and n the outward pointing normal
vector on the boundary. Using Lemma 4.1 in reference [20] this equation can be differentiated once more to yield
the estimate (2.4) for t ≤ s. Note that so far x ∈ Ω is not required. According to Lemma 4.2 in reference [20],
we can actually differentiate twice and obtain for x ∈ Ω the estimate∣∣∣∣∣∣∂2

i

∫
Ω

∂s−1
i f(y)
|x − y| d3y

∣∣∣∣∣∣ �
∫
Ω

1
|x − y|3

∣∣∂s−1
i f(x) − ∂s−1

i f(y)
∣∣ d3y +

∥∥∂s−1
i f

∥∥
L∞(Ω)

∫
∂Ω

1
|x − y|2 dsy.

Since ∂s−1
i f ∈ C0,1(Ω) and Ω is a quasi-convex domain, one gets for x,y ∈ Ω, cf. [22],∣∣∂s−1

i f(x) − ∂s−1
i f(y)

∣∣
|x − y| � ‖∂s

i f‖L∞(Ω) ,

from which (2.4) follows. �
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A basic prerequisite of adaptive wavelet algorithms is the s∗-compressibility of the Galerkin matrix obtained
from the discretization of the Fock operator (1.5) in the isotropic 3d-wavelet basis (2.1). Various equivalent
definitions of s∗-compressibility have been given in the literature, cf. [10,34,37], we adopted the definition from
reference [34]:

Definition 2.4. An infinite matrix B is called s∗-compressible if for each n ∈ N an approximate matrix B(n)

can be constructed, that has in each row and column at most O(2n) nonzero entries, which satisfies the spectral
norm estimate ‖B− B(n)‖ � 2−αn for any 0 < α < s∗.

In order to derive spectral norm estimates we use the following version of Schur’s lemma, cf. reference [33].

Lemma 2.5. Given a symmetric infinite Galerkin matrix B := {B(j,a),(l,b)}(j,a),(l,b)∈Λ with respect to a wavelet
basis with index set Λ. The spectral norm of the Galerkin matrix can be estimated according to

‖B‖ � sup
(j,a)∈Λ

∑
(l,b)∈Λ

2p(j−l)
∣∣B(j,a),(l,b)

∣∣ , (2.5)

for any p ∈ R.

The presence of nonlinear Hartree and exchange terms in the Fock operator (1.5) requires special considera-
tions concerning the regularity of the solutions. As already mentioned before, we consider an iterative solution
scheme for the Hartree-Fock equation. This means that in each iteration step a linear eigenvalue problem has to
be solved where the operator depends, however, on solutions of the previous iteration. Various iteration schemes
have been proposed in the quantum chemistry literature [8] but only for the level-shifting algorithm convergence
has been actually proven. The level-shifting algorithm follows the iterative scheme

· · · −→ {φ(i)
n }n=1,...,N/2 −→ h

(i)

shift := h(i) − bP(i) −→ {φ(i+1)
n }n=1,...,N/2 −→ · · · , (2.6)

where in step i, the eigenfunctions {φ(i)
n }n=1,...,N/2 which belong to the lowest N/2 eigenvalues of a shifted Fock

operator h
(i−1)

shift are selected according to the aufbau principle in order to construct a new shifted Fock operator
h
(i)

shift. Here the operator P(i) denotes an orthogonal projection on the space spanned by the eigenfunctions
{φ(i)

n }n=1,...,N/2. The convergence of this algorithm for a sufficiently large parameter b, to “self-consistent-field”
solutions of the Hartree-Fock equations (1.4) has been proven by Cancès and Le Bris [9]. In a previous paper [16],
we have studied the asymptotic behaviour of solutions within such an iteration scheme and of the final “self-
consistent-field” solutions of the Hartree-Fock equation. For the present work, we require all intermediate and
final solutions to be asymptotically smooth in a neighbourhood of a nucleus, i.e.,

|∂β
xφn(x)| � |x − Ak|1−|β|, for x �= Ak, and |β| ≥ 1. (2.7)

This property is an immediate consequence of the following theorem [16]:

Theorem 2.6. All intermediate iterative solutions {φ(i)
n }n=1,...,N/2 as well as the final self-consistent-field so-

lutions {φn}n=1,...,N/2 of the Hartree-Fock equation, obtained via the level-shifting algorithm, exhibit Taylor
asymptotics (polar coordinates) in a neighbourhood Ωk of any of the k = 1, . . . ,K nuclei, i.e.,

φn = ω(r)
l−1∑
j=0

cjn(ϕ, θ)rj + Φln,

with Φln ∈ Cm
B (Ωk) for l > m, provided that the initial guess {φ(0)

n }n=1,...,N/2 possesses this property. Here
ω ∈ C∞

0 (Ωk) denotes a cut-off function which is equal to 1 in a neighbourhood of the nucleus. Furthermore we
have φn ∈ S(R3 \ ∪K

k=1Ωk).
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A further consequence of this theorem is the asymptotic smoothness of the Hartree-potential in a neighbour-
hood of a nucleus, i.e., ∣∣∂β

xVH(x)
∣∣ � |x − Ak|3−|β| for x �= Ak and |β| ≥ 3,

which is an immediate consequence of the asymptotic expansion of the theorem, cf. [16] for further details.
The Hartree and Coulomb potentials of the nuclei can therefore be combined into the potential

V (x) = −
K∑

k=1

Zk

|x − Ak| + VH(x), (2.8)

which represents the electrostatic potential created by the averaged electron density and the nuclei. This com-
bined Coulomb potential satisfies the asymptotic smoothness condition

|∂β
xV (x)| � |x − Ak|−1−|β|, for x �= Ak, and all |β| ≥ 0, (2.9)

in a neighbourhood of a nucleus.
According to Theorem 2.6 it is save to assume that φn|R3\BR̃

∈ S(R3)|R3\BR̃
, where BR̃ denotes an open

ball of radius R̃ > max{|Ak|}k=1,K centered at the origin. Therefore it is reasonable to restrict the Galerkin
discretization to a ball BR of radius R which contains BR̃ and is sufficiently large such that contributions from
R

3 \BR can be neglected. On each wavelet level l ∈ N we define the set

Bl :=
{
b ∈ Z

3 : 2−lb ∈ BR

}
,

which contains the grid points inside the ball BR. For notational convenience let us assume R = O(1), i.e., on
the coarsest wavelet level #B0 = O(1).

