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POD A-POSTERIORI ERROR BASED INEXACT SQP METHOD
FOR BILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS ∗

Martin Kahlbacher
1

and Stefan Volkwein
2

Abstract. An optimal control problem governed by a bilinear elliptic equation is considered. This
problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional
framework. In each level of this iterative method the solution of linear-quadratic subproblem is com-
puted by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate
(inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator devel-
oped by Tröltzsch and Volkwein [Comput. Opt. Appl. 44 (2009) 83–115] the difference of the suboptimal
to the (unknown) optimal solution of the linear-quadratic subproblem is estimated. Hence, the inex-
actness of the discrete solution is controlled in such a way that locally superlinear or even quadratic
rate of convergence of the SQP is ensured. Numerical examples illustrate the efficiency for the proposed
approach.
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1. Introduction

Optimal control problems governed by partial differential equations (PDEs) can often be formulated as an
infinite-dimensional optimization problem in the following form (see, e.g., in [23]):

min
x∈X

J(x) subject to (s.t.) e(x) = 0. (1.1)

The mapping J : X → R denotes the cost functional with a Banach space X . The operator e : X → Y ′ describes
the partial differential equations with a Banach space Y and its dual Y ′. The Lagrangian for (1.1) is given by

L(x, p) = J(x) + 〈e(x), p〉Y ′,Y for (x, p) ∈ X × Y,

where 〈· , ·〉Y ′,Y denotes the dual pairing between Y ′ and Y . If J and e are twice continuously Fréchet-
differentiable, second-order methods can be applied to solve (1.1) numerically. One favorite method is the
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sequential quadratic programming (SQP) method, where in each level of the iteration the linear-quadratic
programming problem ⎧⎨

⎩ min
x∈X

Lx(xk, pk)x+
1
2
Lxx(xk, pk)(x, x)

s.t. e(xk) + e′(xk)x = 0
(1.2)

is solved. The solution x̄ to (1.2) is given by the solution to the Karush-Kuhn-Tucker (KKT) system

Akz̄ = bk in X ′ × Y ′ (1.3)

with

Ak =
(
Lxx(xk, pk) e′(xk)�

e′(xk) 0

)
, z̄ =

(
x̄
p̄

)
, bk = −

(
Lx(xk, pk)
e(xk)

)
.

Here, X ′×Y ′ is identified with the dual of X×Y , e′(xk)� : Y → X ′ is the dual operator of the Fréchet derivative
e′(xk) : X → Y ′ and Lx (Lxx) stands for the first (second) Fréchet derivative of the Lagrangian with respect to
x.

In the context of PDE constrained optimization (1.3) has to be discretized. Often that leads to very large
scale linear systems. Therefore, different techniques of model order reduction methods have been developed to
approximate (1.3) by smaller ones that are tractable with less effort. We apply the method of proper orthogonal
decomposition (POD), which is based on projecting the system onto subspaces consisting of � ≥ 1 POD basis
elements that contain characteristics of the expected solution; see, e.g., [4, 5, 15, 18, 21]. This is in contrast to,
e.g., finite element techniques, where the elements of the subspaces are uncorrelated to the physical properties
of the system that they approximate. The discretization of (1.3) leads to a discrete solution which solves (1.3)
inexactly. Thus, we obtain an inexact version of the SQP method. Utilizing the convergence theory for inexact
Newton methods (see, e.g., [7]) the inexactness can be controlled in such a way that a local superlinear or even
local quadratic rate of convergence can be ensured.

Utilizing � POD basis functions for the Galerkin projection of (1.3) we arrive at a finite- and low-dimensional
linear system

A�kz̄
� = b�k in R

n (1.4)

with an integer n = n(�) depending on the number � of POD basis functions. We prolongate the solution z̄�

to (1.4) into the space X × Y by applying a linear operator I : R
n → X × Y . Convergence of the SQP method

can be ensured provided the starting value (x0, p0) is appropriately chosen and

‖Ak(Iz̄�) − bk‖X′×Y ′ = O
(
‖L′(xk, pk)‖qX′×Y ′

)
(1.5)

with q ∈ [1, 2]. Here, L′ denotes the Fréchet derivative of the Lagrangian with respect to (x, p). If q = 1 holds,
then the iterates converge linearly, if q ∈ (1, 2) is satisfied, the rate of convergence is superlinear, and for q = 2
we obtain quadratic rate of convergence. To achieve (1.5) we apply a POD a-posteriori error estimator (see [24])
which is derived for linear-quadratic programming problems. Utilizing the quadratic convergence of the SQP
method in function spaces we ensure convergence of the iterates – computed by the POD suboptimal control
approach – to the solution of the nonlinear optimization problem (1.1).

For the POD method (and also for other model reduction methods like the reduced-basis method [17] and
balanced truncation [2, 6]) no reliable a-priori error analysis for nonlinear optimal control problems black are
available. A priori error estimates for POD Galerkin approximations of linear-quadratic optimal control problems
were derived in [12], where the POD basis was computed with the knowledge of the optimal solution. In [24] the
main focus was on a POD a-posteriori analysis for linear-quadratic optimal control problems. It was deduced
how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. We
use this idea for nonlinear optimal control problems so that we are able to compensate for the lack of a priori
analysis for POD methods.
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In our work we apply the technique developed in [24] to control the discretization error of the POD Galerkin
approximation in each level of the SQP method. The approach is illustrated for an optimal control problem
governed by a bilinear elliptic partial differential equation. Within the inexact SQP method we tune the number
� of basis functions for the POD Galerkin approximation to ensure the locally fast convergence of the algorithm.
Thus, in contrast to [14] the POD basis will be fixed during the numerical algorithm. Only the number of the
utilized POD ansatz functions is increased, if necessary. We refer to the papers [13, 25], where also bilinear
optimal control problems are considered. Let us mention that the presented approach can also be used for
nonlinear parabolic equations as well as for reduced-basis approximations; see [22].

The paper is organized in the following manner: in Section 2 the optimal control problem is introduced and
optimality conditions are discussed. The SQP method is formulated in Section 3. In Section 4 we turn to the
POD discretization of the linear-quadratic subproblem. The inexact SQP method is studied in Section 5. Two
numerical examples are presented in Section 6. Finally, two proofs are given in the appendix.

2. Optimal control of the bilinear equation

In this section we introduce the optimal control problem. In Section 2.1 we discuss the underlying state
equation. The optimal control problem is investigated in Section 2.2, and optimality conditions are presented
in Section 2.3.

2.1. The state equation

Throughout we suppose thatΩ ⊂ R
d, d ∈ {1, 2, 3}, is an open and bounded domain with a smooth boundary

∂Ω = Γ ensuring the needed Sobolev embeddings. Let L2(Ω) denote the Lebesgue space of all measurable and
square integrable functions on Ω. For brevity, we set V = H1(Ω) and refer to [8], for instance, for more details
on Lebesgue and Sobolev spaces. Recall that V is continuously embedded into L4(Ω) for d ≤ 3. The bilinear
elliptic equation is given by

−Δy(x) + u(x)y(x) = f(x) for all x ∈ Ω, (2.1a)
∂y

∂n
(s) + y(s) = 0 for all s ∈ Γ. (2.1b)

We assume that f belongs to L2(Ω) and the control variable u is of the form

u(x) =
N∑
i=1

uibi(x) for all x ∈ Ω,

where b1, . . . , bN are linearly independent in L2(Ω). For instance, the bi’s can be step functions satisfying bi ≡ 1
on Ωi and bi ≡ 0 on Ω \Ωi for i = 1, . . . , N and N = nΩ.

