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A NUMERICAL MINIMIZATION SCHEME FOR THE COMPLEX
HELMHOLTZ EQUATION

Russell B. Richins
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Abstract. We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves
in lossy media to formulate a finite element method for solving the complex Helmholtz equation that
is based entirely on minimization. In particular, this method results in a finite element matrix that
is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can
be used to solve the resulting system of equations. We also derive an error bound for the method and
illustrate the method with numerical experiments.
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1. Introduction

Many systems that result in steady-state oscillations can be modeled with the Helmholtz equation, but of
particular interest are acoustic waves and transverse electric or transverse magnetic electromagnetic waves in
inhomogeneous media. In each of these situations, the equation of interest can be expressed as

−∇ · ρ−1∇P − ω2

κ
P = 0 (1.1)

for appropriate choices of the complex-valued, spatially dependent material parameters ρ and κ, where ω > 0
is the frequency. The classical methods of deriving a weak form for this equation (with Dirichlet boundary
conditions, for example) result in the variational equation

∫
Γ

[
ρ−1∇P · ∇u− ω2

κ
Pu

]
dx = 0, ∀u ∈ H1

0 (Γ), (1.2)

which corresponds to a stationary principle, but not a minimization principle. In [9], Milton, Seppecher,
and Bouchitté expand upon the work of Cherkaev and Gibiansky [3] for the conductivity equation to derive
variational principles for (1.1) (as a special case of the more general equations of elasticity and electromagnetism)
that are true minimization principles, provided the media are lossy. The minimization functional corresponds
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physically to dissipated energy in the system, and is valid even for arbitrarily small coefficients of loss. While the
framework presented in [9] results in nonstandard boundary conditions, Milton and Willis extend the principles
to handle the classical Dirichlet and Neumann boundary conditions in [8].

In this paper we apply the finite element method to these minimization principles and thereby develop a
numerical algorithm for solving (1.1) that can take advantage of the many efficient methods available for solving
a symmetric, positive-definite system of linear equations. The outline of the paper is as follows. Sections 2
and 3 review the general variational formulation and boundary conditions introduced by Milton, Seppecher,
Bouchitté, and Willis. In Section 4, we derive an error bound on certain finite element discretizations of the
variational principle. In Sections 5, we describe a straightforward implementation of the finite element method
on a square domain, with Dirichlet boundary conditions. In Section 6, we suggest a preconditioner for solving
the resulting symmetric positive definite linear system via the preconditioned conjugate gradient method, and
find conditions on the material coefficients under which we expect the best conditioning. Section 7 describes the
results of some simple numerical experiments, and illustrates numerical convergence consistent with the error
bounds from Section 4. Finally, in Section 8, we extend the method to handle Robin boundary conditions, and
present some associated numerical examples.

2. Variational formulation

Our model problem is ⎧⎨
⎩ −∇ · ρ−1∇P − ω2

κ
P = 0 in Γ

P = f on ∂Γ
(2.1)

where Γ is an open, bounded subset of Rd (d = 2 or 3) with smooth boundary. For acoustic waves, ρ is the
density, κ is the bulk modulus, ω is the frequency, and P is the pressure. Here ρ, κ, and P are all complex.
In this section, we focus on Dirichlet boundary conditions for simplicity; Neumann conditions can be handled
similarly. In [9], a general framework for generating variational principles is presented; here we will focus on
the specific case of the model problem above.

First we define a dual variable v, called the complex velocity, by

iωv = ρ−1∇P,

and then we define two complex-valued fields and a matrix by

F =
(

∇P
P

)
, G =

(
−iωv

−iω∇ · v

)
and Z =

( −ρ−1 0
0 ω2

κ

)
.

Then we have ( −ρ−1 0
0 ω2

κ

)(
∇P
P

)
=
( −ρ−1∇P

ω2

κ P

)
=
(

−iωv
−iω∇ · v

)
,

which is equivalent to the constitutive relation

G = ZF .

We are still working with complex-valued quantities, and we need to move to real-valued quantities in order to
talk about minimization. For this reason, we take the real and imaginary parts of the equation above to find
(here ′ denotes a real part and ′′ denotes an imaginary part)

G′ = Z ′F ′ − Z ′′F ′′ and G′′ = Z ′F ′′ + Z ′′F ′,
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which in matrix form reads (
G′′

G′

)
=
(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′

F ′′

)
.

The matrix in this constitutive relation is obviously not positive definite, but if Z ′′ > αI, then we may use this
relation to build saddle point variational principles, as detailed in [9].

In order to get a matrix that is positive definite, and therefore a minimization variational principle, we
rearrange this equation, solving for the imaginary parts of G and F . We find that

F ′′ = (Z ′′)−1Z ′F ′ − (Z ′′)−1G′

and

G′′ = Z ′((Z ′′)−1Z ′F ′ − (Z ′′)−1G′) + Z ′′F ′ = (Z ′′ + Z ′(Z ′′)−1Z ′)F ′ − Z ′(Z ′′)−1G′.

In matrix form, the new constitutive relation is

(
G′′

F ′′

)
= L

(
F ′

−G′

)
, (2.2)

where

L =
(
Z ′′ + Z ′(Z ′′)−1Z ′ Z ′(Z ′′)−1

(Z ′′)−1Z ′ (Z ′′)−1

)
.

The matrix L is positive definite as long as Z ′′ is. Indeed, given a vector (F ′,−G′)T , define (G′′,F ′′)T by (2.2).
Then (

F ′

−G′

)
· L

(
F ′

−G′

)
=
(

F ′

−G′

)
·
(

G′′

F ′′

)
= F ′ · G′′ − G′ · F ′′

= F ′ · (Z ′F ′′ + Z ′′F ′) − (Z ′F ′ − Z ′′F ′′) · F ′′ = F ′ · Z ′′F ′ + F ′′ · Z ′′F ′′.