2.3. s∗-compressibility versus best N -term approximation

Within this section, we want to summarize our results concerning the s∗-compressibility of the Galerkin
discretization of the Fock operator (1.5) and discuss the relation to previous work on best N -term approximation
of solutions of the Hartree-Fock equation. The Fock operator represents a bounded operator from H1(R3) →
H−1(R3). By a simple rescaling, the wavelet basis can be converted into a Riesz basis for H1(R3) and the
corresponding Galerkin matrix of the Fock operator becomes

h(j,a),(l,b) := 2−(j+l)

∫
R3

γj,a(x) (hγl,b) (x)d3x,

where {h(j,a),(l,b)}(j,a),(l,b)∈Λ is a bounded operator from �2(Λ) → �2(Λ).

Theorem 2.7. The infinite symmetric Galerkin matrix of the Fock operator (1.5) in a wavelet basis {γj,a}(j,a)∈Λ

with γj,a ∈W s
∞(R3) and r ≥ s+ 1 vanishing moments, which furthermore satisfies (2.2), can be split into three

parts with different s∗-compressibility:

(i) Under the additional assumption of a piecewise smooth wavelet basis, the kinetic energy term − 1
2Δ is

s∗-compressible with s∗ = min{ r+1
3 , ν−1

2 }, where ν denotes the Sobolev regularity, i.e., ν = supt{γj,a ∈
Ht(R3)}, of the wavelets;

(ii) the combined Coulomb potential (2.8), which satisfies the asymptotic smoothness condition (2.9), is s∗-
compressible with s∗ = (s+ 1)/3;

(iii) the nonlocal exchange operator (1.7) is s∗-compressible with s∗ = s/3 provided that the functions
{φi}i=1,...,N/2 are asymptotically smooth in a neighbourhood of a nucleus.

For an appropriately chosen wavelet basis, the Galerkin matrix of the Fock operator is therefore s∗-compressible
with s∗ = s/3.
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The s∗-compressibility of the Laplacian (i) has been already demonstrated by Stevenson [37]. As an additional
assumption, he required a piecewise smooth wavelet basis which turned out to be necessary in order to achieve
the optimal s∗-compressibility. In the following, we restrict ourselves to a discussion of the Coulomb potential
(2.8) and exchange operator (1.7) where piecewise smooth wavelets will not be assumed.

In order to obtain adaptive algorithms with optimal computational efficiency it is necessary to provide an
s∗-compressibility which is greater than the best N -term approximation rate of solutions of the Hartree-Fock
equation in the corresponding wavelet basis. The concept of best N -term approximation belongs to the realm
of nonlinear approximation theory, cf. reference [12] for further details. Loosely speaking we have to consider
the best possible approximation of a function f ∈ H1(Ω), for a bounded domain Ω, in the nonlinear subset ΣN

which consists of all possible linear combinations of at most N wavelets2, i.e.,

ΣN :=

⎧⎨
⎩

∑
(j,a)∈Δ

cj,a γj,a : Δ ⊂ Λ,#Δ ≤ N, cj,a ∈ R

⎫⎬
⎭ .

Here, the approximation error
σN (f) := inf

fN∈ΣN

‖f − fN‖H1

is given with respect to the norm of the Sobolev space H1(Ω). Best N -term approximation spaces Aα
τ (H1),

with 0 < α, can be defined according to

Aα
τ (H1) := {f ∈ H1(Ω) : |f |Aα

τ (H1) <∞}

with semi-norm

|f |Aα
τ (H1) :=

(∑
N∈N

(NασN (f))τ N−1

) 1
τ

.

It follows from the definition of the semi-norm that a convergence rate σN (f) ∼ N−α with respect to the number
of basis functions can be achieved. In fact this is the best error bound which can be obtained with N degrees of
freedom. The spaces Aα

τ (H1) have been identified with standard Besov spaces, i.e. Aα
τ (H1) ∼ B3α+1

τ (Lτ (Ω))
with 1

τ = 1
2 + α. An appropriate wavelet basis for the spaces Aα

τ (H1) must be sufficiently smooth and of order
d such that α < (d− 1)/3, cf. reference [12].

Our next theorem is an immediate consequence of Corollary 1 from reference [15] and Theorem 2.6.

Theorem 2.8. The solutions {φi}i=1,...,N/2 of the Hartree-Fock equation from Theorem 2.6 belong to the best
N -term approximation spaces Aα

τ (H1) for any α > 0 and 1
τ = α+ 1

2 .

Despite the presence of conical singularities at the nuclei, Theorem 2.8 shows that for an appropriate wavelet
basis, the solutions {φi}i=1,...,N/2 can be approximated with optimal convergence rate.

We are able now to compare the s∗-compressibility of discrete Fock operators with best N -term approximation
rates for solutions of the Hartree-Fock equation. For this we restrict ourselves to the common situation of spline
wavelets of order d = s + 1 and with r ≥ s + 1 vanishing moments. In this case, we can achieve α < s/3
which nicely fits together with s∗ = s/3 from Theorem 2.7. Finally, we want to mention that due to the
nonlinear character of the Hartree-Fock equation, the present considerations are necessary but not sufficient to
demonstrate that an adaptive wavelet algorithm with optimal computational complexity exists in the sense of
reference [10]. To show that such an algorithm is actually feasible will be the subject of our future research.

2No confusion should arise from our ambiguous notation in this paragraph where N not only denotes the number of electrons
but also the number of terms in a best N-term approximation.
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2.4. Compression scheme for combined nuclear Coulomb and Hartree potentials

Lemma 2.9. Let V be a combined Coulomb potential (2.8) which satisfies the asymptotic smoothness condi-
tion (2.9) in a neighbourhood of a nucleus located at Ak. The infinite symmetric Galerkin matrix V with entries

V(j,a),(l,b) := 2−(j+l)

∫
R3

γj,a(x)V (x)γl,b(x)d3x, (2.10)

is given in a wavelet basis {γj,a}(j,a)∈Λ with index set Λ which satisifies the requirements of Proposition 2.1.
For each q ∈ N, one can compress V into an infinite symmetric matrix V(q) where for l ≥ j one drops all

entries (2.10), and corresponding transposed entries, except of those for which one of the following criteria is
satisfied:

(i) l − j ≤ q;
(ii) dist(supp γl,b,Ak) ≤ η2−l+q and l ≤ jmax.

Here η ≥ 1 denotes a scaling parameter which is determined by the size of the mother wavelet. For s ≤ s̄ < s+1
the compression error with respect to the spectral norm can be estimated by

‖V − V(q)‖ � 2−s̄q,

and the number of nonzero entries per row and column of V(q) is bounded by some constant multiple of

jmax23q, with jmax =
1

s+1
s̄ − 1

q.