Remark 2.1. Let us mention that (2.1) is a simpliid model for an identification problem arising in hyperther-
mia; see [10].

We define the finite-dimensional control space

U = span
{
b1, . . . , bN

} ⊂ L2(Ω)

supplied with the topology in L2(Ω). Note that dimU = N . Let us introduce the Hilbert space

X = V × U

endowed with the common product topology. To write the elliptic differential equation (2.1) in a compact form
we define the bilinear operator e : X → V ′ by

〈e(x), ϕ〉V ′,V =
∫
Ω

∇y · ∇ϕ+ (uy − f)ϕdx +
∫
Γ

yϕds
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for x = (y, u) ∈ X and ϕ ∈ V . Moreover, 〈· , ·〉V ′,V denotes the dual pairing associated with V and its dual
V ′. Moreover, u ∈ U holds. Thus, the operator e and its Fréchet-derivatives are well-defined. In particular, at
x = (u,w) ∈ X we have

〈e′(x)xδ , ϕ〉V ′,V =
∫
Ω

∇yδ · ∇ϕ+ (uδy + uyδ)ϕdx +
∫
Γ

yδϕds,

〈e′′(x)(xδ , x̃δ), ϕ〉V ′,V =
∫
Ω

(uδỹδ + ũδyδ)ϕdx

in directions xδ = (yδ, uδ), x̃δ = (ỹδ, ũδ) ∈ X and for ϕ ∈ V . Due to the bilinear structure of the mapping e the
mapping x �→ e′′(x) does not depend on x ∈ X so that it is Lipschitz-continuous on X .

The next proposition ensures existence and uniqueness of a weak solution to the state equation for arbitrary
non-negative u ∈ U . For a proof we refer to [10], Theorem 2.1.

Proposition 2.2. For every u ∈ U with u ≥ 0 in Ω there exists a unique solution y = y(u) ∈ V of the equation
e(y, u) = 0. Moreover, y is uniformly bounded in V with respect to u.

The following result ensures a standard constraint qualification that is needed to ensure the existence of
Lagrange multipliers. For the proof we refer to [10], Theorem 2.2.

Proposition 2.3. For every x = (y, u) ∈ X with u ≥ 0 in Ω, the Fréchet derivative ey(x) : V → V ′ of the
operator e with respect to y is bijective. In particular, e′(x) is surjective, and there exists a constant Cker > 0
such that

‖yδ‖V ≤ Cker ‖uδ‖L2(Ω) for all (yδ, uδ) ∈ ker e′(x) ⊂ X.

2.2. The optimal control problem

Motivated by Propositions 2.2 and 2.3 we define the set of admissible nonnegative control functions by

Uad =
{
u ∈ U

∣∣ u(x) ≥ ua for all x ∈ Ω
} ⊂ L2(Ω),

where ua is a nonnegative real number. We set Xad = V × Uad and introduce a cost functional J : X → R of
tracking type

J(x) =
1
2
‖y − yd‖2

L2(Ω) +
σ

2
‖u‖2

L2(Ω) for x = (y, u) ∈ X,

where yd ∈ L2(Ω) is a desired state, and σ > 0 denotes a regularization parameter.

Remark 2.4. Let Ωm be a subset of Ω and u◦ ∈ U arbitrarily chosen. In our numerical examples we consider
the more general cost functional

J(x) =
1
2
‖y − yd‖2

L2(Ωm) +
σ

2
‖u− u◦‖2

L2(Ω) for x = (y, u) ∈ X,

which does not effect significantly the analysis of the optimal control problem.

It follows by standard arguments that J is twice continuously Fréchet-differentiable and the mapping x �→
J ′′(x) is Lipschitz-continuous on X . In particular, the first and second derivatives at x = (y, u) ∈ X are

J ′(x)xδ =
∫
Ω

(y − yd)yδ + σuuδ dx, J ′′(x)(xδ , x̃δ) =
∫
Ω

yδ ỹδ + σuδũδ dx

for directions xδ = (yδ, uδ) and x̃δ = (ỹδ, ũδ).
Then, the optimal control problem is given by

min J(x) s.t. x ∈ F(P), (P)

where the feasible set is F(P) = {x ∈ Xad | e(x) = 0 in V ′}. Since Uad = ∅ holds, it follows by standard
arguments that there exists at least one optimal solution x∗ = (y∗, u∗) to (P).
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2.3. Optimality conditions

Let us introduce the Lagrange functional L : X × V → R associated with (P):

L(x, p) = J(x) + 〈e(x), p〉V ′,V for (x, p) ∈ X × V.

It follows from the properties of J and e that the Lagrange functional is twice continuously Fréchet-differentiable
and the mapping (x, p) �→ L′′(x, p) is Lipschitz-continuous on X .

In the following theorem we state first-order necessary optimality conditions for (P). The existence of a
unique Lagrange multiplier is shown in [10].

Theorem 2.5 (first-order necessary optimality conditions). Suppose that x∗ = (y∗, u∗) is a local solution
to (P). Then there exists a unique Lagrange multiplier p∗ ∈ V satisfying together with x∗ the dual equation

−Δp∗ + u∗p∗ = yd − y∗ on Ω,
∂p∗

∂n
+ p∗ = 0 on Γ. (2.2)

Furthermore, the variational inequality∫
Ω

(σu∗ + y∗p∗) (u− u∗) dx ≥ 0 for all u ∈ Uad

holds.

For the convergence of the SQP method second-order sufficient optimality conditions are required, at least in a
neighborhood of the solution x∗ = (y∗, u∗). The second Fréchet-derivative of the Lagrangian at (x∗, p∗) ∈ Xad×V
with respect to x in the direction x = (y, u) ∈ X is

Lxx(x∗, p∗)(x, x) =
∫
Ω

y2 + σu2 + 2uyp∗ dx ≥ σ ‖u‖2
L2(Ω) + 2

∫
Ω

uyp∗ dx.

Since V is continuously embedded into L4(Ω) there exists a constant Cemb > 0 such that

‖ϕ‖L4(Ω) ≤ Cemb ‖ϕ‖V for all ϕ ∈ V. (2.3)

Due to Proposition 2.3 we also have ‖y‖V ≤ Cker ‖u‖L2(Ω) for all (y, u) ∈ ker e′(x∗) with a constant Cker > 0.
We set C = CembCker and derive

Lxx(x∗, p∗)(x, x) ≥ σ

2
‖u‖2

L2(Ω) +
σ

2
‖u‖2

L2(Ω) − 2 ‖u‖L2(Ω)‖y‖L4(Ω)‖p∗‖L4(Ω)

≥ σ

2
‖u‖2

L2(Ω) +
σ

2Cker
‖y‖2

V − 2C ‖u‖2
L2(Ω)‖p∗‖L4(Ω)

≥ min
(
σ

4
,

σ

2Cker

)
‖x‖2

X +
1
4

(
σ − 8C ‖p∗‖L4(Ω)

)
‖u‖2

L2(Ω)

for all x = (y, u) ∈ ker e′(x∗). Thus, we have proved the following result.

