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Abstract. The Bidomain model is nowadays one of the most accurate mathematical descriptions
of the action potential propagation in the heart. However, its numerical approximation is in general
fairly expensive as a consequence of the mathematical features of this system. For this reason, a
simplification of this model, called Monodomain problem is quite often adopted in order to reduce
computational costs. Reliability of this model is however questionable, in particular in the presence of
applied currents and in the regions where the upstroke or the late recovery of the action potential is
occurring. In this paper we investigate a domain decomposition approach for this problem, where the
entire computational domain is suitably split and the two models are solved in different subdomains.
Since the mathematical features of the two problems are rather different, the heterogeneous coupling
is non trivial. Here we investigate appropriate interface matching conditions for the coupling on
non overlapping domains. Moreover, we pursue an Optimized Schwarz approach for the numerical
solution of the heterogeneous problem. Convergence of the iterative method is analyzed by means
of a Fourier analysis. We investigate the parameters to be selected in the matching radiation-type
conditions to accelerate the convergence. Numerical results both in two and three dimensions illustrate
the effectiveness of the coupling strategy.
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1. Introduction

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential
propagation in the heart. In the original formulation this system features two nonlinear reaction-diffusion
parabolic equations for the extra and intra-cellular potentials. The matrix multiplying the time derivatives of the
potentials is singular and for this reason the system is called “degenerate”. Mathematical features of this model
induce some difficulties in its numerical approximation that lead to ill conditioned problems. For this reasons
many efforts have been devoted to the set up of efficient solvers and preconditioners [4,7,27,39,40], possibly based
on parallel multigrid approaches [26,33,41] or suitable approximations of the equations [16]. Another approach
has been aiming at a simplification of the original problem. In particular, under a simplifying assumption on
the anisotropy in the intra- and extracellular spaces, the two equations of the Bidomain system can be combined
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yielding a single nonlinear reaction-diffusion parabolic equation in the transmembrane potential. This is called
Monodomain problem and it is clearly simpler to solve. However, it has been pointed out that this model fails
in capturing some remarkable features of the action potential propagation [37].

In this paper we investigate the coupling of the two problems, the Bidomain and Monodomain ones solved
in different parts of the computational domain. The basic idea behind this heterogeneous approach is to reduce
computational costs and to maintain the accuracy by solving the Bidomain problem over “critical” (and hope-
fully small) regions of the domain (where the term“critical” is driven by physiopathological arguments). The
Monodomain equation is solved in parts where the potential propagation dynamics does not require the most
sophisticated model. This approach falls in the general framework of “model adaptivity”. In this direction,
a sort of intermediate model called Hybridomain has been recently proposed in [23]. This model relies on an
extended formulation of the Monodomain problem (formerly used in [16] as preconditioner for the Bidomain
one). Should an appropriate error estimator be available, model adaptivity with Hybridomain is pretty im-
mediate. Unfortunately, computational costs reduction is partially limited by the adoption of the extended
Monodomain equations. We work here in the direction of a model adaptive strategy, in which the solver is
able to adaptively select at each time step the regions where the Bidomain problem has to be solved, and the
ones where the simplified Monodomain model is sufficiently accurate. This requires to solve the heterogeneous
Bidomain/Monodomain problem. We face this issue with a Domain Decomposition (DD) approach. Coupling of
the two problems is non trivial for their different nature. Here, we address a possible set of matching conditions.
The basic idea is to start from a homogeneous Bidomain-Bidomain DD problem and then to downscale the
Bidomain to the Monodomain model on one of the subdomains. The downscaling process is performed also on
the matching conditions originally devised for the homogeneous problem.

We cope with the numerical solution of the heterogeneous problem by means of an Optimized Schwarz Algo-
rithm. This approach is based upon Robin-type transmission conditions on the interface between subdomains.
Differently from the classical Schwarz Algorithm, based on Dirichlet transmission conditions, Optimized Schwarz
Algorithms converge also on nonoverlapping subdomains, and show a significant improvement in terms of both
robustness and computational cost with respect to the classical Schwarz one (see for instance [11,12,14,15]).
We perform a Fourier analysis of the problem in order to find the optimal parameters to be used in the Robin-
type interface conditions, i.e. the parameters that maximize the convergence rate of the iterative DD scheme.
Several numerical results are presented both in 2D and 3D, including the simulation of a stimulus exerted by a
pacemaker on a simplified left ventricular geometry. Results confirm that the coupled Bidomain/Monodomain
problem is a viable approach for reducing computational costs and maintaining good accuracy, provided that
the Bidomain model is activated in “critical” regions, e.g. the regions where the upstroke or the late recovery
of the action potential are occurring, or in the presence of applied currents.

The outline of the paper is as follows. In Section 2 we briefly recall the Bidomain and Monodomain models for
the description of action potential propagation in myocardial cells and the discretization methods we adopted (for
more details see e.g. [7,31,40]). In Section 3 we consider the “Extended Monodomain” model as an intermediate
model for devising the coupling conditions on the interface between the Bidomain region and the Monodomain
region. In Section 4 we describe the Optimized Schwarz Method, we analyze its convergence via Fourier analysis
and we address its algebraic formulation. Finally, Section 5 presents numerical results in both two and three
dimensions that show the effectiveness of the method.

