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AN hp-DISCONTINUOUS GALERKIN METHOD FOR THE OPTIMAL
CONTROL PROBLEM OF LASER SURFACE HARDENING OF STEEL
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Abstract. In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM)
for the laser surface hardening of steel, which is a constrained optimal control problem governed by a
system of differential equations, consisting of an ordinary differential equation for austenite formation
and a semi-linear parabolic differential equation for temperature evolution. The space discretization
of the state variable is done using an hp-DGFEM, time and control discretizations are based on a dis-
continuous Galerkin method. A priori error estimates are developed at different discretization levels.
Numerical experiments presented justify the theoretical order of convergence obtained.
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1. Introduction

In most structural components in mechanical engineering, the surface is stressed. The purpose of surface
hardening is to increase the hardness of the boundary layer of a work piece by rapid heating and subsequent
quenching (see Fig. 1). The desired hardening effect is achieved as the heat treatment leads to a change in
micro structure. A few applications include cutting tools, wheels, driving axles, gears, etc.

The mathematical model for the laser surface hardening of steel has been studied in [20,26]. For an extensive
survey on mathematical models for laser material treatments, we refer to [27]. In this article, we follow the
Leblond-Devaux model [26]. In [1,20], the mathematical model for the laser hardening problem which gives rise
to an optimal control problem governed by a system of nonlinear parabolic equations and a set of ordinary dif-
ferential equations with a non differentiable right hand side function is discussed. The authors have regularised
the right hand side function and have established results on existence, regularity and stability. This approach
seems to be common in all subsequent literature not only for existence results but also for numerical approxi-
mations. In [15], the convergence of the solution of the regularized problem to that of the original problem has
been established. In [19], laser and induction hardening has been used to explain the model and then a finite
volume method has been used for the space discretization in the numerical approximation. In [21], the optimal
control problem is analyzed and error estimates for proper orthogonal decomposition (POD) Galerkin method
for the state system are derived. Also a penalized problem has been considered for the purpose of numerical
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Figure 1. Laser hardening process.

simulations. In [36], a finite element scheme combined with a nonlinear conjugate gradient method has been
used to solve the optimal control problem and a finite element method has been used for the purpose of space
discretization. In [16], a priori error estimates are developed for a finite element scheme in which the space
discretization is done using conformal finite elements, whereas the time and control discretizations are based on
a discontinuous Galerkin method.

In literature, a substantial amount of work on the a priori error estimates for linear and non linear parabolic
problems are available, see for example [7,9,10,35] to mention a few. For optimal control problems governed by
linear parabolic equations without control constraints, a priori error bounds are developed in [28].

In recent years, there has been a renewed interest in DGFEM for the numerical solution of a wide range
of partial differential equations. This is due to their flexibility in local mesh adaptivity and in handling non-
uniform degrees of approximation for solutions whose smoothness exhibit variation over the computational
domain. Besides, they are elementwise conservative.

The use of DGFEM for elliptic and parabolic problems started with the work of Douglas and Dupont [8] and
Wheeler [37] in the 70’s. These methods are generalization of work by Nitsche [29] for treating Dirichlet boundary
condition by introduction of a penalty term on the boundary. In 1973, Babuška [4] introduced another penalty
method to impose the Dirichlet boundary condition weakly. Interior Penalty (IP) methods by Arnold [2] and
Wheeler [37] arose from the observations that just as Dirichlet boundary conditions, interior element continuity
can be imposed weakly instead being built into the finite element space. This makes it possible and easier to
use the space of discontinuous piecewise polynomials of higher degree. The IP methods are presently called
as Symmetric Interior Penalty Galerkin (SIPG) methods. The variational form of SIPG method is symmetric
and adjoint consistent, but the stabilizing penalty parameter in these methods depends on the bounds of the
coefficients of the problem and various constants in the inverse inequalities which are not known explicitly. To
overcome this, Oden et al. [30] proposed a DGFEM which is based on a non-symmetric formulation for advection
diffusion problems. This method is known to be stable when the degree of approximation is greater or equal
to 2, see [30,34]. In Houston et al. [23], hp discontinuous finite element methods are studied for diffusion reaction
problems. For a review of work on DG methods for elliptic problems, we refer to [3,31]. [12–14] discuss DG
methods for quasilinear and strongly non-linear elliptic problems. In [33,34], a non-symmetric interior penalty
DGFEM is analyzed for elliptic and non-linear parabolic problems, respectively. An hp-version of interior
penalty discontinuous Galerkin method for semilinear parabolic equation with mixed Dirichlet and Neumann
boundary conditions has been analyzed in [24]. Error estimates are derived under hypothesis on regularity
of the solution. DGFEM and corresponding error estimates for continuous and discrete time, for non-linear
parabolic equations, have been developed in [33]. For a detailed description of DGFEM for elliptic and parabolic
problems, we refer to [32].

In this paper, we discuss a DGFEM for the optimal control problem of laser surface hardening of steel.
Since the temperature around the boundary of the computational domain of the laser surface hardening of steel
problem is higher than at the other parts of the domain, a non-uniformity in the triangulation of domain becomes
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relevant (see Fig. 1). DGFEM is effective here because of the ease in the choice of finite element spaces with
discontinuous polynomials of higher degrees. Also, a finer triangulation near the boundary region permitting
hanging nodes helps to yield better results. The laser surface hardening of steel problem being an optimal control
problem, adjoint consistency becomes important. Therefore, in this paper, a symmetric version of hp-DGFEM
has been introduced and analyzed. To state more precisely, we apply an hp-DGFEM for the discretization
of space and a DGFEM for time and control variables. A priori error estimates have been developed for the
temperature and austenite variables at different discretization levels and numerical experiments are performed
to justify the theoretical results obtained.

The outline of this paper is as follows. This section is introductory in nature. In Section 2, a weak formulation
of the regularized laser surface hardening of steel problem is presented. In Section 3, an hp-DGFEM weak
formulation for the laser surface hardening of steel problem with its adjoint system is presented. Also, error
estimates are developed for the state and the adjoint variables. In Section 4, a space-time discretization using
DGFEM in time and an hp-DGFEM in space has been done. Also, a completely discrete formulation is derived
using DGFEM for control variable. Error estimates are developed for space-time and completely discrete
schemes. In Section 5, results of numerical experiments are presented.

2. The laser surface hardening of steel problem

Let Ω ⊂ R
2, denoting the workpiece, be a convex, bounded domain with piecewise Lipschitz continuous

boundary ∂Ω, Q = Ω × I and Σ = ∂Ω × I, where I = (0, T ), T < ∞. Following Leblond and Devaux [26],
the evolution of volume fraction of austenite a(t) for a given temperature evolution θ(t) is described by the
following initial value problem:

∂ta = f+(θ, a) =
1

τ(θ)
[aeq(θ) − a]+ in Q, (2.1)

a(0) = 0 in Ω, (2.2)

where aeq(θ(t)), denoted as aeq(θ) for notational convenience, is the equilibrium volume fraction of austenite
and τ depends only on the temperature θ. The term [aeq(θ) − a]+ = (aeq(θ) − a)H(aeq(θ) − a), where H is the
Heaviside function

H(s) =
{

1 s > 1
0 s ≤ 0,

denotes the non-negative part of aeq(θ) − a, that is, [aeq(θ) − a]+ =
(aeq(θ) − a) + |aeq(θ) − a|

2
·

Neglecting the mechanical effects and using the Fourier law of heat conduction, the temperature evolution
can be obtained by solving the non-linear energy balance equation given by

ρcp∂tθ −KΔθ = −ρLf+(θ, a) + αu in Q, (2.3)
θ(0) = θ0 in Ω, (2.4)
∂θ

∂n
= 0 on Σ, (2.5)

where the density ρ, the heat capacity cp, the thermal conductivity K and the latent heat L are assumed to
be positive constants. The term u(t)α(x, t) describes the volumetric heat source due to laser radiation, u(t)
being the time dependent control variable. Since the main cooling effect is the self cooling of the workpiece,
homogeneous Neumann conditions are assumed on the boundary. Also, θ0 denotes the initial temperature.

To maintain the quality of the workpiece surface, it is important to avoid the melting of surface. In the case
of laser hardening, it is a quite delicate problem to obtain parameters that avoid melting but nevertheless lead
to the right amount of hardening. Mathematically, this corresponds to an optimal control problem in which we
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Figure 2. Regularized heaviside (Hε(s)) and heaviside (H(s)) functions.

minimize the cost functional defined by:

J(θ, a, u) =
β1

2

∫
Ω

|a(T ) − ad|2dx+
β2

2

∫ T

0

∫
Ω

[θ − θm]2+dxds+
β3

2

∫ T

0

|u|2ds (2.6)

subject to the state equations (2.1)–(2.5) in the set of admissible controls Uad,

where Uad = {u ∈ U : ‖u‖L2(I) ≤ M} is the closed, bounded and convex subset of U = L2(I), denoting the
admissible intensities, β1, β2 and β3 being positive constants and ad being the given desired fraction of the
austenite. The second term in (2.6) is a penalizing term that penalizes the temperature above the melting
temperature θm. For theoretical, as well as computational reasons, the term [aeq − a]+ in (2.1) is regularized
(see Fig. 2) and the regularized laser surface hardening problem is given by:

min
uε∈Uad

J(θε, aε, uε) subject to (2.7)

∂taε = fε(θε, aε) =
1

τ(θε)
(aeq(θε) − aε)Hε(aeq(θε) − aε) in Q, (2.8)

aε(0) = 0 in Ω, (2.9)
ρcp∂tθε −KΔθε = −ρLfε(θε, aε) + αuε in Q, (2.10)

θε(0) = θ0 in Ω, (2.11)
∂θε

∂n
= 0 on Σ, (2.12)

where Hε ∈ C1,1(R) is a monotone approximation of the Heaviside function satisfying Hε(x) = 0 for x ≤ 0.
We now make the following assumptions [21]:

(A1) aeq(x) ∈ (0, 1) for all x ∈ R and ‖aeq‖C1(R) ≤ ca;
(A2) 0 < τ ≤ τ(x) ≤ τ̄ for all x ∈ R and ‖τ‖C1(R) ≤ cτ ;
(A3) θ0 ∈ H1(Ω), θ0 ≤ θm a.e. in Ω, where the constant θm > 0 denotes the melting temperature of steel;
(A4) α ∈ L∞(Q);
(A5) u ∈ L2(I);
(A6) ad ∈ L∞(Ω) with 0 ≤ ad ≤ 1 a.e. in Ω.