According to Definition 2.4, this means in particular that V is s∗-compressible with s∗ = (s+ 1)/3.
An optimal computational complexity can be achieved if one allows for a q dependend s̄. The benefit to cost

ratio s̄q/ (3q + log2(jmax)) is maximized by taking

αopt(q) = max
s≤s̄<s+1

{
s̄q

3q + log2 q − log2

(
s+1

s̄ − 1
)
}

(2.11)

which is a monotonously increasing function of q with values between

αopt(1) =
s

3 + log2 s
(for s > 1) and lim

q→∞αopt(q) =
s+ 1

3
·

Proof. For notational convenience, we introduce the residuum matrix

ΔV(q)
(j,a),(l,b) := V(j,a),(l,b) − V(q)

(j,a),(l,b)

with (j,a), (l,b) ∈ Λ. In the following, we assume w.l.o.g. the presence of a single nucleus located at the origin.
According to our criteria (i) and (ii), we have to consider for l > j + q the case dist(supp γj,a,0) > η2−j which,
using Proposition 2.2, contributes

∑
b∈Bl

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣ � 2−(l+j)2−( 3
2+s)l

∑
b∈Bl

‖V γj,a‖W s∞(suppγl,b)

� 2−(l+j)2−( 3
2+s)l23(l−j)2( 5

2 +s)j

� 2−(s− 1
2 )l2(s− 3

2 )j

� 2−(s−2)q2
1
2 j2−

3
2 l
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and the case dist(supp γj,a,0) ≤ η2−j , dist(supp γl,b,0) > η2−l+q, i.e., b belongs to the index set

Λja,l := {b ∈ Bl : supp γl,b ∩ supp γj,a �= ∅ and |b| ≥ η2q} ,

where we get from Proposition 2.2 the estimate

∑
b∈Λja,l

∣∣ΔV(j,a),(l,b)

∣∣ � 2−(l+j)2−( 3
2+s)l

∑
b∈Λja,l

‖V γj,a‖W s∞(supp γl,b)

� 2−(l+j)2−( 3
2+s)l

∑
b∈Λja,l

sup
|α1|+|α2|≤s

{
2( 3

2+|α1|)j|2−lb|−1−|α2|
}

� 2−(l+j)2−( 3
2+s)l sup

|α1|+|α2|≤s

⎧⎨
⎩2( 3

2+|α1|)j
∑

b∈Λja,l

|2−lb|−1−|α2|

⎫⎬
⎭

� 2−( 5
2+s)l2−j23l2

3
2 j2(s−2)(l−q)

= 2−(s−2)q2
1
2 j2−

3
2 l. (2.12)

In the third line of the estimate, we have used

∑
b∈Λja,l

|2−lb|−1−|α| � 23l

η2−j∫
η2−l+q

t1−|α|dt � 23l

⎧⎨
⎩

2(|α|−2)j for |α| < 2
l − j − q for |α| = 2

2(|α|−2)(l−q) for |α| > 2
.

It follows from the previous estimates that the contributions of l > j + q to the spectral norm, using Schur’s
lemma, are given by

sup
j≥0

⎧⎨
⎩
∑

l>j+q

2p(j−l)
∑
b∈Bl

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣
⎫⎬
⎭ � 2−(s−2)q sup

j≥0

⎧⎨
⎩
∑

l>j+q

2−(p+ 3
2 )l2(p+ 1

2 )j

⎫⎬
⎭

� 2−(s−2)q sup
j≥0

{
2−(p+ 3

2 )q2−j
}

for p > − 3
2

� 2−(s+p− 1
2 )q. (2.13)

For the transposed matrix elements, i.e., l < j − q, we have to consider the case dist(supp γj,a,0) > η2−j+q.
Because of #{γl,b : supp γj,a ∩ supp γl,b �= ∅} = O(1) it is sufficient to estimate on each level l only a single
entry using Proposition 2.2

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣ � 2−(l+j)2−( 3
2+s)j ‖V γl,b‖W s∞(supp γj,a)

� 2−(l+j)2−( 3
2+s)j sup

|α1|+|α2|≤s

{
2( 3

2+|α1|)l2(1+|α2|)(j−q)
}

� 2−(l+j)2−( 3
2+s)j2

3
2 l2(1+s)(j−q)

� 2−(s+1)q2−
3
2 j2

1
2 l. (2.14)
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l

1 2 3 4j

1

2

3

4

l

1 2 3 4j

1

2

3

4

)
3q

O(2

Figure 1. Nonzero entries of compressed parts of the Fock matrix. Galerkin discretization of
combined Coulomb and Hartree potential (left), and exchange operator (right). Light shaded
regions correspond to |l − j| ≤ q with q = 1 and dark shaded regions highlight adaptive
refinements near nuclei.

Alltogether the contribution of l < j − q to the spectral norm is

sup
j≥0

⎧⎨
⎩

∑
0≤l<j−q

2p(j−l)
∑
b∈Bl

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣
⎫⎬
⎭ � 2−(s+1)q sup

j≥0

⎧⎨
⎩

∑
0≤l<j−q

2−(p− 1
2 )l2(p− 3

2 )j

⎫⎬
⎭

� sup
j≥0

{
2−(s+1)q2(p− 3

2 )j for 1
2 < p ≤ 3

2

(j − q)2−(s−p+ 3
2 )q2−j for p ≤ 1

2

�
{

2−(s+1)q for 1
2 < p ≤ 3

2

2−(s−p+ 3
2 )q for p ≤ 1

2

. (2.15)

The adaptive refinement cannot be maintained up to arbitrarily fine levels while keeping in each row and
column the number of nonzero entries bounded on some absolute multiple of q23q, see e.g. Figure 1a. Therefore
it is necessary to introduce a finest wavelet level jmax beyond which adaptive refinements are not taken into
account. A comparison of (2.13) and (2.15) shows that we can restrict the following considerations to 1

2 < p ≤ 3
2 .

For columns of V with index j > jmax, we can easily estimate the contribution to the spectral norm using (2.12)
and (2.14) with q = 0 and the following estimate

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣ �
{

2
1
2 j2−

3
2 l for l > j + q

2−
3
2 j2

1
2 l for l < j − q

,
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where we assume #{b ∈ Bl : dist(supp γl,b,0) ≤ η2−l} = O(1). This yields the contributions

sup
j>jmax

⎧⎨
⎩
∑

l>j+q

2p(j−l)
∑
b∈Bl

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣
⎫⎬
⎭ � sup

j>jmax

∑
l>j+q

2p(j−l)2
1
2 j2−

3
2 l

� 2−(p+ 3
2 )q2−jmax for p > − 3

2 ,

and

sup
j>jmax

⎧⎨
⎩

∑
0≤l<j−q

2p(j−l)
∑
b∈Bl

∣∣∣ΔV(q)
(j,a),(l,b)

∣∣∣
⎫⎬
⎭ � sup

j>jmax

∑
0≤l<j−q

2p(j−l)2−
3
2 j2

1
2 l

� 2−( 3
2−p)jmax for 1

2 < p ≤ 3
2 , (2.16)

where it can be seen that the estimate (2.16) dominates and requires 1
2 < p < 3

2 to get it arbitrarily small. It is
convenient to define a parameter ε := 3

2 − p such that 0 < ε < 1. In order to get the number of nonzero entries
in each row and column bounded such that an overall accuracy

‖ΔV‖ � 2−(s+1−ε)q, for 0 < ε < 1 (2.17)

is achieved, we must require
(s+ 1 − ε) q = εjmax.

