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FINITE ELEMENT APPROXIMATION OF FINITELY EXTENSIBLE
NONLINEAR ELASTIC DUMBBELL MODELS FOR DILUTE POLYMERS

John W. Barrett
1

and Endre Süli
2

Abstract. We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models
that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer
chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded
domain Ω ⊂ R

d, d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress
tensor appearing on the right-hand side in the momentum equation. The extra-stress tensor stems
from the random movement of the polymer chains and is defined through the associated probability
density function that satisfies a Fokker–Planck type parabolic equation, a crucial feature of which is the
presence of a centre-of-mass diffusion term. We require no structural assumptions on the drag term in the
Fokker–Planck equation; in particular, the drag term need not be corotational. We perform a rigorous
passage to the limit as first the spatial discretization parameter, and then the temporal discretization
parameter tend to zero, and show that a (sub)sequence of these finite element approximations converges
to a weak solution of this coupled Navier–Stokes–Fokker–Planck system. The passage to the limit is
performed under minimal regularity assumptions on the data: a square-integrable and divergence-free
initial velocity datum u0∼ for the Navier–Stokes equation and a nonnegative initial probability density
function ψ0 for the Fokker–Planck equation, which has finite relative entropy with respect to the
Maxwellian M .
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1. Introduction

This paper is concerned with the construction and convergence analysis of a finite element method for the
numerical approximation of weak solutions to a system of nonlinear partial differential equations that arises
from the kinetic theory of dilute polymer solutions. The mathematical model under consideration couples the
incompressible Navier–Stokes equations, with the divergence of the elastic extra-stress tensor appearing on its
right-hand side, to a high-dimensional Fokker–Planck equation with an unbounded drift term, whose transport
coefficients depend on the fluid velocity and whose solution is a probability density function featuring in the
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definition of the elastic extra stress tensor. The existence and exponential equilibration of global weak solutions
to the system was proved in two substantial recent papers, [7, 9], for both finitely extensible nonlinear bead-
spring chain type polymer models and Hookean type bead-spring chain models, using a delicate combination of
entropy estimates and weak compactness arguments applied to sequences of approximations that were generated
by a temporal semidiscretization of the system. Weak solutions to the Navier–Stokes–Fokker–Planck system,
whose existence was thus shown, were also shown to satisfy the natural energy inequality originating from the
formal balance law for the system. In this paper, we construct a fully-discrete numerical approximation of the
model and show that, as the spatial mesh size tends to zero, a subsequence of the sequence of numerical solutions
converges to a weak solution of the temporally semidiscrete scheme, a subsequence of whose solutions is, in turn,
known from [7] to converge to a weak solution of the coupled Navier–Stokes–Fokker–Planck system as the time
step tends to zero. Hence we deduce that a subsequence of the sequence of numerical approximations converges
to a weak solution of the problem. To the best of our knowledge, this is the first example of a general family
of fully-discrete, convergent numerical methods for the coupled Navier–Stokes–Fokker–Planck system. The key
contributions of the paper are the following: (1) the finite element method constructed here reproduces at the
discrete level the energy inequality satisfied by weak solutions of the Navier–Stokes–Fokker–Planck system; and
(2) convergence to weak solutions is established under minimal regularity assumptions on the data: a square-
integrable and divergence-free initial velocity datum for the Navier–Stokes equation and a nonnegative initial
probability density function for the Fokker–Planck equation, which has finite relative entropy with respect to
the Maxwellian of the model.

We shall now describe the Navier–Stokes–Fokker–Planck system under consideration, arising from the kinetic
theory of dilute polymer solutions. The solvent is an incompressible, viscous, isothermal Newtonian fluid confined
to a bounded open set Ω ⊂ R

d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω. For the sake of simplicity
of presentation we shall suppose that Ω has ‘solid boundary’ ∂Ω; the velocity field u∼ will then satisfy the no-slip
boundary condition u∼ = 0∼ on ∂Ω. The polymer chains, which are suspended in the solvent, are assumed not to
interact with each other. The conservation of momentum and mass equations for the solvent then have the form
of the incompressible Navier–Stokes equations in which the elastic extra-stress tensor τ≈ (i.e., the polymeric part
of the Cauchy stress tensor), appears as a source term:

Given T ∈ R>0, find u∼ : (x∼, t) ∈ Ω× [0, T ] �→ u∼(x∼, t) ∈ R
d and p : (x∼, t) ∈ Ω× (0, T ] �→ p(x∼, t) ∈ R such that

∂u
∼
∂t

+ (u
∼
· ∇
∼
x )u

∼
− ν Δx u

∼
+ ∇

∼
x p = f

∼
+ ∇

∼
x · τ

≈
in Ω × (0, T ], (1.1a)

∇
∼
x · u

∼
= 0 in Ω × (0, T ], (1.1b)

u
∼

= 0
∼

on ∂Ω × (0, T ], (1.1c)

u
∼
(x
∼
, 0) = u

∼
0(x

∼
) ∀x

∼
∈ Ω. (1.1d)

It is assumed that each of the equations above has been written in its nondimensional form; u∼ denotes a
nondimensional velocity, defined as the velocity field scaled by the characteristic flow speed U0; ν ∈ R>0 is the
reciprocal of the Reynolds number, i.e. the ratio of the kinematic viscosity coefficient of the solvent and L0U0,
where L0 is a characteristic length-scale of the flow; p is the nondimensional pressure and f is the nondimensional
density of body forces.

In a bead-spring chain model, consisting of K+1 beads coupled with K elastic springs to represent a polymer
chain, the extra-stress tensor τ≈ is defined by the Kramers expression as a weighted average of ψ, the probability
density function of the (random) conformation vector q

∼
:= (q

∼
T
1 , . . . , q∼

T
K)T ∈ R

Kd of the chain (cf. (1.7) below,
in the case of K = 1), with q

∼i
representing the d-component conformation/orientation vector of the ith spring.

The Kolmogorov equation satisfied by ψ is a second-order parabolic equation, the Fokker–Planck equation,
whose transport coefficients depend on the velocity field u∼. The domain D of admissible conformation vectors
D ⊂ R

Kd is a K-fold Cartesian product D1 × · · · ×DK of balanced convex open sets Di ⊂ R
d, i = 1, . . . ,K;

the term balanced means that q
∼i

∈ Di if, and only if, −q
∼i

∈ Di. Hence, in particular, 0∼ ∈ Di, i = 1, . . . ,K.



FINITE ELEMENT APPROXIMATION OF FENE-TYPE KINETIC POLYMER MODELS 951

Typically Di is the whole of R
d or a bounded open d-dimensional ball centred at the origin 0∼ ∈ R

d for each
i = 1, . . . ,K. When K = 1, the model is referred to as the dumbbell model.

Henceforth we shall confine ourselves to the case of K = 1 – the dumbbell model; then, D = D1, and we
shall simply write D instead of D1. Concerning extensions to the case of K ≥ 1, the reader is referred to the
concluding remarks in Section 5.

Let O ⊂ [0,∞) denote the image ofD under the mapping q
∼
∈ D �→ 1

2 |q∼|
2, and consider the spring potential U ∈

C2(O; R≥0). Clearly, 0 ∈ O. We shall suppose that U(0) = 0 and that U is monotonic increasing and unbounded
on O. The elastic spring-force F∼ : D ⊆ R

d → R
d of the spring is defined by

F∼ (q
∼
) = U ′(

1
2
|q
∼
|2) q

∼
. (1.2)

Remark 1.1. In the Hookean dumbbell model the spring force is defined by F∼ (q
∼
) = q

∼
, with q

∼
∈ D = R

d,
corresponding to U(s) = s, s ∈ O = [0,∞). This model is physically unrealistic as it admits an arbitrarily large
extension.

We shall therefore assume in what follows that D is a bounded open ball, centred at the origin 0∼ ∈ R
d, with

boundary ∂D. We shall further suppose that there exist constants cj > 0, j = 1, 2, 3, 4, and γ > 1 such that the
(normalized) Maxwellian M , defined by

M(q
∼
) =

1
Z e−U( 1

2 |q
∼
|2)
, Z :=

∫
D

e−U( 1
2 |q∼|2) dq

∼
, (1.3)

and the associated spring potential U satisfy

c1 [dist(q
∼
, ∂D)]γ ≤M(q

∼
) ≤ c2 [dist(q

∼
, ∂D)]γ ∀q

∼
∈ D, (1.4a)

c3 ≤ [dist(q
∼
, ∂D)]U ′(

1
2
|q
∼
|2) ≤ c4 ∀q

∼
∈ D. (1.4b)

Observe that
M(q

∼
)∇∼ q [M(q

∼
)]−1 = −[M(q

∼
)]−1 ∇∼ qM(q

∼
) = ∇∼ q U(

1
2
|q
∼
|2) = U ′(

1
2
|q
∼
|2) q

∼
. (1.5)

Since [U(1
2 |q∼|

2)]2 = (− logM(q
∼
) + Const.)2, it follows from (1.4a), (1.4b) that (if γ > 1, as has been assumed

here,) ∫
D

[
1 + [U(

1
2
|q
∼
|2)]2 + [U ′(

1
2
|q
∼
|2)]2

]
M(q

∼
) dq

∼
<∞. (1.6)

Remark 1.2. In the FENE (finitely extensible nonlinear elastic) dumbbell model the spring force is given
by F∼ (q

∼
) = (1 − |q

∼
|2/b)−1 q

∼
, q

∼
∈ D = B(0∼, b

1
2 ), corresponding to U(s) = − b

2 log
(
1 − 2s

b

)
, s ∈ O = [0, b2 ).

Here B(0∼, b
1
2 ) is a bounded open ball in R

d centred at the origin 0∼ ∈ R
d and of fixed radius b

1
2 , with b > 0.

Direct calculations show that the Maxwellian M and the elastic potential U of the FENE model satisfy the
conditions (1.4a), (1.4b) with γ := b

2 provided that b > 2. Thus, (1.6) also holds for b > 2.

The governing equations of the general FENE-type dumbbell model with centre-of-mass diffusion are (1.1a)–
(1.1d), where the extra-stress tensor τ≈, depending on the probability density function ψ, is defined by the
Kramers expression:

τ≈(ψ) = k
(
C≈ (ψ)

)
− k ρ(ψ) I≈. (1.7)

Here the dimensionless constant k > 0 is a constant multiple of the product of the Boltzmann constant kB and
the absolute temperature T, I≈ is the unit d× d tensor, and

C≈ (ψ)(x∼, t) =
∫
D

ψ(x∼, q∼, t) q∼ q∼
T U ′

(
1
2
|q
∼
|2
)

dq
∼
, and ρ(ψ)(x∼, t) =

∫
D

ψ(x∼, q∼, t) dq
∼
, (1.8)
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where ρ(ψ)(x∼, t) is the density of polymer chains located at x∼ at time t. The probability density function ψ is a
solution of the Fokker–Planck equation

∂ψ

∂t
+ (u∼ · ∇∼ x )ψ + ∇∼ q ·

(
σ≈(u∼) q

∼
ψ
)

= εΔx ψ +
1

2λ
∇∼ q ·

(
M ∇∼ q

(
ψ

M

))
in Ω ×D × (0, T ], (1.9)

with σ≈(v∼) ≡ ∇≈ x v∼, where (∇≈ x v∼)(x∼, t) ∈ R
d×d and {∇≈ x v∼}ij = ∂vi

∂xj
. In (1.9), ε > 0 is the centre-of-mass

diffusion coefficient defined as ε := (0/L0)2/(8λ) with 0 :=
√
kBT/H signifying the characteristic microscopic

length-scale and λ := (ζ/4H)(U0/L0), where ζ > 0 is a friction coefficient and H > 0 is a spring-constant. The
dimensionless parameter λ ∈ R>0, called the Weissenberg number (and usually denoted by Wi), characterizes
the elastic relaxation property of the fluid.

We impose the following boundary and initial conditions on ψ:

M

[
1

2λ
∇
∼
q

(
ψ

M

)
− σ

≈
(u
∼
) q

∼

(
ψ

M

)]
·
q
∼
|q
∼
| = 0 on Ω × ∂D × (0, T ], (1.10a)

ε∇
∼
x ψ · n

∼
= 0 on ∂Ω ×D × (0, T ], (1.10b)

ψ(·, ·, 0) = ψ0(·, ·) ≥ 0 on Ω ×D, (1.10c)

where q
∼

is normal to ∂D, as D is a bounded ball centred at the origin in R
d, and n∼ is normal to ∂Ω. The initial

condition ψ0 is nonnegative, defined on Ω × D, with
∫
D ψ0(x∼, q∼) dq

∼
= 1 for a.e. x∼ ∈ Ω, and assumed to have

finite relative entropy with respect to the Maxwellian M ; i.e.
∫
Ω×D ψ0(x∼, q∼) log(ψ0(x∼, q∼)/M(q

∼
)) dq

∼
dx∼ <∞. The

boundary and initial conditions for ψ have been chosen so as to ensure that∫
D

ψ(x∼, q∼, t) dq
∼

=
∫
D

ψ(x∼, q∼, 0) dq
∼

= 1 ∀(x∼, t) ∈ Ω × (0, T ]. (1.11)

Remark 1.3. The collection of equations and structural hypotheses ((1.1a)–(1.1d))–((1.10a)–(1.10c)) will be
referred to throughout the paper as model (P), or as the general FENE-type dumbbell model with centre-of-mass
diffusion.

A noteworthy feature of equation (1.9) in the model (P) compared to classical Fokker–Planck equations for
dumbbell models in the literature is the presence of the x∼-dissipative centre-of-mass diffusion term εΔxψ on the
right-hand side of the Fokker–Planck equation (1.9). We refer to Barrett and Süli [3] for the derivation of (1.9);
see also the article by Schieber [28] concerning generalized dumbbell models with centre-of-mass diffusion, and
the recent paper of Degond and Liu [14] for a careful justification of the presence of the centre-of-mass diffusion
term through asymptotic analysis. In standard derivations of bead-spring models the centre-of-mass diffusion
term is routinely omitted on the grounds that it is several orders of magnitude smaller than the other terms in the
equation. Indeed, when the characteristic macroscopic length-scale L0 ≈ 1, (for example, L0 = diam(Ω)), Bhave
et al. [10] estimate the ratio 20/L

2
0 to be in the range of about 10−9 to 10−7. However, the omission of the term

εΔxψ from (1.9) in the case of a heterogeneous solvent velocity u∼(x∼, t) is a mathematically counterproductive
model reduction. When εΔxψ is absent, (1.9) becomes a degenerate parabolic equation exhibiting hyperbolic
behaviour with respect to (x∼, t). Since the study of weak solutions to the coupled problem requires one to work
with velocity fields u∼ that have very limited Sobolev regularity (typically u∼ ∈ L∞(0, T ;L∼

2(Ω))∩L2(0, T ;H∼
1
0(Ω))),

one is then forced into the technically unpleasant framework of hyperbolically degenerate parabolic equations
with rough transport coefficients (cf. Ambrosio [1] and DiPerna and Lions [15]). The resulting difficulties are
further exacerbated by the fact that a typical spring force F∼ (q

∼
) for a finitely extensible model (such as FENE)

explodes as q
∼

approaches ∂D; see Remark 1.2 above. For these reasons, here we shall retain the centre-of-mass
diffusion term in (1.9).

Lions and Masmoudi [24] proved the global existence of weak solutions for the simplified corotational FENE
dumbbell model, i.e. with σ(u∼) = ∇≈ x u∼ replaced by its skew-symmetric part 1

2 (∇≈ x u∼ − (∇≈ x u)T), and with
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ε = 0; see also the work of Masmoudi [25]. Under very general assumptions on the finite-dimensional spaces
used for the purpose of spatial discretization, including, in particular, classical conforming finite element spaces
and spectral Galerkin subspaces, Barrett and Süli [5] showed the convergence of a (sub)sequence of numerical
approximations to a weak solution of the coupled Navier–Stokes–Fokker–Planck system (P), for a large class of
unbounded spring potentials, including the FENE potential, in the case of the simplified corotational model.
Recently, Masmoudi [26] has extended the analysis of Lions and Masmoudi [24] to the noncorotational case. For
a fuller literature survey on the mathematical analysis of FENE-type dumbbell models we refer the reader to
Barrett and Süli [7]. In the rest of this section we concentrate on those references that are relevant to the finite
element approximation developed and analyzed in this paper.