LASER SURFACE HARDENING PROBLEM 1085

Since we will be discretizing the regularized problem in this paper, (θε, aε, uε) and fε will be replaced by
(θ, a, u) and f , respectively, for the sake of notational simplicity.

Let X = {v ∈ L2(I;V ) : vt ∈ L2(I;V ∗)} and Y = H1(I;L2(Ω)), where V = H1(Ω) [11]. Together with
H = L2(Ω), the Hilbert space V and its dual V ∗ build a Gelfand triplet V ↪→ H ↪→ V ∗. The duality pairing
between V and its dual V ∗ is denoted by 〈·, ·〉 = 〈·, ·〉V ∗×V . Also, let (·, ·) (resp. (·, ·)I,Ω), and ‖ · ‖ (resp. ‖ · ‖I,Ω)
denote the inner product and norm in L2(Ω) (resp. L2(I, L2(Ω))). The inner product and norm in L2(I) are
denoted by (·, ·)L2(I) and ‖ · ‖L2(I), respectively.

The weak formulation corresponding to (2.8)–(2.12), for a fixed u ∈ Uad, reads as: Find (θ, a) ∈ X × Y such
that

(∂ta,w) = (f(θ, a), w) ∀w ∈ H, (2.13)
a(0) = 0, (2.14)

ρcp〈∂tθ, v〉 + K(∇θ,∇v) = −ρL(f(θ, a), v) + (αu, v) ∀v ∈ V, (2.15)
θ(0) = θ0. (2.16)

Therefore, the weak formulation for the optimal control problem can be stated as

min J(θ, a, u) subject to the constraints (2.13)–(2.16) and u ∈ Uad. (2.17)

The existence of a unique solution to the state equation (2.13)–(2.16) ensures the existence of a control-to-state
mapping u �−→ (θ, a) = (θ(u), a(u)) through (2.13)–(2.16). By means of this mapping, we introduce the reduced
cost functional j : Uad −→ R as

j(u) = J(θ(u), a(u), u). (2.18)

Then the optimal control problem (2.17) can be equivalently reformulated as

min
u∈Uad

j(u). (2.19)

The following theorem ([36], Thm. 2.1) ensures the existence of a unique solution of the system (2.13)–(2.16).

Theorem 2.1. Suppose (A1)–(A6) are satisfied. Then, the system (2.13)–(2.16) has a unique solution

(θ, a) ∈ H1,1 ×W 1,∞(I;L∞(Ω)),

where H1,1 = L2(I;H1(Ω)) ∩H1(I;L2(Ω)). Moreover, a satisfies

0 ≤ a < 1 a.e. in Q.

Remark 2.2 [36]. Due to (A1)–(A2), Theorem 2.1 and the definition of the regularized Heaviside function Hε,
there exists a constant cf > 0 independent of θ and a such that

max(‖f(θ, a)‖L∞(Q), ‖fa(θ, a)‖L∞(Q), ‖fθ(θ, a)‖L∞(Q)) ≤ cf

for all (θ, a) ∈ L2(Q) × L∞(Q) and (θ, a) satisfying (2.13)–(2.16) for a fixed control u ∈ Uad.

The existence of the optimal control is guaranteed by the following theorem ([36], Thm. 2.3).

Theorem 2.3. Suppose that (A1)–(A6) hold true. Then the optimal control problem (2.7)–(2.12) has at least
one (global) solution.
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In [15], convergence of the solution of regularized problem to the solution of the original problem has been
established.

Now, we state a lemma [21] which establishes the existence and uniqueness of the solution of the adjoint
problem.

Lemma 2.4. Let (A1)–(A6) hold true and (θ∗, a∗, u∗) ∈ X×Y ×Uad be a solution to (2.17). Then there exists
a unique solution (z∗, λ∗) ∈ H1,1 ×H1(I, L2(Ω)) of the adjoint system

− (ψ, ∂tλ
∗) + (ψ, fa(θ∗, a∗)g(z∗, λ∗)) = 0 ∀ψ ∈ H, a.e. in I, (2.20)

λ∗(T ) = β1(a∗(T ) − ad), (2.21)
−ρcp(φ, ∂tz

∗) + K(∇φ,∇z∗) + (φ, fθ(θ∗, a∗)g(z∗, λ∗)) = β2(φ, [θ∗ − θm]+) (2.22)
∀φ ∈ V, a.e. in I,

z∗(T ) = 0. (2.23)

Here, g(z∗, λ∗) = ρLz∗ − λ∗. Moreover, z∗ satisfies the following variational inequality(
β3u

∗ +
∫

Ω

αz∗dx, p− u∗
)

L2(I)

≥ 0 ∀p ∈ Uad. (2.24)

We now establish a regularity result for θ.

Lemma 2.5. Under the assumptions (A1)–(A6), the solution (θ, a) of (2.1)–(2.5) satisfies:

‖Δθ‖I,Ω ≤ C,

where C > 0 is a constant.

Proof. Multiply (2.3) by −Δθ and then integrate over Ω × [0, T ] to obtain

− ρcp

∫ T

0

(∂tθ,�θ)ds+ K
∫ T

0

‖Δθ‖2ds = ρL

∫ T

0

(∂ta,Δθ)ds−
∫ T

0

(αu,Δθ)ds. (2.25)

Use Cauchy Schwarz and Young’s inequality to obtain

‖Δθ‖2
I,Ω ≤ C

(
‖∂ta‖2

I,Ω + ‖u‖2
L2(I) + ‖∂tθ‖2

I,Ω + σ‖Δθ‖2
I,Ω

)
,

where C = max{ρcp, ρL, maxQ |α(x, t)|}. Choosing Young’s constant σ > 0 appropriately and using (θ, a) ∈
H1,1 ×W 1,∞(I, L∞(Ω)) we obtain the required result and this completes the rest of the proof. �
Remark 2.6. The constant C > 0 will be used to denote different values at different steps throughout the
paper and is a generic one.

3. An hp-discontinuous Galerkin formulation

First we state some preliminaries which are essential in the sequel.

Broken spaces

Let Th = {K,K ⊂ Ω} be a shape regular finite element subdivision of Ω in the sense that there exists γ > 0
such that if hK is the diameter of K, then K contains a ball of radius γhK in its interior [6]. Each element
K is a rectangle/triangle defined as follows. Let K̂ be a shape regular master rectangle/triangle in R

2, and let
{FK} be a family of invertible maps such that each FK maps from K̂ to K. Let h = max

K∈Th

hK .
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Let E , Eint and E∂ be the set of all the edges, interior edges and boundary edges of the elements, respectively,
defined as follows:

E = {e : e = ∂K ∩ ∂K ′ or e = ∂K ∩ ∂Ω,K,K ′ ∈ Th},
Eint = {e ∈ E : e = ∂K ∩ ∂K ′,K,K ′ ∈ Th},
E∂ = {e ∈ E : e = ∂K ∩ ∂Ω,K ∈ Th}.

For eK ∈ Eint, the average and jump of w ∈ H1(Ω, Th) are defined by:

{w} =
1
2

(
(w|K)|eK + (w|K′ )|eK

)
, [w] = (w|K)|eK − (w|K′ )|eK , respectively.

The jump and average on eK ∈ E∂ are defined by

{w} = (w|K)|eK = [w].

Also, we assume

c1(κ)hK ≤ |eK | ≤ c2(κ)hK , c3(�)pK ≤ peK ≤ c4(�)pK , (3.1)

where peK is the degree of the polynomial used for the approximation of the unknown variables over the edge
eK . Note that the definition of the triangulation Th admits atmost one hanging node along each side of K.
On the subdivision Th, we define the required broken Sobolev spaces for s = 1, 2 as

Hs(Ω, Th) =
{
w ∈ L2(Ω) : w|K ∈ Hs(K),K ∈ Th

}
.

The associated broken norm and semi-norm are defined by:

‖w‖Hs(Ω,Th) =
( ∑

K∈Th

‖w‖2
Hs(K)

)1/2

and |w|Hs(Ω,Th) =
( ∑

K∈Th

|w|2Hs(K)

)1/2

, respectively.

Also, let U = {w ∈ H2(Ω, Th) : w, ∇w · n are continuous along each e ∈ Eint}.

Finite element spaces

Let QpK (K̂) be the set of polynomials of degree less than or equal to pK in each coordinate on the refer-
ence element K̂. Now consider a finite element subspace of H1(Ω, Th),

Sp =
{
w ∈ L2(Ω) : w|K ◦ FK ∈ QpK (K̂),K ∈ Th

}
,

where p = {pK : K ∈ Th} and F = {FK : K ∈ Th}, FK being the affine map from K̂ to K.
We define the broken energy norm for w ∈ H1(Ω, Th) as

|‖w|‖ =

( ∑
K∈Th

‖w‖2
H1(K) + J γ(w,w)

)1/2

,

where J γ(w, v) =
∑

e∈Eint

γ

|e|

∫
e

[w][v]de, γ > 0 being the penalty parameter to be chosen later.
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Approximation properties of finite element spaces

Lemma 3.1 [24]. Let w|K ∈ Hs′
(K), s′ ∈ Z

+. Then there exists a sequence zhK
pk

∈ QpK (K), pK = 1, 2 . . ., such
that for 0 ≤ l ≤ s′,

‖w − zhK
pk

‖Hl(K) ≤ C
hs−l

K

ps′−l
K

‖w‖Hs′ (K) ∀K ∈ Th,

‖w − zhK
pk

‖L2(e) ≤ C
h

s− 1
2

K

p
s′− 1

2
K

‖w‖Hs′(K) ∀e ∈ Eint,

and

‖∇(w − zhK
pk

)‖L2(e) ≤ C
h

s− 3
2

K

p
s′− 3

2
K

‖w‖Hs′ (K) ∀e ∈ Eint,

where 1 ≤ s ≤ min(pK + 1, s′), pK ≥ 1, s ∈ Z
+, and C is a constant independent of w, hK , and pK, but

dependent on s′.