This means that the number of nonzero entries in each row and column is bounded on some absolute multiple
of

s+ 1 − ε

ε
q23q. (2.18)

It is easy to see that up to a constant (2.17) and (2.18) also applies for ε = 1. Altogether, this demonstrates the
s∗-compressibility of V for s∗ = (s+ 1)/3. Because for every 0 < α < (s+ 1)/3, cf. Definition 2.4, we can find
an s̄ := s+ 1 − ε ≥ s, with α < s̄/3 < (s+ 1)/3, such that the requirements of Definition 2.4 are satisfied.

Obviously, the number of nonzero entries in each row and column increases beyond all bounds for α →
(s+ 1)/3, i.e. s̄→ s+ 1. In order to study the relation between (2.17) and (2.18) more closely, we consider the
benefit to cost ratio

Rq(s̄) =

{
s̄q

3q + log2 q − log2

(
s+1

s̄ − 1
)
}
, for s ≤ s̄ < s+ 1,

depending on q ∈ N \ {0}. For each q ≥ 1 the benefit to cost ratio has a unique maximum αopt(q) := maxRq.
Depending on the wavelet regularity s there exists a q0 ∈ N such that for 1 ≤ q < q0 the maximum is at s̄ = s
with

αopt(q) =
sq

3q + log2 q + log2 s

and for q ≥ q0 it is the unique solution of

ln
1

s+1
s̄ − 1

=
1

s+1
s̄ − 1

− 3(ln 2)q − ln q + 1

with s ≤ s̄ < s + 1. The optimal benefit to cost ratio αopt is monotonously increasing with q and finally
approaches

lim
q→∞αopt(q) =

s+ 1
3

·
In Table 1 we have listed αopt for various values of q and different regularities s. �
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Table 1. Optimal benefit to cost ratio αopt, cf. (2.11), for various wavelet regularities s and
different values of the refinement paramter q, cf. conditions (i) and (ii) in Lemma 2.9.

q
s 1 2 5 10 100 ∞
1 0.33 0.36 0.44 0.51 0.63 0.67
3 0.65 0.72 0.88 1.01 1.27 1.33
5 0.94 1.07 1.33 1.52 1.90 2
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Figure 2. Possible arrangements of wavelets and nuclei which have been taken care of in the
proof of Lemma 2.10.

2.5. Compression scheme for the nonlocal exchange operator

In order to discuss the s∗-compressibility of the exchange operator (1.7) it is an essential requirement that
the eigenfunctions φi, i = 1, . . . , N/2, which belong to the N/2 lowest eigenvalues of the Fock operator are
asymptotically smooth away from the nuclei, i.e., |∂β

xφ(x)| � |x − Ak|1−|β| for x �= Ak, k = 1, . . . ,K and
|β| ≥ 1. The eigenfunctions introduce nondiagonal singularities into the kernel which compel rather tedious
estimates for different arrangement of wavelets in the neighbourhoods of nuclei. Various possible arrangements
are shown in Figure 2. To treat adaptivity as flexible as possible we have introduced three additional distance
parameters 0 ≤ q′, q̃, q̃′ ≤ q into our adaptive estimates. For further reference, we define distances dja,� between
supports of wavelets and the nuclei, i.e.

dja,� := dist(supp γj,a, {Ak}k=1,K)

and distances dja,lb between the supports of two wavelets, i.e.

dja,lb := dist(supp γj,a, supp γl,b).

Our main result for the s∗-compressibility of the exchange operator can be summarized in the following lemma.

Lemma 2.10. The infinite symmetric Galerkin matrix of the exchange operator (1.7) with entries

U(j,a),(l,b) := 2−(j+l)

∫
R3

γj,a(x) (Uγl,b) (x)d3x,
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in a wavelet basis {γj,a}(j,a)∈Λ with r ≥ s + 1 vanishing moments, which furthermore satisfies (2.2), is
s∗-compressible with s∗ = s/3.

This follows from the fact that for each q ∈ N we can compress U into a symmetric matrix U (q) with spectral
norm estimate

‖U − U (q)‖ � 2−(s−ε)q for any ε > 0,

where we drop all entries except of those with indices j, l ≤ jmax for which one of the following distance criteria
applies

• j + q < l, cf. case D in Figure 2.
(i) dlb,� ≤ η2−l+q and dja,� ≤ η2−j+q.

• j ≤ l ≤ j + q, cf. case C (a), D and E in Figure 2.
(i) dja,lb ≤ η2−l+q;
(ii) dlb,� ≤ η2−l+q and dja,� ≤ η2−j+q.

• j − q ≤ l < j, cf. case C (b), D and E in Figure 2.
(i) dja,lb ≤ η2−j+q;
(ii) dja,� ≤ η2−j+q and dlb,� ≤ η2−l+q.

• 0 ≤ l < j − q, cf. case D in Figure 2.
(i) dja,� ≤ η2−j+q and dlb,� ≤ η2−l+q.

The finest level jmax = cαq, with appropriate constant for any compression rate α with 0 < α < s∗, can be
chosen such that U (q) has in each row and column at most O(q23q) nonzero entries.

In the following we assume that a /∈ Bj if dja,� ≥ η, where η ≥ 1 denotes a scaling parameter which is
determined by the size of the mother wavelet. To simplify our notation, we consider in the following w.l.o.g. the
Galerkin discretization of the reduced exchange kernel

U(j,a),(l,b) := 2−(j+l)

∫
R3

∫
R3

γj,a(x)
φ(x)φ(y)
|x − y| γl,b(y)d3xd3y (2.19)

where the function φ is asymptotically smooth away from the nuclei.

2.6. Estimates for partial sums over rows of the exchange matrix

As a first step of the proof of Lemma 2.10, we estimate, for fixed row index (j,a) and fixed column level l, the
partial sums

∑
b∈Λja,l

|U(j,a),(l,b)| where index sets Λja,l are specified according to the different arrangements
depicted in Figure 2.