2. A survey of mathematical and numerical models

in electrocardiology

2.1. Description of the problem

The myocardial tissue is composed of elongated cells, connected each other in fibers by gap junctions and
surrounded by an extracellular medium. The conductivity of the cardiac cells depends upon their orientation,
and in the most general case the conductivity tensor is anisotropic (see e.g. [20,35]). In any point x ∈ Ω, where
Ω is the spatial domain under consideration, it is thus possible to identify an orthonormal triplet of directions,
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al(x), at(x), an(x), with al(x) parallel to the fibers direction, at(x) and an(x) tangent and orthogonal
respectively to the radial lamination, both transversal with respect to the fiber axis.

2.1.1. The Bidomain model

In the Bidomain model the cardiac tissue is regarded as the superposition of two continuous and anisotropic
media, the intra-cellular and the extra-cellular one. They do coexist at each point x and are connected by a
cell membrane dislocated in the domain (for more details see [8,18]). The intra and extracellular media feature
different conductivity values in each direction. Denoting by σl

τ , σt
τ , and σn

τ (τ = i, e), the intra and extracellular
conductivity coefficients respectively, in the al, at and an directions, the conductivity tensors are given by

Dτ (x) = σl
τ (x)al(x)aT

l (x) + σt
τ (x)at(x)aT

t (x) + σn
τ (x)an(x)aT

n (x), τ = i, e. (2.1)

Under the assumption of axial isotropy, i.e. the direction across fibers features the same conductivity in both
the tangential and normal direction, the tensors simplify in

Dτ (x) = σt
τ I + (σl

τ − σt
τ )al(x)aT

l (x). (2.2)

We assume (2.2) to hold (see [7]). Moreover, we assume that Dτ fulfills in Ω a uniform elliptic condition.
Let ui and ue be the intra and extracellular potentials respectively and u = ui − ue be the transmembrane

potential. The density current in each domain can be computed as Jτ = −Dτ∇uτ , τ = i, e. The net current flux
between the intra and the extracellular domain is assumed to be zero as a consequence of the charge conservation
in an arbitrary portion of tissue. Let us denote by Im the ingoing membrane current flow and by χ the ratio of
membrane area per tissue volume. We obtain

∇ · (Di∇ui) = χIm = −∇ · (De∇ue) (2.3)

where Im = Cmdu/dt+Iion(u, w) being Cm a capacitance and Iion the ionic current, depending on the potential u
and on suitable ionic variables that we denote with w. The complete Bidomain model reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

χCm
∂u

∂t
−∇ ·Di∇ui + χIion(u, w) = Iapp

i

−χCm
∂u

∂t
−∇ · De∇ue − χIion(u, w) = −Iapp

e

(2.4)

where Iion(u, w) is a nonlinear function of the transmembrane potential u, specified by a ionic model (in our
numerical tests we consider the Luo-Rudy Phase I model for ventricular cells [22]), and where Iapp

i,e are applied
external stimuli. The problem is completed by initial conditions, ui(x, 0) = ui,0, ue(x, 0) = ue,0, u(x, 0) =
ui,0 − ue,0 and by homogeneous Neumann boundary conditions on ∂Ω, modelling an insulated myocardium,

nTDi∇ui(x, t) = 0 and nT De∇ue(x, t) = 0, on ∂Ω × (0, T ), (2.5)

where n is the unit normal outward-pointing vector on the surface. As a consequence of the Gauss theorem,
the applied external stimuli must fulfill the compatibility condition∫

Ω

Iapp
i dx =

∫
Ω

Iapp
e dx. (2.6)

System (2.4) consists of two parabolic reaction diffusion equations for ui and ue where the vector of time
derivatives is multiplied by a singular matrix. The system is thus said to be degenerate. The transmembrane
potential u is uniquely determined, while the intra and extracellular potentials ui and ue are determined up
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to the same function of time, whose value is usually obtained by imposing that ue has zero mean on Ω. For
well-posedness analysis of the Bidomain problem associated with different ionic models see [2,3,8,38].

In what follows we will rely on a non-symmetric formulation (2.8) (see e.g. [16]). Let us define

λm = min
{

σl
e

σl
i

,
σt

e

σt
i

}
λM = max

{
σl

e

σl
i

,
σt

e

σt
i

}
, (2.7)

and we let λm ≤ λ ≤ λM . By linear combinations of the two equations in (2.4), with coefficients
(

λ
1+λ ,− 1

1+λ

)
,

and (1, 1), Bidomain system can be reformulated in non-symmetric form, in terms of the transmembrane and
the extracellular potentials u and ue,⎧⎪⎪⎪⎨⎪⎪⎪⎩

χCm
∂u

∂t
−∇ ·

(
λDi

1 + λ
∇u

)
−∇ ·

(
λDi − De

1 + λ
∇ue

)
+ χIion(u, w) = Iapp

−∇ · [Di∇u + (Di + De)∇ue] = Ĩapp,

(2.8)

where we have set Iapp =
λIapp

i + Iapp
e

1 + λ
and Ĩapp = Iapp

i − Iapp
e .