In Barrett and Süli [4] we showed the existence of global-in-time weak solutions to the general class of
noncorotational FENE type dumbbell models (including the standard FENE dumbbell model) with centre-of-
mass diffusion and microscopic cut-off (cf. (1.13) and (1.14) below) in the drag term

∇∼ q · (σ≈(u∼) q
∼
ψ) = ∇∼ q ·

[
σ≈(u∼) q

∼
M

(
ψ

M

)]
· (1.12)

We observe that if ψ/M is bounded above then, for L ∈ R>0 sufficiently large, the drag term (1.12) is equal to

∇∼ q ·
[
σ≈(u∼) q

∼
M βL

(
ψ

M

)]
, (1.13)

where βL ∈ C(R) is a cut-off function defined as

βL(s) := min(s, L). (1.14)

It then follows that, for L� 1, any solution ψ of (1.9), such that ψ/M is bounded above, also satisfies

∂ψ

∂t
+ (u

∼
· ∇

∼
x )ψ + ∇

∼
q ·
(
σ
≈
(u
∼
) q

∼
M βL

(
ψ

M

))
= εΔx ψ +

1
2λ

∇
∼
q ·
(
M ∇

∼
q

(
ψ

M

))
in Ω ×D × (0, T ],

(1.15)

and the following boundary and initial conditions:

M

[
1

2λ
∇
∼
q

(
ψ

M

)
− σ

≈
(u
∼
) q

∼
βL
(
ψ

M

)]
·
q
∼
|q
∼
| = 0 on Ω × ∂D × (0, T ], (1.16a)

ε∇
∼
x ψ · n

∼
= 0 on ∂Ω ×D × (0, T ], (1.16b)

ψ(·, ·, 0) = M(·)βL(ψ0(·, ·)/M(·)) ≥ 0 on Ω ×D. (1.16c)

Clearly, if there exists L > 0 such that 0 ≤ ψ0 ≤ LM , then M βL(ψ0/M) = ψ0. Henceforth L > 1 is assumed.

Remark 1.4. The coupled problem (1.1a)–(1.1d), (1.7), (1.8), (1.15), (1.16a)–(1.16c) will be referred to as
model (PL), or as the general FENE-type dumbbell model with centre-of-mass diffusion and microscopic cut-off,
with cut-off parameter L > 1.

In order to highlight the dependence on L, in subsequent sections the solution to (1.15), (1.10a)–(1.10c)
will be labelled ψL, and we work with the variable ψ̂L := ψL/M . Due to the coupling of (1.15) to (1.1a)–
(1.1d) through (1.7), the velocity and the pressure will also depend on L and we shall therefore denote them
in subsequent sections by u∼L and pL. As has been already emphasized earlier, the centre-of-mass diffusion
coefficient ε > 0 is a physical parameter and is regarded as being fixed, so we do not highlight its presence in
the model through our notation.
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Barrett and Süli [8] constructed a Galerkin finite element approximation, and proved (sub)sequence conver-
gence, to a weak solution of a system similar to (PL), where ψ̂L in the convective term, in addition to the
drag term, is replaced by βL(ψ̂L). Finally, Barrett and Süli proved in [7,9] the existence and exponential equili-
bration of global-in-time weak solutions to Navier–Stokes–Fokker–Planck systems for general classes of finitely
extensible nonlinear elastic and Hookean-type bead-spring chains models.

After this brief literature survey, we now turn our attention to the description of the formal energy bounds
on which the constructions of the temporally semidiscrete and fully-discrete approximations are based.

2. Formal energy bounds for (P) and (PL,δ)

In this section we identify formally the energy structure for (P), and related regularized models. Before doing
so, we note that the notation | · | will be used to signify one of the following. When applied to a real number x,
|x| will denote the absolute value of the number x; when applied to a vector v∼, |v∼| will stand for the Euclidean
norm of the vector v∼; and, when applied to a square matrix A, |A| will signify the Frobenius norm, [tr(ATA)]

1
2 ,

of the matrix A, where, for a square matrix B, tr(B) denotes the trace of B.
Multiplying (1.1a) by u∼, integrating over Ω, and noting (1.1b), (1.1c) yields that

1
2

d
dt

[∫
Ω

|u
∼
|2 dx

∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
|2 dx

∼
−
∫
Ω

f
∼
· u

∼
dx

∼
= −

∫
Ω

τ
≈
(M ψ̂) : ∇

≈
x u

∼
dx

∼

= −k
∫
Ω

C
≈

(M ψ̂) : ∇
≈
x u

∼
dx

∼
, (2.1)

where ψ̂ := ψ/M . Let F(s) := (ln s − 1) s + 1 for s > 0, with F(0) := 1. Multiplying the Fokker–Planck
equation (1.9) by F ′(ψ̂) ≡ ln ψ̂, on assuming that ψ̂ > 0, integrating over Ω ×D and noting (1.10a), (1.10b)
and (1.1b), (1.1c) yields that

d
dt

[∫
Ω×D

M F(ψ̂) dq
∼

dx
∼

]
+

1
2λ

∫
Ω×D

M ∇
∼
q ψ̂ · ∇

∼
q [F ′(ψ̂)] dq

∼
dx

∼

+ ε

∫
Ω×D

M ∇
∼
x ψ̂ · ∇

∼
x [F ′(ψ̂)] dq

∼
dx

∼
=
∫
Ω×D

M ψ̂ [(∇
≈
x u

∼
) q

∼
] · ∇

∼
q [F ′(ψ̂)] dq

∼
dx

∼
. (2.2)

It follows, on noting that F ′′(s) = s−1 > 0 for s > 0 and hence that ψ̂∇∼ q [F ′(ψ̂)] = ∇∼ q ψ̂ , (1.5), (1.1b) and
M = 0 on ∂D that∫

Ω×D
M ψ̂ [(∇

≈
x u

∼
) q

∼
] · ∇

∼
q [F ′(ψ̂)] dq

∼
dx

∼
=
∫
Ω×D

M [(∇
≈
x u

∼
) q

∼
] · ∇

∼
q ψ̂ dq

∼
dx

∼

=
∫
Ω×D

M U ′(
1
2
|q
∼
|2) q

∼
· [(∇

≈
x u

∼
) q

∼
] ψ̂ dq

∼
dx

∼

=
∫
Ω

C
≈

(M ψ̂) : ∇
≈
x u

∼
dx

∼
, (2.3)

on recalling (1.8). Combining (2.1)–(2.3), we obtain the following energy law for (P):

d
dt

[
1
2

∫
Ω

|u
∼
|2 dx

∼
+ k

∫
Ω×D

M F(ψ̂) dq
∼

dx
∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
|2 dx

∼
+ k ε

∫
Ω×D

M ψ̂ |∇
∼
x [F ′(ψ̂)] |2 dq

∼
dx

∼

+
k

2λ

∫
Ω×D

M ψ̂ |∇
∼
q [F ′(ψ̂)]|2 dq

∼
dx

∼
=
∫
Ω

f
∼
· u

∼
dx

∼
. (2.4)
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To make the above rigorous, and for computational purposes, we replace the convex function F ∈ C(R≥0)∩
C∞(R>0) by its convex regularization FL

δ ∈ C2,1(R) defined, for any δ ∈ (0, 1) and L > 1, as follows:

FL
δ (s) :=

⎧⎪⎨⎪⎩
s2−δ2

2 δ + (ln δ − 1) s+ 1 s ≤ δ,

F(s) ≡ (ln s− 1) s+ 1 δ ≤ s ≤ L,
s2−L2

2L + (lnL− 1) s+ 1 L ≤ s.

(2.5)

Hence, we have that

[FL
δ ]′(s) =

⎧⎨⎩
s
δ + ln δ − 1 s ≤ δ,

ln s δ ≤ s ≤ L,
s
L + lnL− 1 L ≤ s,

and [FL
δ ]′′(s) =

⎧⎨⎩
δ−1 s ≤ δ,

s−1 δ ≤ s ≤ L,

L−1 L ≤ s.

(2.6)

In addition, we introduce

βLδ (s) := [[FL
δ ]′′(s)]−1 =

⎧⎨⎩
δ s ≤ δ,

s δ ≤ s ≤ L,

L L ≤ s.

(2.7)

It follows from (2.7), for any sufficiently smooth ϕ̂, that

βLδ (ϕ̂)∇
∼
x ([FL

δ ]′(ϕ̂) ) = ∇
∼
x ϕ̂ and βLδ (ϕ̂)∇

∼
q ([FL

δ ]′(ϕ̂) ) = ∇
∼
q ϕ̂. (2.8)

Let {u∼L,δ, ψ̂L,δ} solve problem (PL,δ), which is a regularization of the problem (P), similar to (PL), where
βL(·) in (1.15) and (1.16a) is replaced by βLδ (·). Multiplying the Fokker–Planck equation in (PL,δ) by [FL

δ ]′(ψ̂L,δ),
integrating over Ω ×D, noting the boundary conditions and (2.8) yields, similarly to (2.2) and (2.3), that

d
dt

[∫
Ω×D

M FL
δ (ψ̂L,δ) dq

∼
dx

∼

]
+

1
2λ

∫
Ω×D

M ∇
∼
q ψ̂L,δ · ∇

∼
q

[
[FL
δ ]′(ψ̂L,δ)

]
dq

∼
dx

∼

+ ε

∫
Ω×D

M ∇
∼
x ψ̂L,δ · ∇

∼
x

[
[FL
δ ]′(ψ̂L,δ)

]
dq

∼
dx

∼
=
∫
Ω

C
≈

(M ψ̂L,δ) : ∇
≈
x u

∼
L,δ dx

∼
. (2.9)

Combining (2.9) and the (PL,δ) version of (2.1), we obtain the following energy law for (PL,δ), a regularized
analogue of (2.4):

d
dt

[
1
2

∫
Ω

|u
∼
L,δ|2 dx

∼
+ k

∫
Ω×D

M FL
δ (ψ̂L,δ) dq

∼
dx

∼

]
+ ν

∫
Ω

|∇
≈
x u

∼
L,δ|2 dx

∼

+ k ε

∫
Ω×D

M βLδ (ψ̂L,δ) |∇
∼
x

[
[FL
δ ]′(ψ̂L,δ)

]
|2 dq

∼
dx

∼

+
k

2λ

∫
Ω×D

M βLδ (ψ̂L,δ) |∇
∼
q

[
[FL
δ ]′(ψ̂L,δ)

]
|2 dq

∼
dx

∼
=
∫
Ω

f
∼
· u

∼
L,δ dx

∼
. (2.10)

On noting that [FL
δ ]′′ ≥ L−1, and

min{FL
δ (s), s [FL

δ ]′(s)} ≥
{

s2

2 δ if s ≤ 0,
s2

4L − C(L) if s ≥ 0,
(2.11)

one deduces from (2.10) that

sup
t∈(0,T )

[∫
Ω

|u
∼
L,δ|2 dx

∼

]
+ ν

∫
ΩT

|∇
≈
x u

∼
L,δ|2 dx

∼
dt+ δ−1 sup

t∈(0,T )

[∫
Ω×D

M |[ψ̂L,δ]−|2 dq
∼

dx
∼

]
≤ C(L). (2.12)
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In addition, one can show that

sup
t∈(0,T )

[∫
Ω×D

M |ψ̂L,δ|2 dq
∼

dx
∼

]
+

1
λ

∫ T

0

∫
Ω×D

M
∣∣∣∇
∼
q ψ̂L,δ

∣∣∣2 dq
∼

dx
∼

dt

+ ε

∫ T

0

∫
Ω×D

M
∣∣∣∇
∼
x ψ̂L,δ

∣∣∣2 dq
∼

dx
∼

dt+ sup
t∈(0,T )

∫
Ω

|C
≈

(M ψ̂L,δ)|2 dx
∼
≤ C(L, T ). (2.13)

The above formal bounds can be made rigorous and the existence of a global-in-time weak solution {u∼L,δ, ψ̂L,δ}
to (PL,δ) can be established, see [4]. Moreover, one can take the limit δ → 0+ in problem (PL,δ) to establish
the existence of a global-in-time weak solution {u∼L, ψ̂L} to problem (PL) with ψ̂L ≥ 0 a.e. in Ω ×D × (0, T ).
Once again, see [4].

The aim of this paper is to construct a finite element approximation, (PΔt,hL,δ ), of problem (PL,δ), which mimics
the energy law (2.10) at a discrete level, and to show that a (sub)sequence of this approximation converges to
a weak solution of (PΔtL ), as the spatial discretization parameter h, as well as the regularization parameter δ,
tend to zero. Here (PΔtL ) is a time discretization of (PL). Barrett and Süli [7] showed that for a specific time
discretization (PΔtL ) a (sub)sequence of this approximation converges to a weak solution of (P), as the cut-off
parameter L tends to infinity with the time discretization parameter Δt = o(L−1).

The outline of this paper is as follows. In the next section, we introduce the necessary function spaces. In
addition, we introduce the particular time discretization, (PΔtL ), of (PL) and state the relevant convergence
results from Barrett and Süli [7]. In Section 4, we introduce our finite element approximation, (PΔt,hL,δ ), of
problem (PL,δ) and show that a (sub)sequence of this approximation converges to a weak solution of (PΔtL ), as
the spatial discretization parameter h, as well as the regularization parameter δ, tend to zero. Hence combining
this with the convergence result in Section 3, we obtain the desired result that a (sub)sequence of our finite
element approximation (PΔt,hL,δ ) converges to a weak solution of (P) as first h, δ → 0+ and then L → ∞, with
Δt = o(L−1). In Section 5 we discuss possible extensions of our results. The paper closes with an Appendix,
containing the proofs of some technical bounds required in the convergence analysis of the initialization of the
scheme.

3. The discrete-in-time approximation (P
Δt
L )

Let

H∼ := {w∼ ∈ L∼
2(Ω) : ∇∼ x · w∼ = 0} and V∼ := {w∼ ∈ H∼

1
0(Ω) : ∇∼ x · w∼ = 0}, (3.1)

where the divergence operator ∇∼ x · is to be understood in the sense of distributions on Ω. Let V∼
′ be the dual

of V∼ . More generally, let V∼ σ denote the closure of the set of all divergence-free C∼
∞
0 (Ω) functions in the norm of

H∼
1
0(Ω) ∩H∼ σ(Ω), σ ≥ 1, equipped with the Hilbert space norm, denoted by ‖ · ‖Vσ , inherited from H∼

σ(Ω), and
let V∼

′
σ signify the dual space of V∼ σ, with duality pairing 〈·, ·〉Vσ . As Ω is a bounded Lipschitz domain, we have

that V∼ 1 = V∼ (cf. Temam [30], Chap. 1, Thm. 1.6). Similarly, 〈·, ·〉H1
0 (Ω) will denote the duality pairing between

(H∼
1
0(Ω))′ and H∼

1
0(Ω). The norm on (H∼

1
0(Ω))′ will be that induced from taking ‖∇≈ x · ‖L2(Ω) to be the norm on

H∼
1
0(Ω).
For later purposes, we recall the following well-known Gagliardo–Nirenberg inequality. Let r ∈ [2,∞) if d = 2,

and r ∈ [2, 6] if d = 3 and θ = d
(

1
2 − 1

r

)
. Then, there is a constant C = C(Ω, r, d), such that, for all η ∈ H1(Ω):

‖η‖Lr(Ω) ≤ C ‖η‖1−θ
L2(Ω) ‖η‖

θ
H1(Ω). (3.2)

Let F ∈ C(R>0) be defined by F(s) := s (log s − 1) + 1, s > 0. As lims→0+ F(s) = 1, the function F can
be considered to be defined and continuous on [0,∞), where it is a nonnegative, strictly convex function with
F(1) = 0.
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We recall our assumptions on the data:

(A1) ∂Ω ∈ C0,1; D = B(0
∼
, rD) with rD > 0 and U satisfying (1.4a), (1.4b) with γ > 1;

u
∼

0 ∈ H
∼

; ψ̂0 :=
ψ0

M
≥ 0 a.e. on Ω ×D with F(ψ̂0) ∈ L1

M (Ω ×D)

and
∫
D

M(q
∼
) ψ̂0(x

∼
, q
∼
) dq

∼
= 1 for a.e. x

∼
∈ Ω; and f

∼
∈ L2(0, T ; (H

∼
1
0(Ω))′). (3.3)

Here, LpM (Ω ×D), for p ∈ [1,∞), denotes the Maxwellian-weighted Lp space over Ω ×D with norm

‖ϕ̂‖Lp
M(Ω×D) :=

{∫
Ω×D

M |ϕ̂|p dq
∼

dx∼

} 1
p

.