Theorem 2.6 (second-order sufficient optimality conditions). Suppose that x∗ = (y∗, u∗) is a local solution
to (P) and p∗ ∈ V is the associated unique Lagrange multiplier. Let the constants Cemb and Cker be given
by (2.3) and Proposition 2.3, respectively. If

σ − 8CembCker ‖p∗‖L4(Ω) ≥ 0 (2.4)

holds, the second-order sufficient optimality condition is satisfied at (x∗, p∗), i.e., there exists a γ > 0 so that

Lxx(x∗, p∗)(xδ , xδ) ≥ γ ‖xδ‖2
X for all xδ = (yδ, uδ) ∈ ker e′(x∗).
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Note that (2.4) can be ensured provided the Lagrange multiplier satisfies

‖p∗‖L4(Ω) ≤
σ

8CembCker
· (2.5)

Remark 2.7. It follows from standard arguments that (2.5) holds if the residuum ‖y∗− yd‖L2(Ω) is sufficiently
small.

3. The inexact sqp method

In this section we formulate the SQP method for (P). Moreover, the a-posteriori error estimator for the
linear-quadratic subproblems are introduced.

3.1. The SQP method

To solve (P) numerically, we apply the SQP method. The principal idea is to replace J and e by a quadratic
approximation of the Lagrangian and a linearization of the constraint. For the readers convenience we recall
the SQP method in Algorithm 1.

Algorithm 1 (Lagrange-SQP method)
1: Choose x0 = (y0, u0) ∈ Xad, p0 ∈ V , μ > 0, and set k = 1.
2: repeat
3: Compute J ′(xk), Lxx(xk, pk), e(xk), and e′(xk).
4: Solve the linear-quadratic minimization problem

min
x∈X

Jk(x) = J ′(xk)x +
1

2
Lxx(xk, pk)(x, x)

s.t. e′(xk)x + e(xk) = 0 and xk + x ∈ Xad.

(Pk)

5: Determine a step length parameter tk ∈ (0, 1] by an Armijo backtracking line search for the �1 merit function
Φ(x; μ) = J(x) + μ ‖e(x)‖V ′ (see, e.g., [11]).

6: Set xk+1 = xk + tkx ∈ Xad and k = k + 1.
7: Choose a new estimate pk for the Lagrange multiplier.
8: until a given stopping criterium is satisfied.

Remark 3.1.

(a) Two choices for the update of the Lagrange multiplier in step 7 are the Lipschitz-continuous or a Newton
update; see, e.g., in [20,26]. If e′(x∗) is surjective and Lxx(x∗, p∗) is coercive on ker e′(x∗) one can prove that
Algorithm 1 has a locally quadratic rate of convergence if J and e have Lipschitz-continuous second Fréchet
derivatives;

(b) the linear-quadratic minimization problem (Pk) is well-defined provided the operator Lxx(xk, pk) is coercive
on ker e′(xk) and e′(xk) is surjective. Thus, Algorithm 1 is not globally convergent;

(c) by Proposition 2.3 the operator e′(x) is surjective for all x ∈ Xad. However, Lxx(xk, pk) need not to be
coercive on ker e′(xk); compare Remark 2.7. To ensure that (Pk) has a unique solution we modify Lxx(xk, pk)
in the case if coercivity does not hold. For β ∈ [0, 1] let the bilinear operator Bk,β : X ×X → R be given by

Bk,β(x, x̃) = J ′′(xk)(x, x̃) + β 〈e′′(xk)(x, x̃), pk〉V ′,V for x, x̃ ∈ X.

Then, Bk,1 = Lxx(xk, pk) and Bk,0 = J ′′(xk). Due to Proposition 2.3 we have

Bk,0(x, x) ≥ σ

2
min

(
1

Cker
, 1

)
‖x‖2

X for all x ∈ ker e′(xk),
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i.e., Bk,0 is positive definite. Thus, in the case if coercivity does not hold, we replace (Pk) by

min
x∈X

Jk,β(x) = J ′(xk)x+
1
2
Bk,β(x, x)

s.t. e′(xk)x+ e(xk) = 0 and xk + x ∈ Xad

(Pk,β)

with a coercive operator Bk,β (e.g., with β = 0).

Next we derive the optimality conditions for the linear-quadratic subproblem (Pk,β). Throughout we suppose
that the parameter β ∈ [0, 1] is chosen in such a way that Bk,β is coercive on X ×X , i.e., (Pk,β) has a unique
solution. For our problem the cost Jk,β in (Pk,β) has the form

Jk,β(x) =
∫
Ω

(yk − yd)y + σuku+
1
2

(
y2 + 2βuypk + σu2

)
dx

for x = (y, u) ∈ X . The equation e′(xk)x + e(xk) = 0 is equivalent with the fact that x = (y, u) satisfies the
linearized state equation∫

Ω

∇y · ∇ϕ+
(
uky + uyk

)
ϕdx +

∫
Γ

yϕds = −〈e(xk), ϕ〉V ′,V

for all ϕ ∈ V . To obtain xk + x ∈ Xad we have to ensure that uk + u ∈ Uad. Setting uka = ua − uk we require

u ∈ Ukad =
{
ũ ∈ U

∣∣ ũ ≥ uka in Ω
}
.

Remark 3.2. We introduce the linear operator S : U → V as follows: for u ∈ U the function y = Su is the
unique solution to ∫

Ω

∇y · ∇ϕ+ ukyϕdx +
∫
Γ

yϕds = −
∫
Ω

uykϕdx for all ϕ ∈ V. (3.1)

Since uk ∈ Uad holds, it follows from the Lax-Milgram lemma that S is well-defined and bounded. Moreover,
ŷk ∈ V is the unique solution to∫

Ω

∇ŷk · ∇ϕ+ ukŷkϕdx +
∫
Γ

ŷkϕds = −〈e(xk), ϕ〉V ′,V .

Then, x = (y, u) with y = ŷk + Su solves e′(xk)x+ e(xk) = 0. The adjoint operator S� : V ′ → U ′ of S is given
as follows [23]: for arbitrary r ∈ V ′ compute the solution v ∈ V to the variational problem∫

Ω

∇v · ∇ϕ+ ukvϕdx +
∫
Γ

vϕds = 〈r, ϕ〉V ′,V for all ϕ ∈ V (3.2)

and set S�r = −ykv. In particular, S�r ∈ L2(Ω).

Suppose that there is a unique solution x̄ = (ȳ, ū) to (Pk). To derive the optimality conditions, we define the
Lagrangian functional Lk,β : X × V → R associated with (Pk) by

Lk,β(x, p) = Jk,β(x) + 〈e′(xk)x+ e(xk), p〉V ′,V for (x, p) ∈ X × V.