In the constitutive relation (2.2), it is convenient to separate the scalar variables from the vector variables. Let
r = −ρ−1 and k = κ−1, and let

R =

(
r′′ + r′(r′′)−1r′ r′(r′′)−1

(r′′)−1r′ (r′′)−1

)
and K =

(
k′′ + k′(k′′)−1k′ k′(k′′)−1

(k′′)−1k′ (k′′)−1

)
.

A calculation similar to the one done above shows that the matrices R and K are positive definite as long as
there exist constants α > 0 and β < 0 such that

ρ′′(x) ≥ αI and κ′′(x) < β ∀ x ∈ Γ. (2.3)

In [10] it is explained that an imaginary ρ corresponds to inertial loss in the material, and imaginary κ corre-
sponds to deformation losses. In [7] materials with complex effective density are constructed.

Assuming that condition (2.3) holds, we define the functional

Y (P ′, v′′) =
∫

Γ

(
F ′

−G′

)
· L

(
F ′

−G′

)
dx

=
∫

Γ

[(
∇P ′

−ωv′′
)
· R

(
∇P ′

−ωv′′
)

+
(

ωP ′

−∇ · v′′
)
· K

(
ωP ′

−∇ · v′′
)]

dx.
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Then if P ′ ∈ H1(Γ) and v′′ ∈ H(div,Γ) are solutions to the Helmholtz equation, let s ∈ H1
0 (Γ) and T ∈

H0(div,Γ). We have

Y (P ′ + s, v′′ + T ) = Y (P ′, v′′) + 2
∫

Γ

[(
∇P ′

−ωv′′
)
· R

(
∇s
−ωT

)

+
(

ωP ′

−∇ · v′′
)
· K

(
ωs

−∇ · T

)]
dx+ Y (s, T ).

Since

∫
Γ

[(
∇P ′

−ωv′′
)
· R

(
∇s
−ωT

)
+
(

ωP ′

−∇ · v′′
)
· K

(
ωs

−∇ · T

)]
dx

=
∫

Γ

[(
ωv′

∇P ′′

)
·
(

∇s
−ωT

)
+
(

∇ · v′
ωP ′′

)
·
(

ωs
−∇ · T

)]
dx

=
∫

Γ

[ωv′ · ∇s− ω∇P ′′ · T + ω∇ · v′s− ωP ′′∇ · T ] dx

=
∫

Γ

[ω∇ · (sv′) − ω∇ · (P ′′T )] dx =
∫

∂Γ

[ωsv′ · n− ωP ′′T · n] dS = 0

because of the homogeneous boundary conditions satisfied by s and T , we have that

Y (P ′ + s, v′′ + T ) = Y (P ′, v′′) + Y (s, T ) ≥ Y (P ′, v′′),

so (P ′, v′′) minimizes Y over pairs (s, T ) ∈ H1(Γ) ×H(div,Γ) satisfying

s = P ′ and T · n = v′′ · n

on ∂Γ.
In [9] it is also shown that if P ′ and v′′ minimize Y over all functions satisfying the same boundary conditions,

then P ′ is the real part of the solution to the Helmholtz equation satisfying those boundary conditions, and v′′

is the imaginary part of the corresponding complex velocity field.

3. Other boundary conditions

Instead of specifying boundary conditions on P ′ and v′′, we can specify boundary conditions on their dual
variables P ′′ and v′ and solve the boundary value problem

⎧⎪⎨
⎪⎩

−∇ · ρ−1∇P − ω2

κ
P = 0 in Γ

P ′′ = P ′′
0 on ∂Γ

v′ · n = v′0 · n on ∂Γ.

(3.1)
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If (P ′′, v′) are parts of a solution to the problem above, then for any choice of functions s ∈ H1(Γ) and
T ∈ H(div,Γ), we have

0 =
∫

Γ

[−ω(−∇ · v′ + ∇ · v′)s− ω(∇P ′′ −∇P ′′) · T ] dx

=
∫

Γ

[−ωv′ · ∇s− ω∇ · v′s− ω∇P ′′ · T − ωP ′′∇ · T ] dx+
∫

∂Γ

[ωsv′ · n+ ωT · nP ′′] dS

=
∫

Γ

[(
−ωv′
∇P ′′

)
·
(

∇s
−ωT

)
+
(

−∇ · v′
ωP ′′

)
·
(

ωs
−∇ · T

)]
dx

+
∫

∂Γ

[ωsv′ · n+ ωT · nP ′′] dS

=
∫

Γ

[(
∇P ′

−ωv′′
)
· R

(
∇s
−ωT

)
+
(

ωP
−∇ · v′′

)
· K

(
ωs

−∇ · T

)]
dx

+ ω

∫
∂Γ

[sv′ · n+ T · nP ′′] dS. (3.2)

This is just the weak form of the Euler-Lagrange equation for the variational problem

inf
(P ′,v′′)∈H1(Γ)×H(div,Γ)

Ỹ (P ′, v′′),

where

Ỹ (P ′, v′′) =
∫

Γ

[(
∇P ′

−ωv′′
)
· R

(
∇P ′

−ωv′′
)

+
(

ωP
−∇ · v′′

)
· K

(
ωP ′

−∇ · v′′
)]

dx

+ 2ω
∫

∂Γ

[P ′v′0 · n+ v′′ · nP ′′
0 ] dS. (3.3)

Neither of these combinations of boundary conditions is often encountered, but we can combine these boundary
conditions to derive minimization functionals for the Dirichlet and Neumann boundary value problems. In order
to solve the Dirichlet boundary value problem

⎧⎨
⎩ −∇ · ρ−1∇P − ω2

κ
P = 0 in Γ

P = P0 on ∂Γ,

we solve the variational problem

inf
(P ′,v′′)∈H1

0 (Γ)×H(div,Γ)
Ỹ (P ′ + P ′

0, v
′′).