Similarly, we introduce LpM (D), the Maxwellian-weighted Lp space over D. Letting

‖ϕ̂‖H1
M (Ω×D) :=

{∫
Ω×D

M
[
|ϕ̂|2 + |∇∼ x ϕ̂|2 + |∇∼ q ϕ̂|2

]
dq

∼
dx∼

} 1
2

, (3.4)

we then set

X̂ ≡ H1
M (Ω ×D) :=

{
ϕ̂ ∈ L1

loc(Ω ×D) : ‖ϕ̂‖H1
M (Ω×D) <∞

}
. (3.5)

It is shown in Appendix C of [6] (the extended version of Barrett and Süli [7]) that

C∞(Ω ×D) is dense in X̂. (3.6)

In addition, we note that the embeddings

H1
M (D) ↪→ L2

M (D), (3.7a)
H1
M (Ω ×D) ≡ L2(Ω;H1

M (D)) ∩H1(Ω;L2
M (D)) ↪→ L2

M (Ω ×D) ≡ L2(Ω;L2
M (D)) (3.7b)

are compact if γ ≥ 1 in (1.4a), (1.4b); see Appendix D in [6]. Throughout we will assume that (3.3) hold, so
that (1.6) and (3.7a), (3.7b) hold. We note for future reference that (1.8) and (1.6) yield that, for ϕ̂ ∈ L2

M (Ω×D),∫
Ω

|C
≈

(M ϕ̂)|2 dx
∼

=
∫
Ω

∣∣∣∣∫
D

M ϕ̂U ′ q
∼
q
∼

T dq
∼

∣∣∣∣2 dx
∼
≤ C

(∫
Ω×D

M |ϕ̂|2 dq
∼

dx
∼

)
, (3.8)

where C is a positive constant.
We now formulate our discrete-in-time approximation of problem (PL) for a fixed parameter L > 1. For any

T > 0 and N ≥ 1, let N Δt = T and tn = nΔt, n = 0, . . . , N . To prove existence of a solution under minimal
smoothness requirements on the initial datum u∼0 (recall (3.3)), we introduce u∼

0 = u∼
0(Δt) ∈ V∼ , the unique

solution of ∫
Ω

[
u
∼

0 · v
∼

+Δt∇
≈
x u

∼
0 : ∇

≈
x v

∼

]
dx

∼
=
∫
Ω

u
∼

0 · v
∼

dx
∼

∀v
∼
∈ V

∼
; (3.9)

and so ∫
Ω

[ |u∼0|2 +Δt |∇≈ x u∼
0|2 ] dx∼ ≤

∫
Ω

|u∼0|2 dx∼ ≤ C. (3.10)

In addition, we have that u∼
0 converges to u∼0 weakly in H∼ in the limit of Δt→ 0+.
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Analogously to defining u∼
0 for a given initial velocity field u∼0, we shall assign a certain ‘smoothed’ initial

datum, ψ̂0 = ψ̂0(L,Δt) ∈ H1
M (Ω ×D), to the initial datum ψ̂0 such that∫

Ω×D
M
[
ψ̂0 ϕ̂+Δt

(
∇
∼
x ψ̂

0 · ∇
∼
x ϕ̂+ ∇

∼
q ψ̂

0 · ∇
∼
q ϕ̂
)]

dq
∼

dx
∼

=
∫
Ω×D

M βL(ψ̂0) ϕ̂dq
∼

dx
∼

∀ϕ̂ ∈ H1
M (Ω ×D).

(3.11)

For p ∈ [1,∞), let

Ẑp :=
{
ϕ̂ ∈ LpM (Ω ×D) : ϕ̂ ≥ 0 a.e. on Ω ×D and

∫
D

M(q
∼
) ϕ̂(x

∼
, q
∼
) dq

∼
≤ 1 for a.e. x

∼
∈ Ω

}
. (3.12)

It is proved in the appendix that there exists a unique ψ̂0 ∈ H1
M (Ω ×D) satisfying (3.11); furthermore,

ψ̂0 ∈ Ẑ1;
∫
Ω×D

M F(ψ̂0) dq
∼

dx∼ + 4Δt
∫
Ω×D

M

[∣∣∇∼ x

√
ψ̂0
∣∣2 +

∣∣∇∼ q

√
ψ̂0
∣∣2] dq

∼
dx∼ ≤

∫
Ω×D

M F(ψ̂0) dq
∼

dx∼;

(3.13a)
and

ψ̂0 ≡ βL(ψ̂0) → ψ̂0 weakly in L1
M (Ω ×D) as L→ ∞ and Δt → 0+. (3.13b)

It follows from (3.13a), (3.13b) and (1.14) that ψ̂0 ∈ Ẑ2; in fact, ψ̂0 ∈ L∞(Ω ×D) ∩H1
M (Ω ×D).

Our discrete-in-time approximation of (PL) is then defined as follows.
(PΔt

L ) Let u∼
0
L := u∼

0 ∈ V∼ and ψ̂0
L := ψ̂0 ∈ Ẑ2. Then, for n = 1, . . . , N , given (u∼

n−1
L , ψ̂n−1

L ) ∈ V∼ × Ẑ2, find
(u∼
n
L, ψ̂

n
L) ∈ V∼ × (X̂ ∩ Ẑ2) such that

∫
Ω

[
u
∼
n
L − u

∼
n−1
L

Δt
+ (u

∼
n−1
L · ∇

∼
x )u

∼
n
L

]
· w

∼
dx

∼
+ ν

∫
Ω

∇
≈
x u

∼
n
L : ∇

≈
x w

∼
dx

∼

= 〈f
∼

n, w
∼
〉H1

0 (Ω) − k

∫
Ω

C
≈

(M ψ̂nL) : ∇
≈
x w

∼
dx

∼
∀w

∼
∈ V

∼
, (3.14a)

∫
Ω×D

M
ψ̂nL − ψ̂n−1

L

Δt
ϕ̂dq

∼
dx

∼
+
∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂

n
L − [σ

≈
(u
∼
n
L) q

∼
]βL(ψ̂nL)

]
· ∇

∼
q ϕ̂ dq

∼
dx

∼

+
∫
Ω×D

M
[
ε∇

∼
x ψ̂

n
L − u

∼
n−1
L ψ̂nL

]
· ∇

∼
x ϕ̂dq

∼
dx

∼
= 0 ∀ϕ̂ ∈ X̂; (3.14b)

where, for t ∈ [tn−1, tn), and n = 1, . . . , N ,

f
∼

Δt,+(·, t) = f
∼

n(·) :=
1
Δt

∫ tn

tn−1

f
∼
(·, t) dt ∈ (H

∼
1
0(Ω))′ ⊂ V

∼
′. (3.15)

It follows from (3.3) and (3.15) that

N∑
n=1

Δt ‖f
∼

n‖rH−1(Ω) ≤
∫ T

0

‖f
∼
‖rH−1(Ω) dt ≤ C for any r ∈ [1, 2], (3.16a)

f
∼

Δt,+ → f
∼

strongly in L2(0, T ; (H
∼

1
0(Ω))′) as Δt→ 0+. (3.16b)
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Note that as the test function w∼ in (3.14a) is chosen to be divergence-free, the term containing the density ρ in
the definition of τ≈ (cf. (1.7)) is eliminated from (3.14a).

In line with (3.16b), let

u
∼
Δt
L (·, t) :=

t− tn−1

Δt
u
∼
n
L(·) +

tn − t

Δt
u
∼
n−1
L (·), t ∈ [tn−1, tn], n = 1, . . . , N, (3.17a)

u
∼
Δt,+
L (·, t) := u

∼
n
L(·), u

∼
Δt,−
L (·, t) := u

∼
n−1
L (·), t ∈ (tn−1, tn], n = 1, . . . , N, (3.17b)

and throughout we adopt the notation u∼
Δt(,±)
L , which means u∼

Δt
L with or without the superscripts ±. Using the

above notation, and introducing analogous notation for {ψ̂nL}Nn=0, (3.14a), (3.14b) multiplied by Δt and summed
for n = 1, . . . , N can be restated as:∫ T

0

∫
Ω

[
∂u

∼
Δt
L

∂t
+ (u

∼
Δt,−
L · ∇

∼
x )u

∼
Δt,+
L

]
· w

∼
dx

∼
dt+ ν

∫ T

0

∫
Ω

∇
≈
x u

∼
Δ,+
L : ∇

≈
x w

∼
dx

∼
dt

= 〈f
∼

Δt,+, w
∼
〉H1

0 (Ω) − k

∫
Ω

C
≈

(M ψ̂Δt,+L ) : ∇
≈
xw

∼
dx

∼
dt ∀w

∼
∈ L1(0, T ;V

∼
), (3.18a)

∫ T

0

∫
Ω×D

M
∂ψ̂ΔtL
∂t

ϕ̂dq
∼

dx
∼

dt+
∫ T

0

∫
Ω×D

M

[
1

2λ
∇
∼
q ψ̂

Δt,+
L − [σ

≈
(u
∼
Δt,+
L ) q

∼
]βL(ψ̂Δt,+L )

]
· ∇

∼
q ϕ̂dq

∼
dx

∼
dt

+
∫ T

0

∫
Ω×D

M
[
ε∇

∼
x ψ̂

Δt,+
L − u

∼
Δt,−
L ψ̂Δt,+L

]
· ∇

∼
x ϕ̂dq

∼
dx

∼
dt = 0 ∀ϕ̂ ∈ L1(0, T ; X̂). (3.18b)

The existence of solutions to problem (3.18a), (3.18b) is established in Lemma 3.3 in Barrett and Süli [7]. The
following theorem is proved in [7], Theorem 6.1, for a bead-spring chain polymer model with K ≥ 1 linearly
coupled finitely extensible nonlinear elastic springs. Here we state it for the special case of K = 1, corresponding
to the dumbbell model.

Theorem 3.1. Suppose that the assumptions (3.3) hold. Then, there exists a subsequence of {(u∼ΔtL , ψ̂ΔtL )}L>1

(not indicated) with Δt = o(L−1), and a pair of functions (u∼, ψ̂) such that

u∼ ∈ L∞(0, T ;L∼
2(Ω)) ∩ L2(0, T ;V∼ ) ∩H1(0, T ;V∼

′
σ), σ ≥ 1

2
d, σ > 1,

and
ψ̂ ∈ L1(0, T ;L1

M(Ω ×D)) ∩H1(0, T ;M−1(Hs(Ω ×D))′), s > 1 + d,

with ψ̂ ≥ 0 a.e. on Ω ×D × [0, T ],

ρ(x∼, t) :=
∫
D

M(q
∼
) ψ̂(x∼, q∼, t) dq

∼
= 1 for a.e. (x∼, t) ∈ Ω × [0, T ], (3.19)

whereby ψ̂ ∈ L∞(0, T ;L1
M(Ω ×D)); and finite relative entropy and Fisher information, i.e.,

F(ψ̂) ∈ L∞(0, T ;L1
M(Ω ×D)) and

√
ψ̂ ∈ L2(0, T ;H1

M(Ω ×D)), (3.20)

such that, as L→ ∞ (and thereby Δt → 0+),

u
∼

Δt(,±)
L → u

∼
weak	 in L∞(0, T ;L

∼
2(Ω)), (3.21a)

u
∼

Δt(,±)
L → u

∼
weakly in L2(0, T ;V

∼
), (3.21b)

u
∼

Δt(,±)
L → u

∼
strongly in L2(0, T ;L

∼
r(Ω)), (3.21c)

∂u
∼
Δt
L

∂t
→

∂u
∼
∂t

weakly in L2(0, T ;V
∼

′
σ), (3.21d)
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where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3; and

M
1
2 ∇

∼
x

√
ψ̂
Δt(,±)
L →M

1
2 ∇

∼
x

√
ψ̂ weakly in L2(0, T ;L

∼
2(Ω ×D)), (3.22a)

M
1
2 ∇

∼
q

√
ψ̂
Δt(,±)
L →M

1
2 ∇

∼
q

√
ψ̂ weakly in L2(0, T ;L

∼
2(Ω ×D)), (3.22b)

M
∂ψ̂ΔtL
∂t

→M
∂ψ̂

∂t
weakly in L2(0, T ; (Hs(Ω ×D))′), (3.22c)

ψ̂
Δt(,±)
L → ψ̂ strongly in Lp(0, T ;L1

M(Ω ×D)), (3.22d)

for all p ∈ [1,∞); and,

∇
∼
x · C

≈
(M ψ̂Δt,+L ) → ∇

∼
x · C

≈
(M ψ̂) weakly in L2(0, T ;V

∼
′
σ). (3.22e)

The pair (u∼, ψ̂) is a global weak solution to problem (P), in the sense that

−
∫ T

0

∫
Ω

u
∼
·
∂w

∼
∂t

dx
∼

dt+
∫ T

0

∫
Ω

[[
(u
∼
· ∇
∼
x )u

∼

]
· w

∼
+ ν∇

≈
x u

∼
: ∇

≈
xw

∼

]
dx

∼
dt

=
∫
Ω

u
∼

0(x
∼
) · w

∼
(x
∼
, 0) dx

∼
+
∫ T

0

[
〈f
∼
, w
∼
〉H1

0 (Ω) − k

∫
Ω

C
≈

(M ψ̂) : ∇
≈
xw

∼
dx

∼

]
dt

∀w
∼

∈ W 1,1(0, T ;V
∼
σ) s.t. w

∼
(·, T ) = 0, (3.23)

and

−
∫ T

0

∫
Ω×D

M ψ̂
∂ϕ̂

∂t
dq

∼
dx

∼
dt+

∫ T

0

∫
Ω×D

M
[
ε∇

∼
x ψ̂ − u

∼
ψ̂
]
· ∇

∼
x ϕ̂ dq

∼
dx

∼
dt

+
1

2λ

∫ T

0

∫
Ω×D

M ∇
∼
q ψ̂ · ∇

∼
q ϕ̂ dq

∼
dx

∼
dt−

∫ T

0

∫
Ω×D

M

[
σ
≈
(u
∼
) q

∼

]
ψ̂ · ∇

∼
q ϕ̂ dq

∼
dx

∼
dt

=
∫
Ω×D

ψ̂0(x
∼
, q
∼
) ϕ̂(x

∼
, q
∼
, 0) dq

∼
dx

∼
∀ϕ̂ ∈W 1,1(0, T ;Hs(Ω ×D)) s.t. ϕ̂(·, ·, T ) = 0. (3.24)

In addition, the function u∼ is weakly continuous as a mapping from [0, T ] to H∼ , and ψ̂ is weakly continuous as
a mapping from [0, T ] to L1

M (Ω ×D). The weak solution (u∼, ψ̂) satisfies the following energy inequality for a.e.
t ∈ [0, T ]:

‖u∼(t)‖2 + ν

∫ t

0

‖∇≈ x u∼(s)‖2 ds+ 2 k
∫
Ω×D

M F(ψ̂(t)) dq
∼

dx∼

+ 8 k ε
∫ t

0

∫
Ω×D

M |∇∼ x

√
ψ̂|2 dq

∼
dx∼ ds+

2 k
λ

∫ t

0

∫
Ω×D

M |∇∼ q

√
ψ̂|2 dq

∼
dx∼ ds

≤ ‖u∼0‖2 +
1
ν

∫ t

0

‖f
∼
(s)‖2

(H1
0 (Ω))′ ds+ 2 k

∫
Ω×D

M F(ψ̂0) dq
∼

dx∼, (3.25)

with F(s) = s(log s− 1) + 1, s ≥ 0.