2.1.2. The Monodomain model

Derivation of the Monodomain model can be obtained in different ways, based upon a proportionality as-
sumption between the intracellular and the extracellular conductivity tensors, namely assuming De = λDi,
where λ is a constant to be properly chosen. For instance, under assumption (2.2), λ can be devised through a
minimization procedure, as

λ = argminJ(λ), J(λ) =
(

σl
e − λσl

i

1 + λ

)2

+ 2
(

σt
e − λσt

i

1 + λ

)2

for given values of the conductivities. A time dependent choice of the parameter λ has been proposed in [24].
After defining D := Di + De and DM := De D−1 Di, the first equation in (2.8) can be rearranged as

χCm
∂u

∂t
−∇ ·DM∇u + ∇ ·

[(
DeD−1 − λ

1 + λ
I
)

(Di∇u + D∇ue)
]

+ χIion(u, w) = Iapp (2.9)

and, since the proportionality assumption De = λDi entails DeD−1 − λ
1+λI = 0, a formulation of the

Monodomain model (see [6,17]) is then obtained from (2.9) as

χCm
∂u

∂t
−∇ ·DM∇u + χIion(u, w) = Iapp. (2.10)

In absence of applied currents, the Monodomain model is accurate enough to catch the desired dynamics and
effects of the action potential propagation (see [9]). Potse et al. [29] compared the action potential propagation
velocities using Monodomain and Bidomain and conclude that the Monodomain solution propagates a bit slower
(2%) than the Bidomain one. However, the Bidomain model becomes necessary when current stimuli are applied
in the extracellular space. Also, the Monodomain is inadequate to simulate defibrillation [37].

Coupling the second equation in (2.8) to (2.10), we obtain an Extended Monodomain system,⎧⎪⎨⎪⎩
χCm

∂uM

∂t
−∇ · DM∇uM + χIion(uM , w) = Iapp

−∇ · [Di∇uM + (Di + De)∇ue,M ] = Ĩapp.

(2.11)
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This has been used as preconditioner of the Bidomain problem in [16] and in the context of model adaptivity
in [23]. Here (2.11) will be used as an intermediate step for devising the coupling conditions between Bidomain
and Monodomain problems.

2.2. Numerical approximation

We give a quick glance to the numerical approximation of the models presented in the previous section. For
a more detailed description see [7,31,40].

2.2.1. Time integration

Let us assume to use a fixed time step Δt, even if time adaptive scheme have been considered as well (see
e.g. [10,28]). We denote with superscript n the variables computed at time tn = nΔt. From now on we denote
by uB, the transmembrane potential computed with the Bidomain system and by uM the one computed by
either the Monodomain or Extended Monodomain problems. Similarly, the extracellular potential computed
by the Bidomain model is denoted by ue,B. Notation ue,M is used for the Extended Monodomain extracellular
potential.

The Bidomain equations (2.8) can be advanced in time by a semi-implicit scheme. The ionic variables w are
integrated exactly in time upon an appropriate linearization around the membrane potential at the previous
time step (see e.g. [28]). The time step is selected to guarantee stability to the time advancing scheme. In what
follows we do not rely on a specific choice for the ionic model describing the cell membrane currents. Thus
from now on we simply denote by Iion(u) the ionic current: in the time advancing scheme, this nonlinear term
is evaluated at the previous time step. More precisely, moving from time step tn to tn+1 we solve on Ω⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χCm
un+1

B − un
B

Δt
−∇ ·

(
λDi

1 + λ
∇un+1

B +
λDi − De

1 + λ
∇un+1

e,B

)
= Iapp − χIion(un

B)

−∇ ·
[
Di∇un+1

B + (Di + De)∇un+1
e,B

]
= Ĩapp

u0
B(x) = uB

0 (x) u0
e,B(x) = uB

e,0(x)

nT Di(∇un+1
B + ∇un+1

e,B )|∂Ω = 0 nT De∇un+1
e,B |∂Ω = 0.

(2.12)

The time discrete Extended Monodomain model on Ω reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χCm
un+1

M − un
M

Δt
−∇ ·DM∇un+1

M = Iapp − χIion(un
M )

−∇ ·
[
Di∇un+1

M + (Di + De)∇un+1
e,M

]
= Ĩapp

u0
M (x) = uM

0 (x) u0
e,M (x) = uM

e,0(x)

nTDM∇un+1
M |∂Ω = 0 nTDi∇un+1

M + nT (Di + De)∇un+1
e,M |∂Ω = 0.

(2.13)

Time discretization of the Monodomain problem is formally obtained by considering the equation and the
conditions in (2.13) involving only uM .

We denote fn
B = Iapp − χIion(un

B) +
χCm

Δt
un

B and g = Ĩapp, fn
M = Iapp − χIion(un

M ) +
χCm

Δt
un

M ·
In the sequel, when the context is clear we will drop the time index n + 1.
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2.2.2. Space discretization

We discretize in space the domain with a regular triangulation Th and we consider a finite element space Vh,
in which we will look for the approximate solutions, namely uh

B and uh
e,B in the Bidomain case, uh

M in the
Monodomain case, and uh

M and uh
e,M in the Extended Monodomain one. For the numerical tests in Section 6,

Vh is the space of piecewise linear continuous functions on Th.
We denote by Φ = {ϕj}Nh

j=1 a basis for Vh, by M the mass matrix with entries Mij =
∑

K∈Th
(ϕj , ϕi)|K , and

by Kτ (τ = i, e, M) the stiffness matrices with Kij
τ =

∑
K∈Th

(Dτ∇ϕj ,∇ϕi)|K , ϕi, ϕj ∈ Φ. When solving the
Bidomain system, the unknowns of the fully discrete problem are represented by vectors uB and ue,B, storing
the nodal values of uh

B and uh
e,B, respectively, we let fB and g denote the discretization of the forcing terms,

and we set

BM
uu =

χCm

Δt
M + KM BB

uu =
λKi

1 + λ
−KM Bue =

λKi

1 + λ
− Ke

1 + λ
Beu = Ki Bee = Ki + Ke.