Case A.
For columns with dja,� ≥ η2−j+q̃, we consider the set

Λ
(a)
ja,l :=

{
b ∈ Bl : dja,lb ≥ η2−min{j,l}+q′

and dlb,� ≥ η2−l+q̃′}
, (2.20)

with N � q′, q̃, q̃′ ≤ q. In the following let us denote with �j,a := supp γj,a and �l,b := supp γl,b the supports
of the wavelets. The supports do not overlap, therefore Proposition 2.1 can be applied with respect to both
variables ∑

b∈Λ
(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )(j+l)

∑
b∈Λ

(a)
ja,l

∥∥∥∥∂r
x∂

r
y

φ(x)φ(y)
|x − y|

∥∥∥∥
L∞(�j,a×�l,b)

.
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The sum can be estimated according to

∑
b∈Λ

(a)
ja,l

∥∥∥∥∂r
x∂

r
y

φ(x)φ(y)
|x − y|

∥∥∥∥
L∞(�j,a×�l,b)

�
∑

b∈Λ
(a)
ja,l

sup
s1+s2=r
t1+t2=r

{
max

{
2(s1−1)(j−q̃), 1

}

×max
{
2(t1−1)(l−q̃′), 1

}∥∥|x − y|−1−s2−t2
∥∥

L∞(�j,a×�l,b)

}

� sup
s1+s2=r
t1+t2=r

⎧⎪⎨
⎪⎩max

{
2(s1−1)(j−q̃), 1

}
max

{
2(t1−1)(l−q̃′), 1

}

×23l

R∫
η2− min{j,l}+q′

u1−s2−t2du

⎫⎪⎬
⎪⎭

� 23l sup
s1+s2=r
t1+t2=r

{
max

{
2(s1−1)(j−q̃), 1

}
max

{
2(t1−1)(l−q̃′), 1

}

×max
{
2(s2+t2−2)(min{j,l}−q′), 1

}}
.

A further simplification is achieved using

max
{
2(s2+t2−2)(min{j,l}−q′), 1

}
� max

{
2(s2−1)(min{j,l}−q′), 1

}
max

{
2(t2−1)(min{j,l}−q′), 1

}
to get ∑

b∈Λ
(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−(r− 1

2 )l sup
s1+s2=r
t1+t2=r

{
max

{
2(s1−1)(j−q̃), 1

}
max

{
2(t1−1)(l−q̃′), 1

}

× max
{

2(s2−1)(min{j,l}−q′), 1
}

max
{
2(t2−1)(min{j,l}−q′), 1

}}
. (2.21)

From this estimate we can easily obtain some special cases which are required in the following.

(a1) For l > j + q, we have q′ = 0 in order to keep the number of nonzero entries per row and column within
the tolerated limit. Using l − q > j ≥ 0, we get from (2.21)

∑
b∈Λ

(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−(r− 1

2 )l2(r−1)j2(r−1)(l−q̃′)

� 2−(r−1)q̃′
2−

7
2 j2−

1
2 l; (2.22)

(a2) for j ≤ l ≤ j + q, adaptive refinement along the diagonal with q′ = q − l + j is possible. We can restrict
ourselves to the case q̃ = 0 and obtain from (2.21)

∑
b∈Λ

(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−(r− 1

2 )l2(r−1)(l−q̃′)2(r−1)j

� 2−(r−1)q̃′
2−

7
2 j2−

1
2 l; (2.23)
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(a3) for j − q ≤ l < j, adaptive refinement with q′ = q − j + l can be chosen. In the following (2.21) restricts
to the case q̃′ = 0 where we obtain

∑
b∈Λ

(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−(r− 1

2 )l2(r−1)(j−q̃)2(r−1)l

� 2−(r−1)q̃2−
7
2 j2−

1
2 l; (2.24)

(a4) for 0 ≤ l < j − q, we have q′ = 0 and (2.21) yields∑
b∈Λ

(a)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r−1)q̃2−
7
2 j2−

1
2 l. (2.25)

Case B.
For columns with dja,� ≤ η2−j+q̃ we consider the set

Λ
(b)
ja,l :=

{
b ∈ Bl : dja,lb ≥ η2−min{j,l}+q′

and dlb,� ≥ η2−l+q̃′}
. (2.26)

Using φ ∈ C0,1(R3) and Proposition 2.1, we obtain the estimate

∑
b∈Λ

(b)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−
7
2 j2−(r+ 5

2 )l
∑

b∈Λ
(b)
ja,l

∥∥∥∥∂1
x∂

r
y

φ(x)φ(y)
|x − y|

∥∥∥∥
L∞(�j,a×�l,b)

.

The sum can be further estimated∑
b∈Λ

(b)
ja,l

∥∥∥∥∂1
x∂

r
y

φ(x)φ(y)
|x − y|

∥∥∥∥
L∞(�j,a×�l,b)

�
∑

b∈Λ
(b)
ja,l

sup
s1+s2=r

{
max

{
2(s1−1)(l−q̃′), 1

}∥∥|x − y|−2−s2
∥∥

L∞(�j,a×�l,b)

}

� sup
s1+s2=r

⎧⎪⎨
⎪⎩max

{
2(s1−1)(l−q̃′), 1

}
23l

R∫
η2− min{j,l}+q′

u−s2du

⎫⎪⎬
⎪⎭

� 23l sup
s1+s2=r

{
max

{
2(s1−1)(l−q̃′), 1

}
max

{
2(s2−1)(min{j,l}−q′), 1

}}
,

which together with the prefactor yields the general estimate∑
b∈Λ

(b)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−
7
2 j2−(r−1

2 )l sup
s1+s2=r

{
max

{
2(s1−1)(l−q̃′), 1

}
max

{
2(s2−1)(min{j,l}−q′), 1

}}
. (2.27)

We can now specify some special cases which are required in the following.

(b1) For l > j + q, we have to take q′ = 0 in (2.27) to get∑
b∈Λ

(b)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r−1)q̃′
2−

7
2 j2−

1
2 l; (2.28)

(b2) for j ≤ l ≤ j + q adaptive refinement requires q′ = q − l + j and (2.27) yields∑
b∈Λ

(b)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r−1)q̃′
2−

7
2 j2−

1
2 l; (2.29)
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(b3) for 0 ≤ l < j we can restrict ourselves in (2.27) to the case q′ = q̃′ = q and obtain

∑
b∈Λ

(b)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.30)

Case C.
This special case only occurs for l > j + q̃′ or l < j − q̃. In the first case with l > j + q̃′ we take into account
columns with dja,� ≤ η2−j and the corresponding sets

Λ
(c)
ja,l :=

{
b ∈ Bl : dja,lb ≤ η2−j and dlb,� > η2−l+q̃′}

. (2.31)

In order to estimate matrix elements, we consider around each nucleus k ∈ {1, . . . ,K} with
dist{Ak, supp γj,a} < η2−j a ball Br(k) of radius r = η2−l+q′′

with q′′ ≤ q̃′. The union of these balls form
a Lipschitz domain Ωr with boundary ∂Ωr. Next we consider a ball BR with center in supp γl,b and radius
R = 5η2−j. We denote the boundary of the ball by ∂ΩR and consider now the Lipschitz domain Ω := BR \Ωr

with boundary ∂Ω = ∂ΩR ∪ ∂Ωr. Obviously, Ω is quasi-convex and Proposition 2.3 can be applied. By con-
struction we have

dist{∂Ωr, supp γl,b} ≥ η2−l+q̃′
and dist{∂ΩR, supp γl,b} ≥ η2−j .