4. Finite element approximation (P
Δt,h
L,δ )

Let us denote the measure of a bounded open region ω ⊂ R
d by m(ω). We make the following assumption

on Ω and the partitions of Ω and D.
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(A2) For ease of exposition, we shall assume that Ω is a convex polytope. Let {T x
h }h>0 be a quasiuniform family

of partitions of Ω into disjoint open nonobtuse simplices κx, so that

Ω ≡
⋃

κx∈T x
h

κx with hκx := diam(κx), hx := max
κx∈T x

h

hκx ≤ diam(Ω)h and m(κx) ≥ C hd.

Let {T q
h }h>0 be a quasiuniform family of partitions of D ≡ B(0∼, rD), rD > 0, into disjoint open nonobtuse

simplices κq, with possibly one curved edge on ∂D when d = 2, or one curved face on ∂D when d = 3, so that

D ≡
⋃

κq∈T q
h

κq with hκq := diam(κq), hq := max
κq∈T q

h

hκq ≤ diam(D)h and m(κq) ≥ C hd.

A “simplex” κq with a curved edge/face is nonobtuse if it is convex and the enclosed simplex with the same
vertices is nonobtuse, in the sense that all of its dihedral angles are ≤π/2. It follows from the above that

hx
hq

+
hq
hx

≤ C as h→ 0+. (4.1)

We note that such nonobtuse simplicial partitions of Ω and D are easily constructed in the case d = 2.
For the construction of nonobtuse three-dimensional simplicial partitions we refer to the papers of Korotov
and Kř́ıžek [22, 23] for example; the reader should note, however, that in [22] the authors use the term acute
when they mean nonobtuse. Elsewhere in the computational geometry literature the term acute is reserved
for a simplicial partition where all dihedral angles of any simplex in the partition are <π/2, which is a more
restrictive requirement (especially in the case of d = 3) than what we assume here; see, for example, the articles
of Brandts et al. [11], Eppstein et al. [16], and Itoh and Zamfirescu [18], and references therein. Nonobtuse
simplicial partitions are sometimes also called weakly acute (cf. [29], p. 363).

We adopt the standard notation for L2 inner products:

(η1, η2)Ω :=
∫
Ω

η1 η2 dx
∼

∀ηi ∈ L2(Ω) and (η1, η2)Ω×D :=
∫
Ω×D

η1 η2 dq
∼

dx
∼

∀ηi ∈ L2(Ω ×D), (4.2)

which are naturally extended to vector/matrix functions.
Let P

x
k and P

q
k denote polynomials of degree less than or equal to k in x∼ and q

∼
, respectively. We approximate

the pressure and velocity with the lowest order Taylor–Hood element; that is,

Rh := {ηh ∈ C(Ω) : ηh |κx∈ P
x
1 ∀κx ∈ T x

h }, (4.3a)

W
∼

h := {w
∼
h ∈ [C(Ω)]d : w

∼
h |κx∈ [Px2 ]d ∀κx ∈ T x

h and w
∼
h = 0 on ∂Ω} ⊂ [H1

0 (Ω)]d, (4.3b)

V
∼
h := {v

∼
h ∈W

∼
h : (∇

∼
x · v

∼
h, ηh)Ω = 0 ∀ηh ∈ Rh}. (4.3c)

It is well-known that Rh and W∼ h satisfy the inf-sup condition: there exists c0 ∈ R>0 such that

sup
w
∼

h∈W
∼

h

(∇
∼
x · w

∼
h, rh)Ω

‖w
∼
h‖H1(Ω)

≥ c0 ‖rh‖L2(Ω) ∀rh ∈ Rh, (4.4)

see e.g. [12], Section VI.6. Hence for all v∼ ∈ V∼ , there exists a sequence {v∼h}h>0, with v∼h ∈ V∼ h, such that

lim
h→0+

‖v
∼
− v

∼
h‖H1(Ω) = 0. (4.5)

For the approximation of the advection term in the Navier–Stokes equation we note that, for all v∼ ∈ V∼ and
w∼ , z∼ ∈ H∼

1(Ω), we have that

((v
∼
· ∇

∼
x )w

∼
, z
∼
)Ω ≡ 1

2

[
((v

∼
· ∇
∼
x )w

∼
, z
∼
)Ω − ((v

∼
· ∇
∼
x )z

∼
, w
∼

)Ω
]
. (4.6)
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In addition, the choice w∼ = z∼ leads to both sides of (4.6) vanishing. Obviously, as V∼ h �⊂ V∼ , the discrete analogue
of the above does not hold; that is, it is not generally true that, for all v∼h ∈ V∼ h, w∼ h, z∼h ∈W∼ h,

((v
∼
h · ∇

∼
x )w

∼
h, z

∼
h)Ω ≡ 1

2

[
((v

∼
h · ∇

∼
x )w

∼
h, z

∼
h)Ω − ((v

∼
h · ∇

∼
x )z

∼
h, w

∼
h)Ω
]
. (4.7)

We note that the right-hand side of (4.7) vanishes if w∼ h = z∼h, which is not necessarily true for the left-hand side.
Hence, we use the right-hand side form of (4.7) for the approximation of the advection term in the Navier–Stokes
equation.

To approximate X̂, we first introduce

X̂x
h := {ϕ̂xh ∈ C(Ω) : ϕ̂xh |κx∈ P

x
1 ∀κx ∈ T x

h } ⊂W 1,∞(Ω), (4.8a)

X̂q
h := {ϕ̂qh ∈ C(D) : ϕ̂qh |κq∈ P

q
1 ∀κq ∈ T q

h } ⊂W 1,∞(D). (4.8b)

We then set

X̂h := X̂x
h ⊗ X̂q

h ⊂ X̂. (4.9)

We note from (4.3a), (4.3c), (4.8a) and (4.9) that, for any v∼h ∈ V∼ h and any q
∼
∈ D,

(∇
∼
x · v

∼
h, ϕ̂h(·, q

∼
))Ω = 0 ∀ϕ̂h ∈ X̂h. (4.10)

We note that for (4.10) to hold in general, we require that X̂x
h ⊆ Rh.

We introduce the interpolation operators πxh : C(Ω) → X̂x
h and πqh : C(D) → X̂q

h such that

πxh ϕ̂
x(P

∼
x
j ) = ϕ̂x(P

∼
x
j ), j = 1, . . . , Ix, and πqh ϕ̂

q(P
∼
q
j) = ϕ̂q(P

∼
q
j), j = 1, . . . , Iq, (4.11)

where {P∼ x
j }I

x

j=1 and {P∼
q
j}I

q

j=1 are the nodes (vertices) of T x
h and T q

h , respectively. The associated basis functions
are

χxi ∈ X̂x
h such that χxi (P

x
j ) = δij for i, j,= 1, . . . , Ix, (4.12a)

and χqi ∈ X̂q
h such that χqi (P

q
j ) = δij for i, j = 1, . . . , Iq. (4.12b)

We introduce also πh : C(Ω ×D) → X̂h such that

(πh ϕ̂)(P
∼
x
i , P∼

q
j) = ϕ̂(P

∼
x
i , P∼

q
j) for i = 1, . . . , Ix, j = 1, . . . , Iq. (4.13)

Of course, we have that πh ≡ πxh π
q
h ≡ πqh π

x
h. The vector versions of the above interpolation operators are

π
∼
x
h : [C(Ω)]d → [X̂x

h ]d, π
∼
q
h : [C(D)]d → [X̂q

h]
d, and π

∼
h : [C(Ω ×D)]d → [X̂h]d. (4.14)

We require also the local interpolation operators

πxh,κx
≡ πxh |κx , πqh,κq

≡ πqh |κq , πh,κx×κq ≡ πh |κx×κq , π
∼
x
h,κx

≡ π
∼
x
h |κx ,

π
∼
q
h,κq

≡ π
∼
q
h |κq and π

∼
h,κx×κq ≡ π

∼
h |κx×κq ∀κx ∈ T x

h , ∀κq ∈ T q
h . (4.15)

For any ϕ̂h ∈ X̂h, there exist [Ξ≈
x
L,δ(ϕ̂h)](x∼, q∼), [Ξ≈

q
L,δ(ϕ̂h)](x∼, q∼) ∈ R

d×d for a.e. (x∼, q∼) ∈ Ω ×D such that on
κx × κq, for all κx ∈ T x

h , κq ∈ T q
h ,

Ξ≈
x
L,δ(ϕ̂h) ∈ [Pq1]

d×d and π∼h,κx×κq

[
Ξ≈
x
L,δ(ϕ̂h)∇∼ x (πh[ [FL

δ ]′(ϕ̂h)] )
]

= ∇∼ x ϕ̂h; (4.16a)

Ξ≈
q
L,δ(ϕ̂h) ∈ [Px1 ]d×d and π∼h,κx×κq

[
Ξ≈
q
L,δ(ϕ̂h)∇∼ q (πh[ [FL

δ ]′(ϕ̂h)] )
]

= ∇∼ q ϕ̂h. (4.16b)
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Hence (4.16a), (4.16b) are discrete analogues of the relations (2.8). We now give the construction of Ξ≈
x
L,δ(·) and

Ξ≈
q
L,δ(·). Given ϕ̂h ∈ X̂h, κx ∈ T x

h with vertices {P∼ x
ij}dj=0 and κq ∈ T q

h with vertices {P∼
q
ij
}dj=0, then for a fixed

vertex P∼
q
ik

of κq let [Ξ̃≈
x

L,δ
(ϕ̂h)](x∼, P∼

q
ik

) ∈ R
d×d for x∼ ∈ κx be diagonal with entries, for j = 1, . . . , d,

[Ξ̃≈
x

L,δ
(ϕ̂h)]jj (x∼, P∼

q
ik

) =

⎧⎪⎪⎨⎪⎪⎩
ϕj − ϕ0

[FL
δ ]′(ϕj) − [FL

δ ]′(ϕ0)
if ϕj := ϕ̂h(P∼ x

ij
, P∼

q
ik

) �= ϕ0 := ϕ̂h(P∼ x
i0
, P∼

q
ik

),

1
[FL
δ ]′′(ϕj)

= βLδ (ϕj) if ϕj = ϕ0.
(4.17)

Let {e∼i}di=1 be the orthonormal vectors in R
d, such that the jth component of e∼i is δij , i, j = 1, . . . , d. Let κ̃

be the standard reference simplex in R
d with vertices {P̃∼ i}di=0, where P̃∼ 0 is the origin and P̃∼ i = e∼i, i = 1, . . . , d.

Let Bκx ∈ R
d×d be such that the affine mapping Bκx : y

∼
∈ R

d �→ P∼
x
k0

+ Bκx y∼ maps the vertex P̃∼ j to P∼
x
ij ,

j = 0, . . . , d, and hence κ̃ to κx. For any ϕ̂xh ∈ X̂x
h , let ϕ̂xh,y(x∼) ≡ ϕ̂xh(Bκxy∼) for all y

∼
∈ κ̃. Hence it follows that

∇
∼
x ϕ̂

x
h = [BT

κx
]−1 ∇

∼
y ϕ̂

x
h,y. (4.18)

Therefore, for k = 0, . . . , d,

[Ξ
≈
x
L,δ(ϕ̂h)](x∼, P∼

q
ik

) = [BT
κx

]−1 [Ξ̃
≈

x

L,δ
(ϕ̂h)](x

∼
, P
∼
q
ik

)BT
κx

(4.19)

is such that

[Ξ
≈
x
L,δ(ϕ̂h)∇∼ x (πh[[FL

δ ]′(ϕ̂h)]) ] (x
∼
, P
∼
q
ik

) = ∇
∼
x ϕ̂h(x

∼
, P
∼
q
ik

) ∀x
∼
∈ κx. (4.20)

Finally, on recalling (4.12b), we set

[Ξ
≈
x
L,δ(ϕ̂h)](x∼, q∼

) =
d∑
k=0

[Ξ
≈
x
L,δ(ϕ̂h)](x∼, P∼

q
ik

)χqik(q
∼
) ∀x

∼
∈ κx, ∀q

∼
∈ κq. (4.21)

Hence Ξ≈
x
L,δ(ϕ̂h) satisfies (4.16a). A similar construction yields Ξ≈

q
L,δ(ϕ̂h) satisfying (4.16b). The only difference

is for those κqi with a curved side or face: the corresponding linear mapping Bκq maps κ̃ to the enclosed simplex
with the same vertices as κq, where vertex P̃∼ j of κ̃ is mapped to P∼

q
ij

of κq, j = 0, . . . , d.
As T x

h , T q
h are quasiuniform partitions, we have from (4.21), (4.19) and (4.17), and their Ξ≈

q
δ counterparts,

that, for all ϕ̂h ∈ X̂h,

‖Ξ
≈
x
L,δ(ϕ̂h)‖2

L∞(Ω×D) + ‖Ξ
≈

q
L,δ(ϕ̂h)‖

2
L∞(Ω×D) ≤ C L2. (4.22)

We note that the construction of Ξ≈
x
L,δ(·) and Ξ≈

q
L,δ(·) satisfying (4.16a), (4.16b) is an extension of ideas used in

e.g. [2, 17] for the finite element approximation of fourth-order degenerate nonlinear parabolic equations, such
as the thin film equation.

We will require also a discrete analogue of

ϕ̂∇
∼
x ([FL

δ ]′(ϕ̂) ) = ∇
∼
x (GLδ (ϕ̂) ) (4.23)

for any sufficiently smooth ϕ̂, where GLδ ∈ C0,1(R) is defined by

GLδ (s) :=

⎧⎪⎨⎪⎩
s2

2δ + δ−L
2 s ≤ δ,

s− L
2 δ ≤ s ≤ L,

s2

2L L ≤ s;
(4.24)
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and so [GLδ ]′(s) = s/βLδ (s) = s [FL
δ ]′′(s). For later purposes, let

HL
δ (s) := GLδ ([(FL

δ )′]−1(s)) =

⎧⎨⎩
δ
2 (s+ 1 − log δ)2 + δ−L

2 s ≤ log δ,
es − L

2 log δ ≤ s ≤ logL,
L
2 (s+ 1 − logL)2 logL ≤ s.