From Lk,βp (x̄, p̄)p = 0 for all p ∈ V we infer that the pair (ȳ, ū) solves (3.3a). The equation Lk,βy (x̄, p̄)y = 0 for
all y ∈ V implies ∫

Ω

∇y · ∇p̄+ ukyp̄ dx +
∫
Γ

yp̄ds = −
∫
Ω

(
yk + ȳ − yd + βūpk

)
y dx.
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Thus, p̄ satisfies the dual problem

−Δp̄+ ukp̄ = yd − yk − ȳ − βūpk in Ω,
∂p̄

∂n
+ p̄ = 0 on Γ.

Finally, the optimality condition Lk,βu (x̄, p̄)(u− ū) ≥ 0 for all u ∈ Ukad implies:∫
Ω

(
βȳpk + σ(uk + ū) + ykp̄

)
(u− ū) dx ≥ 0.

Summarizing, the solution x̄ = (ȳ, ū) to (Pk,β) satisfies together with the Lagrange multiplier p̄ ∈ V the
following optimality system:

(1) The (linearized) state equation∫
Ω

∇ȳ · ∇ϕ+
(
ukȳ + ūyk

)
ϕdx +

∫
Γ

ȳϕds = −〈e(xk), ϕ〉V ′,V (3.3a)

for all ϕ ∈ V ;
(2) the (linearized) dual equation∫

Ω

∇p̄ · ∇ϕ+ ukp̄ϕdx +
∫
Γ

p̄ϕds =
∫
Ω

(
yd − yk − ȳ − βūpk

)
ϕdx (3.3b)

for all ϕ ∈ V ; and
(3) the (linearized) variational inequality∫

Ω

(
βȳpk + σ(uk + ū) + ykp̄

)
(u − ū) dx ≥ 0 (3.3c)

for all u ∈ Ukad.

Recall that β ∈ [0, 1] is chosen in such a way that (3.3) has a unique solution (ȳ, ū, p̄) ∈ V × Ukad × V .

3.2. A-posteriori error analysis for (Pk,β)

Utilizing an a-posteriori error analysis we can ensure that (Pk,β) is solved with a given tolerance. Therefore,
we consider an inexact version of Algorithm 1, where the inexactness arises due to the inexact solution of the
optimality system (3.3). Within the SQP method we control the error tolerance for the POD discretization to
guarantee the overall convergence of the optimization method. The presented approach is not limited to POD
model reduction, but can easily be applied to other reduced-order techniques, e.g., to the reduced-basis method.
We refer to [22] as a first step in this direction.

The idea of a-posteriori error estimates was used by Malanowski et al. [16] in the context of error estimates
for the optimal control of ODEs. It was extended later to elliptic optimal control problems in [3]. Let us explain
this basic idea for our application.

Let up =
∑N

i=1 u
p
i bi ∈ Ukad be chosen arbitrarily. Our goal is to estimate the difference

‖ū− up‖L2(Ω)

without the knowledge of the optimal solution (ȳ, ū, p̄) to (3.3). If up = ū then up does not satisfy the necessary
(and by convexity sufficient) optimality conditions (3.3c). However, there exists a (unique) function ζ ∈ L2(Ω)
such that ∫

Ω

(
βyppk + σ(uk + up) + ykpp + ζ

)
(u− up) dx ≥ 0 for all u ∈ Ukad, (3.4)
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where yp and pp solve (3.3a) and (3.3b), respectively, with (ȳ, ū, p̄) replaced by (yp, up, pp). Therefore, up satisfies
the optimality condition of a perturbed elliptic optimal control problem with ‘perturbation’ ζ:

min
x=(y,u)

Jk(x) = J ′(xk)x+
1
2
Bk,β(x, x) +

∫
Ω

ζu dx

s.t. e′(xk)x+ e(xk) = 0 and xk + x ∈ Xad.

Remark 3.3.

(a) The variable ζ measures the violation of the optimality conditions. The computation of ζ is possible on the
basis of the known data up, yp, and pp;

(b) the smaller ζ is, the closer up is to ū. Up to now it is not clear that ‖ζ‖L2(Ω) can be made small. We will
address this issue in Theorem 4.3 for POD approximations;

(c) if the sequence {(xk, pk)}k∈N is uniformly bounded in X × V , then there exists a constant Cp > 0 which is
independent on (xk, pk) so that

‖(ȳ, p̄) − (yp, pp)‖V×V ≤ Cp ‖ū− up‖U
holds true.

We proceed by deriving an estimate for ‖ū−up‖L2(Ω) in terms of ‖ζ‖L2(Ω). The proof is given in the appendix.
The proof is based on the same methodology as the one for the Falk lemma for variational inequalities; see,
e.g., [9].

Theorem 3.4. Let (ȳ, ū, p̄) be the solution to (3.3) and up ∈ Ukad be chosen arbitrarily. Then, it follows that

‖ū− up‖L2(Ω) ≤
1
σ
‖ζ‖L2(Ω),

where ζ is chosen such that (3.4) holds.

Remark 3.5 (see [24]). We introduce Gk,β : X × V → L2(Ω) by

Gk,β(x, p) = βpky + ykp+ σ (uk + u) for x = (y, u) ∈ X and p ∈ V.

Then, (3.4) can be expressed as∫
Ω

(Gk,β(xp, pp) + ζ
)
(u − up) dx ≥ 0 for all u ∈ Ukad.

Define ζ ∈ L2(Ω) as follows

ζ(x) =

{[Gk,β(yp, up, pp)(x)
]
− for all x ∈ Ak =

{
x ∈ Ω |up(x) = uka(x)

}
,

− Gk,β(yp, up, pp)(x) for all x ∈ Ω \ Ak,

where [s]− = −min(0, s) for s ∈ R. Then the estimate

‖ū− up‖L2(Ω) ≤
1
σ
‖ζ‖L2(Ω) (3.5)

holds true.

We call (3.5) an a-posteriori error estimate, since, in the next section, we shall apply it to suboptimal solutions
up to the optimality system (3.3) that have already be computed by a POD Galerkin method. After having
computed up, we determine the associated state yp and adjoint state pp. Then we can determine ζ and its
L2-norm and (3.5) gives an upper bound for the distance of up to ū. In this way, the error caused by the
POD method can be estimated a-posteriorly. If the error is too large, then we have to include more POD basis
functions in our Galerkin approximation for (3.3).
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4. The pod Galerkin discretization of (Pk,β)

In this section we briefly introduce the POD method and derive the reduced-order model for the optimality
system (3.3) of (Pk,β). Moreover, a-priori error estimates for POD Galerkin schemes for the state as well as for
the adjoint equation are shown.

4.1. The POD method

Let u ∈ U be given. Then there exists a vector u = (u1, . . . , uN )T ∈ R
N such that

u(x) =
N∑
i=1

uibi(x) for all x ∈ Ω. (4.1)

Furthermore, we suppose that

u ∈ D =
[
u1, u1

] × . . .
[
uN , uN

] ⊂ R
N with 0 < ui ≤ ui for i = 1, . . . , N.