Remark 3.2. Given w ∈ H2(Ω, Th), define the interpolant Ihw = ŵ ∈ Sp by

Ihw|K = ŵ|K = zhK
pk

(w|K) ∀K ∈ Th. (3.2)

Lemma 3.3 [34], Lemma 2.1. Let vh ∈ QpK (K). Then, there exists a constant C > 0 such that

‖∇lvh‖ek
≤ CpKh

−1/2
K ‖∇lvh‖K , l = 0, 1. (3.3)

The hp-DGFEM formulation corresponding to (2.13)–(2.16) can be stated as:
Find (θh(t), ah(t)) ∈ Sp × Sp, a.e. in Ī such that

∑
K∈Th

(∂tah, w)K =
∑

K∈Th

(f(θh, ah), w)K ∀w ∈ Sp, (3.4)

ah(0) = 0, (3.5)

ρcp
∑

K∈Th

(∂tθh, v)K +B(θh, v) = −ρL
∑

K∈Th

(∂tah, v)K +
∑

K∈Th

(αuh, v)K ∀v ∈ Sp, (3.6)

θh(0) = θ0, (3.7)

where B(θ, v) = K
∑

K∈Th

(∇θ,∇v)K −K
∑

e∈Eint

∫
e

{∇θ · n}[v]de−K
∑

e∈Eint

∫
e

{∇v · n}[θ]de+ J γ(θ, v) and

J γ(θ, v) =
∑

e∈Eint

γ

|e|

∫
e

[θ][v]de, γ > 0 is the penalty parameter to be chosen later and n is the unit outward

normal to the edge e.

Remark 3.4. Note that the bilinear form B(·, ·) is symmetric. Therefore, (3.4)–(3.7) corresponds to the
symmetric interior penalty Galerkin formulation for the regularized laser surface hardening of steel problem.
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Let {φ1, φ2, . . . , φM} be the basis functions for Sp. Substituting ah =
M∑
i=1

ai(t)φi and θh =
M∑
i=1

θi(t)φi for

v = φj , w = φj , j = 1, 2, . . . ,M in (3.4)–(3.7), we obtain

A ∂tā = F̄(θ̄, ā), (3.8)
ā(0) = 0, (3.9)

ρcpA ∂tθ̄ + B θ̄ = −ρLF̄(θ̄, ā) + uh(t)ᾱ, (3.10)

θ̄(0) = θ0, (3.11)

where ā =
(
ai(t)

)
1≤i≤M

, θ̄ =
(
θi(t)

)
1≤i≤M

, A =
( ∑

K∈Th

(φi, φj)K

)
1≤i,j≤M

,

B =
(
B(φi, φj)

)
1≤i,j≤M

, F̄(θ̄, ā) =
( ∑

K∈Th

(f(
M∑
i=1

θi(t)φi,
M∑
i=1

ai(t)φi), φj)K

)
1≤j≤M

,

ᾱ =
(

(α(t), φj)K

)
1≤j≤M

. (3.12)

(3.8)–(3.11) is a system of ordinary nonlinear differential equations in independent variable t, with Lipschitz
continuous right hand side in (θ̄, ā) and hence admits a unique solution in a neighbourhood of t = 0.

The hp-DGFEM scheme corresponding to the optimal control problem is

min J(θh, ah, uh) subject to the constraints (3.4)–(3.7) and uh ∈ Uad. (3.13)

The adjoint system of (3.13) determined from the Karush-Kuhn-Tucker (KKT) system is defined by:
Find (z∗h(t), λ∗h(t)) ∈ Sp × Sp, a.e. in Ī such that

−
∑

K∈Th

(χ, ∂tλ
∗
h)K = −

∑
K∈Th

(χ, fa(θ∗h, a
∗
h)g(z∗h, λ

∗
h))K , (3.14)

λ∗h(T ) = β1(a∗h(T ) − ad), (3.15)

−ρcp
∑

K∈Th

(φ, ∂tz
∗
h)K +B(φ, z∗h) = −

∑
K∈Th

(
φ, (fθ(θ∗h, a

∗
h)g(z∗h, λ

∗
h))K

+ β2(φ, [θ∗h − θm]+)K

)
, (3.16)

z∗h(T ) = 0, (3.17)

for all (χ, φ) ∈ Sp × Sp. Moreover, z∗ satisfies the following variational inequality(
β3u

∗
h +

∫
Ω

αz∗hdx, p− u∗h

)
L2(I)

≥ 0 ∀p ∈ Uad.

Continuous time a priori error estimates

For deriving a priori error estimates for the hp-DGFEM formulation of the laser surface hardening of steel
problem, we would like to define the broken projector Π : H2(Ω, Th) −→ Sp satisfying;

B(Πv − v, w) + ν(Πv − v, w) = 0 ∀w ∈ Sp, (3.18)
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where ν > 0 is a constant. Now we state the following lemmas, the proofs of which are in the similar lines as
in [24].

Lemma 3.5. There exists a constant C > 0, independent of h such that

|Bν(v, w)| ≤ C|‖v|‖ |‖w|‖ ∀v, w ∈ H2(Ω, Th),

where Bν(v, w) = B(v, w) + ν(v, w) ∀v, w ∈ H2(Ω, Th).

Lemma 3.6. For a sufficiently large choice of the penalty parameter γ, there exists C > 0 such that

Bν(w,w) ≥ C|‖w|‖2 ∀w ∈ Sp.

Using Lemmas 3.5 and 3.6, Πv is well defined for v ∈ H2(Ω, Th). Now, we state an estimate for ‖v − Πv‖.
Lemma 3.7 [24]. Let Πv be the projection of v ∈ H2(Ω, Th) onto Sp defined by (3.18), then the following error
estimate holds true:

‖v − Πv‖2 ≤ C

(
max
K∈Th

h2
K

pK

) ∑
K∈Th

h2s−2
K

p2s′−3
K

‖v‖2
Hs′ (K)

,

where s = min(pK + 1, s′), s′ ≥ 2, pK ≥ 2.

Let θ− θh = ηθ + ζθ and a− ah = ηa + ζa, where ηθ = Πθ− θh, ζ
θ = θ−Πθ, ηa = â− ah, ζ

a = a− â and â
is the interpolant of a as defined in (3.2). Using the triangle inequality, we have

‖θ − θh‖ ≤ ‖ηθ‖ + ‖ζθ‖, ‖a− ah‖ ≤ ‖ηa‖ + ‖ζa‖.

In the next theorem, we develop an a priori error estimate for ‖θ(t) − θh(t)‖ and ‖a(t) − ah(t)‖, t ∈ Ī, for a
fixed u ∈ Uad.

Theorem 3.8. Let (θ(t), a(t)) and (θh(t), ah(t)) be the solutions of (2.8)–(2.12) and (3.4)–(3.7), respectively,
for a fixed u ∈ Uad. Then,

‖θ(t) − θh(t)‖2 + ‖a(t) − ah(t)‖2 ≤ C

(
max
K∈Th

h2
K

pK

) ∑
K∈Th

h2s−2
K

p2s′−3
K

(
‖θ0‖2

Hs′(K)
+‖θ‖2

L2(I,Hs′ (K))
+‖∂tθ‖2

L2(I,Hs′ (K))

+‖a‖2
L2(I,Hs′ (K))

+ ‖∂ta‖2
L2(I,Hs′ (K))

+ ‖θ‖2
L∞(I,Hs′ (K))

+ ‖a‖2
L∞(I,Hs′(K))

)
, t ∈ Ī ,

where C > 0 is independent of pK , hK and (θ, a), also s = min(pK + 1, s′) and s′, pK ≥ 2.

Proof. A solution (θ, a) of (2.8)–(2.12), under the regularity assumption that θ(t) ∈ U , t ∈ Ī, satisfies the broken
weak formulation

ρcp
∑

K∈Th

(∂tθ, v)K +Bν(θ, v) = −ρL
∑

K∈Th

(f(θ, a), v)K +
∑

K∈Th

(αu, v)K + ν
∑

K∈Th

(θ, v)K . (3.19)

Subtracting (3.6) from (3.19) and using Bν(ζθ, v) = 0 ∀v ∈ Sp (see (3.18)), we obtain

ρcp
∑

K∈Th

(∂tη
θ, v)K +Bν(ηθ , v) = −ρL

∑
K∈Th

(f(θ, a) − f(θh, ah), v)K − ρcp
∑

K∈Th

(
(∂tζ

θ, v)K + ν(ηθ + ζθ, v)K

)
.
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Choose v = ηθ, use Lemma 3.6 and integrate from 0 to t to obtain

1
2
‖ηθ(t)‖2 +

∫ t

0

|‖ηθ|‖2ds ≤ C

(
‖ηθ(0)‖2 +

∑
K∈Th

∫ t

0

|(f(θ, a) − f(θh, ah), ηθ)K |ds

+
∑

K∈Th

∫ t

0

|(∂tζ
θ, ηθ)K |ds+

∑
K∈Th

∫ t

0

|(ζθ, ηθ)K |ds+
∑

K∈Th

∫ t

0

‖ηθ‖2
Kds

)

= C‖ηθ(0)‖2 + I1 + I2 + I3 +
∫ t

0

‖ηθ‖2ds, say. (3.20)

Now we estimate I1, I2 and I3 in the right hand side of (3.20). Using Cauchy-Schwarz inequality, Young’s
inequality and Remark 2.2, we obtain

I1 =
∑

K∈Th

∫ t

0

|(f(θ, a) − f(θh, ah), ηθ)K |ds ≤ C

∫ t

0

(
‖ηθ‖2 + ‖ζθ‖2 + ‖ηa‖2 + ‖ζa‖2

)
ds. (3.21)

Using Cauchy-Schwarz inequality and Young’s inequality, we have

I2 ≤
∑

K∈Th

∫ t

0

|(∂tζ
θ , ηθ)K |ds ≤ C

∫ t

0

(
‖∂tζ

θ‖2 + ‖ηθ‖2

)
ds. (3.22)

I3 ≤
∑

K∈Th

∫ t

0

|(ζθ, ηθ)K |ds ≤ C

∫ t

0

(
‖ζθ‖2 + ‖ηθ‖2

)
ds. (3.23)

Using (3.21)–(3.23) in (3.20), we obtain

1
2
‖ηθ(t)‖2 +

∫ t

0

|‖ηθ|‖2ds ≤ C

(
‖ηθ(0)‖2 +

∫ t

0

(
‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2

)
ds

+
∫ t

0

(
‖ηθ‖2 + ‖ηa‖2

)
ds
)
.