(4.25)

Hence it follows that

[HL
δ ]′([FL

δ ]′(s)) = s. (4.26)

We now introduce a discrete analogue of (4.23). For any ϕ̂h ∈ X̂h, there exists [Λ≈
x
L,δ(ϕ̂h)](x∼, q∼) ∈ R

d×d for
a.e. (x∼, q∼) ∈ Ω ×D such that on κx × κq, for all κx ∈ T x

h , κq ∈ T q
h ,

Λ
≈
x
L,δ(ϕ̂h) ∈ [Pq1]

d×d and π
∼
h,κx×κq

[
Λ
≈
x
L,δ(ϕ̂h)∇∼ x (πh[ [FL

δ ]′(ϕ̂h)] )
]

= ∇
∼
x (πh[GLδ (ϕ̂h)] ). (4.27)

We now give the construction of Λ≈
x
L,δ(·). Given ϕ̂h ∈ X̂h, κx ∈ T x

h with vertices {P∼ x
ij
}dj=0 and κq ∈ T q

h with

vertices {P∼
q
ij
}dj=0, then for a fixed vertex P∼

q
ik

of κq, let [Λ̃≈
x

L,δ
(ϕ̂h)](x∼, P∼

q
ik

) ∈ R
d×d for x∼ ∈ κx be diagonal with

entries, for j = 1, . . . , d,

[Λ̃≈
x

L,δ
(ϕ̂h)]jj (x∼, P∼

q
ik

) =

⎧⎪⎪⎨⎪⎪⎩
GLδ (ϕj) −GLδ (ϕ0)

[FL
δ ]′(ϕj) − [FL

δ ]′(ϕ0)
if ϕj := ϕ̂h(P∼ x

ij , P∼
q
ik

) �= ϕ0 := ϕ̂h(P∼ x
i0 , P∼

q
ik

),

[GLδ ]′(ϕj)
[FL
δ ]′′(ϕj)

= ϕj if ϕj = ϕ0,

(4.28)

where we have noted (4.25) and (4.26). We then define [Λ≈
x
L,δ(ϕ̂h)](x∼, q∼) via (4.19) and (4.21) with Ξ̃≈

x

L,δ
and Ξ≈

x
L,δ

replaced by Λ̃≈
x

L,δ
and Λ≈

x
L,δ, respectively. As T x

h is quasi-uniform, it follows similarly to (4.22), on noting (4.28),

(4.25) and (4.26) that, for all ϕ̂h ∈ X̂h,

‖Λ
≈
x
L,δ(ϕ̂h)‖2

L∞(κx×κq) ≤ C ‖ϕ̂h‖2
L∞(κx×κq) ∀κx ∈ T x

h , ∀κq ∈ T q
h . (4.29)

As the partitions T x
h and T q

h are nonobtuse, we deduce (see, for example, [13] Chap. 3, Bibliography and
Comments on Sect. 3.3; and Sect. 4 in the paper of Brandts et al. [11]) that

∇
∼
x χ

x
i · ∇∼ x χ

x
j ≤ 0 on κx i �= j, i, j = 1, . . . , Ix, ∀κx ∈ T x

h ; (4.30a)

and ∇
∼
q χ

q
i · ∇∼ qiχ

q
j ≤ 0 on κq i �= j, i, j = 1, . . . , Iq, ∀κq ∈ T q

h . (4.30b)

Our next lemma can be seen as a generalization of a result in Section 2.4.2 of [27].

Lemma 4.1. Suppose that the partitions T x
h and T q

h are nonobtuse and let g ∈ C0,1(R) be monotonic increasing
with Lipschitz constant gLip; then, for all κx ∈ T x

h and κq ∈ T q
h and for all ϕ̂h ∈ X̂h,∫

κx×κq

M πh,κx×κq

[ ∣∣∣∇
∼
x (πh,κx×κq [ g(ϕ̂h)])

∣∣∣2 ] dq
∼

dx
∼

≤ gLip

∫
κx×κq

M πh,κx×κq

[
∇
∼
x ϕ̂h · ∇

∼
x (πh,κx×κq [ g(ϕ̂h)])

]
dq

∼
dx

∼
; (4.31a)

and ∫
κx×κq

M πh,κx×κq

[ ∣∣∣∇
∼
q (πh,κx×κq [ g(ϕ̂h)])

∣∣∣2 ] dq
∼

dx
∼

≤ gLip

∫
κx×κq

M πh,κx×κq

[
∇
∼
q ϕ̂h · ∇

∼
q (πh,κx×κq [ g(ϕ̂h)])

]
dq

∼
dx

∼
. (4.31b)
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Proof. We shall prove (4.31a); the proof of (4.31b) is analogous. Suppose that ϕ̂h ∈ X̂h and let κx ∈ T x
h and

κq ∈ T q
h . Then, letting G(x∼, q∼) := πqh,κq

[g(ϕ̂h(x∼, q∼))], we have that

πh,κx×κq [g(ϕ̂h(x∼, q∼))] = πxh,κx
πqh,κq

[g(ϕ̂h(x∼, q∼))] = πxh,κx
G(x∼, q∼) =

d∑
j=0

G(P∼
x
kj
, q
∼
)χxkj

(x∼), (x∼, q∼) ∈ κx × κq,

where {P∼ x
kj
}dj=0 are the d + 1 vertices of the d-dimensional simplex κx and χxkj

, j = 0, . . . , d, are the linear
Lagrange element-basis-functions associated with κx. Hence, on expanding ϕ̂h|κx in terms of the same basis, we
have that

∇
∼
x ϕ̂h(x

∼
, q
∼
) · ∇

∼
x (πh,κx×κq [g(ϕ̂h(x∼, q∼

))]) =
d∑
i=0

d∑
j=0

[
ϕ̂h(P

∼
x
ki
, q
∼
)G(P

∼
x
kj
, q
∼
)∇
∼
x χ

x
ki

(x
∼
) · ∇

∼
x χ

x
kj

(x
∼
)
]

=
d∑
i=0

⎛⎝ ∑
0≤j<i

+
∑
j=i

+
∑
i<j≤d

⎞⎠[ϕ̂h(P
∼
x
ki
, q
∼
)G(P

∼
x
kj
, q
∼
)∇
∼
x χ

x
ki

(x
∼
) · ∇

∼
x χ

x
kj

(x
∼
)
]

=
d∑
i=1

∑
0≤j<i

[(
ϕ̂h(P

∼
x
ki
, q
∼
)G(P

∼
x
kj
, q
∼
) + ϕ̂h(P

∼
x
kj
, q
∼
)G(P

∼
x
ki
, q
∼
)
)
∇
∼
x χ

x
ki

(x
∼
) · ∇

∼
x χ

x
kj

(x
∼
)
]

+
d∑
i=0

[
ϕ̂h(P

∼
x
ki
, q
∼
)G(P

∼
x
ki
, q
∼
)|∇

∼
x χ

x
ki

(x
∼
)|2
]

∀(x
∼
, q
∼
) ∈ κx × κq. (4.32)

As
∑d
j=0 χ

x
kj

(x∼) ≡ 1 on κx, it follows that ∇∼ x χ
x
ki

= −
∑
j �=i∇∼ x χ

x
kj

, and so |∇∼ x χ
x
ki
|2 = −

∑
j �=i∇∼ x χ

x
ki
·∇∼ x χ

x
kj

.
Thus, on substitution into the last term in (4.32), we have that, for all (x∼, q∼) ∈ κx × κq,

∇∼ x ϕ̂h(x∼, q∼) · ∇∼ x (πh,κx×κq [g(ϕ̂h(x∼, q∼))])

= −1
2

d∑
i=0

d∑
j=0

[(
G(P∼

x
ki
, q
∼
) −G(P∼

x
kj
, q
∼
)
)(

ϕ̂h(P∼
x
ki
, q
∼
) − ϕ̂h(P∼

x
kj
, q
∼
)
)
∇∼ x χ

x
ki

(x∼) · ∇∼ x χ
x
kj

(x∼)
]
. (4.33)

Similarly to (4.33), we have that

|∇∼ x (πh,κx×κq [g(ϕ̂h(x∼, q∼))])|2 = −1
2

d∑
i=0

d∑
j=0

[(
G(P∼

x
ki
, q
∼
) −G(P∼

x
kj
, q
∼
)
)2

∇∼ x χ
x
ki

(x∼) · ∇∼ x χ
x
kj

(x∼)
]
. (4.34)

Now, for all q
∼
∈ κq,

πqh,κq

[(
G(P

∼
x
ki
, q
∼
) −G(P

∼
x
kj
, q
∼
)
)(

ϕ̂h(P
∼
x
ki
, q
∼
) − ϕ̂h(P

∼
x
kj
, q
∼
)
)]

= πqh,κq

[(
πqh,κq

[g(ϕ̂h(P
∼
x
ki
, q
∼
))] − πqh,κq

[g(ϕ̂h(P
∼
x
kj
, q
∼
))]
)(

ϕ̂h(P
∼
x
ki
, q
∼
) − ϕ̂h(P

∼
x
kj
, q
∼
)
)]

≥ 1
gLip

πqh,κq

[(
g(ϕ̂h(P

∼
x
ki
, q
∼
)) − g(ϕ̂h(P

∼
x
kj
, q
∼
))
)2
]

=
1
gLip

πqh,κq

[(
G(P

∼
x
ki
, q
∼
) −G(P

∼
x
kj
, q
∼
)
)2
]
. (4.35)
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On applying πqh,κq
to both sides of (4.33) and (4.34), noting (4.35), and (4.34) corresponding to i = j are equal

to zero, we deduce that, for all (x∼, q∼) ∈ κx × κq,

πqh,κq

[
∇∼ x ϕ̂h(x∼, q∼) · ∇∼ x (πh,κx×κq [g(ϕ̂h(x∼, q∼))])

]
≥ 1
gLip

πqh,κq

∣∣∣∇∼ x (πh,κx×κq [g(ϕ̂h(x∼, q∼))])
∣∣∣2 .

By applying πxh,κx
to both sides of this inequality, multiplying by the (nonnegative) function M and then

integrating over κx × κq we arrive at (4.31a) on recalling that πxh,κx
πqh,κq

= πh,κx×κq . As we have noted above,
the proof of (4.31b) is analogous. �

Corollary 4.2. Suppose that the partitions T x
h and T q

h are nonobtuse and let g be defined and strictly monotonic
increasing on R such that g−1, the inverse function of g, is Lipschitz continuous on R, with Lipschitz constant
(g−1)Lip; then, for all κx ∈ T x

h and κq ∈ T q
h and for all ϕ̂h ∈ X̂h,∫

κx×κq

M πh,κx×κq

[∣∣∣∇
∼
x ϕ̂h

∣∣∣2] dq
∼

dx
∼
≤ (g−1)Lip

∫
κx×κq

M πh,κx×κq

[
∇
∼
x ϕ̂h · ∇

∼
x (πh,κx×κq [ g(ϕ̂h)])

]
dq

∼
dx

∼
;

(4.36a)

and∫
κx×κq

M πh,κx×κq

[∣∣∣∇
∼
q ϕ̂h

∣∣∣2] dq
∼

dx
∼
≤ (g−1)Lip

∫
κx×κq

M πh,κx×κq

[
∇
∼
q ϕ̂h · ∇

∼
q (πh,κx×κq [ g(ϕ̂h)])

]
dq

∼
dx

∼
.

(4.36b)

Proof. These inequalities follow on replacing g in Lemma 4.1 by g−1; ϕ̂h by πh,κx×κq [ g(ϕ̂h)]; and noting that

πh,κx×κq

[
g−1(πh,κx×κq [ g(ϕ̂h|κx×κq

)])
]

= ϕ̂h|κx×κq
∀ϕ̂h ∈ X̂h.

That completes the proof. �

Given initial data u∼0 and ψ̂0 satisfying (3.3), we choose u∼
0
L,δ,h ∈ V∼ h and ψ̂0

L,δ,h ∈ X̂h as the unique solutions
of, respectively,

(u
∼

0
L,δ,h, v∼h

)Ω +Δt (∇
≈
x u

∼
0
L,δ,h,∇≈ x v

∼
h)Ω = (u

∼
0, v

∼
h)Ω ∀v

∼
h ∈ V

∼
h, (4.37a)

(M,πh[ψ̂0
L,δ,h ϕ̂h])Ω×D +Δt (M,πh[∇

∼
x ψ̂

0
L,δ,h · ∇∼ x φ̂h + ∇

∼
q ψ̂

0
L,δ,h · ∇∼ q φ̂h])Ω×D = (M βL(ψ̂0), ϕ̂h)Ω×D

∀ϕ̂h ∈ X̂h. (4.37b)

It follows from (4.37a), (4.37b) that∫
Ω

[
|u
∼

0
L,δ,h|2 +Δt |∇

≈
x u

∼
0
L,δ,h|2

]
dx

∼
≤
∫
Ω

|u
∼

0|2 dx
∼
≤ C, 0 ≤ ψ̂0

L,δ,h(x∼, q∼
) ≤ L ∀(x

∼
, q
∼
) ∈ Ω ×D

and
∫
Ω×D

M πh

[
|ψ̂0
L,δ,h|2 +Δt

(
|∇
∼
x ψ̂

0
L,δ,h|2 + |∇

∼
q ψ̂

0
L,δ,h|2

)]
dq

∼
dx

∼
≤
∫
Ω×D

M L2 = C(L). (4.38)

Here in deriving the lower bound on ψ̂0
L,δ,h we choose ϕ̂h = πh[ψ̂0

L,δ,h]− in (4.37b) and note (4.31a), (4.31b).
Similarly, in deriving the upper bound, we note that (4.37b) holds with ψ̂0

L,δ,h and βL(ψ̂0) replaced by L− ψ̂0
L,δ,h

and L− βL(ψ̂0), respectively, and choose ϕ̂h = πh[L− ψ̂0
L,δ,h]−.
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Our finite element approximation of (PΔtL ) is defined as follows:
(PΔt,h

L,δ ) For n = 1, . . . , N , given (u∼
n−1
L,δ,h, ψ̂

n−1
L,δ,h) ∈ V∼ h × X̂h, find (u∼

n
L,δ,h, ψ̂

n
L,δ,h) ∈ V∼ h × X̂h such that(

u
∼
n
L,δ,h − u

∼
n−1
L,δ,h

Δt
,w
∼
h

)
Ω

+ ν (∇
≈
x u

∼
n
δ,h,∇≈ x w

∼
h)Ω +

1
2

[
((u

∼
n−1
L,δ,h · ∇∼ x )u

∼
n
L,δ,h, w∼ h)Ω − ((u

∼
n−1
L,δ,h · ∇∼ x )w

∼
h, u

∼
n
L,δ,h)Ω

]
= 〈f

∼

n, w
∼
h〉H1

0 (Ω) − k (C
≈

(M ψ̂nL,δ,h),∇≈ xw
∼
h)Ω ∀w

∼
h ∈ V

∼
h, (4.39a)(

M,πh

[
ψ̂nL,δ,h − ψ̂n−1

L,δ,h

Δt
ϕ̂h + ε∇

∼
x ψ̂

n
L,δ,h · ∇∼ x ϕ̂h +

1
2λ

∇
∼
q ψ̂

n
L,δ,h · ∇∼ q ϕ̂h

])
Ω×D

=
(
M (∇

≈
x u

∼
n
L,δ,h) q

∼
, π
∼
h

[
Ξ
≈

q
L,δ(ψ̂

n
L,δ,h)∇∼ q ϕ̂h

])
Ω×D

+
(
M u

∼
n
L,δ,h, π∼h

[
Λ
≈
x
L,δ(ψ̂

n
L,δ,h)∇∼ x ϕ̂h

])
Ω×D

∀ϕ̂h ∈ X̂h; (4.39b)

where for ease of notation, we write πh and π∼h in (4.39b) whereas it should really be πh,κx×κq and π∼h,κx×κq ,
respectively, on each κx×κq of Ω×D. We note that these interpolation operators play a crucial role in (4.39b) in
obtaining a discrete version of (2.9). For example, we can exploit the results (4.16b), (4.27) and (4.31a), (4.31b)
on choosing the test function ϕ̂h = πh[ [FL

δ ]′(ψ̂nL,δ,h)].

Remark 4.3. The only difference between the full discretization, (PΔt,hL,δ ), of (PL) stated in (4.39a), (4.39b) and
that in Barrett and Süli [8], (4.32a), (4.32b), is that Λ≈

x
L,δ in (4.39b) is replaced by Ξ≈

x
L,δ. Recall that solutions

of the approximation in [8] are shown to (sub)sequence converge, as h, Δt, δ → 0+, to a weak solution of a
system similar to (PL), where ψ̂L in the convective term, in addition to the drag term, is replaced by βL(ψ̂L).
Moreover, we were unable to pass to the limit L→ ∞ in [8]. Whereas, in this paper we will show that solutions
of (4.39a), (4.39b) (sub)sequence converge to a weak solution of (PΔtL ) as h, δ → 0+. Then we can appeal to
the convergence result, Theorem 3.1 from [7], to show that a (sub)sequence of our finite approximation (PΔt,hL,δ )
converges to a weak solution of (P) as first h, δ → 0+ and then L→ ∞, with Δt = o(L−1).

We note that the approximations u∼
n
L,δ,h and ψ̂nL,δ,h at time level tn to the velocity field and the scaled

probability distribution satisfy a coupled nonlinear system, (4.39a), (4.39b). We will show existence of a solution
to (4.39a), (4.39b) below, see Theorem 4.6, via a Brouwer fixed point theorem. First, assuming existence, we
show that (PΔt,hL,δ ) satisfies a discrete analogue of the energy equality (2.10). For all the following lemmas and
theorems we assume that the assumptions (A1) and (A2) hold.