Since we are enforcing zero boundary values on the P ′, variable, we have that

Ỹ (P ′ + P ′
0, v

′′) =
∫

Γ

[(
∇P ′

0 + ∇P ′

−ωv′′
)
· R

(
∇P ′

0 + ∇P ′

−ωv′′
)

+
(
ω(P ′

0 + P )
−∇ · v′′

)
· K

(
ω(P ′

0 + P ′)
−∇ · v′′

)]
dx+ 2ω

∫
∂Γ

v′′ · nP ′′
0 dS.
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The minimization functional for the Neumann problem is derived in an analogous manner. To solve the problem

⎧⎨
⎩ −∇ · ρ−1∇P − ω2

κ
P = 0 in Γ

v · n = v0 · n on ∂Γ,

we solve the variational problem

inf
(P ′,v′′)∈H1(Γ)×H0(div,Γ)

Ỹ (P ′, v′′ + v′′0 ).

In this case, since we are enforcing zero normal component on v′′, we have that

Ỹ (P ′, v′′ + v′′0 ) =
∫

Γ

[(
∇P ′

−ω(v′′ + v′′0 )

)
· R

(
∇P ′

−ω(v′′ + v′′0 )

)

+
(

ωP
−∇ · v′′ −∇ · v′′0

)
· K

(
ωP ′

−∇ · v′′ −∇ · v′′0

)]
dx+ 2ω

∫
∂Γ

P ′v′0 · n dS.

4. Error bound

In this section we give a bound on the error incurred by solving any of the minimization problems above over
a finite dimensional subspace of the specified Sobolev spaces. We will give a more detailed account of exactly
what the finite dimensional space looks like later on; in this section all that will matter is the highest degree
of polynomials that the finite dimensional space contains. We will use the Bramble-Hilbert lemma to give a
bound on the error.

In this chapter we will return to the notation of F , G, and L and drop the primes used to denote real and
imaginary parts. Note that what follows applies to any of the boundary value problems discussed previously,
since the bounds depend only on the corresponding bilinear form. Throughout this chapter, C is a constant
independent of the solution (P, v) and the grid spacing h.

4.1. Bilinear form

Define the bilinear form B by

B(P, v; s, T ) =
∫

Γ

(
F
−G

)
· L

(
S
−T

)
dx, (4.1)

where as before, F = (∇P, P )T , G = (−iωv,−iω∇·v)T , and S and T are generated from test function s ∈ H1(Γ)
and T ∈ H(div,Γ) in the same fashion. Assume that there exist constants γ1, γ2 > 0 such that L > γ2I and
that [L(x)]ij ≤ γ1 for a.e. x ∈ Γ. Let V = H1

0 (Γ) ×H(div,Γ), endowed with the norm

‖(u,G)‖V = (‖u‖2
H1(Γ) + ‖G‖2

H(div,Γ)
)

1
2 .

Then it follows immediately from (4.1) that

B(P, v; s, T ) ≤ Cγ1‖(P, v)‖V ‖(s, T )‖V (4.2)

and

B(P, v;P, v) ≥ γ2‖(P, v)‖2
V . (4.3)
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4.2. Minimization inequality

Define the energy by

f(s, T ) =
1
2
B(s, T ; s, T )− F (s, T ),

where F : H1(Γ)×H(div,Γ) → R (in practice, F is usually composed of terms resulting from an inhomogeneous
term and enforcement of the desired boundary conditions). If (u,G) is the minimizer of the energy, then this
pair must satisfy the Euler-Lagrange equation

B(P, v; s, T ) = F (s, T ) ∀s ∈ H1
0 (Γ), ∀ T ∈ H(div,Γ),

so that
f(s, T ) = f(P, v) +

1
2
B(P − s, v − T ;P − s, v − T ) ∀ s ∈ H1

0 (Γ) ∀ T ∈ H(div,Γ).

Consider a finite dimensional subspace VN = VN1 × VN2 of V , where VN1 is a finite dimensional subspace of
H1(Γ) and VN2 is a finite dimensional subspace of H(div,Γ). If (PN , vN ) is such that

f(PN , vN ) = min
(s,T )∈VN

f(s, T ),

then
[B(P − PN , v − vN ;P − PN , v − vN )]

1
2 = min

(s,T )∈VN

[B(P − s, v − T ;P − s, v − T )]
1
2 .

Inequalities (4.2) and (4.3) imply that

√
γ2‖(s, T )‖V ≤

√
B(s, T ; s, T ) ≤ C

√
γ1‖(s, T )‖V ∀ (s, T ) ∈ V,

so we have √
γ2‖(P, v) − (PN , vN )‖V ≤ min

(s,T )∈VN

C
√
γ1‖(P, v) − (s, T )‖V . (4.4)

Let F1 be the orthogonal projection from H1(Γ) onto VN1. Since F1 is an orthogonal projection, it has
‖F1‖B(H1(Γ),H1(Γ)) = 1, where B(H1(Γ), H1(Γ)) is the set of bounded linear functions from H1(Γ) to H1(Γ).
Also, define an operator F2 : H(div,Γ) → VN2 by the solution of the variational inequality

〈F2G,Q− F2G〉L2(Γ,Rd) ≥ 〈G,Q− F2G〉L2(Γ,Rd) ∀ Q ∈ EG,

over the set EG = {v ∈ VN2 : ‖∇ · v‖L2(Γ) ≤ ‖∇ · G‖L2(Γ)}, which is a closed, convex subset of L2(Γ,Rd). We
then have

‖F2G‖2
L2(Γ,Rd) = 〈F2G,F2G〉L2(Γ,Rd) ≤ 〈G,F2G〉L2(Γ,Rd) ≤ ‖G‖L2(Γ,Rd)‖F2G‖L2(Γ,Rd).