By y = y(u) we denote the unique solution to (3.3a), where u is given as in (4.1). The snapshot ensemble is
chosen to be

V = span
{
y(u) |u ∈ D

} ⊂ V. (4.2)

Then, d = dimV ≤ ∞. Let � < ∞ satisfy 1 ≤ � ≤ d. The POD basis {ψi}�i=1 of rank � is given by the solution
to the following minimization problem:

min
{ψi}�

i=1⊂V

∫
D

∥∥∥y(u) −
�∑
i=1

〈y(u), ψi〉V ψi
∥∥∥2

V
du s.t. 〈ψi, ψj〉V = δij , (P�)

where δij = 1 if i = j and δij = 0 if i = j. It is well-known that the solution to (P�) can be derived by the
methods of snapshots [21]: solve the symmetric eigenvalue problem

Kvi = λivi for i = 1, . . . , �

in L2(D), where K : L2(D) → L2(D) is given by

(Kv) (ũ) =
∫

D

〈y(u), y(ũ)〉V v(u) du for ũ ∈ D and v ∈ L2(D),

and set
ψi =

1√
λi

∫
D

y(u)vi(u) du for i = 1, . . . , �.

From the Hilbert-Schmidt theorem [19], page 29, it follows that there exists a complete orthogonal basis
{ψi}di=1 for V = range (R) and a sequence {λi}di=1 of real numbers such that

Rψi = λiψi for i = 1, . . . , d and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0.

To obtain a complete orthogonal basis in the separable Hilbert space V we need an orthogonal basis for
(range (R))⊥. This can be done by the Gram-Schmidt procedure. Hence, we suppose in the following that
{ψi}∞i=1 is a complete orthogonal basis for V . In particular, we have

∫
D

∥∥∥y(u) −
�∑
i=1

〈y(u), ψi〉V ψi
∥∥∥2

V
du =

∞∑
i=�+1

λi. (4.3)

If 1 ≤ d = dimV ≤ ∞ holds, it follows that λi > 0 for 1 ≤ i ≤ d and Rψi = 0 for i > d.
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Remark 4.1.

(a) In real computations, we do not have the y(u) for all u ∈ D at hand. For that purpose let {uj}Mj=1 define
grid points in D and yj = y(uj), j = 1, . . . ,M , be approximations for u at the grid points uj . We set

VM = span
{
y1, . . . , yM

}
with dM = dimVM ≤M . Then, for given � ≤ dM we consider the minimization problem

min
{ψi}�

i=1⊂V

M∑
j=1

αj

∥∥∥yj − �∑
i=1

〈yj , ψi〉V ψi
∥∥∥2

V
s.t. 〈ψi, ψj〉V = δij , (P�

M )

instead of (P�). In (P�
M ) the αj ’s stand for weights in the used quadrature rule;

(b) in our numerical experiments in Section 6 we determine a POD basis before the optimization utilizing
snapshots from the state and the adjoint equation for (P). More precisely, we choose a grid {uj}Mj=1 in the
parameter set D and compute the states yj = y(uj) by solving (2.1). Then, using uj and yj we compute
the solution pj = p(uj) to (2.2) for j = 1, . . . ,M . Then, the snapshot ensemble is given by the linear space
VM = span {y1, . . . , yM , p1, . . . , pM}. In [12] it is shown that the error of the POD Galerkin approximation
can be improved significantly by incorporating adjoint information into the snapshot ensemble.

4.2. POD Galerkin scheme for the optimality system

The error analysis presented in this section shows that there is a real chance to decrease the error by increasing
the number of snapshots used by the POD method.

Let y = ŷk + Su be the state associated with some control u ∈ Ukad, and let V by given as in (4.2). We
fix � with � ≤ dim V and compute the first � POD basis functions ψ1, . . . , ψ� ∈ V by solving Kvi = λivi for
i = 1, . . . , �. Then we define the finite-dimensional linear space

V � = span
{
ψ1, . . . , ψ�

} ⊂ V.

Endowed with the topology in V it follows that V � is a Hilbert space. Let P� denote the orthogonal projection
of V onto V � defined by

P�ψ =
�∑
i=1

〈ψ, ψi〉V ψi for ψ ∈ V. (4.4)

Using (4.3) we have ∫
D

∥∥y(u) − P�y(u)
∥∥2

V
du =

∥∥y − P�y∥∥2

L2(D;V )
=

∞∑
i=�+1

λi.

Using standard arguments the POD Galerkin appoximation of (3.3) yields the following linear system:
determine (y�, u�, p�) ∈ V � × Ukad × V � satisfying

(1) The (linearized) state equation∫
Ω

∇y� · ∇ψ +
(
uky� + u�yk

)
ψ dx +

∫
Γ

y�ψ ds = −〈e(xk), ψ〉V ′,V (4.5a)

for all ψ ∈ V �;
(2) the (linearized) dual equation∫

Ω

∇p� · ∇ψ + ukp�ψ dx +
∫
Γ

p�ψ ds =
∫
Ω

(
yd − yk − y� − βu�pk

)
ψ dx (4.5b)

for all ψ ∈ V �; and
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(3) the (linearized) variational inequality∫
Ω

(
βy�pk + σ(uk + u�) + ykp�

)
(u − u�) dx ≥ 0 (4.5c)

for all u ∈ Ukad.

Remark 4.2. Using similar arguments as in [24] it follows that

‖ū− ū�‖L2(Ω) ≤ C
(‖ȳ(ū) − P�ȳ(ū)‖V + ‖p̄(ū) − P�p̄(ū)‖V

)
(4.6)

for a constant C > 0; see in the appendix. In particular, we have lim�→∞ ‖ū− ū�‖L2(Ω) = 0.

4.3. A-posteriori error estimate for the POD approximation

In this subsection we complete the discussion of the a-posteriori estimate by combining Remarks 3.5 and 4.2.
The proposition permits to estimate ‖ū− ū�‖L2(Ω) by the norm of an appropriate ζ, while Remark 4.2 will be
used to show that ζ tends to zero as � → ∞, since it ensures the convergence of ū� to the optimal control ū
for (Pk,β).

For any � let ū� ∈ Ukad be the optimal control solving (4.5) together with ȳ and p̄. Then, ū� is taken as a
suboptimal up for (Pk,β), i.e., in Remark 4.2 we choose up := ū�.

Theorem 4.3. Suppose that (ȳ, ū, p̄) ∈ V × Ukad × V is the solution to (3.3).

(1) Let � ≤ d be arbitrarily given and (ȳ�, ū�, p̄�) ∈ V ×Ukad×V be the solution to (4.5). Using up = ū� compute
the residuum ζ� = ζ as in Remark 3.5. Then,

‖ū− ū�‖L2(Ω) ≤
1
σ
‖ζ�‖L2(Ω).

(2) If {ψi}∞i=1 is a complete orthonormal basis for V , then lim
�→∞

‖ζ�‖L2(Ω) = 0.

The proof is a variant of the proof of Theorem 4.11 in [24].