Furthemore we can assume volΩr ∼ 2−3(l−q′′) and area∂Ωr ∼ 2−2(l−q′′). Let us first consider the domain Ωr

where we obtain using Proposition 2.3 the estimate
∣∣∣∣∣∣
∫
R3

∫
Ωr

γj,a(x)
φ(x)φ(y)
|x − y| γl,b(y)d3xd3y

∣∣∣∣∣∣ � 2−(r+ 3
2 )l

∥∥∥∥∥∥∂r
y

⎛
⎝φ(y)

∫
Ωr

φ(x)γj,a(x)
|x − y| d3x

⎞
⎠
∥∥∥∥∥∥

L∞(supp γl,b)

� 2−(r+ 3
2 )l sup

t1+t2=r

∥∥∥∥∥∥
∣∣∂t1

y φ(y)
∣∣ 2

3
2 j

∫
Ωr

|x − y|−1−t2d3x

∥∥∥∥∥∥
L∞(supp γl,b)

� 2−(r+ 3
2 )l sup

t1+t2=r

{
max

{
2(t1−1)(l−q̃′), 1

}
2

3
2 j2−3(l−q′′)2(t2+1)(l−q̃′)

}
� 2−(r+1)q̃′

23q′′
2

3
2 j2−

7
2 l. (2.32)

The enveloping domain Ω yields the estimate
∣∣∣∣∣∣
∫
R3

∫
Ω

γj,a(x)
φ(x)φ(y)
|x − y| γl,b(y)d3xd3y

∣∣∣∣∣∣ � 2−(s+ 5
2 )l

∥∥∥∥∥∥∂s+1
y

⎛
⎝φ(y)

∫
Ω

φ(x)γj,a(x)
|x − y| d3x

⎞
⎠
∥∥∥∥∥∥

L∞(supp γl,b)

� 2−(s+ 5
2 )l max

{
2s(l−q̃′)2−

1
2 j , 2(s−1)(l−q′′)2

1
2 j , 2( 1

2 +s)j , 2
3
2 j2(s−1)(l−q̃′)

}
� 2

1
2 j2−(s+ 5

2 )l max
{
2s(l−q̃′), 2(s−1)(l−q′′)

}
, (2.33)

where we have used for 0 ≤ t ≤ s+ 1∥∥∥∥∥∥∂t
y

∫
Ω

φ(x)γj,a(x)
|x− y| d3x

∥∥∥∥∥∥
L∞(suppγl,b)

� max
{
2

1
2 j2(t−2)(l−q′′), 2(t− 1

2 )j , 2
3
2 j2(t−2)(l−q̃′)

}
.
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The latter estimate is a consequence of Proposition 2.3 and the following volume and surface estimates∥∥∥∥∥∥
∫
Ω

1
|x − y|2 d3x

∥∥∥∥∥∥
L∞(supp γl,b)

� 2−j ,

∥∥∥∥∥∥
∫

∂Ωr

1
|x − y|2 dsx

∥∥∥∥∥∥
L∞(supp γl,b)

� 22(l−q̃′) area∂Ωr � 22(l−q̃′)2−2(l−q′′) � 1,

∥∥∥∥∥∥
∫

∂ΩR

1
|x − y|2 dsx

∥∥∥∥∥∥
L∞(supp γl,b)

� 22j area∂ΩR � 1.

It remains to determine the parameter q′′ in order to obtain balanced estimates (2.32) and (2.33). A com-
parison of the two estimates reveals that (2.33) dominates (2.32) for all values of q′′ ≤ q̃′ and therefore q′′ = q̃′

is the optimal choice. This can be seen from the following inequalities, for (s− 1)q′′ + l > sq̃′

3q′′ − (r + 1)q̃′ − l + j ≤ −(r − 1)q̃′ ≤ −sq̃′,
and for (s− 1)q′′ + l ≤ sq̃′

3q′′ − (r + 1)q̃′ + j ≤ q′′ − sq̃′ + j ≤ q′′ − (s− 1)q′′ − l + j ≤ −(s− 1)q′′,

where we assumed r ≥ s + 1. Using l > j + q̃′ and #Λ(c)
ja,l = O(23(l−j)), we obtain from (2.32) and (2.33) the

final estimate ∑
b∈Λ

(c)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−sq̃′
2−

7
2 j2−

1
2 l. (2.34)

In the second case with l < j − q̃, we take into account columns with dja,� ≥ η2−j+q̃ and the corresponding
sets

Λ
(c′)
ja,l :=

{
b ∈ Bl : dja,lb ≤ η2−l and dlb,� ≤ η2−l

}
. (2.35)

Following the same line of arguments as before and using #Λ(c′)
ja,l = O(1), we obtain the estimate∑

b∈Λ
(c)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−sq̃2−
7
2 j2−

1
2 l. (2.36)

Case D.
For columns with dja,� ≤ η2−j we consider the set

Λ
(d)
ja,l :=

{
b ∈ Bl : dlb,� ≤ η2−l+q̃′}

.

Let us assume w.l.o.g. that both wavelets have a common nearest nucleus. With this we obtain for l ≥ j
using Proposition 2.1 the estimate

∑
b∈Λ

(d)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−j2−
7
2 l

∑
b∈Λ

(d)
ja,l

∥∥∥∥∥∥∂y

⎛
⎝φ(y)

∫
R3

φ(x)γj,a(x)
|x − y| d3x

⎞
⎠
∥∥∥∥∥∥

L∞(�l,b)

� 23q̃′
2

1
2 j2−

7
2 l

η2−j∫
0

du

� 23q̃′
2−

1
2 j2−

7
2 l, (2.37)
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and the corresponding estimate for l < j yields∑
b∈Λ

(d)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 23q̃′
2−

7
2 j2−

1
2 l. (2.38)

Case E.
For l ≥ j we take into account columns with dja,� > η2−j and the corresponding sets

Λ
(e)
ja,l :=

{
b ∈ Bl : dja,lb ≤ η2−j

}
, (2.39)

where dlb,� ≥ η2−j for all b ∈ Λ
(e)
ja,l can be assumed.