Lemma 4.4. For n = 1, . . . , N , a solution (u∼
n
L,δ,h, ψ̂

n
L,δ,h) ∈ V∼ h × X̂h of (4.39a), (4.39b), if it exists, satisfies

1
2

[
‖u

∼
n
L,δ,h‖2

L2(Ω) + ‖u
∼
n
L,δ,h − u

∼
n−1
L,δ,h‖2

L2(Ω)

]
+ k (M,πh[FL

δ (ψ̂nL,δ,h)])Ω×D +Δt ν ‖∇
≈
x u

∼
n
L,δ,h‖2

L2(Ω)

+Δt k

(
M,πh

[
ε∇

∼
x ψ̂

n
L,δ,h · ∇∼ x (πh[ [FL

δ ]′(ψ̂nL,δ,h)]) +
1

2λ
∇
∼
q ψ̂

n
L,δ,h · ∇∼ q (πh[ [FL

δ ]′(ψ̂nL,δ,h)])
])

Ω×D

≤ 1
2
‖u

∼
n−1
L,δ,h‖

2
L2(Ω) + k (M,πh[FL

δ (ψ̂n−1
L,δ,h)])Ω×D +Δt 〈f

∼

n, u
∼
n
L,δ,h〉H1

0 (Ω)

≤ 1
2
‖u

∼
n−1
L,δ,h‖2

L2(Ω) + k (M,πh[FL
δ (ψ̂n−1

L,δ,h)])Ω×D +Δt

[
ν

2
‖∇

≈
x u

∼
n
L,δ,h‖2

L2(Ω) + C ‖f
∼

n‖2
H−1(Ω)

]
. (4.40)

Proof. On choosing w∼ h = u∼
n
L,δ,h in (4.39a), it follows that

1
2

∫
Ω

[
|u∼nL,δ,h|2 + |u∼nL,δ,h − u∼

n−1
L,δ,h|2 − |u∼

n−1
L,δ,h|2

]
dx∼ +Δt ν

∫
Ω

|∇≈ x u∼
n
L,δ,h|2 dx∼

= Δt
[
〈f
∼
n, u∼

n
L,δ,h〉H1

0 (Ω) − k (C≈ (M ψ̂nL,δ,h),∇≈ x u∼
n
L,δ,h)Ω

]
, (4.41)
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where we have noted the simple identity

2 (s1 − s2) s1 = s21 + (s1 − s2)2 − s22 ∀s1, s2 ∈ R. (4.42)

Next, on choosing ϕ̂h = πh[ [FL
δ ]′(ψ̂nL,δ,h)] in (4.39b), and noting the convexity of FL

δ , (4.16b), (4.27), (1.5), (4.10)
and (1.8), we have that

(M,πh[FL
δ (ψ̂nL,δ,h) −FL

δ (ψ̂n−1
L,δ,h)])Ω×D

+Δt

(
M,πh

[
ε∇

∼
x ψ̂

n
L,δ,h · ∇∼ x (πh[ [FL

δ ]′(ψ̂nL,δ,h)]) +
1

2λ
∇
∼
q ψ̂

n
L,δ,h · ∇∼ q (πh[ [FL

δ ]′(ψ̂nL,δ,h)])
])

Ω×D

≤ (M (∇
≈
x u

∼
n
L,δ,h) q

∼
,∇
∼
q ψ̂

n
L,δ,h)Ω×D + (M u

∼
n
L,δ,h,∇∼ x (πh[GLδ (ψ̂nL,δ,h)]) )Ω×D

= (M U ′(
1
2
|q
∼
|2) q

∼
· [(∇

≈
x u

∼
n
L,δ,h) q

∼
], ψ̂nL,δ,h)Ω×D − (M ∇

∼
x · u

∼
n
L,δ,h, ψ̂

n
L,δ,h)Ω×D

− (M ∇
∼
x · u

∼
n
L,δ,h, πh[G

L
δ (ψ̂nL,δ,h)] )Ω×D

= (C
≈

(M ψ̂nL,δ,h),∇≈ x u
∼
n
L,δ,h)Ω. (4.43)

Combining (4.41) and (4.43) yields the first inequality (4.40). The second inequality follows from using the
Cauchy–Schwarz inequality, Young’s inequality, and a Poincaré inequality. �

Remark 4.5. On noting (4.36a), (4.36b), the last term on the left-hand side of the first inequality in (4.40) is
nonnegative, and this is exploited in the existence result in Theorem 4.6 and the stability analysis in Lemma 4.10
below. In the case of a bead-spring chain with K ≥ 1 coupled springs, the q

∼
term becomes

Δt

⎛⎝M,πh

⎡⎣ 1
2λ

K∑
i=1

K∑
j=1

Aij ∇
∼
qj ψ̂

n
L,δ,h · ∇∼ qi(πh[ [FL

δ ]′(ψ̂nL,δ,h)])

⎤⎦⎞⎠
Ω×D

, (4.44)

where A = (Aij)Ki,j=1 ∈ R
d×d is the symmetric and positive definite Rouse matrix. Unfortunately, we do not

know at the moment how to guarantee the nonnegativity of this term, except when K = 1, or if K ≥ 1 and the
symmetric positive definite Rouse matrix A is diagonal, corresponding to the case of K decoupled dumbbells.
When A is an arbitrary symmetric positive definite matrix, a natural idea is to perform a diagonalization
A = OLOT, where O is an orthogonal d× d matrix whose column vectors are the orthonormal eigenvectors of
A, and L is a positive definite diagonal d× d matrix, with the eigenvalues of A along its diagonal; and perform
the change of variable q̂

∼
:= OTq

∼
. Such an orthogonal transformation will, however, map the high-dimensional

configuration domain D into a domain OTD that is no longer of a Cartesian-product form, and the construction
of a weakly acute triangulation, which is essential for our argument so as to ensure the nonnegativity of the
finite element approximation to ψ̂ on the transformed version of D, is not at all obvious. Hence our restriction
in this paper to the case of a dumbbell (K = 1) model, instead of a general bead-spring chain (K ≥ 1).

We now show using a Brouwer fixed point theorem that there exists a solution (u∼
n
L,δ,h, ψ̂

n
L,δ,h) at time level

tn to (4.39a), (4.39b).

Theorem 4.6. Given (u∼
n−1
L,δ,h, ψ̂

n−1
L,δ,h) ∈ V∼ h×X̂h and for any time step Δt > 0, there exists at least one solution

(u∼
n
L,δ,h, ψ̂

n
L,δ,h) ∈ V∼ h × X̂h to (4.39a), (4.39b).

Proof. We define the inner product ((·, ·)) on the Hilbert space V∼ h × X̂h as follows:

(( (u∼h, ψ̂h), (w∼ h, ϕ̂h) )) := (u∼h, w∼ h)Ω + (M,πh[ψ̂h ϕ̂h])Ω×D ∀(u∼h, ψ̂h), (w∼ h, ϕ̂h) ∈ V∼ h × X̂h.
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Given (u∼
n−1
L,δ,h, ψ̂

n−1
L,δ,h) ∈ V∼ h × X̂h, let H : V∼ h × X̂h → V∼ h × X̂h be such that, for any (u∼h, ψ̂h) ∈ V∼ h × X̂h,

((H(u
∼
h, ψ̂h), (w

∼
h, ϕ̂h) )) :=

(
u
∼
h − u

∼
n−1
L,δ,h

Δt
,w
∼
h

)
Ω

+ ν (∇
≈
x u

∼
h,∇

≈
xw

∼
h)Ω − 〈f

∼

n, w
∼
h〉H1

0 (Ω)

+ k (C
≈

(M ψ̂h),∇
≈
x w

∼
h)Ω +

1
2

[
((u

∼
n−1
L,δ,h · ∇∼ x )u

∼
h, w

∼
h)Ω − ((u

∼
n−1
L,δ,h · ∇∼ x )w

∼
h, u

∼
h)Ω
]

+

(
M,πh

[
ψ̂h − ψ̂n−1

L,δ,h

Δt
ϕ̂h+ ε∇

∼
x ψ̂h · ∇

∼
x ϕ̂h +

1
2λ

∇
∼
q ψ̂h · ∇

∼
q ϕ̂h

])
Ω×D

−
(
M (∇

≈
x u

∼
h) q

∼
, π
∼
h

[
Ξ
≈

q
L,δ(ψ̂h)∇∼ q ϕ̂h

])
Ω×D

−
(
M u

∼
h, π

∼
h

[
Λ
≈
x
L,δ(ψ̂h)∇∼ x ϕ̂h

])
Ω×D

∀(w
∼
h, ϕ̂h) ∈ V

∼
h × X̂h. (4.45)

We note that a solution (u∼
n
L,δ,h, ψ̂

n
L,δ,h) to (4.39a), (4.39b), if it exists, corresponds to a zero of H; that is,

((H(u
∼
n
L,δ,h, ψ̂

n
L,δ,h), (w∼ h, ϕ̂h) )) = 0 ∀(w

∼
h, ϕ̂h) ∈ V

∼
h × X̂h. (4.46)

On noting the construction of Λ≈
x
δ and Ξ≈

q
δ, it is easily deduced that the mapping H is continuous.

For any (u∼h, ψ̂h) ∈ V∼ h× X̂h, by choosing (w∼ h, ϕ̂h) = (u∼h, πh[[FL
δ ]′(ψ̂h)]), we obtain analogously to (4.40), on

noting (4.31a), (4.31b) and neglecting some nonnegative terms, that

((H(u
∼
h, ψ̂h), (u

∼
h, πh[[FL

δ ]′(ψ̂h)]) )) ≥ 1
Δt

[
1
2

(
‖u

∼
h‖2
L2(Ω) − ‖u

∼
n−1
L,δ,h‖

2
L2(Ω)

)
+k(M,πh[FL

δ (ψ̂h) −FL
δ (ψ̂n−1

L,δ,h)])Ω×D
]

+
ν

2
‖∇

≈
x u

∼
h‖2
L2(Ω) − C‖f

∼

n‖2
H−1(Ω).

(4.47)

The rest of the proof follows exactly the argument in the proof of Theorem 4.2 in [8]. �

In order to establish a stability result for our approximation (PΔt,hL,δ ), we need first to prove a number of
auxiliary results. Applying Jensen’s inequality, we have that, for all κx ∈ T h

x with vertices {P∼ x
ij
}dj=0,

| [πxh,κx
ϕ̂x](x

∼
)|2 =

∣∣∣∣ d∑
j=0

ϕ̂x(P
∼
x
ij )χ

x
ij (x∼)

∣∣∣∣2 ≤
d∑
j=0

[ϕ̂x(P
∼
x
ij )]

2 χxij (x∼) = [πxh,κx
[(ϕ̂x)2] ](x

∼
)

∀x
∼
∈ κx, ∀ϕ̂x ∈ C(κx), (4.48a)

where we have used (4.12a) and that χxij are nonnegative, and
∑d
j=0 χ

x
ij

(x∼) = 1 for all x∼ ∈ κx. Similarly, we
have for all κx ∈ T h

x , κq ∈ T h
q that

| [πqh,κq
ϕ̂q](q

∼
)|2 ≤ [πqh,κq

[(ϕ̂q)2] ](q
∼
) ∀q

∼
∈ κq, ∀ϕ̂q ∈ C(κq), (4.48b)

| [πh,κx×κq ϕ̂](x
∼
, q
∼
)|2 ≤ [πh,κx×κq [ϕ̂2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, ∀ϕ̂ ∈ C(κx × κq), (4.48c)

| [π
∼
h,κx×κq ϕ̂

∼
](x

∼
, q
∼
)|2 ≤ [πh,κx×κq [ |ϕ̂

∼
|2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, ∀ϕ̂

∼
∈ [C(κx × κq)]d. (4.48d)

In addition, for all κx ∈ T h
x , κq ∈ T h

q and for all ϕ̂, η̂ ∈ C(κx × κq), ϕ̂∼ , η̂∼ ∈ [C(κx × κq)]d the following
inequalities are easily deduced for any η ∈ R>0:

| [πh,κx×κq [ϕ̂ η̂] ](x
∼
, q
∼
)| ≤ 1

2
[πh,κx×κq [η ϕ̂2 + η−1 η̂2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq, (4.49a)

and | [πh,κx×κq [ϕ̂
∼
· η̂
∼
] ](x

∼
, q
∼
)| ≤ 1

2
[πh,κx×κq [η |ϕ̂

∼
|2 + η−1 |η̂

∼
|2] ](x

∼
, q
∼
) ∀(x

∼
, q
∼
) ∈ κx × κq. (4.49b)
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The following interpolation stability results are easily established, using the mean value theorem, for all
κx ∈ T x

h and κq ∈ T q
h , respectively:

‖∇
∼
x π

x
h,κx

ϕ̂x‖L∞(κx) ≤ d ‖∇
∼
x ϕ̂

x‖L∞(κx) ∀ϕ̂x ∈W 1,∞(κx), (4.50a)

‖∇
∼
q π

q
h,κq

ϕ̂q‖L∞(κq) ≤ d ‖∇
∼
q ϕ̂

q‖L∞(κq) ∀ϕ̂q ∈ W 1,∞(κq); (4.50b)

furthermore,

d∑
i=1

d∑
j=1

∥∥∥∥ ∂2

∂xi ∂qj
πh,κx×κq ϕ̂

∥∥∥∥
L∞(κx×κq)

=
d∑
i=1

d∑
j=1

∥∥∥∥ ∂

∂xi
πxh,κx

[
∂

∂qj
πqh,κq

ϕ̂

]∥∥∥∥
L∞(κx×κq)

≤
d∑
i=1

d∑
j=1

∥∥∥∥ ∂2

∂xi ∂qj
ϕ̂

∥∥∥∥
L∞(κx×κq)

∀ϕ̂ ∈W 2,∞(κx × κq). (4.51)

We recall the following well-known approximation results for all κx ∈ T x
h and κq ∈ T q

h : for m = 0 or 1 and s = 1
or 2, we have that

‖(I − πxh,κx
)ϕ̂x‖Wm,∞(κx) ≤ C hs−mx |ϕ̂x|W s,∞(κx) ∀ϕ̂x ∈W s,∞(κx), (4.52a)

‖(I − πqh,κq
)ϕ̂q‖Wm,∞(κq) ≤ C hs−mq |ϕ̂q|W s,∞(κq) ∀ϕ̂q ∈W s,∞(κq). (4.52b)

Similarly, since I − πh,κx×κq ≡ (I − πxh,κx
) + (I − πqh,κq

)πxh,κx
, it follows from (4.52a), (4.52b) that

‖(I − πh,κx×κq)ϕ̂‖Wm,∞(κx×κq) ≤ C (hs−mx + hs−mq ) |ϕ̂|W s,∞(κx×κq) ∀ϕ̂ ∈W s,∞(κx × κq). (4.53)

Hence, on noting (3.6) and (4.53), for all ϕ̂ ∈ X̂, there exists a sequence {ϕ̂h}h>0, with ϕ̂h ∈ X̂h, such that

lim
h→0+

‖ϕ̂− ϕ̂h‖X̂ = 0. (4.54)

We require the following inverse bounds for all ϕ̂xh ∈ P
x
1 , ϕ̂qh ∈ P

q
1 and for all κ	x ⊂ κx ∈ T x

h , κ	q ⊂ κq ∈ T q
h

with m(κx) ≤ Cm(κ	x), m(κq) ≤ Cm(κ	q):

‖ϕ̂xh‖2
L∞(κx) ≤ C [m(κ	x)]

−1

∫
κ�

x

|ϕ̂xh|2 dx
∼
, (4.55a)

‖ϕ̂qh‖2
L∞(κq) ≤ C [m(κ	q)]