If we take s = F1P and T = F2v in (4.4), then we have

‖(P, v) − (PN , vN )‖V ≤ C‖(P − F1P, v − F2v)‖V . (4.5)

4.3. Seminorm bounds

We will discretize the domain Γ by by subdividing it into smaller regions, each of which can be seen as a
suitable shifting and scaling of a “reference element”. More precisely, if ê is our reference element, there exist
affine changes of variables Fl(x) = Bx + xl such that Fl(ê) = el, where el is the lth element (subdivision) in
the finite element decomposition of Γ. In the case of rectangular elements in Rd, for example, we can take
ê = (0, 1)d, and then we have B = hId. In this section a hat will denote the corresponding function defined over
the reference element.
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Let
[u,w]s =

∑
|α|=s

∫
ê

Dαu ·Dαw dx and |w|2s = [w,w]s, (4.6)

where for vector functions we define

Dαw =

⎛
⎜⎜⎜⎝

Dαw1

Dαw2

...
Dαwd

⎞
⎟⎟⎟⎠ .

From [2] we get the inequalities

c−1hs− d
2 |w|s,el

≤ |ŵ|s ≤ chs− d
2 |w|s,el

hs+ d
2−1|q|s,el

≤ |q̂|s ≤ hs+ d
2−1|q|s,el

hs+ d
2 |∇ · q|s,el

≤ |∇ · q̂|s ≤ hs+ d
2 |∇ · q|s,el

(4.7)

for scalar functions w and vector functions q, where w = ŵ ◦F−1 and q = q̂ ◦F−1 and | · |s,el
denotes (4.6) with

el in place of ê.
We now recall the following lemma from [1], which will be used in what follows.

Lemma 4.1 (Bramble-Hilbert lemma). For some region Ω ⊂ R2 and some integer k ≥ −1, let there be given
a bounded linear functional

f : Hk+1(Ω) → R,

satisfying |f(u)| ≤ δ‖u‖Hk+1(Ω) for all u ∈ Hk+1(Ω) for some δ independent of u. Suppose that f(u) = 0 for all
u ∈ Pk(Ω̄). Then there exists a constant C, dependent only on Ω such that

|f(u)| ≤ Cδ|u|k+1, u ∈ Hk+1(Ω).

Let us suppose that P̂ ∈ Hk+1(ê) and v̂ ∈ Hj(div, ê) = {q ∈ Hj(ê,Rd) : ∇ · q ∈ Hj(ê)}. For fixed elements
w ∈ Hs(ê) and Q ∈ Hs(div, ê) define the functionals

f1(u) = [u− F1u,w]s, f2(G) = [G− F2G,Q]0, f3(∇ ·G) = [∇ ·G−∇ · F2G,∇ ·Q]0,

where s = 0 or s = 1. Then, since

|f1(u)| ≤ |u− F1u|s|w|s ≤ (|u|s + |F1u|s)|w|s ≤ (‖u‖H1(Γ) + ‖F1u‖H1(Γ))|w|s
≤ 2‖u‖H1(Γ)|w|s ≤ 2‖u‖Hk+1(Γ)|w|s,

|f2(G)| ≤ |G− F2G|0|Q|0 ≤ (|G|0 + |F2G|0)|Q|0 = (‖G‖L2(Γ,Rd) + ‖F2G‖L2(Γ,Rd))|Q|0
≤ 2‖G‖L2(Γ),Rd)|Q|0 ≤ ‖G‖Hj(Γ,Rd)|Q|0,

|f3(∇ · G)| ≤ |∇ ·G−∇ · F2G|0|∇ ·Q|0 ≤ (|∇ ·G|0 + |∇ · F2G|0)|∇ ·Q|0
= (‖∇ ·G‖L2(Γ) + ‖∇ · F2G‖L2(Γ))|∇ ·Q|0 ≤ 2‖∇ ·G‖L2(Γ)|∇ ·Q|0 ≤ 2‖∇ ·G‖Hj(Γ)|∇ ·Q|0,

and F1u = u for polynomials in VN1 and F2G = G for vectors of polynomials from VN2, we can apply the
Bramble-Hilbert lemma to find that there exists a constant such that

|f1(P̂ )| ≤ C|w|s|P̂ |k+1, |f2(v̂)| ≤ C|Q|0|v̂|j , |f3(∇ · v̂)| ≤ C|∇ ·Q|0|∇ · v̂|j ,

as long as k and j are small enough so that all polynomials of degree less than or equal to k are contained in the
span of the basis functions representing û and all polynomials of degree less than or equal to j are contained in
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the span of the basis functions representing Ĝ. For the elements used in the implementation to follow, we will
have j = k = 1. By choosing w = P̂ − F1P̂ and Q = v̂ − F2v̂, we find that

|P̂ − F1P̂ |s ≤ C|P̂ |k+1, |v̂ − F2v̂|0 ≤ C|v̂|j , |∇ · v̂ −∇ · F2v̂| ≤ C|∇ · v̂|j .

Employing (4.7), we find that for h ≤ 1,

|P − F1P |s,el
≤ Ch

d
2−s|P̂ − F1P̂ |s ≤ Ch

d
2−s|P̂ |k+1 ≤ Chk−s+1|P |k+1,el

,

|v − F2v|0,el
≤ h1− d

2 |v̂ − F2v̂|0 ≤ h1−d
2C|v̂|j ≤ Chj |v|j,el

,

|∇ · v −∇ · F2v|0,el
≤ h−

d
2 |∇ · v̂ −∇ · F2v̂|0 ≤ h−

d
2C|∇ · v̂|j ≤ Chj |∇ · v|j,el

.