Because of the absence of nuclei within the support of the wavelets, we can directly apply Proposition 2.2
and obtain the estimate∣∣∣∣∣∣

∫
R3

∫
R3

γj,a(x)
φ(x)φ(y)
|x − y| γl,b(y)d3xd3y

∣∣∣∣∣∣ � 2−(s+ 5
2 )l

∥∥∥∥∥∥∂s+1
y

⎛
⎝φ(y)

∫
R3

φ(x)γj,a(x)
|x − y| d3x

⎞
⎠
∥∥∥∥∥∥

L∞(supp γl,b)

� 2−(s+ 5
2 )l max

{
2(s− 1

2 )j , 2(s+ 1
2 )j
}

� 2−s(l−j)2
1
2 j2−

5
2 l,

where we have used for 0 < t ≤ s+ 1 the following estimate

∥∥∥∥∥∥∂t
y

∫
R3

φ(x)γj,a(x)
|x − y| d3x

∥∥∥∥∥∥
L∞(suppγl,b)

�
∥∥∂t−1

x (φγj,a)
∥∥

L∞(supp γj,a)

η2−j∫
0

du

� sup
t1+t2=t−1

{
max

{
2(t1−1)j , 1

}
2(t2+

1
2 )j
}

� 2(t− 1
2 )j .

Using #Λ(e)
ja,l = O(23(l−j)), we obtain for l ≥ j

∑
b∈Λ

(e)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−s(l−j)2−
7
2 j2−

1
2 l. (2.40)

Likewise for l < j, columns with dja,� > η2−l and sets

Λ
(e′)
ja,l :=

{
b ∈ Bl : dja,lb ≤ η2−l

}
(2.41)

are taken into account, where dlb,� ≥ η2−l for all b ∈ Λ
(e′)
ja,l can be assumed. From #Λ(e′)

ja,l = O(1), we obtain for
l < j the estimate ∑

b∈Λ
(e′)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−s(j−l)2−
7
2 j2−

1
2 l. (2.42)

Case F.
For columns with dja,� ≥ η2−j+q̃, we consider sets

Λ
(f)
ja,l :=

{
b ∈ Bl : dja,lb ≥ η2−min{j,l}+q′

and dlb,� ≤ η2−l+q̃′}
. (2.43)
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Using #Λ(f)
ja,l = O(23q̃′

), we obtain for l ≥ j the estimate

∑
b∈Λ

(f)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−

7
2 l23q̃′

∥∥∥∥∂r
x∂y

(
φ(x)φ(y)
|x − y|

)∥∥∥∥
L∞(supp γj,a×supp γl,b)

� 2−(r+ 5
2 )j2−

7
2 l23q̃′

sup
t1+t2=r

{
max

{
2(t1−1)(j−q̃), 1

}
2(t2+2)(j−q′)

}
� 2−

1
2 j2−

7
2 l23q̃′

max
{

2−(r−1)q̃2−2q′
2−j, 2−(r+2)q′}

, (2.44)

and for l < j the corresponding estimate

∑
b∈Λ

(f)
ja,l

∣∣U(j,a),(l,b)

∣∣ � 2−(r+ 5
2 )j2−

7
2 l23q̃′

∥∥∥∥∂r
x∂y

(
φ(x)φ(y)
|x − y|

)∥∥∥∥
L∞(suppγj,a×supp γl,b)

� 2−(r+ 5
2 )j2−

7
2 l23q̃′

sup
t1+t2=r

{
max

{
2(t1−1)(j−q̃), 1

}
2(t2+2)(l−q′)

}
� 2−(r+ 5

2 )j2−
7
2 l23q̃′

max
{
2(r−1)(j−q̃)22(l−q′), 2(r+2)(l−q′)

}
. (2.45)

2.7. Proof of Lemma 2.10

In the first part of the proof, we assume that the adaptive refinement scheme presented in Lemma 2.10
has been applied to arbitrarily fine levels, i.e., jmax = ∞. This is in conflict with our requirement that the
compressed matrix has at most O(q23q) nonzero entries in each row and column. The following result therefore
requires further improvement.

Proposition 2.11. The spectral norm of the residuum matrix, for jmax = ∞, with entries

ΔU (q)
(j,a),(l,b) := U(j,a),(l,b) − U (q)

(j,a),(l,b) (2.46)

is bounded by the estimate ∥∥∥{ΔU (q)
(j,a),(l,b)}(j,a),(l,b)∈Λ

∥∥∥ � 2−(s−ε)q, (2.47)

for any q ∈ N and ε > 0, where the wavelet basis satisfies (2.2) with r ≥ s+ 1 vanishing moments.

Proof. In order to estimate the error of the residuum matrix (2.46) in the spectral norm, we apply Schur’s lemma
for symmetric matrices, cf. Lemma 2.5, using the variant discussed in reference [33]. This enables a subdivision
into estimates for different blocks of the residuum matrix which can be derived successively. According to the
adaptive refinement scheme of Lemma 2.10, we first consider the case j + q < l. In this case nonzero entries in
a column of the residuum matrix are restricted to the index sets (2.20), (2.26), (2.31), (2.39) and (2.43). The
union of the first four index sets, with q̃′ = q and q′ = 0, is given by

Λ
(a)
ja,l ∪ Λ(b)

ja,l ∪ Λ(c)
ja,l ∪ Λ(e)

ja,l =
{
b ∈ Bl : dlb,� ≥ η2−l+q

}
,

which however require separate estimates.

Case A and B where (2.22) and (2.28) apply with q̃′ = q and q′ = 0

∑
b∈Λ

(a)
ja,l∪Λ

(b)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.48)
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Case C where (2.34) applies with q̃′ = q and q′ = 0

∑
b∈Λ

(c)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−sq2−
7
2 j2−

1
2 l. (2.49)

Case E where (2.40) applies with q′ = 0

∑
b∈Λ

(e)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−s(l−j)2−
7
2 j2−

1
2 l ≤ 2−sq2−

7
2 j2−

1
2 l. (2.50)

Case F refers to the index set (2.43) with q′ = q̃ = q̃′ = q, and estimate (2.44) yields

∑
b∈Λ

(f)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−
1
2 j2−

7
2 l23q max

{
2−(r+1)q2−j , 2−(r+2)q

}
. (2.51)

From Schur’s lemma together with the estimates (2.48)–(2.51) for r = s+ 1, we get the block estimate

sup
j≥0

∑
l>j+q

∑
b∈Bl

2p(j−l)
∣∣∣ΔU (q)

(j,a),(l,b)

∣∣∣ � sup
j≥0

∑
l>j+q

2−sq2(p− 7
2 )j2−(p+ 1

2 )l

� 2−(s+p+ 1
2 )q for p > −1

2
· (2.52)

On the next level of adaptivity additional diagonal refinement has been taken into account. For j ≤ l ≤ j+ q
nonzero entries in a column of the residuum matrix are restricted to the index sets (2.20), (2.26) and (2.43).