At step tn+1 the discrete Bidomain models solves

BUn+1
B = fn, where B =

[
BB

uu + BM
uu Bue

Beu Bee

]
, UB =

[
uB

ue,B

]
, f =

[
fB
g

]
. (2.14)

Since the Bidomain system (2.4) is degenerate, the matrix B in its discrete formulation is singular, with a kernel
spanned by the constants. We thus solve (2.14) with an iterative method (GMRES) and we force a zero mean
value on the extracellular potential by imposing 1TMue,B = 0. When solving the Monodomain system, the
unknown vector uM stores the nodal values of uh

M , fM represents the discretization of the forcing term and at
each time step the discrete Monodomain model solves system,

BM
uuu

n+1
M = fn

M , (2.15)

whose matrix, differently from (2.14), is symmetric and positive so its solution can be obtained with a CG solver.
Finally, when solving the Extended Monodomain system, the unknown vector uE stores the nodal values of uh

M

and uh
e,M , fE represents the discretization of the forcing term, and, owing to (2.13), at step tn+1 the discrete

Extended Monodomain system reads

EUn+1
E = fn

E , where E =
[

BM
uu 0

Beu Bee

]
, UE =

[
uM

ue,M

]
, fE =

[
fM
g

]
. (2.16)

System (2.16) features a singular matrix (stemming from the purely elliptic part of the Bidomain system, that
is retained here). Again, due to its lack of symmetry, system (2.16) can be solved by GMRES, and a zero mean
value on the extracellular potential is then imposed by forcing 1TMue,M = 0.

3. Model coupling

We devote this section to devise suitable coupling conditions for the Bidomain and the Monodomain mod-
els in a domain decomposition framework (for an introduction to domain decomposition methods see for in-
stance [30,34,36]). Such conditions are derived by a downscaling procedure stemming from a Bidomain/Bidomain
coupling and involving a Bidomain/Extended Monodomain coupling.

3.1. Bidomain-Bidomain coupling

Let us first consider a domain decomposition approach for the Bidomain model. Let Ω = Ω1 ∪ Ω2, Σ =
∂Ω1 ∩ ∂Ω2, and let us denote with um

i , um
e , and um = um

i − um
e (m = 1, 2) the intracellular, extracellular and

transmembrane potential in Ω1 and Ω2, respectively.
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The natural interface continuity requirements on traces and fluxes of intracellular and extracellular potentials
can be obtained by the Robin coupling along Σ

nT
1 Di∇u1

i ± αu1
i = nT

1 Di∇u2
i ± αu2

i , nT
1 De∇u1

e ± βu1
e = nT

1 De∇u2
e ± βu2

e, (3.1)

for α, β > 0.
The above conditions can be recombined in terms of u and ue in order to have viable expressions to be

used in the non-symmetric case formulation of (2.9). The latter is in fact the most natural formulation for our
DD problem. Linear combinations of (3.1) with coefficient

(
λ

1+λ ,− 1
1+λ

)
and (1, 1) (the same ones behind the

non-symmetric formulation) provide the following equivalent coupling conditions on Σ,

nT
1

λDi

1 + λ
(∇u1 + ∇u1

e) − nT
1

De

1 + λ
∇u1

e +
λα

1 + λ
u1 +

λα − β

1 + λ
u1

e = nT
1

λDi

1 + λ
(∇u2 + ∇u2

e)

− nT
1

De

1 + λ
∇u2

e +
λα

1 + λ
u2 +

λα − β

1 + λ
u2

e, (3.2)

nT
1 Di(∇u1 +∇u1

e)+nT
1 De∇u1

e +αu1 + (α +β)u1
e = nT

1 Di(∇u2 +∇u2
e) +nT

1 De∇u2
e +αu2 + (α + β)u2

e. (3.3)

Since the linear combinations providing (3.2) and (3.3) are the same that provide the non-symmetric formulation,
the flux terms in the interface conditions (3.2) and (3.3) naturally appear as boundary terms in the variational
formulation, ensuring well-posedness for the local subproblems in the coupling.