That is, ‖ηθ(t)‖2 ≤ C

(
‖ηθ(0)‖2 +

∫ t

0

(
‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2

)
ds

+
∫ t

0

(
‖ηθ‖2 + ‖ηa‖2

)
ds
)
. (3.24)

Now subtracting (3.4) from (2.13), we obtain

∑
K∈Th

(∂t(a− ah), w)K =
∑

K∈Th

(
f(θ, a) − f(θh, ah), w

)
K

∀w ∈ Sp.

Using a− ah = ηa + ζa and substituting w = ηa, we obtain

∑
K∈Th

(∂tη
a, ηa)K =

∑
K∈Th

(
(f(θ, a) − f(θh, ah), ηa)K − (∂tζ

a, ηa)K

)
.

Now integrating from 0 to t, using Cauchy-Schwarz inequality, Young’s inequality and Remark 2.2, we obtain

‖ηa(t)‖2 ≤ C

∫ t

0

(
‖ηθ‖2 + ‖ζθ‖2 + ‖ηa‖2 + ‖ζa‖2 + ‖∂tζ

a‖2

)
ds. (3.25)
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Adding (3.24) and (3.25), we obtain

‖ηθ(t)‖2 + ‖ηa(t)‖2 ≤ C

(
‖ηθ(0)‖2 +

∫ T

0

(
‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2 + ‖∂tζ
a‖2

)
ds

+
∫ t

0

(
‖ηθ‖2 + ‖ηa‖2

)
ds
)
.

Use Gronwall’s lemma to obtain

‖ηθ(t)‖2 + ‖ηa(t)‖2 ≤ C

(
‖ηθ(0)‖2 +

∫ T

0

(
‖ζθ‖2 + ‖ζa‖2 + ‖∂tζ

θ‖2 + ‖∂tζ
a‖2

)
ds
)
.

From Lemmas 3.1 and 3.7, we have

‖ηθ(t)‖2 + ‖ηa(t)‖2 ≤ C

(
max
K∈Th

h2
K

pK

) ∑
K∈Th

h2s−2
K

p
2s′

k−3

K

(
‖θ0‖2

Hs′ (K)
+ ‖θ‖2

L2(I,Hs′(K))

+ ‖∂tθ‖2
L2(I,Hs′(K))

+ ‖a‖2
L2(I,Hs′(K))

+ ‖∂ta‖2
L2(I,Hs′ (K))

)
.

Using triangle inequality we obtain the required estimate. This completes the proof. �

Next we state the error estimates for the system (2.20)–(2.23), which is the adjoint system corresponding
to (2.13)–(2.16). The proof has been omitted as it is on the similar lines as Theorem 3.8. We denote (z∗h, λ

∗
h)

as (zh, λh) for notational convenience.

Theorem 3.9. Let (z(t), λ(t)) and (zh(t), λh(t)) be the solutions for (2.20)–(2.23) and (3.14)–(3.17), respec-
tively. Then, there exists a positive constant C such that

‖z(t) − zh(t)‖2 + ‖λ(t) − λh(t)‖2 ≤ C

(
max
K∈Th

h2
K

pK

) ∑
K∈Th

h2s−2
K

p2s′−3
K

(
‖ad‖2

H2(K) + ‖θ0‖2
Hs′ (K)

+ ‖θ‖2
L2(I,Hs′(K))

+ ‖∂tθ‖2
L2(I,Hs′ (K))

+ ‖a‖2
L2(I,Hs′ (K))

+ ‖∂ta‖2
L2(I,Hs′(K))

+ ‖z‖2
L2(I,Hs′ (K))

+ ‖∂tz‖2
L2(I,Hs′ (K))

+ ‖λ‖2
L2(I,Hs′ (K))

+ ‖∂tλ‖2
L2(I,Hs′ (K))

+ ‖θ‖2
L∞(I,Hs′ (K))

+ ‖z‖2
L∞(I,Hs′ (K))

+ ‖a‖2
L∞(I,Hs′ (K))

+ ‖λ‖2
L∞(I,Hs′ (K))

)
, t ∈ Ī ,

where C is independent of pK , hK , (θ, a) and (z, λ), also s = min(pK + 1, s′) and s′, pK ≥ 2.

Remark 3.10. Note that Theorems 3.8 and 3.9 hold true under the following minimum extra-regularity
assumptions on the data, the continuous and the adjoint solutions:

θ0, ad ∈ H2(Ω, Th), θ, a, z, λ ∈ H1(I,H2(Ω, Th)) ∩ L∞(I,H2(Ω, Th)), θ(t), z(t) ∈ U ;

where H1(I,H2(Ω, Th)) = {v : v ∈ H2(Ω, Th), vt ∈ H2(Ω, Th)}, U = {w ∈ H2(Ω, Th) : w, ∇w · n are continuous
along each e ∈ Eint} and L∞(I,H2(Ω, Th)) = ess supt∈I ‖v(t)‖H2(Ω,Th) <∞.

4. hp-DGFEM-DG space-time-control discretization

In this section, first of all, a temporal discretization is done using a DGFEM with piecewise constant approx-
imation and a priori error estimates are proved in Theorems 4.1 and 4.2. The control is then discretized using
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piecewise constants in each discrete interval In, n = 1, 2, . . . , N and a convergence result is established. In order
to discretize (3.4)–(3.7) in time, we consider the following partition of I:

0 = t0 < t1 < . . . < tN = T.

Set I1 = [t0, t1], In = (tn−1, tn], kn = tn − tn−1, for n = 2, . . . , N and k = max
1≤n≤N

kn. We define the space

Xq
hk = {φ : I → Sp; φ|In =

q∑
j=0

ψjt
j, ψj ∈ Sp}, q ∈ N. (4.1)

The space time hp-DGFEM scheme corresponding to (3.4)–(3.7) reads as;
Find (θhk, ahk) ∈ Xq

hk ×Xq
hk such that

N∑
n=1

(
(∂tahk, w)In,Ω + (< ahk >n−1, w

+
n−1)

)
=

N∑
n=1

(f(θhk, ahk), w)In,Ω (4.2)

ahk(0) = 0 (4.3)
N∑

n=1

(
ρcp(∂tθhk, v)In,Ω +

∫
In

B(θhk, v)dt+ ρcp(〈θhk〉n−1, v
+
n−1)

)
=

N∑
n=1

(
− ρL(f(θhk, ahk), v)In,Ω

+ (αuhk, v)In,Ω

)
(4.4)

θhk(0) = θ0. (4.5)

for all (w, v) ∈ Xq
hk ×Xq

hk and the jump 〈·〉 is defined by

〈v〉n = v(t+n ) − v(tn)

with v+
n−1 denoting v(t+n−1).

For q = 0, the space-time hp-DGFEM scheme corresponding to (3.4)–(3.7) reads as;
Find (θn

hk, a
n
hk) ∈ Sp × Sp, n = 1, 2, . . . , N such that

∑
K∈Th

(∂̄an
hk, w)K =

∑
K∈Th

(f(θn
hk, a

n
hk), w)K , (4.6)

ahk(0) = 0, (4.7)

ρcp
∑

K∈Th

(∂̄θn
hk, v)K +B(θn

hk, v) = −ρL
∑

K∈Th

(f(θn
hk, a

n
hk), v)K

+
∑

K∈Th

(
1
kn

∫
In

αuhk(t)ds, v
)

K

, (4.8)

θhk(0) = θ0, (4.9)
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∀(w, v) ∈ Sp × Sp, where ∂̄φn =
φn − φn−1

kn
∀φ ∈ Sp. Expanding an

hk =
M∑
i=1

an
i φi and θn

hk =
M∑
i=1

θn
i φi, where

{φi}N
i=1 is the basis for Sp, we obtain the system

A ān = knF̄(θ̄n, ān) + A ān−1, (4.10)
ā0 = 0, (4.11)

(ρcpA + knB) θ̄n = −knρLF̄(θ̄n, ān) + knuhk(tn)ᾱn + A θ̄n−1, (4.12)

θ̄(0) = θ0, (4.13)

where A, ā, F̄,B, θ̄ and ᾱ are defined in (3.12). (4.10)–(4.13) form a system of non-linear equations with a
Lipschitz continuous right hand side and hence admits a unique local solution in the neighbourhood of t = 0.
The time discrete hp-DGFEM scheme for the optimal control problem is

min J(θhk, ahk, uhk) subject to the constraints (4.6)–(4.9) and uhk ∈ Uad. (4.14)

The adjoint system of (4.14) determined by the KKT system is defined by: find (zn,∗
hk , λ

n,∗
hk ) ∈ Sp×Sp such that

−
∑

K∈Th

(
χ, ∂̃λn−1,∗

hk

)
K

= −
∑

K∈Th

(
χ, fa

(
θn−1,∗

hk , an−1,∗
hk

)
g
(
zn−1,∗

hk , λn−1,∗
hk

))
K
, (4.15)

λ∗hk(T ) = β1 (a∗hk(T ) − ad) , (4.16)

−ρcp
∑

K∈Th

(
φ, ∂̃zn−1,∗

hk

)
K

+B
(
φ, zn−1,∗

hk

)
= −

∑
K∈Th

((
φ, fθ

(
θn−1,∗

hk , an−1,∗
hk

)
g
(
zn−1,∗

hk , λn−1,∗
hk

))
K

+ β2

(
φ,
[
θn−1,∗

hk − θm

]
+

)
K

)
, (4.17)

z∗hk(T ) = 0, (4.18)

for all (χ, φ) ∈ Sp × Sp, where ∂̃φn−1 =
φn − φn−1

kn
·

Discrete time a priori error estimates

Before estimating the a priori error estimates for space-time discretization, we define the interpolant πk :
C(Ī , Sp) −→ X1

hk, πkv|In ∈ P0(In, Sp), (see [35]) as:

πkv(t) = v(tn) ∀ t ∈ Īn, n = 1, 2, . . . , N, (4.19)

where P0(In, Sp) is the space of all functions in Sp which are constants with respect to the variable t in each
interval In. Note that

‖v − πkv‖In,K ≤ Ckn‖∂tv‖In,K . (4.20)
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Theorem 4.1. Let (θ(t), a(t)) and (θn
hk, a

n
hk), n = 1, 2, . . . , N be the solutions of (2.13)–(2.16) and (4.6)–(4.9),

respectively, for a fixed u ∈ Uad. Then,

‖θ(tn) − θn
hk‖2 + ‖a(tn) − an

hk‖2 ≤ C

N∑
n=1

∑
K∈Th

((
max
K∈Th

h2
K

pK

)
h2s−2

K

p2s′−3
K

+ k2
n

)(
‖θ0‖2

Hs′ (K)
+ ‖θ‖2

L∞(In;Hs′ (K))

+ ‖∂tθ‖2
L∞(In;Hs′ (K))

+ ‖a‖2
L∞(In;Hs′ (K))

+ ‖∂ta‖2
L∞(In;Hs′ (K))

+ ‖∂ttθ‖2
L∞(I;L2(K)) + ‖∂tta‖2

L∞(In,L2(K))

+ ‖∂tu‖2
L2(In)

)
, tn ∈ Īn

where C > 0 is independent of pK , hK and (θ, a), also s = min(pK + 1, s′) and s′, pK ≥ 2.