Returning to inequality (4.5), we find that

‖(P, v) − (PN , vN )‖2
V ≤ C‖(P, v) − (F1P, F2v)‖2

V

= C

(N−1)2∑
l=1

[
|P − F1P |20,el

+ |P − F1P |21,el
+ |v − F2v|20.el

+ |∇ · v −∇ · F2v|20,el

]

≤ C

(N−2)2∑
l=1

[
h2k+2|P |2k+1,el

+ h2k|P |2k+1,el
+ h2j|v|2j,el

+ h2j |∇ · v|2j.el

]
≤ C(h2k|P |2k+1,Γ + h2j(|v|2j,Γ + |∇ · v|2j,Γ)).

Let Pk(Γ̄) denote all polynomials of degree less than or equal to k on Γ̄. We have now proved

Theorem 4.1. If the solution (P, v) ∈ Hk+1(Γ) × Hj(div,Γ) and the finite element subspace used in the
numerical method contains Pk(Γ̄) × Pj(Γ̄) × Pj(Γ̄), then there is a constant C such that the error satisfies

‖(P, v) − (PN , vN )‖2
V ≤ C(h2k|P |2k+1,Γ + h2j(|v|2j,Γ + |∇ · v|2j,Γ)),

where h ≤ 1 is the grid spacing.

4.4. Regularity

In order for the error bound to be meaningful, we must have k, j ≥ 1 in Theorem 4.1, which means that at
least

P ∈ H2(Γ) and v ∈ H1(div,Γ).
In the notation of the acoustic equation, if ρ−1 is positive definite, bounded, and C1, then classical elliptic
regularity theory such as in [5] guarantees that P ′ ∈ H2(Γ). Also since

v = − i
ω
ρ−1∇P,

we have that v ∈ (H1(Γ))2, and multiplying the acoustic equation through by −1/ω tells us that

∇ · v =
iω
κ
P,

so ∇ · v ∈ H1(Γ) as long as κ is at least C1.
It would be more satisfying (and useful in other contexts) to have a regularity theory derived from the weak

form of the equations presented herein, and this is a current topic of inquiry for the authors.
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5. Implementation of the finite element method

Our goal is to test the efficacy of this new variational principle, using a simple, explicit finite element
implementation. Let us assume that d = 2 and Γ = (0, 1)2. In order to find a numerical solution for P ′, we
introduce an N×N computational grid with equally spaced nodes (xj , yt) for t, j = 1, 2, . . . , N and grid spacing
h = 1/(N − 1). We also introduce the piecewise bilinear finite element spaces

Ψ = span
{(

1 − |x− xj |
h

)(
1 − |y − yt|

h

)
χtj : 2 ≤ t, j ≤ N − 1

}

Φ1 = span

⎧⎨
⎩
⎛
⎝

(
1 − |x− xj |

h

)(
1 − |y − yt|

h

)
0

⎞
⎠χtj : 1 ≤ t, j ≤ N

⎫⎬
⎭

Φ2 = span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0

(
1 − |x− xj |

h

)(
1 − |y − yt|

h

)
⎞
⎟⎟⎠χtj : 1 ≤ t, j ≤ N

⎫⎪⎪⎬
⎪⎪⎭ ,

where

χtj(x, y) =
{

1 if |x− xj |, |y − yt| ≤ h
0 otherwise.

We can re-index these elements with a single index by setting

ψk =
(

1 − |x− xj |
h

)(
1 − |y − yt|

h

)
χtj , where k = (t− 2)(N − 2) + j − 1, k = 1, . . . , (N − 2)2,

φ1k =

⎛
⎝

(
1 − |x− xj |

h

)(
1 − |y − yt|

h

)
0

⎞
⎠χtj where k = (t− 1)N + j, k = 1, . . . , N2,

φ2k =

⎛
⎝ 0(

1 − |x− xj |
h

)(
1 − |y − yt|

h

) ⎞
⎠χtj where k = (t− 1)N + j, k = 1, . . . , N2.

We assume that our finite element solution has the form

(
P ′

v′′

)
=

⎛
⎝ ψR +

∑(N−2)2

k=1 δkψk∑N(N−1)
k=1 βkφ1k +

∑N(N−1)
k=1 γkφ2k

⎞
⎠ .

Here ψR is any function that satisfies the desired Dirichlet boundary condition for P ′. The weak form of the
Euler-Lagrange equation for the variational principle is

0 =
∫

Γ

[(
∇P ′

−ωv′′
)
· R

(
∇s
−ωT

)
+
(

ωP ′

−∇ · v′′
)
· K

(
ωs

−∇ · T

)]
dx+

∫
∂Γ

ωT · nP ′′ dS (5.1)

for any s ∈ H1
0 (Γ) and any T ∈ H(div,Γ). Substituting into (5.1), we get

∫
Γ

[( ∑
δk∇ψk

−ω
∑
βkφ1k − ω

∑
γkφ2k

)
· R

(
∇s
−ωT

)
+
(

ω
∑
δkψk

−
∑
βk∇ · φ1k −

∑
γk∇ · φ2k

)
· K

(
ωs

−∇ · T

)]
dx

= −
∫

Γ

[(
∇ψ0

0

)
· R

(
∇s
−ωT

)
+
(
ωψ0

0

)
· K

(
ωs

−∇ · T

)]
dx−

∫
Γ

[ω∇ψI · T + ωψI∇ · T ] dx,
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where we have used the divergence theorem on the boundary integral, ψI is any function on Γ satisfying the
desired Dirichlet boundary condition for P ′′, and s ∈ H1

0 (Γ), T ∈ H(div,Γ) are arbitrary. In particular, this
must hold when

s = ψk, T = 0 for k = 1, . . . , (N − 2)2

s = 0, T = φ1k for k = 1, . . . , N(N − 1)

s = 0, T = φ2k for k = 1, . . . , N(N − 1).