Remark 4.4. Part (2) of Theorem 4.3 shows that ‖ζ�‖L2(Ω) can be expected smaller than any ε > 0 provided
that � is taken sufficiently large. Motivated by this result we set up Algorithm 2.

Algorithm 2 (POD method for (Pk,β) with a-posteriori estimator)
1: Choose a maximal number �max > 0 of POD basis function, an � < �max, and a stopping criterium ε > 0.
2: Compute a POD basis of rank � by solving (P�).
3: repeat
4: Derive a reduced-order model of rank � for (Pk,β).
5: Calculate the suboptimal control ū� to (Pk,β).
6: Using up = ū� compute the residuum ζ� as in Remark 3.5.
7: if ‖ζ�‖L2(Ω) ≥ ε then
8: Set � = � + 1.
9: end if

10: until ‖ζ�‖L2(Ω) < ε or � > �max

11: Return � and suboptimal control ū�.

Remark 4.5. Of, course, step 8 can be replaced by
8: Set � = �+ L.
with any natural number L.
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5. Convergence of the inexact sqp method

Let us assume that the solution z̄ = (ȳ, ū, p̄) to (3.3) satisfies ū > uka (inactive control). Then, the variational
inequality (3.3c) can be replaced by the equation∫

Ω

(
βȳpk + σ(uk + ū) + ykp̄

)
bi dx = 0 for 1 ≤ i ≤ N. (3.3c′)

Thus, (3.3a), (3.3b), and (3.3c′) leads to a linear operator equation in X ′ ×V ′ of the form (1.3) for the variable
z̄. Since the mapping (x, p) �→ Lk,β(x, p) is twice continuously Fréchet-differentiable, it can be shown that
there exists a constant C > 0 independent of the iteration level k so that ‖Ak‖L(X×V,X′×V ′) ≤ C, where
L(X × V,X ′ × V ′) denotes the Banach space of all bounded linear operators from X × V to X ′ × V ′ endowed
with the common operator norm.

Let the solution z̄� = (ȳ�, ū�, p̄�) to (4.5) satisfy ū� > ua. Then, the variational inequality (4.5c) yields the
equation ∫

Ω

(
βȳ�pk + σ(uk + ū�) + ykp̄�

)
bi dx = 0 for 1 ≤ i ≤ N, (4.5c′)

so that (4.5a), (4.5b), and (4.5c′) can be formulated as a finite-dimensional linear system of the form (1.4) for
the variable z̄� ∈ R

n with n = 2�+N (� coefficients ȳi for ȳ�, N coefficients for ū�, and � coefficients p̄i for p̄�).
From (1.4) we obtain the coefficients ūi, 1 ≤ i ≤ N , for the suboptimal control ū�. Then, we define the bounded
operator I : R

n → X × Y as follows:

R
n � z̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ȳ1
...
ȳ�
ū1

...
ūN
p̄1

...
p̄�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�→ Iz̄� =

⎛
⎜⎜⎜⎝

ỹ�

N∑
i=1

ūibi

p̃�

⎞
⎟⎟⎟⎠ ∈ V × U × V

where ỹ� and p̃� solve (3.3a) and (3.3b), respectively, with ū� instead of ū. From (1.3) and Remark 3.3 it follows

‖Ak(Iz̄� − bk‖X′×V ′ = ‖Ak(Iz̄� − z̄)‖X′×V ′ ≤ ‖Ak‖L(X×V,X′×V ′) ‖Iz̄� − z̄‖X×V

≤ C
√
‖ỹ� − ȳ‖2

V + ‖ū� − ū‖2
L2(Ω) + ‖p̃� − p̄‖2

V

≤ C̃ ‖ū� − ū‖L2(Ω)

with C̃ = C
√

1 + C2
p . Consequently, Theorem 4.3 implies that

‖Ak(Iz̄�) − bk‖X′×V ′ ≤ C̃

σ
‖ζ�‖L2(Ω)

�→∞−→ 0.

Therefore, we combine Algorithms 1 and 2 to arrive an POD a-posteriori error based inexact SQP method for
the bilinear optimal control problem; see Algorithm 3. By L′ we denote the Fréchet derivative of the Lagrangian
with respect to (x, p).

Remark 5.1. In our numerical experiments it is more efficient to compute the POD basis of rank �max only
once at the beginning of the SQP method. As snapshots y = y(u), u = (u1, . . . , uN), we take solutions from the
bilinear problem (2.1) for different controls u ∈ D. Then we apply Algorithm 3 without the step 4.
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Algorithm 3 (POD a-posteriori error based inexact SQP method)
1: Choose x0 = (y0, u0) ∈ Xad, p0 ∈ V , 0 < εa ≤ εr � 1, q ∈ [1, 2], and set k = 1.
2: while ‖L′(xk, pk)‖ ≥ εa + εr ‖L′(x0, p0)‖ do
3: Choose �max > 0, � < �max, and εk = min(0.5, ‖L′(xk, pk)‖q).
4: Call Algorithm 2 with �max and stopping criterium εk.
5: if � > �max then
6: STOP and restart the algorithm (e.g., with a larger �max).
7: end if
8: Determine tk ∈ (0, 1] by a line search; see Algorithm 1.
9: Set (xk+1, pk+1) = (xk, pk) + tk(ỹ�, ū�, p̃�) and k = k + 1.

10: end while

For Algorithm 3 we have proved the next convergence theorem.

Theorem 5.2. Let x∗ ∈ Xad be a local solution to (P), p∗ the associated Lagrange multiplier, and z∗ = (x∗, p∗).
Suppose that

(A1) the starting value (x0, p0) of Algorithm 3 is sufficiently close to (x∗, p∗);
(A2) the optimality system (3.3) admits a (unique) solution (ȳ, ū, p̄) so that ū > uka in Ω a.e. (inactive ū);
(A3) for sufficiently large � ≤ �max the optimality system (4.5) admits a (unique) solution (ȳ�, ū�, p̄�) so that

ū� > uka in Ω a.e. (inactive ū�).

Let the iterates {zk}k∈N, zk = (xk, pk), be generated by Algorithm 3. Then, limk→∞ zk = z∗ in X × V . In
particular, we obtain superlinear and quadratic rate of convergence:

‖zk+1 − z∗‖X×V ≤ ck ‖zk − z∗‖X×V for all k if q ∈ (1, 2),

‖zk+1 − z∗‖X×V ≤ c ‖zk − z∗‖2

X×V for all k if q = 2,

where ck satisfies limk→∞ ck = 0 and c is a positive constant independent of k.

Remark 5.3.

(a) Assumption (A1) ensures that the iterates (xk, pk) belong to a neighborhood of (x∗, p∗), where the conver-
gence of the SQP method is ensured without any globalization strategy. In particular, at each level k of the
SQP method the linear-quadratic optimal control problem (Pk,β) admits a unique solution for β = 1 and
we can choose tk = 1;

(b) if Assumption (A2) and (A3) do not hold, we have to deal with the variational inequalities (3.3c) and (4.5c),
respectively. Thus, (3.3) and (4.5) are generalized equations. We have to apply the theory of Newton methods
for generalized equations; see [1];

(c) in Step 9 of Algorithm 3 the dual variable can also be chosen as the least-squares multiplier, i.e.,

pk+1 = arg min
p∈V

‖J ′(xk+1 + e′(xk+1)�p‖X′ ,

see [20], for instance.