Proof. Subtracting (4.8) from (3.19) at t = tn, we obtain

ρcp
∑

K∈Th

(∂tθ(tn) − ∂̄θn
hk, v)K +Bν(θ(tn) − θn

hk, v) = −ρL
∑

K∈Th

(
f(θ(tn), a(tn)) − f(θn

hk, a
n
hk), v

)
K

+
∑

K∈Th

(
α(x, tn)u(tn) − 1

kn

∫
In

αuds, v
)

K

+ ν
∑

K∈Th

(θ(tn) − θn
hk, v)K ,

where v ∈ Sp. Using (4.19), we find that

ρcp
∑

K∈Th

(∂tθ(tn) − ∂̄θn
hk, v)K +Bν(θ(tn) − θn

hk, v) ≤ −
∑

K∈Th

ρL

(
f(θ(tn), a(tn)) − f(θn

hk, a
n
hk), v

)
K

+
∑

K∈Th

max
K×In

1
kn

|α|
(∫

In

(πku(tn) − u)ds, v
)

K

+ ν
∑

K∈Th

(θ(tn) − θn
hk), v)K .

Writing θ(tn)−θn
hk = (θ(tn)−Πθ(tn))+(Πθ(tn)−θn

hk) = ζθ,n +ηθ,n and a(tn)−an
hk = (a(tn)− â(tn))+(â(tn)−

an
hk) = ζa,n + ηa,n and using Bν(ζθ,n, v) = 0 , we obtain

ρcp
∑

K∈Th

(∂̄ηθ,n, v)K +Bν(ηθ,n, v) ≤ −ρL
∑

K∈Th

(f(θ(tn), a(tn)) − f(θn
hk, a

n
hk), v)K

+
max
Ω×In

|α|

kn

∑
K∈Th

(∫
In

(πku(tn) − u) ds, v
)

K

−ρcp
∑

K∈Th

(∂tθ(tn) − ∂̄θ(tn), v)K

− ρcp
∑

K∈Th

(∂̄ζθ,n, v)K + ν
∑

K∈Th

(ηθ,n + ζθ,n, v)K . (4.21)

Now,

1
2kn

(
‖ηθ,n‖2 − ‖ηθ,n−1‖2

)
=

1
2kn

((
ηθ,n, ηθ,n

)
−
(
ηθ,n−1, ηθ,n−1

))
=

1
2kn

((
ηθ,n − ηθ,n−1, ηθ,n

)
−
(
ηθ,n−1, ηθ,n−1 − ηθ,n

))
.
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Adding and subtracting ηθ,n in the first argument of the second term in the right hand side of the above
expression, we obtain

1
2kn

(
‖ηθ,n‖2 − ‖ηθ,n−1‖2

)
= (∂̄ηθ,n, ηθ,n) − 1

2kn
(ηθ,n − ηθ,n−1, ηθ,n − ηθ,n−1)

≤ (∂̄ηθ,n, ηθ,n). (4.22)

Substituting v = ηθ,n in (4.21), using the coercivity of Bν(·, ·) and using (4.22) in (4.21), we obtain

‖ηθ,n‖2 − ‖ηθ,n−1‖2 ≤ Ckn

( ∑
K∈Th

∣∣(f (θ(tn), a(tn)) − f (θn
hk, a

n
hk) , ηθ,n

)
K

∣∣
+

1
kn

∑
K∈Th

∣∣∣∣
(∫

In

(πku(tn) − u)ds, ηθ,n

)
K

∣∣∣∣+ ∑
K∈Th

∣∣(∂tθ(tn) − ∂̄θ(tn), ηθ,n
)
K

∣∣

+
∑

K∈Th

∣∣(∂̄ζθ,n, ηθ,n
)
K

∣∣+ ∑
K∈Th

∣∣(ζθ,n, ηθ,n
)
K

∣∣+ ∑
K∈Th

‖ηθ,n‖2
K

)

= Ckn

(
J1 +

1
kn
J2 + J3 + J4 + J5 + ‖ηθ,n‖2

)
, say. (4.23)

From Cauchy-Schwarz inequality, Young’s inequality and Remark 2.2, we have

J1 ≤
∑

K∈Th

‖f(θ(tn), a(tn)) − f(θn
hk, a

n
hk)‖K‖ηθ,n‖K

≤ C
∑

K∈Th

(
‖ζθ,n‖2

K + ‖ζa,n‖2
K + ‖ηa,n‖2

K + ‖ηθ,n‖2
K

)
. (4.24)

For J2, use Cauchy-Schwarz inequality, Young’s inequality and (4.20) to obtain

J2 ≤
∑

K∈Th

‖πku− u‖L2(In)‖ηθ,n‖K ≤ C

(
‖πku− u‖2

L2(In) +
∑

K∈Th

‖ηθ,n‖2
K

)
,

≤ C
∑

K∈Th

(
k2

n‖∂tu‖2
L2(In) + ‖ηθ,n‖2

K

)
. (4.25)

Now consider J3. Using Cauchy-Schwarz inequality and Young’s inequality, we obtain

J3 ≤ C
∑

K∈Th

(
‖∂tθ(tn) − ∂̄θ(tn)‖2

K + ‖ηθ,n‖2
K

)
. (4.26)

For the first term on the right hand side of (4.26), we have

‖∂̄θ(tn) − ∂tθ(tn)‖K = ‖k−1
n

∫ tn

tn−1

(t− tn−1)∂ttθ dt‖K ≤ k−1
n

∫ tn

tn−1

(t− tn−1)‖∂ttθ‖K dt

≤ Ck−1
n

(t− tn−1)2

2

∣∣∣∣
tn

tn−1

‖∂ttθ‖L∞(In,L2(K)) ≤ Ckn‖∂ttθ‖L∞(In,L2(K)).
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Therefore, we have

J3 ≤ C
∑

K∈Th

(
k2

n‖∂ttθ‖2
L∞(In,L2(K)) + ‖ηθ,n‖2

K

)
. (4.27)

Also for J4, using Cauchy-Schwarz inequality and Young’s inequality, we have

J4 ≤ C
∑

K∈Th

(
‖∂̄ζθ,n‖2

K + ‖ηθ,n‖2
K

)
. (4.28)

Also, ‖∂̄ζθ,n‖K = ‖k−1
n

∫ tn

tn−1

∂tζ
θ dt‖K ≤ C‖∂tζ

θ,n‖L∞(In;L2(K)).

From Cauchy-Schwarz inequality and Young’s inequality, we have

J5 =
∑

K∈Th

|(ζθ,n, ηθ,n)K | ≤ C
∑

K∈Th

(
‖ηθ,n‖2

K + ‖ζθ,n‖2
K

)
. (4.29)

Using (4.24)–(4.29) in (4.23), we have

‖ηθ,n‖2 − ‖ηθ,n−1‖2 ≤ C
∑

K∈Th

(
‖ζθ,n‖2

K + ‖ζa,n‖2
K + k2

n‖∂ttθ‖2
L∞(In,L2(K))

+ ‖∂tζ
θ‖2

L∞(In,L2(K)) + ‖ηθ,n‖2
K + ‖ηa,n‖2

K + k2
n‖∂tu‖2

L2(In)

)
. (4.30)

Subtracting (2.13) from (4.6), we obtain∑
K∈Th

(∂̄ηa,n, w)K =
∑

K∈Th

(f(θ(tn), a(tn)) − f(θn
hk, a

n
hk), w)K −

∑
K∈Th

(∂̄a(tn) − ∂ta(tn), w)K −
∑

K∈Th

(∂̄ζa,n, w)K ,

where w ∈ Sp. Substituting w = ηa,n, proceeding as in (4.21)–(4.22) and using Remark 2.2, we obtain

‖ηa,n‖2 − ‖ηa,n−1‖2

≤ C
∑

K∈Th

(
‖ηθ,n‖2

K + ‖ηa,n‖2
K + ‖ζθ,n‖2

K + ‖ζa,n‖2
K + ‖∂̄a(tn) − ∂ta(tn)‖2

K + ‖∂tζ
a,n‖2

K

)

≤ C
∑

K∈Th

(
‖ζθ,n‖2

K + ‖ζa,n‖2
K + k2

n‖∂tta‖2
L∞(In,L2(K)) + ‖∂tζ

a‖2
L∞(In,L2(K)) + ‖ηθ,n‖2

K

+ ‖ηa,n‖2
K

)
. (4.31)

Adding (4.30) and (4.31), we obtain

‖ηa,n‖2 + ‖ηθ,n‖2 − ‖ηa,n−1‖2 − ‖ηθ,n−1‖2

≤ C
∑

K∈Th

(
‖ζθ,n‖2

K + ‖ζa,n‖2
K + k2

n‖∂ttθ‖2
L∞(In,L2(K)) + k2

n‖∂tta‖2
L∞(In,L2(K))

+ ‖∂tζ
θ‖2

L∞(In,L2(K)) + ‖∂tζ
a‖2

L∞(In,L2(K)) + ‖ηθ,n‖2
K + ‖ηa,n‖2

K + k2
n‖∂tu‖2

L2(In)

)
.
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Summing from 1 to n and using the fact that θ(0) = θ0 and a(0) = 0, we obtain

∑
K∈Th

(
‖ηa,n‖2

K + ‖ηθ,n‖2
K

)
≤ C

( ∑
K∈Th

‖ηθ,0‖2
K +

n∑
m=1

∑
K∈Th

(
‖ζθ,m‖2

K + ‖ζa,m‖2
K

+ ‖∂tζ
θ‖2

L∞(Im,L2(K)) + ‖∂tζ
a‖2

L∞(Im,L2(K))

+ k2
m‖∂ttθ‖2

L∞(Im,L2(K)) + k2
m‖∂tta‖2

L∞(Im,L2(K)) + k2
m‖∂tu‖2

L2(Im)

)

+
n∑

m=1

∑
K∈Th

(
‖ηθ,m‖2

K + ‖ηa,m‖2
K

))
.