3.2. Bidomain-Extended Monodomain coupling

Let us consider the coupling between Bidomain (2.9) and the Extended Monodomain system (2.11) defined
on ΩB and ΩM respectively. We denote the interface by Γ = ∂ΩB ∩ ∂ΩM. Since we refer to the non-symmetric
formulation, condition (3.2) is the natural candidate to enforce the continuity across the interfaces of the
traces and the flux of the transmembrane potential. Moreover, as a consequence of the assumptions leading
to the Monodomain model, we choose therein β = λα. More precisely, we weigh the traces of the intra- and
extracellular potentials in the Robin-Robin conditions in the same way we do for obtaining the Monodomain
equation. The continuity interface conditions are thus given by

nT
B

λDi

1 + λ
(∇uB + ∇ue,B) − nT

B

De

1 + λ
∇ue,B +

λα

1 + λ
uB = nT

BDM∇uM +
λα

1 + λ
uM , (3.4)

and

nT
BDi(∇uB + ∇ue,B) + nT

BDe∇ue,B + αuB + (1 + λ)αue,B

= nT
BDi(∇uM + ∇ue,M ) + nT

BDe∇ue,M + αuM + (1 + λ)αue,M . (3.5)

3.3. Bidomain-Monodomain coupling

Finally let us turn to the coupling between Bidomain (2.9) and Monodomain systems. We define ΩB, ΩM,
and Γ as in the previous section. According to the different sizes of the Bidomain and the Monodomain problem
(the first features two unknowns, the latter only one), we have to impose on the interface Γ two conditions for
the solution in ΩB and one condition for the solution in ΩM. This leads to a nonstandard domain decomposition,
where the coupling conditions are based on (3.4) and (3.5). Owing to the non-symmetric formulation and to the
presence of the sole transmembrane potential unknown uM in ΩM, condition (3.4) still enforces the continuity
across the interfaces of the trace and the flux of the transmembrane potential. To close the problem in ΩB
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we have to impose another boundary condition on Γ. Since we do not have an equation for the extracellular
potential in the Monodomain region ΩM, we devise an interface condition resorting to an approximation of the
right hand side of condition (3.5). We propose to take

ue,M = − uM

1 + λ
+ K,

with K a constant or, more generally, a function of time to be determined. If Ĩapp = 0 and De = λDi, this
choice automatically fulfills the second equation in (2.11). In particular, if urest denotes the resting potential,
we choose K = 1

1+λurest so that ue,M = 0 when uM = urest. We notice that the choice of K does not affect the
solutions uB and uM , while the extracellular potential ue,B is determined up to a constant depending on K.
Substituting ue,M = − 1

1+λ (uM − urest) in (3.5), and assuming De = λDi to hold in ΩM, we get

nT
BDi(∇uB + ∇ue,B) + nT

BDe∇ue,B + αuB + (1 + λ)αue,B = αurest. (3.6)

Condition (3.6) is of radiative type on the total current Jtot = −Di∇ui,B − De∇ue,B,

nT
BDi∇ui,B + nT

BDe∇ue,B + α ui,B + λα ue,B = αurest, (3.7)

allowing to avoid spurious wave reflections of the potentials on the artificial internal boundary introduced by
the interface. Here ui,B denotes the intracellular potential within ΩB.

Remark 3.1. The choice for approximating the term ue,M is obviously not unique. Another approximation
would be provided by simply neglecting the terms in ue,M in the right hand side of condition (3.5) and assuming
that De = λDi. In such case one gets

nT
BDi(∇uB + ∇ue,B) + nT

BDe∇ue,B + αuB + (1 + λ)αue,B =
1 + λ

λ
nT

BDM∇uM + αuM , (3.8)

and equation (3.8) is still imposing a boundary condition of radiative type on the extracellular current Je =
−De∇ue,B,

nT
BDe∇ue,B + λα ue,B = 0, (3.9)

avoiding spurious reflection of the extracellular potential wave on the interface. Numerical tests showed however
that the choice (3.7) guarantees more accurate results. In both cases the flux terms in (3.4) and (3.8) appear
naturally in the variational formulation of both the Bidomain and the Monodomain systems, ensuring well
posedness to local subproblems in the coupling.

4. An optimized Schwartz method

By relying on the coupling conditions devised in the previous section, we propose to couple the Bidomain and
the Monodomain models via an Optimized Schwarz Method. Such methods have become very popular in the
last decade and are a generalization of the non-overlapping Robin-Robin algorithm proposed by Lions in [21],
that ensures convergence also without relaxation. At each time step, the coupling conditions are enforced by
the following additive Schwarz algorithm.
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Given η0
1 = nT

BDM∇u0
M +

λα

1 + λ
u0

M on Γ, solve for p ≥ 0 until convergence

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χCm

Δt
up+1

B −∇ ·
[

λDi

1 + λ
∇up+1

B +
λDi − De

1 + λ
∇up+1

e,B

]
= fB in ΩB

−∇ ·
[
Di∇up+1

B + (Di + De)∇up+1
e,B

]
= gB in ΩB

nT
BDi(∇up+1

B + ∇up+1
e,B ) = 0 nT

BDe∇up+1
e,B = 0 on ∂ΩB ∩ ∂Ω

nT
B

λDi

1 + λ
(∇up+1

B + ∇up+1
e,B ) − nT

B

De

1 + λ
∇up+1

e,B +
λα

1 + λ
up+1

B = ηp
1 on Γ

nT
BDi(∇up+1

B + ∇up+1
e,B ) + nT

BDe∇up+1
e,B + αup+1

B + (1 + λ)αup+1
e,B = αurest on Γ,

(4.1)