6. Numerical experiments

We present two examples concerning a-posteriori error estimates for POD. The numerical tests are executed
on a standard 3.0 GHz desktop PC. We are using the Matlab 7.1 package including its integrated PDE Toolbox
for the FE discretization.
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Figure 1. Run 1: domain Ω with subdomains (left plot) and decay of the 22 largest eigenvalues
(right plot).

Run 1. Let the domain Ω be given by

Ω =
{
x = (x1, x2)

∣∣∣ x2
1

0.82
+

x2
2

0.72
< 1

}
⊂ R

2.

Moreover, we assume that Ω consists of two disjunct subdomains (Ω1 and Ω2), where Ω2 is given as the
quadrilateral with corners (0.22,−0.28), (0.35, 0.34), (−0.30, 0.41), and (−0.18,−0.32), and Ω1 = Ω \ Ω2; see
left plot of Figure 1. We choose two characteristic functions as shape functions for the control, i.e., N = 2 and
bi = χΩi for i = 1, 2. In Ω1 let f = 1, whereas f = −10 in Ω2. The domain is discretized by a FE grid that
consists of 4862 degrees of freedom. In the context of Remark 4.1-b we utilize 441 snapshots computed on an
equidistant grid for u = (u1, u2) ∈ [0, 10]× [0, 10] =: D and choose �max = 25. The computation of the snapshots
requires 51 s. The POD basis computation needs 2 s. The 22 largest eigenvalues for the POD computation are
shown in the right plot of Figure 1. Notice that the relative error in the H1-norm between the finite element
solution to (2.1) and the POD solution for � = �max is about 1.06×10−8. For the cost functional (see Rem. 2.4)
let Ωm = Ω2, yd be the solution to (2.1) for u = (b1 + 3b2)/2, u◦ = 0, and σ = 10−4. In Algorithm 3 (step 1) we
choose εr = 10−4, εa = 10−6 and q = 1.05. Thus, we have a locally superlinear rate of convergence. We initialize
the SQP algorithm as follows: u0 = 0, y0 = y(u0) is the solution to (2.1) for u = u0 and p0 = p(u0) solves
the adjoint equation (2.2) with y∗ = y0 and u∗ = u0. In each SQP iteration, we solve the reduced system (4.5)
to obtain z̄� = (ȳ�, ū�, p̄�). Then, we evaluate Iz̄� = (ỹ�, ū�, p̃�). If the a-posteriori error estimator ensures a
small error for ‖ū − ū�‖L2(Ω), we set xk+1 = xk + (ỹ�, ū�) and compute the associated least-squares update
pk+1; see Remark 5.3-c. The SQP method stops after nine iterations and requires 6 s. The optimal control is
0.77b1 + 1.07b2. The optimal state and the residuum are presented in Figure 2. In Table 1 the convergence
behaviour is shown. We observe that the globalized SQP method converges to a local optimal solution. The
inexactness can be controlled by the a-posteriori error estimator. In the first SQP iterations the step size tk is
less than one, so that the region of superlinear rate of convergence is reached in the 7th SQP iteration. Then,
we have fast convergence in the last three iterations.

Run 2. Let Ω consist of 3 subdomains; see Figure 3. We choose the associated three characteristic functions
as shape functions for the control, i.e., N = 3 and bi = χΩi for i = 1, 2, 3. In Ω1 let f = 2, in Ω2 we have
f = 0.1, whereas f = 1 in Ω3. The domain is discretized by a FE grid that consists of 4819 degrees of freedom.
We apply a POD computation (using 2197 snapshots computed on an equidistant grid for ū = (u1, u2, u3) ∈
[0, 3] × [0, 3] × [0, 3] =: D and choose �max = 16. The 16 largest eigenvalues of the eigenvalue problem in the
POD computation are shown in the right plot of Figure 3. The relative error in the H1-norm between the POD
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Table 1. Run 1: SQP iterations, stopping criterium, tolerance for inexactness, a-posteriori
error estimate, number � of POD ansatz functions and step size parameter tk.

k ‖L′(xk−1, pk−1)‖ ‖L′(xk−1, pk−1)‖q ‖ζ�‖/σ � tk

1 9.34e-02 8.29e-02 3.36e-04 6 0.5
2 6.01e-02 5.23e-02 1.44e-04 6 0.5
3 4.51e-02 3.86e-02 4.62e-05 6 0.5
4 3.33e-02 2.80e-02 4.64e-05 6 0.5
5 2.27e-02 1.88e-02 8.89e-05 6 0.5
6 1.27e-02 1.02e-02 1.05e-04 6 1.0
7 1.95e-03 1.43e-03 5.77e-05 6 1.0
8 1.71e-05 9.90e-06 2.20e-07 10 1.0
9 4.04e-11 – – – –
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Figure 2. Run 1: optimal state y∗ (left plot) and residuum |y∗ − yd|/|yd| in percent (right plot).
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(right plot).
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Table 2. Run 2: SQP iterations, stopping criterium, tolerance for inexactness, a-posteriori
error estimate, number � of POD ansatz functions and step size parameter tk.

k ‖L′(xk−1, pk−1)‖ ‖L′(xk−1, pk−1)‖q ‖ζ�‖/σ � Hessian mod. tk

1 3.01e-02 2.53e-02 6.71e-03 10 yes 0.5
2 4.49e-01 4.31e-01 2.88e-04 10 no 1.0
3 3.63e-01 3.45e-01 2.92e-04 10 no 1.0
4 5.16e-02 4.45e-02 1.17e-04 10 no 1.0
5 1.49e-02 1.21e-02 7.33e-05 10 no 1.0
6 1.63e-03 1.19e-03 7.50e-06 10 no 1.0
7 6.66e-07 – – – – –
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Figure 4. Run 2: optimal state y∗ (left plot) and relative residuum |y∗ − yd|/|yd| in percent
(right plot).

solution with � = �max and the FE solution is 2.58 × 10−6. The computing time for the snapshot computation
is 249 s, the computation of the 16 POD basis functions costs 34 s.

For the cost functional let Ωm = Ω1, u◦ = (3b1 + 2b2 + b3)/2, yd be the solution to (2.1) for u = u◦, and
σ = 10−4. In Algorithm 3 we choose the same values for εr, εa and q as in Run 1. As starting values we choose
u0 = 3b1 + 4b2 + 3b3, y0 as the solution to (2.1) for u = u0 and p0 as the solution to (2.2) with y∗ = y0

and u∗ = u0. The SQP methods stops after seven SQP iterations and requires 4 s. The optimal control is
1.49b1 + 1.01b2 + 0.52b3. The optimal state and the residuum are presented in Figure 4. We observe a fast rate
of convergence in the last two iterations. The results are stated in Table 2. Again, the convergence of the SQP
method can be ensured by the a-posteriori error estimator. Fast rate of convergence can be observed in the last
iteration, whereas at the beginning a globalization of the SQP method is required.