Now using Gronwall’s lemma, Lemmas 3.1 and 3.7, we obtain

∑
K∈Th

(
‖ηa,n‖2

K + ‖ηθ,n‖2
K

)
≤ C

N∑
n=1

∑
K∈Th

((
max
K∈Th

h2
K

pK

)
h2s−2

K

p2s′−3
K

+ k2
n

)(
‖θ0‖2

Hs′ (K)
+ ‖θ‖2

L∞(In;Hs′ (K))

+ ‖∂tθ‖2
L∞(In,Hs′ (K))

+ ‖a‖2
L∞(In;Hs′ (K))

+ ‖∂ta‖2
L∞(In,Hs′ (K))

+ ‖∂ttθ‖2
L∞(In,L2(K))

+ ‖∂tta‖2
L∞(In,L2(K)) + ‖∂tu‖2

L2(In)

)
.

Using triangle inequality, we obtain the required result. This completes the proof. �

Next we state the discrete time error for the adjoint equation (2.20)–(2.23).

Theorem 4.2. Let (z(t), λ(t)) and (zn
hk, λ

n
hk), n = 1, 2, . . . , N be the solutions for (2.20)–(2.23) and (4.15)–

(4.18), respectively. Then,

‖z(tn−1) − zn−1
hk ‖2 + ‖λ(tn−1) − λn−1

hk ‖2

≤ C

N∑
n=1

∑
K∈Th

((
max
K∈Th

h2
K

pK

)
h2s−2

K

p2s′−3
K

+ k2
n

)(
‖θ0‖2

Hs′ (K)
+ ‖ad‖2

Hs′ (K)
+ ‖θ‖2

L∞(In,Hs′ (K))

+ ‖∂tθ‖2
L∞(In,Hs′(K))

+ ‖a‖2
L∞(In,Hs′ (K))

+ ‖∂ta‖2
L∞(In,Hs′ (K))

+ ‖∂ttθ‖2
L∞(In,L2(K))

+ ‖∂tta‖2
L∞(In,L2(K)) + ‖z‖2

L∞(In,Hs′ (K))
+ ‖∂tz‖2

L∞(In,Hs′ (K))
+ ‖λ‖2

L∞(In,Hs′ (K))

+ ‖∂tλ‖2
L∞(In,Hs′ (K))

+ ‖∂ttz‖2
L∞(In,L2(K)) + ‖∂ttλ‖2

L∞(In,L2(K)) + ‖∂tu‖2
L2(In)

)
, tn ∈ Īn,

where C > 0 is independent of pK , hK , (θ, a) and (z, λ), also s = min(pK + 1, s′) and s′, pK ≥ 2.

Remark 4.3. In addition to the extra-regularity assumptions given in Remark 3.10, we need to assume that
the continuous and adjoint solutions and the control u satisfy

∂ttθ, ∂ttz, ∂tta, ∂ttλ ∈ L∞(I, L2(Ω)), ∂tu ∈ L2(I)

for Theorems 4.1 and 4.2 to hold true.
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Complete discretization

Now, we will discretize the control by using a DGFEM. In order to completely discretize the problem (2.17), we
choose a discontinuous Galerkin piecewise constant approximation of the control variable. Let Ud be the finite
dimensional subspace of U defined by

Ud = {vd ∈ L2(I) : vd|In = constant} ∀n = 1, 2, . . . , N.

Let Ud,ad = Ud ∩ Uad and σ collects all the three discretization parameters h, k, d. The completely discretized
problem reads as: find (θσ, aσ) ∈ Xq

hk ×Xq
hk such that

N∑
n=1

(
(∂taσ, w)In,Ω + (〈aσ〉n−1, w

+
n−1)

)
=

N∑
n=1

(f(θσ, aσ), w)In ,Ω (4.32)

aσ(0) = 0 (4.33)
N∑

n=1

(
ρcp(∂tθσ, v)In,Ω +

∫
In

B(θσ , v)dt+ ρcp(〈θσ〉n−1, v
+
n−1)

)
=

N∑
n=1

(
− ρL(f(θσ, aσ), v)In,Ω

+ (αuσ, v)In,Ω

)
(4.34)

θσ(0) = θ0 (4.35)

for all (w, v) ∈ Xq
hk ×Xq

hk. Next we establish stability estimates for θσ and aσ.

Lemma 4.4. For a fixed control uσ ∈ Ud,ad, the solution (θσ, aσ) ∈ Xq
hk ×Xq

hk of (4.32)–(4.35), satisfies the
following a priori bounds:∫

I

∑
K∈Th

‖θσ‖2
H1(Ω,Th)ds ≤ C, i.e., θσ ∈ L2(I,H1(Ω, Th)). (4.36)

Also,

N∑
n=1

∑
K∈Th

(
‖∂tθσ‖2

In,K + ‖Δhθσ‖2
In,K

)
≤ C,

N∑
n=1

∑
K∈Th

‖∂taσ‖2
In,K ≤ C, (4.37)

where Δh : Sp → Sp is the discrete Laplacian defined by

−
∑

K∈Th

(Δhv, w)K = B(v, w), ∀v, w ∈ Sp, (4.38)

that is, (θσ, aσ) ∈ Y × Y, where

Y = {v : v ∈ L2(I, L2(Ω)), vt|In ∈ L2(In, L2(Ω)) ∀n = 1, . . . , N}.

Proof. From (4.34) and definition of Bν , we have

N∑
n=1

( ∑
K∈Th

ρcp(∂tθσ, v)In,Kds +
∫

In

Bν(θσ, v)ds+ ρcp
∑

K∈Th

(〈θσ〉n−1, v
+
n−1)K

)

=
N∑

n=1

∑
K∈Th

(
− ρL(f(θσ, aσ), v)In,K + (αuσ, v)In,K + ν(θσ, v)In,K

)
.
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Substituting v = θσ, using the coercivity of Bν and the fact that ‖|θσ‖| ≥ ‖θσ‖H1(Ω,Th), we obtain

N∑
n=1

( ∑
K∈Th

ρcp
2

∫
In

d

dt
‖θσ‖2

Kds+ C

∫
In

‖θσ‖2
H1(Ω,Th)ds+ ρcp

∑
K∈Th

(〈θσ〉n−1, θ
+
σ,n−1)K

)

≤
N∑

n=1

∑
K∈Th

(
− ρL(f(θσ, aσ), θσ)In,K + (αuσ, θσ)In,K + ν‖θσ‖2

In,K

)
. (4.39)

Using ∫
In

1
2

d
dt

‖θσ‖2
Kds =

1
2

(
‖θσ,n‖2

K − ‖θ+σ,n−1‖2
K

)
and (4.40)

(
〈θσ〉n−1, θ

+
σ,n−1

)
K

=
1
2
(
‖θ+σ,n−1‖2

K + ‖〈θσ〉n−1‖2
K − ‖θσ,n−1‖2

K

)
, (4.41)

in (4.39), we obtain

N∑
n=1

( ∑
K∈Th

ρcp
2
(
‖θσ,n‖2

K − ‖θσ,n−1‖2
K

)
+ C

∫
In

‖θσ‖2
H1(Ω,Th)ds

)
≤

N∑
n=1

( ∑
K∈Th

(
−ρL (f (θσ, aσ) , θσ)In,K

+ (αuσ, θσ)In,K + ‖θσ‖2
In,K

)
− ρcp

2
‖〈θσ〉n−1‖2

K

)
.

Using Cauchy-Schwartz inequality, Remark 2.2 and Young’s inequality with appropriately chosen Young’s con-
stant, we obtain θσ ∈ L2(I,H1(Ω, Th)).