This gives rise to a system of equations of the form Aα = b, where A has the block form

A =

⎛
⎝ A1 A4 A6

A4 A2 A5

A6 A5 A3

⎞
⎠ (5.2)

and the blocks have entries

(A1)tj =
∫

Γ

[(
∇ψt

0

)
· R

(
∇ψj

0

)
+
(
ωψt

0

)
· K

(
ωψj

0

)]
dx

(A2)tj =
∫

Γ

[(
0

−ωφ1t

)
· R

(
0

−ωφij

)
+
(

0
−∇ · φ1t

)
· K

(
0

−∇ · φ1j

)]
dx

(A3)tj =
∫

Γ

[(
0

−ωφ2t

)
· R

(
0

−ωφ2j

)
+
(

0
−∇ · φ2t

)
· K

(
0

−∇ · φ2j

)]
dx (5.3)

(A4)tj =
∫

Γ

[(
0

−ωφ1t

)
· R

(
∇ψj

0

)
+
(

0
−∇ · φ1t

)
· K

(
ωψj

0

)]
dx.

(A5)tj =
∫

Γ

[(
0

−ωφ2t

)
· R

(
0

−ωφ1j

)
+
(

0
−∇ · φ2t

)
· K

(
0

−∇ · φ1j

)]
dx

(A6)tj =
∫

Γ

[(
0

−ωφ2t

)
· R

(
∇ψj

0

)
+
(

0
−∇ · φ2t

)
· K

(
ωψj

0

)]
dx.

The right-hand side vector b is partitioned as

b =

⎛
⎝ b1

b2
b3

⎞
⎠ ,

where

(b1)k = −
∫

Γ

[(
∇ψR

0

)
· R

(
∇ψk

0

)
+
(
ωψR

0

)
· K

(
ωψk

0

)]
dx

(b2)k = −
∫

Γ

⎡
⎣( ∇ψR

0

)
· R

(
0

−ωφ1k

)
+
(
ωψR

0

)
· K

⎛
⎝ 0

−∇ · φ1k

⎞
⎠
⎤
⎦dx

−
∫

Γ

[ω∇ψI · φ1k + ωψI∇ · φ1k] dx

(b3)k = −
∫

Γ

[(
∇ψR

0

)
· R

(
0

−ωφ2k

)
+
(
ωψR

0

)
· K

(
0

−∇ · φ2k

)]
dx

−
∫

Γ

[ω∇ψI · φ2k + ωψI∇ · φ2k] dx.

(5.4)
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The method for solving for P ′ and v′′ can be easily modified to solve for P ′′ and v′. In this case the weak
equation is ∫

Γ

[(
∇P ′′

ωv′

)
· R

(
∇s
ωT

)
+
(

−ωP ′′

−∇ · v′
)
· K

(
−ωs

−∇ · T

)]
dx+

∫
∂Γ

ωT · nP ′ dS,

and all the methods above still apply. In fact, to obtain the new matrix for this formulation, we simply change
the signs of the blocks A4 and A6, and the changes in b are mostly reversing signs and the roles of the two
auxiliary functions ψR and ψI .

5.1. Other discretizations

Along with the discretization described in Section 5, we have experimented with two other implementations
in which different basis functions are used to represent the variable v. The first of these uses the Raviart-Thomas
RT[0] elements described in [2]. We found that the resulting finite element matrix is much more poorly scaled,
with a condition number approximately twice as large as that obtained with the bilinear basis. The second
method uses the RT[1] elements (also described in [2]). In this case, the higher-order basis functions obviously
result in a somewhat less-sparse finite element matrix, and the condition number is approximately the same as
that obtained with the all-bilinear discretization. In the numerical experiments described later, it was observed
that the difference in error that resulted from these different discretizations was negligible.

6. Conditioning

As was mentioned, perhaps the greatest numerical advantage to having a minimization formulation for the
Helmholtz equation is that the matrix produced by the finite element method is symmetric positive definite.
This allows for the use of methods such as the conjugate gradient method to solve the system. Of course, the
use of a preconditioning matrix in the conjugate gradient method can speed up the convergence considerably,
which is especially important when solving the relatively large sparse systems generated by the finite element
approach outlined above.

In our approach, there are three basic types of elements used: bilinear elements, first component bilinear
vector elements, and second component bilinear vector elements. Each of these types of elements interacts with
all of the other types, and these interactions are what give rise to the blocks in (5.2). Assuming that interactions
among similar element types are most important, we choose the block Jacobi preconditioner

M =

⎛
⎝ A1 0 0

0 A2 0
0 0 A3

⎞
⎠ .

Among all block diagonal preconditioners of this form, this choice of M minimizes the condition number of
M− 1

2AM− 1
2 to within a factor of 3 of its minimum [4]. In our numerical experiments, we used an incomplete

Choleski factorization of M as the preconditioner in the PCG iterations, which dramatically increases the
efficiency over using M alone. Figure 1 shows the distribution of the eigenvalues of the matrix A before and
after preconditioning for N = 30. In Figure 2, we see the how the number of PCG iterations grows with N in
a specific example problem for several error tolerances.

A key component in ensuring that the system Aα = b is well conditioned is for the matrix L (or equivalently
R and K) to have a coercivity constant that is as large as possible. For this reason, we expect better numerical
results when the eigenvalues of L are bounded well away from zero. In the case of the Helmholtz equation, the
matrix Z is diagonal, say Z = diag(c1, . . . , cd+1), which makes it possible to calculate the eigenvalues of L. If
D is an invertible matrix, then we may factor a block matrix(

A B
C D

)
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Figure 1. The distribution of the eigenvalues of A and the real parts of the eigenvalues of
M−1A for N = 30.

Figure 2. The growth of the number of PCG iterations required to solve a given problem with
grid size for several error tolerances.

as (
A B
C D

)
=
(
I B
0 D

)(
A−BD−1C 0

D−1C I

)
,

which implies that

det
(
A B
C D

)
= det(D)det(A−BD−1C).
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Table 1. The error in the finite element solution for various values of the grid size N .