Appendix

Proof of Theorem 3.4. Choosing u = ū in (3.3c) and u = up in (3.4) we obtain

0 ≤ 〈
pkȳ + ykp̄+ σ(uk + ū) − pkyp − ykpp − σ(yk + yp) − ζ, up − ū

〉
L2(Ω)

= −σ ‖ū− up‖2
L2(Ω) +

〈
pk(ȳ − yp) + yk(p̄− pp)) + ζ, up − ū

〉
L2(Ω)

.
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Let y = S(yp − ȳ). Using Remark 3.2 and (3.3b) we find

〈
ykp̄, up − ū

〉
L2(Ω)

=
∫
Ω

(up − ū)ykp̄ dx

= −
∫
Ω

∇y · ∇p̄+ ukyp̄dx −
∫
Γ

yp̄dx = −
∫
Ω

∇p̄ · ∇y + ukp̄y dx −
∫
Γ

p̄y dx

=
∫
Ω

(
ȳpk + yk + ȳ − yd

)
y dx =

〈
ūpk + yk + ȳ − yd,S(up − ū)

〉
V ′,V

=
〈S� (

ūpk + yk + ȳ − yd
)
, up − ū

〉
L2(Ω)

.

Analogously, we obtain

〈
ykpp, up − ū

〉
L2(Ω)

=
〈S� (

uppk + yk + yp − yd
)
, up − ū

〉
L2(Ω)

.

Therefore,

〈
yk(p̄− pp), up − ū

〉
L2(Ω)

=
〈
ykp̄, up − ū

〉
L2(Ω)

− 〈
ykpp, up − ū

〉
L2(Ω)

=
〈S� (

ȳ − yp + (ū − up)pk
)
, up − ū

〉
L2(Ω)

.

Recall that S(up − ū) = yp − ȳ. Hence,

〈
yk(p̄− pp), up − ū

〉
L2(Ω)

= −‖ȳ − yp‖2
L2(Ω) +

〈
(ū− up)pk, yp − ȳ

〉
L2(Ω)

≤ 〈
pk(yp − ȳ), ū− up

〉
L2(Ω)

.

Summarizing, we obtain

0 ≤− σ ‖ū− up‖2
L2(Ω) +

〈
yk(p̄− pp) − pk(ȳ − yp) − ζ, up − ū

〉
L2(Ω)

≤− σ ‖ū− up‖2
L2(Ω) +

〈
pk(yp − ȳ) − pk(ȳ − yp) − ζ, ū − up

〉
L2(Ω)

= − σ ‖ū− up‖2
L2(Ω) − 〈ζ, up − ū〉L2(Ω).

Consequently, we have

σ ‖ū− up‖2
L2(Ω) ≤ −〈ζ, up − ū〉L2(Ω) ≤ ‖ζ‖L2(Ω)‖up − ū‖L2(Ω),

which gives the claim. �

Proof of (4.6). From (3.3c) and (4.5c) we find

∫
Ω

Gk,β(ȳ, ū, p̄)(ū� − ū) dx ≥ 0 and
∫
Ω

Gk,β(ȳ�, ū�, p̄�)(ū − ū�) dx ≥ 0.

Adding both inequalities we deduce

σ‖ū− ū�‖2

L2(Ω) ≤
∫
Ω

(
β(pk(ȳ − ȳ�)) + yk(p̄− p̄�)

)
(ū� − ū) dx. (A.1)
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We estimate∫
Ω

yk(p̄− p̄�)(ū� − ū) dx =
∫
Ω

ykp̄(ū� − ū) dx −
∫
Ω

ykp̄�(ū� − ū) dx

=
∫
Ω

S� (
yk + ȳ − yd + ūpk

)
(ū� − ū) dx

+
∫
Ω

(S�)� (
yk + ȳ� − yd + ū�pk

)
(ū� − ū) dx

=
∫
Ω

(S� − (S�)�) (
yk − yd

)
(ū� − ū) dx

+
∫
Ω

(S� (
ȳ + ūpk

) − (S�)� (
ȳ� + ū�pk

))
(ū� − ū) dx

=
∫
Ω

((S� − (S�)�) (
yk − yd

)
+ S�(pkū) − (S�)�(pkū�)) (ū� − ū) dx

+
∫
Ω

(S�ȳ − (S�)�ȳ�) (ū� − ū) dx.

Recall that ȳ = ŷk + Sū and ȳ� = ŷk + S�ū�. Therefore,∫
Ω

(S�ȳ − (S�)�ȳ�) (ū� − ū) dx =
∫
Ω

(S�(ŷk + Sū) − (S�)�(ŷ�k + S�ū�)) (ū� − ū) dx.

From
S�Sū − (S�)�S�ū� = S�Sū − (S�)�S�ū+ (S�)�S�(ū− ū�)

and ∫
Ω

(
(S�)�S�(ū− ū�)

)
(ū� − ū) dx = −‖S�(ū− ū�)‖2

L2(Ω) ≤ 0,

we infer that∫
Ω

(S�ȳ − (S�)�ȳ�) (ū� − ū) dx =
∫
Ω

(S�ŷk − (S�)�ŷ�k + S�Sū − (S�)�S�ū�) (ū� − ū) dx

=
∫
Ω

(S�(ŷk + Sū) − (S�)�(ŷ�k + S�ū)
)
(ū� − ū) dx

=
∫
Ω

(S�ȳ − (S�)�ỹ�) (ū� − ū) dx,

where ỹ� = ŷk� + Sū. Consequently,∫
Ω

yk(p̄− p̄�)(ū� − ū) dx =
∫
Ω

((S� − (S�)�) (yk − yd) + S�(pkū) − (S�)�(pkū�)) (ū� − ū) dx

+
∫
Ω

(S�ȳ − (S�)�ȳ�) (ū� − ū) dx

=
∫
Ω

((S� − (S�)�) (yk − yd) + S�(pkū) − (S�)�(pkū�)) (ū� − ū) dx

+
∫
Ω

(S�ȳ − (S�)�ỹ�) (ū� − ū) dx

=
∫
Ω

S� (
yk + ȳ − yd + ūpk

)
(ū� − ū) dx

−
∫
Ω

(S�)� (
yk + ỹ� − yd + ū�pk

)
(ū� − ū) dx =

∫
Ω

yk(p̄− p̃�)(ū� − ū) dx,
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where p̃� solves

∫
Ω

∇p̃� · ∇ψ + ukp̃�ψ dx +
∫
Γ

p�ψ ds =
∫
Ω

yd − yk − ỹ� − βūpk)ψ dx for all ψ ∈ V �.

Inserting this into (A.1) and using (2.3) we find

σ‖ū− ū�‖2

L2(Ω) ≤
∫
Ω

(
βpk(ȳ − ȳ�) + yk(p̄− p̃�)

)
(ū� − ū) dx

≤ C1

(‖ȳ − ȳ�‖V + ‖p̄− p̃�‖V
) ‖ū� − ū‖L2(Ω)

with C1 = Cemb max(β‖pk‖L4(Ω), ‖yk‖L4(Ω)), which was the claim. �
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