Now we proceed to prove (4.37). Using (4.38) in (4.34), we have

N∑
n=1

∑
K∈Th

(
ρcp (∂tθσ, v)In,K − (Δhθσ, v)In,K + ρcp

(
〈θσ〉n−1, v

+
n−1

)
K

)

=
N∑

n=1

∑
K∈Th

(
−ρL (f (θσ, aσ) , v)In,K + (αuσ, v)In,K

)
. (4.42)

Put v = −Δhθσ in (4.42) to obtain

N∑
n=1

∑
K∈Th

(
ρcp (∂tθσ,−Δhθσ)In,K − (Δhθσ,−Δhθσ)In,K + ρcp

(
〈θσ〉n−1,−Δhθ

+
σ,n−1

)
K

)

=
N∑

n=1

∑
K∈Th

(
−ρL (f (θσ, aσ) ,−Δhθσ)In,K + (αuσ,−Δhθσ)In,K

)
. (4.43)

Again using (4.38) in first and third terms on the left hand side of (4.43), we obtain

N∑
n=1

(
ρcp

∫
In

B (∂tθσ, θσ) dt+
∑

K∈Th

‖Δhθσ‖2
In,K + ρcpB

(
〈θσ〉n−1, θ

+
σ,n−1

))

=
N∑

n=1

∑
K∈Th

(
−ρL (f (θσ, aσ) ,−Δhθσ)In,K + (αuσ,−Δhθσ)In,K

)
. (4.44)
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Now we find estimates for the terms in (4.44) one by one. Consider

∫
In

B(∂tθσ, θσ)dt = K
∑

K∈Th

∫
In

(∂t∇θσ,∇θσ)Kdt−K
∑

e∈Eint

∫
In

({∇(∂tθσ) · n}, [θσ])edt

− K
∑

e∈Eint

∫
In

({∇θσ · n}, [∂tθσ])edt+
∑

e∈Eint

γ

|e|

∫
In

([∂tθσ], [θσ])edt,

=
∑

K∈Th

KI1 −
∑

e∈Eint

K
(
I2 + I3

)
−
∑

e∈Eint

I4, say. (4.45)

For I1, we have

I1 =
∫

In

(∂t∇θσ,∇θσ)Kdt =
∫

In

1
2
d

dt
‖∇θσ‖2

Kdt =
1
2

(
‖∇θσ,n‖2

K − ‖∇θ+σ,n−1‖2
K

)
. (4.46)

Using integration by parts for I2, we have

I2 =
∫

In

(∂t{∇θσ.n}, [θσ])edt = ({∇θσ ·n}, [θσ])e

∣∣∣∣
In

−
∫

In

({∇θσ ·n}, [∂tθσ])edt = ({∇θσ ·n}, [θσ])e

∣∣∣∣
In

−I3. (4.47)

For I4, we have

I4 =
∫

In

(∂t[θσ], [θσ])edt =
∫

In

1
2
d

dt
‖[θσ]‖2

edt =
1
2
‖[θσ]‖2

e

∣∣∣∣
In

. (4.48)

Using (4.46)–(4.48) in (4.45), we obtain

∫
In

B(∂tθσ, θσ)dt =
1
2

∑
K∈Th

K
(
‖∇θσ,n‖2

K − ‖∇θ+σ,n−1‖2
K

)
−
∑

e∈Eint

K({∇θσ}, [θσ])e

∣∣∣∣
In

+
1
2

∑
e∈Eint

γ

|e|‖[θσ]‖2
e

∣∣∣∣
In

. (4.49)

Using the definition of B(·, ·) in the third term on the left hand side of the (4.44), we obtain

B(〈θσ〉n−1, θ
+
σ,n−1) =

∑
K∈Th

K(〈∇θ〉n−1,∇θ+σ,n−1)K −
∑

e∈Eint

(
K({∇〈θσ〉n−1 · n}, [θ+σ,n−1])e

+ K({∇θ+σ,n−1 · n}, [〈θσ〉n−1])e −
γ

|e| ([〈θσ〉n−1], [θ+σ,n−1])e

)
. (4.50)

Using (〈∇θσ〉n−1,∇θ+σ,n−1)K =
1
2

(
‖∇θ+σ,n−1‖2

K + ‖〈∇θσ〉n−1‖2
K − ‖∇θσ,n−1‖2

K

)
, (4.51)
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in (4.50), we have

B(〈θσ〉n−1, θ
+
σ,n−1) =

∑
K∈Th

K
2

(
‖∇θ+σ,n−1‖2

K + ‖〈∇θσ〉n−1‖2
K − ‖∇θσ,n−1‖2

K

)

−
∑

e∈Eint

(
K({∇〈θσ〉n−1 · n}, [θ+σ,n−1])e

+ K({∇θ+σ,n−1 · n}, [〈θσ〉n−1])e −
γ

|e|([〈θσ〉n−1], [θ+σ,n−1])e

)
. (4.52)

Using (4.49), (4.52), Cauchy-Schwarz and Young’s inequalities in (4.44), we have

∑
K∈Th

(
‖∇θσ,N‖2

K − ‖∇θ0‖2
K

)
+
∑
n=1

∑
K∈Th

‖Δhθσ‖2
In,K

≤ C
N∑

n=1

( ∑
K∈Th

(
‖f(θσ, aσ)‖2

In,K + ‖αuσ‖2
In,K + ‖Δhθσ‖2

In,K

+
∑

e∈Eint

(
‖∇θσ,n · n‖2

e + ‖∇θ+σ,n−1 · n‖2
e + ‖θσ,n‖2

e + ‖θσ,n−1‖2
e

+ ‖θ+σ,n−1‖2
e

))
.

Choosing Young’s constant appropriately, using Remark 2.2 and θσ ∈ L2(I,H1(Ω, Th)), we obtain

N∑
n=1

∑
K∈Th

‖Δhθσ‖2
In,K is bounded. (4.53)

Put v = (t− tn−1)∂tθσ in (4.34), use ((t− tn−1)∂tθσ)+n−1 = 0 and (4.38) to obtain

ρcp

N∑
n=1

∑
K∈Th

(
∂tθσ, (t− tn−1)∂tθσ

)
In,K

−
N∑

n=1

∫
In

(
Δhθσ, (t− tn−1)∂tθσ

)
In,K

=
N∑

n=1

∑
K∈Th

(
− ρL(f(θσ, aσ), (t− tn−1)∂tθσ)In,K

+ (αuσ, (t− tn−1)∂tθσ)In,K

)
. (4.54)

Use Cauchy-Schwarz inequality and Young’s inequality to obtain

N∑
n=1

∑
K∈Th

∫
In

(
t− tn−1

)
‖∂tθσ‖2

Kdt ≤ C

N∑
n=1

∑
K∈Th

(
‖f(θσ, aσ)‖2

In,K + ‖αuσ‖2
In,K + ‖Δhθσ‖2

In,K

+
∫

In

(t− tn−1)‖∂tθσ‖2
Kdt

)
.
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Choosing Young’s constant appropriately, using (4.53) and Remark 2.2, we obtain

N∑
n=1

∑
K∈Th

∫
In

(t− tn−1)‖∂tθσ‖2
Kdt is bounded.

From inverse estimate, we have

N∑
n=1

∑
K∈Th

∫
In

‖∂tθσ‖2
Kdt ≤ C

N∑
n=1

∑
K∈Th

k−1
n

∫
In

(t− tn−1)‖∂tθσ‖2
Kdt.

Therefore,

N∑
n=1

∑
K∈Th

(
‖∂tθσ‖2

In,K + ‖Δhθσ‖2
In,K

)
≤ C.

Similarly putting w = (t− tn−1)∂taσ in (4.32) and using inverse estimate, we obtain

N∑
n=1

∑
K∈Th

‖∂taσ‖2
In,K ≤ C. �

The discrete space-time-control DGFEM scheme for the optimal control problem is

min J(θσ, aσ, uσ) subject to the constraints (4.32)–(4.35) and uσ ∈ Ud,ad, (4.55)

where (θσ(t), aσ(t), uσ(t)) = (θn
σ , a

n
σ, u

n
σ), for t ∈ In.

Lemma 4.5. Let assumptions (A1)–(A6) hold true. Let u∗ and u∗σ be the optimal solutions of (2.7) and (4.55),
respectively. Also, let u∗σ −→ u∗ weakly in L2(I). Then, under the assumptions of Theorem 4.1, we have

θ∗σ −→ θ∗ strongly in L∞(I, L2(Ω)), (4.56)
a∗σ −→ a∗ strongly in L∞(I, L2(Ω)), (4.57)

as the discretization parameters h, k (and hence σ) → 0, where (θ∗, a∗) and (θ∗σ, a
∗
σ) are the solutions of (2.8)–

(2.12) and (4.32)–(4.35), respectively.

Proof. The solution (θ∗, a∗) of (2.8)–(2.12), under the regularity assumption that θ∗(t) ∈ U , t ∈ Ī, satisfies

N∑
n=1

( ∑
K∈Th

ρcp(∂tθ
∗, v)In,K +

∫
In

B(θ∗, v)ds+ ρcp
∑

K∈Th

(〈θ∗〉n−1, v
+
n−1)K

)

=
N∑

n=1

( ∑
K∈Th

−ρL(f(θ∗, a∗), v)In,K +
∑

K∈Th

(αu∗, v)In,K

)
∀v ∈ Sp. (4.58)
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Subtracting (4.34) from (4.58), we obtain

N∑
n=1

( ∑
K∈Th

ρcp

∫
In

(∂t(θ∗ − θ∗σ), v)Kds+
∫

In

B(θ∗ − θ∗σ, v)ds+ ρcp
∑

K∈Th

(〈θ∗ − θ∗σ〉n−1, v
+
n−1)K

)

=
N∑

n=1

( ∑
K∈Th

−ρL
∫

In

(f(θ∗, a∗) − f(θ∗σ, a
∗
σ), v)Kds+

∑
K∈Th

∫
In

(α(u∗ − u∗σ), v)Kds
)
.

(4.59)

Using (A4), v ∈ Sp and the fact that u∗σ −→ u∗ weakly in L2(I), we obtain

N∑
n=1

( ∑
K∈Th

ρcp

∫
In

(∂t(θ∗ − θ∗σ), v)Kds +
∫

In

B(θ∗ − θ∗σ, v)ds+ ρcp
∑

K∈Th

(〈θ∗ − θ∗σ〉n−1, v
+
n−1)K

)

≤
N∑

n=1

( ∑
K∈Th

−ρL
∫

In

(f(θ∗, a∗) − f(θ∗σ, a
∗
σ), v)Kds

)
. (4.60)

Now proceeding in similar lines as in the proof of Theorem 4.1, we obtain the required result. �

Theorem 4.6. Let u∗σ be the optimal control of (4.55), for 0 < ε < 1. Then, there exists a subsequence of {u∗σ}
(still denoted by {u∗σ}) such that lim

σ→0
u∗σ = u∗ exists in L2(I) and u∗ is an optimal control of (2.17).