N h ‖(P − PN , v − vN )‖V

30 0.0345 6.6162× 10−4

40 0.0256 3.6692× 10−4

50 0.0204 2.3252× 10−4

60 0.0169 1.6026× 10−4

70 0.0145 1.1722× 10−4

80 0.0127 8.9706× 10−5

90 0.0112 7.0686× 10−5

100 0.0101 5.7037× 10−5

Therefore,

det(L − λI) = (−1)d+1det
(

(Z ′′)−1Z ′ (Z ′′)−1 − λI
Z ′′ + Z ′(Z ′′)−1Z ′ − λI Z ′(Z ′′)−1

)
= (−1)d+1det(Z ′(Z ′′)−1)det((Z ′′)−1Z ′ + [−(Z ′)−1 + λZ ′′(Z ′)−1][Z ′′ + Z ′(Z ′′)−1Z ′ − λI])

= (−1)d+1det(Z ′(Z ′′)−1)det(λ2[−Z ′′(Z ′)−1] + λ[(Z ′)−1 + Z ′′(Z ′)−1Z ′′ + Z ′] − (Z ′)−1Z ′′).
In the case of diagonal Z, this implies that

λ =
−aj ±

√
a2

j − b2j

−bj
j = 1, . . . , d+ 1,

where

aj =
1
c′j

+
(c′′j )2

c′j
+ c′j and bj = 2

c′′j
c′j

·

If Z ′ = 0, then L is diagonal, and its eigenvalues are those of Z ′′ and (Z ′′)−1.
The above analysis tells us that the finite element problem will be better conditioned for those problems

where the coefficients ρ and κ are such that Z is close to Ii, i.e. ρ = iI and κ = −Ii (this would correspond
to the limiting case where aj = bj). In many cases when we are presented with a problem where the coercivity
constant for L is small, we can apply an appropriate rotation and scaling to the problem in order to get a finite
element matrix that is better conditioned. By multiplying the problem (2.1) through by a complex constant
reiθ, we effectively replace Z with reiθZ, so we should choose r and θ so that reiθZ is as close as possible to iI.
However, this may not always be possible, for example, when an isotropic ρ(x) oscillates between values in the
upper half of the complex plane that are close to 1 and −1.

7. Numerical results

As an example, we demonstrate the error bound on the problem (1.1), with parameters ρ = (−5 + 5i)I, κ =
4 − 4i and ω = 2. A solution is P (x, y) = e2ix−3y. In this example we took

ψR = Re(e2ix−3y) + sin(πx) sin(πy), ψI = Im(e2ix−3y) + sin(πx) · 3 sin(πy))

and solved the problem on grids with N = 3, . . . , 100. Table 1 shows the error in the finite element solution for
various values of N . The errors were calculated using the trapezoidal rule with function evaluations on a grid
with size N = 1500. Figure 3 demonstrates the method on a problem with non-constant coefficients, where the
dissipation in the material is higher inside a disk (whose boundary is approximated by a staircase curve to fit
the rectangular grid) centered in the unit square and with radius 0.25. The boundary conditions for the real
part are oscillatory, while the boundary conditions for the imaginary part are simply an affine function.
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Figure 3. The solutions P ′ (left) and P ′′ (right), with ω = 10, ψR = sin(6πx) cos(3πy), ψI =
3x+ 5y+ 2, N = 30. There is an approximately circular inclusion in the center of the domain
with ρ = .01 + .001i and κ = .01 − .003i outside the inclusion and ρ = −5 + 5i and κ = 4 − 4i
inside the inclusion.

Figure 4. The graph on the left shows the increase in the number of PCG iterations as κ′′ → 0.
On the right is the L2 difference between solutions computed via minimization and stationary
variational principles as κ′′ vanishes.

In Figure 4, we see the effect of letting the imaginary part of κ approach zero while the rest of the problem
parameters remain fixed. The parameters used to generate this figure were

N = 100, ω = 2, ρ = 3 + i, κ′ = 3.

On the left, we see that the loss of coercivity causes the number of PCG iterations to increase. On the right
we see the L2 difference between a solution using the minimization method and one computed from a finite
element discretization of the stationary variational principle (1.2).

In Figure 5, a model problem is solved several times with increasing values of ω. As ω increases, the ratio
ω/N is held approximately constant. On the left, we see the relative error in the ‖ · ‖V -norm. On the right, we
see that the number of PCG iterations required to solve the problems remains stable as ω increases.
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Figure 5. The graph on the left shows the relative error as ω increases. On the right is the
number of PCG iterations to solve the problems for different ω.

8. Robin boundary conditions

8.1. Problem formulation

Another boundary condition that often appears is the Robin problem

⎧⎨
⎩ −∇ · ρ−1∇P − ω2

κ
P = 0 in Γ,

P + av · n = g on ∂Γ,

where a ∈ C. In order to deal with this boundary condition, which concerns both real and imaginary parts
of the variables P and v simultaneously, we start with the minimization functional for the natural boundary
conditions

Y (P ′, v′′) + 2ω
∫

∂Γ

[P ′v′ · n+ P ′′v′′ · n] dS.

The Euler-Lagrange equation for the corresponding variational principle is

B(P ′, v′′, s, T ) = −ω
∫

∂Γ

[sv′ · n+ P ′′T · n] dS

where the bilinear form B is defined in (4.1). Notice that we can write the surface integral above as

−ω
∫

∂Γ

(
v′ · n
P ′′

)
·
(

s
T · n

)
dS.