−1

∫
κ�

q

|ϕ̂qh|2 dq
∼
, (4.55b)∫

κ�
x

|∇
∼
x ϕ̂

x
h|2 dx

∼
≤ C h−2

x

∫
κ�

x

|ϕ̂xh|2 dx
∼
≤ C h−2

x

∫
κ�

x

πxh,κx
[ |ϕ̂xh|2] dx∼, (4.55c)∫

κ�
q

|∇
∼
q ϕ̂

q
h|2 dq

∼
≤ C h−2

q

∫
κ�

q

|ϕ̂qh|2 dq
∼
≤ C h−2

q

∫
κ�

q

πqh,κq
[ |ϕ̂qh|2] dq

∼
. (4.55d)

The bounds (4.55a), (4.55b) are standard inverse bounds in the case κ	x ≡ κx and κ	q ≡ κq. The results
are easily generalized to κ	x ⊂ κx and κ	q ⊂ κq under the stated conditions, since then ‖ϕ̂xh‖L∞(κx) ≤
C ‖ϕ̂xh‖L∞(κ�

x) and ‖ϕ̂qh‖L∞(κq) ≤ C ‖ϕ̂qh‖L∞(κ�
q). The first inequalities in (4.55c), (4.55d) then follow im-

mediately from (4.55a), (4.55b), respectively; whereas the second inequalities in (4.55c), (4.55d) follow
from (4.48a), (4.48b), respectively. The following bounds follow immediately from (4.55a), (4.55b) under the
same stated conditions:∫

κ�
x

πxh,κx
[ |ϕ̂xh|2] dx∼ ≤ C

∫
κ�

x

|ϕ̂xh|2 dx
∼

and
∫
κ�

q

πqh,κq
[ |ϕ̂qh|

2] dq
∼
≤ C

∫
κ�

q

|ϕ̂qh|
2 dq

∼
. (4.56)

In addition, we require the following weighted bounds.
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Lemma 4.7. For all κq ∈ T h
q and for all ϕ̂qh ∈ P

q
1 we have that∫

κq

M |∇
∼
q ϕ̂

q
h|

2 dq
∼
≤ C h−2

q

∫
κq

M |ϕ̂qh|
2 dq

∼
≤ C h−2

q

∫
κq

M πqh,κq
[ |ϕ̂qh|

2] dq
∼
, (4.57a)

∫
κq

M πqh,κq
[ |ϕ̂qh|2] dq

∼
≤
(∫

κq

M dq
∼

)
‖ϕ̂qh‖2

L∞(κq) ≤ C

∫
κq

M |ϕ̂qh|2 dq
∼
. (4.57b)

Proof. See the proof of Lemma 4.3 in [8]. �

Lemma 4.8. For all κx ∈ T x
h , κq ∈ T q

h and for all η̂h, ϕ̂h ∈ X̂h we have that∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
q η̂h · ∇

∼
q ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤ C hx

(∫
κx×κq

M |∇
∼
q η̂h|2 dq

∼
dx

∼

) 1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

, (4.58a)

∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq) [∇
∼
x η̂h · ∇

∼
x ϕ̂h] dq

∼
dx

∼

∣∣∣∣∣
≤ C hq

(∫
κx×κq

M |∇
∼
x η̂h|2 dq

∼
dx

∼

) 1
2
⎛⎝ d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼

⎞⎠
1
2

, (4.58b)

and∣∣∣∣∣
∫
κx×κq

M (I − πh,κx×κq)[η̂h ϕ̂h] dq
∼

dx
∼

∣∣∣∣∣ ≤ C h2
x

(∫
κx×κq

M |∇
∼
x η̂h|2 dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼

) 1
2

+ C h2
q

(∫
κx×κq

M |∇
∼
q η̂h|2dq

∼
dx

∼

) 1
2
(∫

κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼

) 1
2

.

(4.58c)

Proof. See the proof of Lemma 4.5 in [8]. �

Lemma 4.9. For all κx ∈ T x
h , κq ∈ T q

h and for all η̂h, ϕ̂h ∈ X̂h we have that

∫
κx×κq

M
∣∣∣(I

∼
− π

∼
h,κx×κq) [Ξ

≈

q
L,δ(η̂h)∇∼ q ϕ̂h]

∣∣∣2 dq
∼

dx
∼
≤ C(L)h2

x

d∑
i=1

d∑
j=1

∫
κx×κq

M

∣∣∣∣ ∂2ϕ̂h
∂xi∂qj

∣∣∣∣2 dq
∼

dx
∼
, (4.59a)∫

κx×κq

M
∣∣∣(I

∼
− π

∼
h,κx×κq) [Λ

≈
x
L,δ(η̂h)∇∼ x ϕ̂h]

∣∣∣2 dq
∼

dx
∼

≤ C h2
q

(∫
κx×κq

M |η̂h|2 dq
∼

dx
∼

)
d∑
i=1

d∑
j=1

∥∥∥∥ ∂2ϕ̂h
∂xi∂qj

∥∥∥∥2
L∞(κx×κq)

. (4.59b)

Proof. The bound (4.59a) is proved in Lemma 4.6 in [8]. We adapt the proof there to prove (4.59b). As Λ≈
x
L,δ(η̂h) ∈

[Pq1]
d×d and ∇∼ x ϕ̂h ∈ [Pq1]

d on κx×κq, it follows from (4.52b), a standard inverse bound on κq, (4.29) and (4.57b)
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that∫
κx×κq

M
∣∣∣(I

∼
− π

∼
h,κx×κq) [Λ

≈
x
L,δ(η̂h)∇∼ x ϕ̂h]

∣∣∣2 dq
∼

dx
∼

≤ C h4
q

(∫
κx×κq

M dq
∼

dx
∼

) ⎛⎝ d∑
i=1

d∑
j=1

∥∥∥∇
∼
q [Λ

≈
x
L,δ(η̂h)]ij

∥∥∥2
L∞(κq)

⎞⎠ d∑
i=1

d∑
j=1

∥∥∥∥ ∂2ϕ̂h
∂xi∂qj

∥∥∥∥2
L∞(κq)

≤ C h2
q

(∫
κx×κq

M dq
∼

dx
∼

) ⎛⎝ d∑
i=1

d∑
j=1

‖[Λ
≈
x
L,δ(η̂h)]ij‖2

L∞(κq)

⎞⎠ d∑
i=1

d∑
j=1

∥∥∥∥ ∂2ϕ̂h
∂xi∂qj

∥∥∥∥2
L∞(κx×κq)

≤ C h2
q

(∫
κx×κq

M dq
∼

dx
∼

)
‖η̂h‖2

L∞(κx×κq)

d∑
i=1

d∑
j=1

∥∥∥∥ ∂2ϕ̂h
∂xi∂qj

∥∥∥∥2
L∞(κx×κq)

≤ C h2
q m(κx)

∥∥∥∥∥
∫
κq

M (η̂h(x
∼
, q
∼
))2 dq

∼

∥∥∥∥∥
L∞(κx)

d∑
i=1

d∑
j=1

∥∥∥∥ ∂2ϕ̂h
∂xi∂qj

∥∥∥∥2

L∞(κx×κq)

. (4.60)

Hence, the desired result (4.59b) follows from (4.60) on applying a standard inverse bound over κx. �

We are now in a position to prove the following stability result for (PΔt,hL,δ ).

Lemma 4.10. A solution {(u∼nL,δ,h, ψ̂nL,δ,h)}Nn=1 of (PΔt,hL,δ ) satisfies the following stability bounds:

max
n=1,...,N

‖u
∼
n
L,δ,h‖2

L2(Ω) + max
n=1,...,N

(M,πh[FL
δ (ψ̂nL,δ,h)])Ω×D +

N∑
n=1

Δt ‖∇
≈
x u

∼
n
L,δ,h‖2

L2(Ω)

+
N∑
n=1

Δt
(
M,πh

[
∇
∼
x ψ̂

n
L,δ,h · ∇∼ x (πh[ [FL

δ ]′(ψ̂nL,δ,h)]) + ∇
∼
q ψ̂

n
L,δ,h · ∇∼ q (πh[ [FL

δ ]′(ψ̂nL,δ,h)])
])
Ω×D

≤ C

[
‖u

∼
0
L,δ,h‖2

L2(Ω) + (M,πh[FL
δ (ψ̂0

L,δ,h)])Ω×D +
n∑
n=1

Δt ‖f
∼

n‖2
H−1(Ω)

]
≤ C(L), (4.61a)

and

max
n=1,...,N

(M, |ψ̂nL,δ,h|2 )Ω×D + δ−1 max
n=1,...,N

(M,πh

[
[ψ̂nL,δ,h]

2
−

]
)Ω×D +

N∑
n=1

Δt (M, |∇
∼
q ψ̂

n
L,δ,h|2 + |∇

∼
x ψ̂

n
L,δ,h|2 )Ω×D

+ max
n=1,...,N

[∫
Ω

|C
≈

(M ψ̂nL,δ,h)|2 dx
∼

]
≤ C(L). (4.61b)

Proof. Summing (4.40) from n = 1, . . . ,m, for m = 1, . . . , N , yields the desired result (4.61a) on not-
ing (4.31a), (4.31b), (4.38), (2.5) and (3.16a).

The first and second bounds in (4.61b) follow immediately from the second bound in (4.61a), (2.11)
and (4.48c). The third bound in (4.61b) follows directly from the fourth bound in (4.61a), Corollary 4.2 on
taking ϕ̂h = ψ̂nL,δ,h and g = [FL

δ ]′ in (4.36a), (4.36b), and noting that this g is strictly monotonic increasing on
R and its inverse map g−1 is Lipschitz continuous on R, with Lipschitz constant L, and (4.48d). Finally, the
fourth bound in (4.61b) follows immediately from the first bound in (4.61b) and (3.8). �

Before proving a convergence result for (PΔt,hL,δ ), we need the following lemma.
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Lemma 4.11. For all κx ∈ T x
h , κq ∈ T q

h and for all ϕ̂h ∈ X̂h we have that∫
κx×κq

M |Ξ
≈

q
L,δ(ϕ̂h) − βL(ϕ̂h) I

≈
|2 dq

∼
dx

∼

≤ C

(
δ2 + h2

q

∫
κx×κq

M |∇
∼
q ϕ̂h|2 dq

∼
dx

∼
+
∫
κx×κq

M πh,κx×κq

[
[ϕ̂h]2−

]
dq

∼
dx

∼

)
, (4.62a)∫

κx×κq

M |Λ
≈
x
L,δ(ϕ̂h) − ϕ̂h I

≈
|2 dq

∼
dx

∼
≤ C h2

x

∫
κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼
. (4.62b)

Proof. The bound (4.62a) is proved in Lemma 4.9 in [8]. We adapt the proof there to prove (4.62b). We have
from the Λ≈

x
L,δ version of (4.19), (4.28), (4.25), (4.26) and (4.57b) that∫
κx×κq

M |Λ
≈
x
L,δ(ϕ̂h) − ϕ̂h I

≈
|2 dq

∼
dx

∼
≤ C

(∫
κx×κq

M dq
∼

dx
∼

)
‖Λ̃

≈

x

L,δ
(ϕ̂h) − ϕ̂h I

≈
‖2
L∞(κx×κq)

≤ C h2
x

(∫
κx×κq

M dq
∼

dx
∼

)
‖∇

∼
x ϕ̂h‖2

L∞(κx×κq)

≤ C h2
x

∫
κx×κq

M |∇
∼
x ϕ̂h|2 dq

∼
dx

∼
, (4.63)

and hence the desired result (4.62b). �

We are now in a position to prove the following convergence result for (PΔt,hL,δ ).

Theorem 4.12. Firstly, the initial data of (PΔt,hL,δ ) are such that, as δ, h→ 0+,

u
∼

0
L,δ,h → u

∼
0 = u

∼
0
L strongly in L

∼
2(Ω), (4.64a)

M
1
2 ψ̂0

L,δ,h → M
1
2 ψ̂0 = M

1
2 ψ̂0

L strongly in L2(Ω ×D). (4.64b)

Secondly, there exists a subsequence (not indicated) of { (u∼
n
L,δ,h, ψ̂

n
L,δ,h) }δ>0,h>0, and functions u∼

n
L ∈ V∼ and

ψ̂nL ∈ X̂ ∩ Ẑ2, n = 1, . . . , N , such that, as δ, h→ 0+,

u
∼
n
L,δ,h → u

∼
n
L weakly in H

∼
1(Ω), (4.65a)

u
∼
n
L,δ,h → u

∼
n
L strongly in L

∼
r(Ω), (4.65b)

and

M
1
2 ψ̂nL,δ,h → M

1
2 ψ̂nL weakly in L2(Ω ×D), (4.66a)

M
1
2 ∇

∼
q ψ̂

n
L,δ,h → M

1
2 ∇

∼
q ψ̂

n
L weakly in L

∼
2(Ω ×D), (4.66b)

M
1
2 ∇

∼
x ψ̂

n
L,δ,h → M

1
2 ∇

∼
x ψ̂

n
L weakly in L

∼
2(Ω ×D), (4.66c)

M
1
2 ψ̂nL,δ,h → M

1
2 ψ̂nL strongly in L2(Ω ×D), (4.66d)

M
1
2 Ξ

≈

q
L,δ(ψ̂

n
L,δ,h) → M

1
2 βL(ψ̂nL) I

≈
strongly in L

≈
2(Ω ×D), (4.66e)

M
1
2 ΛxL,δ(ψ̂

n
L,δ,h) → M

1
2 ψ̂nL I≈

strongly in L
≈

2(Ω ×D), (4.66f)

C
≈

(M ψ̂nL,δ,h) → C
≈

(M ψ̂nL) strongly in L
≈

2(Ω); (4.66g)

where r ∈ [1,∞) if d = 2 and r ∈ [1, 6) if d = 3.
Furthermore, {(u∼nL, ψ̂nL)}Nn=1 solves (PΔtL ), (3.14a), (3.14b).
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Proof. It follows from (4.38) that a subsequence of {u∼0
L,δ,h}δ>0,h>0 converges strongly in L2(Ω), weakly in

H1(Ω), to some element u∼
	 ∈ H1(Ω), as δ, h → 0+. It follows from passing to the limit δ, h → 0+ in (4.37a),

and noting (4.5) and (3.9) that u∼
	 = u∼

0. In addition, the whole sequence {u∼0
L,δ,h}δ>0,h>0 converges as u∼

0 is the
unique solution of (3.9). Hence we have the desired result (4.64a).

The bounds (4.38) and (4.48c), (4.48d) yield that∫
Ω×D

M
[
|ψ̂0
L,δ,h|2 +Δt

(
|∇
∼
x ψ̂

0
L,δ,h|2 + |∇

∼
q ψ̂

0
L,δ,h|2

)]
dq

∼
dx

∼
≤ C(L). (4.67)

Therefore there exists a subsequence of {M 1
2 ψ̂0

L,δ,h}δ>0,h>0 such that M
1
2 ψ̂0

L,δ,h converges weakly in L2(Ω×D)
to some element M

1
2 ψ̂	 ∈ L2(Ω×D), and M

1
2 ∇∼ q ψ̂

0
L,δ,h, M

1
2 ∇∼ x ψ̂

0
L,δ,h converge weakly in L∼

2(Ω×D) to some
elements ĝ

∼
	

1
, ĝ

∼
	

2
∈ L∼

2(Ω×D), respectively, as δ, h→ 0+. To show that ĝ
∼
	

1
= M

1
2 ∇∼ q ψ̂

	 and ĝ
∼
	

2
= M

1
2 ∇∼ x ψ̂

	, see
the proof of Lemma 3.3 in [7]. In addition, the compact embedding result (3.7b) yields that this subsequence of
{M 1

2 ψ̂0
L,δ,h}δ>0,h>0 is such that M

1
2 ψ̂0

L,δ,h converges strongly in L2(Ω ×D) to ψ̂	 as δ, h → 0+. We can then
pass to the limit δ, h → 0+ in (4.37b) with ϕ̂h = πh ϕ̂ for any function ϕ̂ ∈ C∞(Ω ×D) on noting (4.58a)–
(4.58c), (4.50a), (4.50b), (4.51), (3.11) and (3.6) to obtain that ψ̂	 = ψ̂0. Once again the whole sequence
converges as ψ̂0 is the unique solution of (3.11). Hence we have the desired result (4.64b).