Proof. Since u∗σ is an optimal control, we obtain

‖u∗σ‖L2(I) ≤ C,

that is, {u∗σ}σ>0 is uniformly bounded in L2(I). Thus, it is possible to extract a subsequence say {u∗σ}σ>0 in
L2(I) such that

u∗σ −→ u∗ weakly in L2(I). (4.61)

Since Uad ⊂ L2(I) is a closed and convex set, we have u∗ ∈ Uad. Now corresponding to each u∗σ there exists
solution (θ∗σ, a∗σ) to (4.32)–(4.35) converging to θ∗ and a∗ strongly in L∞(I, L2(Ω)) from Lemma 4.5. Thus from
Lemma 4.4 and Lemma 4.5, we have

a∗σ −→ a∗ weakly in Y, (4.62)
θ∗σ −→ θ∗ weakly in Y ∩ L2(I,H1(Ω, Th)), (4.63)
θ∗σ −→ θ∗ strongly in L∞(I, L2(Ω)), (4.64)
a∗σ −→ a∗ strongly in L∞(I, L2(Ω)). (4.65)

Now passing limit as σ → 0(h → 0, k → 0), using (4.63)–(4.65) and Remark 2.2 in (4.32)–(4.35), we obtain
that (u∗, θ∗, a∗) is an admissible solution for the optimal control problem (2.17). It now remains to show that
(u∗, θ∗, a∗) is an optimal solution.



LASER SURFACE HARDENING PROBLEM 1105

If possible, let (ū∗, θ̄∗, ā∗) be another optimal solution of (2.17). Consider the auxiliary problem

N∑
n=1

(
(∂taσ, w)Ω,In + (〈aσ〉n−1, w

+
n−1)

)
=

N∑
n=1

(f(θσ, aσ), w)Ω,In (4.66)

aσ(0) = 0 (4.67)

N∑
n=1

(
ρcp(∂tθσ, v)Ω,In +

∫
In

B(θσ , v)dt+ ρcp(〈θσ〉n−1, v
+
n−1)

)
=

N∑
n=1

(
− ρL(f(θσ, aσ), v)Ω,In

+ (απkū
∗, v)Ω,In

)
(4.68)

θσ(0) = θ0, (4.69)

for all (w, v) ∈ Xq
hk ×Xq

hk. Then, there exists a solution to (4.66)–(4.69), say (θ̄σ, āσ) converging to (θ̄, ā) as
σ → 0. Similar to (4.63)–(4.65), we arrive at

āσ −→ ā weakly in Y, (4.70)

θ̄σ −→ θ̄ weakly in Y ∩ L2(I,H1(Ω, Th)), (4.71)

θ̄σ −→ θ̄ strongly in L∞(I, L2(Ω)), (4.72)
āσ −→ ā strongly in L∞(I, L2(Ω)). (4.73)

Now letting σ → 0 in (4.66)–(4.69), we obtain that (θ̄, ā) is a unique solution of (2.13)–(2.16) with respect to
the control ū∗. Since the solution to (2.13)–(2.16) for a fixed control is unique, we find that θ̄ = θ̄∗ and ā = ā∗.
Since u∗σ is the optimal control for (4.55), we have

j(u∗σ) ≤ j(πkū
∗). (4.74)

Now letting σ → 0 in (4.74) and using (4.61), we obtain

j(u∗) ≤ j(ū∗). (4.75)

Hence u∗ is the optimal control. Next we need to show that lim
σ→0

‖u∗σ − u‖L2(I) = 0. Since u∗σ −→ u∗ weakly in

L2(Ω), it is enough show that lim
σ→0

‖u∗σ‖L2(I) = ‖u∗‖L2(I).

Using (4.63)–(4.65), we find that

lim
σ→0

β3

2
‖u∗σ‖2

L2(I) = lim
σ→0

(
J(θ∗σ, a

∗
σ, u

∗
σ) − β1

2
‖a∗σ(T ) − ad‖2 − β2

2
‖[θ∗σ − θm]+‖2

I,Ω

)

= J(θ∗, a∗, u∗) − β1

2
‖a∗(T ) − ad‖2 − β2

2
‖[θ∗ − θm]+‖2

I,Ω

=
β3

2
‖u∗‖2

L2(I).

Therefore, we have lim
σ→0

‖u∗σ‖L2(I) = ‖u∗‖L2(I) and lim
σ→0

‖u∗σ −u∗‖ = 0. This completes the rest of the proof. �
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Figure 3. (a) Goal ad to be achieved for the volume fraction of austenite; (b) triangulation
permitting hanging nodes.

5. Numerical experiments

In this section, we consider two examples and observe the performance of hp-DGFEM for the laser surface
hardening of steel problem. An attempt has been made to achieve (i) a constant hardening of 1 mm near the
boundary in the first example (ii) a non uniform hardening near the boundary in the second example. We have
used non-linear conjugate gradient method [36] to evaluate the optimal control for the complete discretized
problem.

Physical data [36]

The parameters in the heat equation used are given by ρcp = 4.91 J
cm3K ,K = 0.64 J

cm3K and ρL = 627.9 J
cm3K ·

The regularized monotone function Hε is chosen as

Hε(s) =

⎧⎨
⎩

1 s ≥ ε

10
(

s
ε

)6 − 24
(

s
ε

)5 + 15
(

s
ε

)4 0 < s ≤ ε
0 s ≤ 0

where ε = 0.15. The initial temperature θ0 and the melting temperature θm are chosen as 20 and 1800,
respectively. Pointwise data for aeq(θ) and τ(θ) are given by

θ 730 830 840 930
aeq(θ) 0 0.91 1 1
τ(θ) 1 0.2 0.18 0.05

The shape function α(x, y, t) is given by α(x, y, t) = 4k1A
πD2 exp(− 2(x−vt)2

D2 ) exp(k1y), where D = 0.47 cm,
k1 = 60/cm, A = 0.3 cm and v = 1 cm/s. In the nonlinear conjugate gradient method tolerance is chosen
as 10−7. We choose β1 = 7500, β2 = 1000 and β3 = 10−3.

Example 1. The main aim of this experiment is to achieve a constant hardening depth of 1 mm near the
boundary, see Figure 3a. We choose a triangulation which permits hanging nodes, see Figure 3b. To apply
non-linear conjugate gradient method for the optimal control problem, we take u0 (initial control) as 1404.

We investigate the convergence of hp-DGFEM on a sequence of meshes with polynomial degree of approx-
imation p = 1 and 2. Similarly, convergence has been established by enriching the polynomial degree p for a
fixed mesh.
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Figure 4. (a) Convergence of hp-DGFEM with h-refinement: temperature and austenite,
convergence of hp-DGFEM with p-refinement: (b) austenite (c) temperature.

For the purpose of computation, penalty parameter is taken as γ = 10. In Figure 4a, we plot the L2-norm of
the error against the discretization parameter h for polynomial degrees p = 1, 2. Here, we observe that ‖θ− θσ‖
and ‖a − aσ‖ converges to zero at the rate of O(hp) as the mesh is refined. The numerical results justify the
theoretical results obtained. In Figures 4b and 4c, we present the convergence of the solution in L2-norm as
the degree of polynomials increases for a fixed mesh. Figure 5a shows the convergence as k is refined. We
plot the error in θ and a in L2-norm against the time mesh parameter k. In Figure 5b, we plot the error in
control function u computed in L2-norm against the time discretization parameter k. The computational order
of convergence for the control function is approximately equal to 2.



1108 G. NUPUR AND N. NEELA

10
−1.6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

10
−1.1

10
−3

10
−2

10
−1

10
0

10
1

10
2

log ||k||

lo
g 

||e
rr

or
(a

)|
|, 

lo
g 

||e
rr

or
(t

he
ta

)|
|

 

 
Error in theta
Error in a

Slope = 1.90781

Slope = 1.6326

(a)

10
−1.9

10
−1.7

10
−1.5

10
−1.3

10
−1.1

10
0

10
1

10
2

10
3

log ||k||

lo
g 

||e
rr

or
(u

)|
|

 

 
Error in control

Slope = 2.25925

(b)

Figure 5. Convergence of DGFEM with k-refinement.
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Figure 6. (a) Graph of computed austenite variable at T = 1; (b) graph of computed tem-
perature variable at T = 1.

Figures 6a and 6b show the graphs of the austenite and temperature variables at the final time T after using
hp-DGFEM for the discretization in space and a DGFEM for space and control variables.

Figure 7 shows the evolution of control variable (laser energy) in time. At first the laser energy has increased
and then during the long term it can be kept a constant. Towards the end of the process it has to be reduced
to cope the accumulation of the heat at the end of the plate.

Example 2. In this example we implement the optimal control problem of laser surface hardening of steel
aiming at a hardening of depth 1mm from x = 0 to x = 2.5 and of 0.5 mm from x > 2.5 to x = 5, near the
boundary (see Fig. 8). The physical data for this example is same as the one used for Example 1.

The convergence of hp-DGFEM as the discretization parameter h tends to 0 for polynomial degrees of
approximation p = 1 and 2 is illustrated in Figure 9a. We obtain that the L2-norm of the error in a and θ
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Figure 7. Laser energy.
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Figure 8. Goal ad to be achieved for the volume fraction of austenite.

converges to zero at the rate of O(hp) as the mesh is refined. Figures 9b and 9c represent the convergence of
the solution in L2-norm as the degree of polynomial is increased.

Figures 10a and 10b represent the hardening of steel at time t = 2.625 and t = 5.25, respectively. It shows
that a hardening of 1 mm is achieved as the laser beam moves from x = 0 to x = 2.5 and after that a hardening
of 0.5 mm of hardening is achieved. Figures 11a and 11b illustrate that the temperature is higher when 1 mm
of hardening is needed and then it lowers for 0.5 mm of hardening.

Figure 12a shows the convergence of ’a’ and ’θ’ as k is refined. Figure 12b shows the numerical order of
convergence obtained for the control variable u. Figure 13 shows the graph of the laser beam, that is the control
variable. Since hardening depth of steel in the first half is more than that in the second half, the intensity of
laser beam is higher in the beginning. As similar to Example 1, it increases at first and then it can be kept
constant till t = 2.625 and then it goes down to perform the hardening of 0.5 mm. The latter half represents
that again the laser beam can be kept constant till it reaches t = 5.25.
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Figure 9. (a) Convergence of hp-DGFEM with h-refinement: temperature and austenite,
convergence of hp-DGFEM with p-refinement: (b) austenite (c) temperature.
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Figure 10. Graph of computed hardening of austenite at time (a) t = 2.625; (b) t = 5.25.
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Figure 11. Graph of computed hardening of temperature and time (a) t = 2.625; (b) t = 5.25.
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