ηp+1
2 = nT

M

λDi

1 + λ
(∇up+1

B + ∇up+1
e,B ) − nT

M

De

1 + λ
∇up+1

e,B +
λα

1 + λ
up+1

B on Γ, (4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χCm

Δt
up+1

M −∇ ·DM∇up+1
M = fM in ΩM

nT
MDM∇up+1

M = 0 on ∂ΩM ∩ ∂Ω

nT
MDM∇up+1

M +
λα

1 + λ
up+1

M = ηp+1
2 on Γ,

(4.3)

ηp+1
1 = nT

BDM∇up+1
M +

λα

1 + λ
up+1

M on Γ. (4.4)

In the present form the Optimized Schwarz Algorithm is sequential, however it can be easily parallelized by
choosing ηp

2 in the right hand side of the last equation in (4.3). In this case, an initial datum η0
2 needs to be

assigned as well. The above algorithm is described for a generic parameter λ: following [9], in the sequel we
choose λ = σl

e

σl
i

.

Algebraic formulation

For sake of completeness, we outline here the discrete formulation of the Optimized Schwarz Algorithm. Let
Ω = ΩB ∪ ΩM, and Γ = ∂ΩB ∩ ∂ΩM. We still denote with B the matrix arising from the discretization of the
Bidomain region ΩB, and with M the matrix BM

uu computed on the triangulation of ΩM. We introduce the
mass matrix on the interface MΓ, and the restriction matrices RB,Γ, RM,Γ, acting from ΩB and ΩM to the
interface Γ, respectively.

At the finite dimensional level, given ηp
1 = RM,Γ (fM − Mup

M )+ σl
e

σl
i+σl

e
αMΓRM,Γup

M , the (p+1)-th iteration
of the Optimized Schwarz Algorithm reads⎛⎜⎜⎜⎜⎝B +

⎡⎢⎢⎢⎢⎣
σl

e

σl
i + σl

e

α RT
B,ΓMΓRB,Γ 0

α RT
B,ΓMΓRB,Γ

σl
i + σl

e

σl
i

α RT
B,ΓMΓRB,Γ

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

⎡⎣ up+1
B

up+1
e,B

⎤⎦ =

⎡⎣ f + RT
B,Γηp

1

g + αurest

⎤⎦
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ηp+1
2 = RB,Γ

(
f − (BB

uu + BM
uu)up+1

B − Bueu
p+1
e,B

)
+

σl
e

σl
i + σl

e

α MΓRB,Γu
p+1
B(

M +
σl

e

σl
i + σl

e

α RT
M,ΓMΓRM,Γ

)
up+1

M = fM + RT
M,Γηp+1

2

ηp+1
1 = RM,Γ

(
fM − Mup+1

M

)
+

σl
e

σl
i + σl

e

α MΓRM,Γu
p+1
M .

4.1. Convergence analysis

We analyze here the convergence properties of the proposed algorithm via Fourier analysis, and to this aim
we consider throughout this section the problem on the infinite domain Ω = R

3, decomposed into

ΩB = (−∞, 0) × R
2, ΩM = (0,∞) × R

2, (4.5)

where the interface is Γ = {0} × R
2. We disregard here the boundary conditions and require the solutions to

be bounded at infinity. We assume axial symmetry of the fibers, and the longitudinal axis of the fibers (the
principal direction of the action potential propagation) to be orthogonal to the interface Γ, so that the diffusion
tensors are given by

Di =
[

σl
i

σt
i I2

]
De =

[
σl

e

σt
e I2

]
DM =

⎡⎣ σl
iσ

l
e

σl
i+σl

e

σt
iσt

e

σt
i+σt

e
I2

⎤⎦ ,

being I2 the 2×2 identity matrix.
Fourier transform in the y and z directions is defined for any w(x, y, z) ∈ L2(R3) as

F : w(x, y, z) 	→ ŵ(x, ky , kz) =
∫ ∫

R2
e−i(kyy+kzz)u(x, y, z) dydz,

where we denote by ky and kz the dual variables. We note in the sequel k2 = k2
y + k2

z , and we can quantify the
error, in the frequency space, between the iterates η̂p

1(k) and η̂p
2(k) and the exact interface variables η̂1(k) and

η̂2(k). This allows us to define the reduction factor of the Schwarz algorithm at the (p + 1)-th iteration as

ρp+1(k, α) =

∣∣∣η̂p+1
1 (k) − η̂1(k)

∣∣∣
|η̂p

1(k) − η̂1(k)| =

∣∣∣η̂p+1
2 (k) − η̂2(k)

∣∣∣
|η̂p

2(k) − η̂2(k)| ·

Since the time discretized problem is linear, it is enough to analyze the convergence to the zero solution in
the absence of forcing terms (i.e. for fB = g = fM = urest = 0). We first formulate the Fourier transformed
Bidomain and Monodomain systems.