The result (4.65a) follows immediately from the bound (4.61a). The denseness of
⋃
h>0Rh in L2(Ω) and (4.3c)

yield that u∼
n
L ∈ V∼ . The strong convergence result (4.65b) for u∼

n
L,δ,h follows immediately on noting that V∼ ⊂

H∼
1
0(Ω) is compactly embedded in L∼

r(Ω) for the stated values of r.
The result (4.66a) follows directly from the first bound in (4.61b). It follows immediately from the bound on

the second term on the left-hand side of (4.61b) that (4.66b) holds for some limit g
∼
∈ L∼

2(Ω×D). To show that

g
∼

= M
1
2 ∇∼ q ψ̂

n
L, once again see the proof of Lemma 3.3 in [7]. A similar argument proves (4.66c). The strong

convergence result (4.66d) for ψ̂ΔtL,δ,h follows immediately from (3.7b). The desired results (4.66e), (4.66f) follow
directly from (4.62a), (4.62b), the second and third bounds in (4.61b) and (4.66d). The desired result (4.66g)
follows immediately from (4.66d), (1.8) and (3.8). Finally, the nonnegativity of ψ̂nL follows from (4.66d) and the
second bound in (4.61b).

It remains to prove that {(u∼nL, ψ̂nL)}Nn=1 solves (PΔtL ), (3.14a), (3.14b). It follows from (4.5), (4.64a), (4.65a),
(4.65b), (4.66g) and (4.6) that we may pass to the limit δ, h→ 0+ in (4.39a) to obtain that {(u∼nL, C≈ (M ψ̂nL))}Nn=1,
with u∼

n
L ∈ V∼ and C≈ (M ψ̂nL) ∈ L≈

2(Ω), satisfy (3.14a).
It follows from (4.64b), (4.66a)–(4.66f), (4.65a), (4.65b), (4.58a)–(4.58c), (4.59a), (4.59b), (4.61b), (4.50a),

(4.50b), (4.51) and (4.52a), (4.52b) that we may pass to the limit δ, h → 0+ in (4.39b) with ϕ̂h = πh ϕ̂
to obtain equation (3.14b) for any function ϕ̂ ∈ C∞(Ω ×D). The desired result (3.14b) then follows from
recalling (3.6). �

Therefore combining Theorems 4.12 and 3.1 we obtain the desired result that a (sub)sequence of our finite
element approximation (PΔt,hL,δ ) converges to a weak solution of (P) as first h, δ → 0+ and then L → ∞, with
Δt = o(L−1) under our stated assumptions (A1) and (A2).

5. Concluding remarks

The aim of this paper has been to develop a fully-discrete, convergent numerical method for the approximate
solution of a general class of Navier–Stokes–Fokker–Planck systems, in the case of finitely extensible nonlinear
elastic spring potentials, under minimal regularity hypotheses on the data. The numerical solutions defined by
the method satisfy an energy inequality analogous to the one obeyed by weak solutions to the Navier–Stokes–
Fokker–Plank system. The dumbbell model considered in the paper is a special case of a bead-spring chain
model involving K ≥ 1 linearly linked springs. As we have noted in Remark 4.5, in the general case of K ≥ 1
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the last term on the left-hand side of the first inequality in (4.40) term becomes (4.44). Unfortunately, we do
not know at the moment how to guarantee the nonnegativity of this term, except when K = 1 (dumbbell
model), or if K ≥ 1 and the symmetric positive definite Rouse matrix A is diagonal, corresponding to the case
of K decoupled dumbbells, which is why we have been forced to confine ourselves here to the dumbbell model
(K = 1). If a family of finite element triangulations of D = D1 × · · · ×DK could be identified over which the
term (4.44) remains nonnegative for K > 1, then the convergence of a fully-discrete method analogous to the
one considered here in the case of K = 1 could be proved for all K ≥ 1 in an identical manner.

The Galerkin approximation (4.39b) is posed over the 2d-dimensional spatial domain Ω ×D, with d = 2 or
d = 3. A possible practical approach to its implementation might be based on operator-splitting, following the
computational strategy advocated in the papers [19, 20], for example; see also [21]. We note however that the
schemes that were analyzed in [19–21] were shown to converge for the Fokker–Planck equation considered in
isolation, i.e. with the velocity field u∼ given and assumed to be sufficiently smooth. It is not known if those
schemes would still converge if the Fokker–Planck equation were coupled to the Navier–Stokes system, and only
the minimal regularity hypotheses on the data stated in (3.3), which guarantee the existence of weak solutions
to the coupled system, were assumed. In contrast, the numerical approximations generated by the method
proposed here have been proved to converge to a weak solution of the coupled Navier–Stokes–Fokker–Planck
system under those minimal regularity assumptions on the data.

Appendix A. The proofs of (3.13a), (3.13b)

The arguments in this section follow the proofs in Barrett and Süli [7], Section 6.1. Given any L > 1,
Δt ∈ (0, 1) and an initial datum ψ̂0 satisfying the conditions in (3.3), the existence of a unique solution
ψ̂0 = ψ̂0(L,Δt) ∈ H1

M (Ω × D) to (3.11) follows directly from the Lax–Milgram theorem. We shall show that
ψ̂0 satisfies (3.13a), (3.13b) We begin by establishing the properties listed under (3.13a).

On taking ϕ̂ = [ψ̂0]− ∈ H1
M (Ω ×D) in (3.11) and noting that βL(ψ̂0) ≥ 0 a.e. on Ω ×D, it follows that∫

Ω×D
M
[
|[ψ̂0]−|2 +Δt

(
|∇
∼
x [ψ̂0]−|2 + |∇

∼
q [ψ̂0]−|2

)]
dq

∼
dx

∼
≤ 0, (A.1)

whereby [ψ̂0]− = 0 a.e. on Ω ×D. Thus we deduce that ψ̂0 ≥ 0 a.e. on Ω ×D.
We introduce also the following closed linear subspace of X̂ = H1

M (Ω ×D):

H1(Ω) ⊗ 1(D) :=
{
ϕ̂ ∈ H1

M (Ω ×D) : ϕ̂(·, q
∼

∗) = ϕ̂(·, q
∼

∗∗) ∀q
∼

∗, q
∼

∗∗ ∈ D

}
. (A.2)

Next we define
γ(x∼) :=

∫
D

M(q
∼
) ψ̂0(x∼, q∼) dq

∼
and ζ(x∼) :=

∫
D

M(q
∼
)βL(ψ̂0(x∼, q∼)) dq

∼
,

and we take ϕ̂ = φ ∈ H1(Ω) ⊗ 1(D) in (3.11). Hence,∫
Ω

γ φdx∼ +Δt

∫
Ω

∇∼ x γ · ∇∼ x φdx∼ =
∫
Ω

ζ φdx∼ ∀φ ∈ H1(Ω), (A.3)

and therefore, on subtracting
∫
Ω φdx∼ from both sides of (A.3) and rearranging, also∫

Ω

(1 − γ)φdx∼ +Δt

∫
Ω

∇∼ x (1 − γ) · ∇∼ x φdx∼ =
∫
Ω

(1 − ζ)φdx∼ ∀φ ∈ H1(Ω). (A.4)

Since, thanks to (3.3) and (1.14), we have that 0 ≤ βL(ψ̂0(x∼, q∼)) ≤ ψ̂0(x∼, q∼) for a.e. (x∼, q∼) ∈ Ω×D, it follows that
ζ(x∼) ≥ 0 and 1−ζ(x∼) ≥ 0 for a.e. x∼ ∈ Ω. Hence, on taking φ = [γ]− ∈ H1(Ω) in (A.3) and φ = [1−γ]− ∈ H1(Ω)
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in (A.4), respectively, we deduce that [γ(x∼)]− = 0 and [1−γ(x∼)]− = 0 for a.e. x ∈ Ω. Consequently, γ(x) ∈ [0, 1]
for a.e. x ∈ Ω, and therefore ψ̂0 ∈ Ẑ2 ⊂ Ẑ1, as has been claimed in (3.13a).

Next, on taking ϕ̂ = F ′(ψ̂0 + α) in (3.11) with α > 0, and then passing to the limit α → 0+, we deduce, in
the same manner as in the proof of inequality (6.11) in [7], that∫

Ω×D
M F(ψ̂0) dq

∼
dx

∼
+ 4Δt

∫
Ω×D

M

[∣∣∇
∼
x

√
ψ̂0
∣∣2 +

∣∣∇
∼
q

√
ψ̂0
∣∣2]dq

∼
dx

∼
≤
∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼
. (A.5)

That completes the proof of (3.13a). It remains to prove (3.13b).

Noting that (3.11) holds with ψ̂0 and βL(ψ̂0) replaced by L− ψ̂0 and L− βL(ψ̂0), respectively, and choosing
ϕ̂ = [L− ψ̂0]− yields, similarly to (A.1), that [L− ψ̂0]− = 0 a.e. on Ω ×D. Hence, we have that ψ̂0 ≡ βL(ψ̂0).

Proceeding in the same way as in the argument leading to (6.23) in [7], now with K = 1, we deduce
from (3.11), (A.5) and as ψ̂0 ∈ Ẑ1 that∣∣∣∣ ∫

Ω×D
M (ψ̂0 − βL(ψ̂0)) ϕ̂ dq

∼
dx

∼

∣∣∣∣ ≤ (Δt)
1
2

(∫
Ω×D

MF(ψ̂0) dq
∼

dx
∼

)1
2
(∫

Ω

[
‖∇

∼
x ϕ̂‖2

L∞(D) + ‖∇
∼
q ϕ̂‖2

L∞(D)

]
dx

∼

)1
2

(A.6)

for all ϕ̂ ∈ H1(Ω;L∞(D))∩L2(Ω;W 1,∞(D)) and therefore in particular for all ϕ̂ ∈ Hs(Ω×D) with s > 1 + d.
As the last two factors on the right-hand side of (A.6) are independent of L and Δt, we can pass to the limit
L → ∞ and Δt → 0+ on both sides of (A.6) to deduce that ψ̂0 − βL(ψ̂0) → 0 weakly in M−1(Hs(Ω ×D))′,
s > 1 + d, as L→ ∞ and Δt→ 0+.

As ψ̂0 ≥ βL(ψ̂0) and therefore ψ̂0 − βL(ψ̂0) = [ψ̂0 − βL(ψ̂0)]+, it follows from (1.14) that∣∣∣∣∫
Ω×D

M (ψ̂0 − βL(ψ̂0)) ϕ̂ dq
∼

dx∼

∣∣∣∣ ≤ (∫
Ω×D

M
[
ψ̂0 − L

]
+

dq
∼

dx∼

)
‖ϕ̂‖L∞(Ω×D) (A.7)

for all ϕ̂ ∈ L∞(Ω ×D). Further, since (3.3) implies that ψ̂0 ∈ Ẑ1, using (1.14) again we have that

0 ≤
∫
ψ̂0≥L

M L dq
∼

dx
∼
≤
∫
Ω×D

M βL(ψ̂0) dq
∼

dx
∼
≤
∫
Ω×D

M ψ̂0 dq
∼

dx
∼
≤ |Ω|. (A.8)

On noting that F is nonnegative and monotonic increasing on [1,∞), and that F(s) ∈ [0, 1] for s ∈ [0, 1], we
deduce from (3.3) that∫

Ω×D
M F([ψ̂0 − L]+) dq

∼
dx

∼
=
∫
ψ̂0∈[0,L+1)

M F([ψ̂0 − L]+) dq
∼

dx
∼

+
∫
ψ̂0≥L+1

M F([ψ̂0 − L]+) dq
∼

dx
∼

≤
∫
Ω×D

M dq
∼

dx
∼

+
∫
Ω×D

M F(ψ̂0) dq
∼

dx
∼
≤ C. (A.9)

Let us recall the logarithmic Young’s inequality

r s ≤ r log r − r + es for all r, s ∈ R≥0. (A.10)

This follows from the Fenchel–Young inequality:

r s ≤ g∗(r) + g(s) for all r, s ∈ R,

involving the convex function g : s ∈ R �→ g(s) ∈ (−∞,+∞] and its convex conjugate g∗, with g(s) = es and

g∗(r) =

⎧⎨⎩
+∞ if r < 0,
0 if r = 0,

r (log r − 1) if r > 0;
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with the resulting inequality then restricted to R≥0. It immediately follows from (A.10) that r s ≤ F(r) + es

for all r, s ∈ R≥0.
Applying the last inequality with r = [ψ̂0 − L]+ and s = logL, we have that

[ψ̂0 − L]+ (logL) ≤ F([ψ̂0 − L]+) + L. (A.11)

The bounds (A.8), (A.9) (noting that the integrand of the left-most integral in (A.9) is nonnegative) and (A.11)
then imply that∫

Ω×D
M [ψ̂0 − L]+ dq

∼
dx

∼
=
∫
ψ̂0≥L

M [ψ̂0 − L]+ dq
∼

dx
∼

≤ 1
logL

[∫
ψ̂0≥L

M F([ψ̂0 − L]+) dq
∼

dx
∼

+
∫
ψ̂0≥L

M L dq
∼

dx
∼

]
≤ C

logL
· (A.12)

On substituting (A.12) into the right-hand side of (A.7), we have that, for any ϕ̂ ∈ L∞(Ω ×D) (and therefore,
by Sobolev embedding, also for any ϕ̂ ∈ Hs(Ω ×D) with s > d),

lim
L→∞

∣∣∣∣∫
Ω×D

M (ψ̂0 − βL(ψ̂0)) ϕ̂dq
∼

dx
∼

∣∣∣∣ ≤ ( lim
L→∞

∫
Ω×D

M [ψ̂0 − L]+ dq
∼

dx
∼

)
‖ϕ̂‖L∞(Ω×D) = 0. (A.13)

Therefore, we have that ψ̂0 − βL(ψ̂0) converges to 0, weakly in M−1(Hs(Ω × D))′ for s > d, as L → ∞.
Consequently, also ψ̂0 − βL(ψ̂0) converges to 0, weakly in M−1(Hs(Ω × D))′ for s > 1 + d, as L → ∞. On
recalling that ψ̂0 − βL(ψ̂0) converges to 0, weakly in M−1(Hs(Ω ×D))′ for s > 1 + d, as L→ ∞ and Δt→ 0+,
we then deduce by subtracting that

ψ̂0 = ψ̂0(L,Δt) → ψ̂0 weakly in M−1 (Hs(Ω ×D))′ for s > 1 + d, as L→ ∞ and Δt→ 0+.

Noting (3.13a) and the fact that F(r)/r → ∞ as r → ∞, we deduce from de la Vallée-Poussin’s theorem
that the family {ψ̂0(L,Δt)}L>1,Δt>0 is uniformly integrable in L1

M (Ω × D). Hence, by the Dunford–Pettis
theorem, the family {ψ̂0(L,Δt)}L>1,Δt>0 is weakly relatively compact in L1

M (Ω × D). Consequently, one can
extract a subsequence {ψ̂0(Lk, Δtk)}∞k=1 that converges weakly in L1

M (Ω ×D); however the uniqueness of the
weak limit together with the weak convergence of the (entire) sequence {ψ̂0 = ψ̂0(L,Δt)}L>1,Δt>0 to ψ̂0 in
M−1(Hs(Ω × D))′, s > 1 + d, as L → ∞ and Δt → 0+, established in the previous paragraph, then implies
that the (entire) sequence {ψ̂0 = ψ̂0(L,Δt)}L>1,Δt>0 converges to ψ̂0 weakly in L1

M (Ω ×D), as L → ∞ and
Δt → 0+, on noting that L1

M (Ω ×D) is (continuously) embedded in M−1(Hs(Ω ×D))′ for s > 1 + d (cf. the
discussion following Thm. 5.1 in [7] with K = 1). As ψ̂0 ≡ βL(ψ̂0), that completes the proof of (3.13b).
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