Case A and B apply with q̃ = 0, q̃′ = q and q′ = q − l+ j. The union of the index sets (2.20), (2.26) is given
by

Λ
(a)
ja,l ∪ Λ(b)

ja,l =
{
b ∈ Bl : dja,lb ≥ η2−l+q and dlb,� ≥ η2−l+q

}
,

for which (2.23) and (2.29) yield the estimate

∑
b∈Λ

(a)
ja,l∪Λ

(b)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.53)

Case F applies with q′ = q̃ = q̃′ = q and index set (2.43) for which (2.44) yields the estimate

∑
b∈Λ

(f)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
1
2 j2−

7
2 l. (2.54)

In both cases, the estimate is valid for r ≥ s+1. Using Schur’s lemma, (2.53) and (2.54), we obtain the block
estimate

sup
j≥0

∑
j≤l≤j+q

∑
b∈Bl

2p(j−l)
∣∣∣ΔU (q)

(j,a),(l,b)

∣∣∣ � sup
j≥0

∑
j≤l≤j+q

2−(r−1)q2(p− 7
2 )j2−(p+ 1

2 )l

� 2−(r−1)q for p > −1
2
· (2.55)

Correspondingly, for j − q ≤ l < j nonzero entries in a column of the residuum matrix are restricted to the
index sets (2.20), (2.26) and (2.43).
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Case A and F apply with q̃ = q, q̃′ = 0 and q′ = q− j+ l. The union of the index sets (2.20) and (2.43), with
dja,� ≥ η2−j+q, is given by

Λ
(a)
ja,l ∪ Λ(f)

ja,l =
{
b ∈ Bl : dja,lb ≥ η2−j+q

}
,

for which (2.24) and (2.45) yield the estimate

∑
b∈Λ

(a)
ja,l∪Λ

(f)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.56)

Case B applies with q′ = q̃ = q̃′ = q and index set (2.26) for which (2.30) yields the estimate

∑
b∈Λ

(b)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.57)

Again in both cases the estimate is valid for r ≥ s + 1. Using Schur’s lemma, (2.56) and (2.57), we obtain
the block estimate

sup
j≥0

∑
j−q≤l<j

∑
b∈Bl

2p(j−l)
∣∣∣ΔU (q)

(j,a),(l,b)

∣∣∣ � sup
j≥0

∑
j−q≤l≤j

2−(r−1)q2(p− 7
2 )j2−(p+ 1

2 )l

� 2−(r−p− 3
2 )q for p > −1

2
· (2.58)

In the last case 0 ≤ l < j − q, nonzero entries in a column of the residuum matrix are restricted to the index
sets (2.20), (2.35), (2.41), (2.43) and (2.26). The union of the first four index sets, with q̃ = q and q′ = q̃′ = 0,
is given by

Λ
(a)
ja,l ∪ Λ(c′)

ja,l ∪ Λ(e′)
ja,l ∪ Λ(f)

ja,l =
{
b ∈ Bl : dja,� ≥ η2−j+q

}
,

which however requires two separate estimates.

Case A and F where (2.25) and (2.45) apply with q̃ = q and q′ = q̃′ = 0

∑
b∈Λ

(a)
ja,l∪Λ

(f)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.59)

Case B refers to the index set (2.26) with q′ = q̃ = q̃′ = q and estimate (2.30) yields

∑
b∈Λ

(b)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(r−1)q2−
7
2 j2−

1
2 l. (2.60)

Case C and E where (2.36) and (2.42) apply with q̃ = q and q′ = q̃′ = 0

∑
b∈Λ

(c′)
ja,l∪Λ

(e′)
ja,l

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−sq2−
7
2 j2−

1
2 l. (2.61)

From Schur’s lemma and estimates (2.59)–(2.61) with r ≥ s+ 1, we get the block estimate

sup
j≥0

∑
0≤l<j−q

∑
b∈Bl

2p(j−l)
∣∣∣ΔU (q)

(j,a),(l,b)

∣∣∣ � sup
j≥0

∑
0≤l<j−q

2−sq2(p− 7
2 )j2−(p+ 1

2 )l

� 2−sq for − 1
2
< p ≤ 7

2
· (2.62)
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Eventually, we have to combine the block estimates to get an estimate for the spectral norm of the residuum
matrix. Let us consider the case r = s+ 1 where we use the block estimates (2.52), (2.55), (2.58) and (2.62). A
perfectly balanced estimate for the p dependent cases (2.52) and (2.58) demands

2−(s+p+ 1
2 )q ∼ 2−(s−p− 1

2 )q

which is satisfied for p = − 1
2 . Since the block estimates require − 1

2 < p ≤ 7
2 at best p = − 1

2 +ε for any 0 < ε ≤ 4
can be achieved. We can now apply Schur’s lemma to estimate the error of the residuum matrix (2.46) in the
spectral norm ∥∥∥{ΔU (q)

(j,a),(l,b)}(j,a),(l,b)∈Λ

∥∥∥ � sup
(j,a)∈Λ

∑
(l,b)∈Λ

2−( 1
2−ε)(j−l)

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−(s−ε)q,

from which (2.47) follows. �

It is obvious, cf. Figure 1, that we cannot maintain adaptive refinements for arbitrarily fine wavelet levels j, l
while preserving our bounds for the number of nonzero entries per row and column. Therefore a q dependent
maximum level jmax is required which provides a bound on the number of rows and columns containing nonzero
entries.

Corollary 2.12. The matrix {U (q)
(j,a),(l,b)}(j,a),(l,b)∈Λ can be further compressed by neglecting all matrix entries

with index j ≥ jmax or l ≥ jmax, at which jmax � s−ε
4−εq, with 0 < ε < 4, has been chosen so that the

estimate (2.47) remains valid.

Proof. Collecting all previous estimates for the Cases A to F, with q′ = q̃ = q̃′ = 0, together we obtain

∑
b∈Bl

∣∣∣ΔU (q)
(j,a),(l,b)

∣∣∣ � 2−
7
2 j2−

1
2 l, (2.63)

which yields

sup
j≥jmax

∑
0≤l

∑
b∈Bl

2p(j−l)
∣∣∣ΔU (q)

(j,a),(l,b)

∣∣∣ � 2(p− 7
2 )jmax , (2.64)

with − 1
2 < p < 7

2 . Like in the previous proposition, we take p = − 1
2 + ε for 0 < ε < 4 and demand

2−(4−ε)jmax ∼ 2−(s−ε)q,

in order to obtain a balanced estimate between (2.47) and (2.64). This can be achieved by requiring

jmax � s− ε

4 − ε
q. �

Proof of Lemma 2.10

Proof. The number of nonzero entries per row and column is bounded by a constant multiple of q23q � 2(3+ε)q

which must be compared with the spectral error (2.47) of the residuum matrix. For any 0 < α < s∗, we can
therefore choose an ε > 0 such that

α ≤ s− ε

3 + ε
< s∗,

and the lemma follows immediately from Definition 2.4. �
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