The vector on the right contains the primary variables for which we would like to solve, and the vector on the
left contains the dual variables which we would like to eliminate using the Robin boundary condition. In terms
of the vectors above, we can express the Robin condition as

M1

(
P ′

v′′ · n

)
+M2

(
v′ · n
P ′′

)
=
(

g′

g′′

)
,

where

M1 =
(

1 −a′′
0 a′

)
and M2 =

(
a′ 0
a′′ 1

)
.
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Rearranging, we find that

(
v′ · n
P ′′

)
= M−1

2

(
g′

g′′

)
−M−1

2 M1

(
P ′

v′′ · n

)
,

so the surface integral term becomes

−ω
∫

∂Γ

[
M−1

2

(
g′

g′′

)
−M−1

2 M1

(
P ′

v′′ · n

)]
·
(

S
T · n

)
dS

= −ω
∫

∂Γ

M−1
2

(
g′

g′′

)
·
(

P ′

v′′ · n

)
dS + ω

∫
∂Γ

M−1
2 M1

(
P ′

v′′ · n

)
·
(

P ′

v′′ · n

)
dS.

The new Euler-Lagrange equation for the Robin boundary condition is therefore

B(P ′, v′′; s, T )− ω

∫
∂Γ

M−1
2 M1

(
P ′

v′′ · n

)
·
(

s
T · n

)
dS

= −ω
∫

∂Γ

M−1
2

(
g′

g′′

)
·
(

s
T · n

)
dS.

Since

M−1
2 =

1
a′

(
1 0

−a′′ a′

)
,

we have

M−1
2 M1 =

1
a′

(
1 −a′′

−a′′ |a|2
)
,

which is positive definite as long as a′ > 0. The new bilinear form above is guaranteed to be coercive as long as
ρ and κ satisfy (2.3) and a′ < 0.

To find a numerical solution for the Robin boundary value problem, we discretize using the finite element
scheme presented in Section 5. Unfortunately, the surface integrals can no longer be converted to volume
integrals by integration by parts and must be computed as they stand. In this case, the finite element matrix
is written as the sum of two matrices A− ωB, where A is of the form (5.2), and the blocks have entries (5.3),
and another matrix B with the same block form and block entries

(B1)tj =
∫

∂Γ

(
ψt

0

)
·M−1

2 M1

(
ψj

0

)
dS

(B2)tj =
∫

∂Γ

(
0

φ1t · n

)
·M−1

2 M1

(
0

φ1j · n

)
dS

(B3)tj =
∫

∂Γ

(
0

φ2t · n

)
·M−1

2 M1

(
0

φ2j · n

)
dS

(B4)tj =
∫

∂Γ

(
0

φ1t · n

)
·M−1

2 M1

(
ψj

0

)
dS

(B5)tj =
∫

∂Γ

(
0

φ2t · n

)
·M−1

2 M1

(
0

φ1j · n

)
dS

(B6)tj =
∫

∂Γ

(
0

φ2t · n

)
·M−1

2 M1

(
ψj

0

)
dS.
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Figure 6. On the left is shown the solution to the Robin problem with a disc of high density
material centered in the domain. On the right the disk is replaced with a bar of the same
material angled from the lower left to the upper right of the domain.

The right-hand side vector b is also partitioned as (b1, b2, b3)T with entries

(b1)k = −ω
∫

∂Γ

(
ψk

0

)
·M−1

2

(
g′

g′′

)
dS

(b2)k = −ω
∫

∂Γ

(
0

φ1k · n

)
·M−1

2

(
g′

g′′

)
dS

(b3)k = −ω
∫

∂Γ

(
0

φ2k · n

)
·M−1

2

(
g′

g′′

)
dS.

Assuming that the coercivity requirements (2.3) on ρ and κ are satisfied, and a′ < 0, the system

(A− ωB)α = b

may be solved using the same preconditioned conjugate gradient approach as outlined previously.

8.2. Numerical examples

Here we present some numerical examples obtained by using the finite element method to solve problems
with Robin boundary conditions. In these examples the Robin boundary conditions are imposed on y = 0 and
y = 1, while on the other sides of the domain we have imposed periodic boundary conditions. On the left in
Figure 6 is the solution with a circular scatterer with ρ = 1 + .011i outside the scatterer, ρ = 2 + .011i inside
the scatterer, κ = 1 + .011i everywhere, a = −1 + .333i and g = 3.33i. On the right, the circular scatterer is
replaced by a bar angled across the domain, but the other parameters in the problem remain the same. These
results were calculated using the RT[0] discretization for the v variable described in Section 5.1.

9. Conclusions

The variational principles of Milton, Seppecher, Bouchitté, and Willis make it possible to formulate the
solution of the Helmholtz equation as a minimization, and this is reflected in the fact that the stiffness matrix
for the finite element method is symmetric positive definite. This allows us to use classical iterative methods
such as preconditioned conjugate gradient to solve the associated system, along with straightforward finite
element error estimates. The primary advantage of this approach is that it allows the use of efficient iterative
methods for the solution of the linear system. But there are also disadvantages in that the system has more
unknowns, since we must solve for P and v simultaneously.
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More research is necessary to determine the circumstances under which this approach may be more effective
than others currently in use. A particular point of interest is that even though the underlying minimization
principles are valid for arbitrarily small loss coefficients, the conditioning of the associated finite element matrix
deteriorates as the system becomes less dissipative. The general question of how solution efficiency depends on
loss should be analyzed further.

We have only approached the scalar, two-dimensional Helmholtz equation in this paper, while the minimiza-
tion principles of Milton, Seppecher, Bouchitté, and Willis apply to the full vector Maxwell equations, as well
as the equations of linear elasticity. The general approach taken here should also apply in those cases. We note
finally that in many applications for these models, one would like to apply nonlocal transmission or radiation
boundary conditions in order to accurately handle unbounded domains. The problem of adapting these min-
imization methods to such boundary conditions remains open, although presumably the PML approach (see
e.g. [6]) would apply.
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