In the Fourier space, the Bidomain equation is given by⎡⎣ σl
iσ

l
e

σl
i + σl

e

0

σl
i σl

i + σl
e

⎤⎦ ∂xx

⎡⎣ ûB

ûe,B

⎤⎦ =

⎡⎣ χCm

Δt
+

σl
e

σl
i + σl

e

σt
ik

2 σl
eσ

t
i − σt

eσ
l
i

σl
i + σl

e

k2

σt
ik

2 (σt
i + σt

e)k
2

⎤⎦ ⎡⎣ ûB

ûe,B

⎤⎦ ,

and a simple algebra yields, for k ∈ R and x ≤ 0,

∂xx

[
ûB

ûe,B

]
= A(k)

[
ûB

ûe,B

]
, A(k) =

⎡⎢⎢⎢⎢⎣
χCm

Δt

(
1
σl

i

+
1
σl

e

)
+

σt
i

σl
i

k2

(
σt

i

σl
i

− σt
e

σl
e

)
k2

−χCm

Δt

1
σl

e

σt
e

σl
e

k2

⎤⎥⎥⎥⎥⎦ . (4.6)
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Analogously, the transformed Monodomain equation can be written, for k ∈ R and x ≥ 0, as

∂xxûM = μM (k)ûM , μM (k) =
χCm

Δt

(
1
σl

i

+
1
σl

e

)
+

σt
iσ

t
e

σt
i + σt

e

σl
i + σl

e

σl
iσ

l
e

k2. (4.7)

Proposition 4.1. For α > 0, the Optimized Schwarz Algorithm (4.1)–(4.4) converges for every initial guess,
and for every Fourier mode k its reduction factor is independent of the iteration and is given by

ρ(k, α) =

∣∣∣∣∣∣∣∣
α [1 − Ψ(k, α)] − σl

i

[
1 − Ψ(k, α)

√
η−(k)√
η+(k)

]
α [1 − Ψ(k, α)] + σl

i

[
1 − Ψ(k, α)

√
η−(k)√
η+(k)

]
∣∣∣∣∣∣∣∣ ·

∣∣∣∣∣α − σl
i

√
μM (k)

α + σl
i

√
μM (k)

∣∣∣∣∣ , (4.8)

where

Ψ(k, α) =
(σt

i + σt
e)k

2 − (σl
i + σl

e) η−(k)
(σt

i + σt
e)k

2 − (σl
i + σl

e) η+(k)
· α + σl

i

√
η+(k)

α + σl
i

√
η−(k)

· (4.9)

Here η±(k) are the eigenvalues of the 2×2 matrix A(k) defined in (4.6), and μM (k) has been introduced in (4.7).

Proof. In the Fourier space the (p + 1)-th iteration of the Optimized Schwarz Algorithm can be rewritten as

follows. Given η̂p
1 =

σl
iσ

l
e

σl
i + σl

e

∂xûp
M +

σl
e

σl
i + σl

e

α ûp
M on {k ∈ R, x = 0}, solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂xx

[
ûp+1

B

ûp+1
e,B

]
= A(k)

[
ûp+1

B

ûp+1
e,B

]
k ∈ R, x < 0

σl
eσ

l
i

σl
i + σl

e

∂xûp+1
B +

σl
e

σl
i + σl

e

α ûp+1
B = η̂p

1 k ∈ R, x = 0

σl
i∂xûp+1

B + (σl
i + σl

e)∂xûp+1
e,B + α ûp+1

B +
σl

i + σl
e

σl
i

α ûp+1
e,B = 0 k ∈ R, x = 0,

(4.10)

η̂p+1
2 = − σl

eσ
l
i

σl
i + σl

e

∂xûp+1
B +

σl
e

σl
i + σl

e

α ûp+1
B k ∈ R, x = 0, (4.11)

⎧⎪⎪⎨⎪⎪⎩
∂xxûp+1

M = μM (k)ûp+1
M k ∈ R, x > 0

− σl
iσ

l
e

σl
i + σl

e

∂xûp+1
M +

σl
e

σl
i + σl

e

α ûp+1
M = η̂p+1

2 k ∈ R, x = 0,

(4.12)

η̂p+1
1 =

σl
iσ

l
e

σl
i + σl

e

∂xûp+1
M +

σl
e

σl
i + σl

e

α ûp+1
M k ∈ R, x = 0. (4.13)

Set ûp+1 = (ûp+1
B , ûp+1

e,B )T . We reduce the Bidomain equation in (4.10) to a first order system by introducing
the auxiliary variables ẑp+1 = (ẑp+1, ẑp+1

e,B )T = ∂xûp+1 and solving system

∂

∂x

[
ûp+1

ẑp+1

]
=

[
O2 I2

A(k) O2

] [
ûp+1

ẑp+1

]
= A

[
ûp+1

ẑp+1

]
. (4.14)

The eigenvalues of A satisfy
ξ4 − trA(k) ξ2 + detA(k) = 0,



320 L. GERARDO-GIORDA ET AL.

so that (remember that η±(k) are the eigenvalues of A(k)), we have

ξ1(k) =
√

η+(k) ξ2(k) = −
√

η+(k) ξ3(k) =
√

η−(k) ξ4(k) = −
√

η−(k).

The solution of (4.14) is given by [
ûp+1(x, k)
ẑp+1(x, k)

]
=

4∑
j=1

βp+1
j wj(k) eξj(k) x,

where wj(k) denote the eigenvector associated to ξj(k) (j = 1, . . . , 4).

Observe that detA(k) = k2

σl
iσ

l
e

[
χCm

Δt (σt
i + σt

e) + σt
iσ

t
ek

2
]

> 0 and

[trA(k)]2 − 4 detA(k) =
[

1
σl

i

(
χCm

Δt
+ σt

ik
2

)
− 1

σl
e

(
χCm

Δt
+ σt

ek
2

)]2

+
4

σl
iσ

l
e

[
χCm

Δt

]2

> 0.

As a consequence, both eigenvalues η±(k) are real positive, and are given by

η±(k) =
1
2

[
1
σl

i

(
χCm

Δt
+ σt

ik
2

)
+

1
σl

e

(
χCm

Δt
+ σt

ek
2

)]

± 1
2

√[
1
σl

i

(
χCm

Δt
+ σt

ik
2

)
− 1

σl
e

(
χCm

Δt
+ σt

ek
2

)]2

+
4

σl
iσ

l
e

[
χCm

Δt

]2

· (4.15)

The condition at infinity excludes growing solutions as x → −∞, thus it has to be βp+1
2 = βp+1

4 = 0. The
eigenvectors associated with

√
η+(k) and

√
η−(k) are

w1(k) =

⎡⎢⎢⎣
A12(k)

η+(k) − A11(k)
A12(k)

√
η+(k)

(η+(k) − A11(k))
√

η+(k)

⎤⎥⎥⎦ w3(k) =

⎡⎢⎢⎣
A12(k)

η−(k) − A11(k)
A12(k)

√
η−(k)

(η−(k) − A11(k))
√

η−(k)

⎤⎥⎥⎦ .

The general solution in ΩB at the (p + 1)-th iteration is thus given by[
ûp+1

B

ûp+1
e,B

]
= βp+1

1

[
A12(k)

η+(k) − A11(k)

]
e
√

η+(k) x + βp+1
3

[
A12(k)

η−(k) − A11(k)

]
e
√

η−(k) x, (4.16)

where βp+1
1 and βp+1

3 are determined by the two boundary conditions on the interface {x = 0}. From (4.6)
and (4.15) we have

η+(k) − A11(k) = −η−(k) +
σt

e

σl
e

k2 η−(k) − A11(k) = −η+(k) +
σt

e

σl
e

k2,

and the second interface condition in (4.10) entails

βp+1
3 = − (σt

i + σt
e)k

2 − (σl
i + σl

e) η−(k)
(σt

i + σt
e)k

2 − (σl
i + σl

e) η+(k)
· α + σl

i

√
η+(k)

α + σl
i

√
η−(k)

βp+1
1 = −Ψ(k, α) βp+1

1 .

Thus[
ûp+1

B (x, k)
ûp+1

e,M (x, k)

]
= βp+1

1

([
A12(k)

η+(k) − A11(k)

]
e
√

η+(k) x − Ψ(k, α)
[

A12(k)
η−(k) − A11(k)

]
e
√

η−(k) x

)
. (4.17)

The value of βp+1
1 is then uniquely determined by the coupling condition in x = 0.
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Concerning domain ΩM, the solution at the (p + 1)-th iteration, owing to (4.12), is given by

ûp+1
M (x, k) = γp+1

1 e−
√

μM (k)x + γp+1
2 e

√
μM (k)x.

The boundedness condition at infinity entails γp+1
2 = 0, thus we have

ûp+1
M (x, k) = γp+1

1 e−
√

μM (k)x, (4.18)

and the value of γp+1
1 is uniquely recovered from the interface conditions at x = 0.

Gathering together (4.11), (4.13), (4.17), and (4.18), we get

σl
e

σl
i + σl

e

B1,B(k, α)βp+1
1 = η̂p

1(k) η̂p+1
2 (k) =

σl
e

σl
i + σl

e

M1,B(k, α)βp+1
1 =

M1,B(k, α)
B1,B(k, α)

η̂p
1(k)

σl
e

σl
i + σl

e

M1,M (k, α) γp+1
1 = η̂p+1

2 (k) η̂p+1
1 (k) =

σl
e

σl
i + σl

e

B1,M (k, α) γp+1
1 =

B1,M (k, α)
M1,M (k, α)

η̂p+1
2 (k), (4.19)

where
B1,B(k, α) = A12(k)

(
α [1 − Ψ(k, α)] + σl

i

[√
η+(k) − Ψ(k, α)

√
η−(k)

])
B1,M (k, α) = α − σl

i

√
μM (k)

M1,B(k, α) = A12(k)
(
α [1 − Ψ(k, α)] − σl

i

[√
η+(k) − Ψ(k, α)

√
η−(k)

])
M1,M (k, α) = α + σl

i

√
μM (k).

From (4.19) we have

η̂p+1
1 (k) =

B1,M (k, α)
B1,B(k, α)

· M1,B(k, α)
M1,M (k, α)

η̂p
1(k) =

[
B1,M (k, α)
M1,M (k, α)

· M1,B(k, α)
B1,B(k, α)

]p+1

η̂0
1(k),

being η̂0
1(k) given. The reduction factor of the Schwarz Algorithm is thus independent of the iteration p and

for any Fourier mode k is given by

ρ(k, α) =
∣∣∣∣ B1,M (k, α)
M1,M (k, α)

· M1,B(k, α)
B1,B(k, α)

∣∣∣∣ ,
which is (4.8). The Schwarz Algorithm (4.1)–(4.4) is convergent for every Fourier mode if ρ(k, α) < 1, ∀k ∈ R.
Being α > 0, it is enough to show that, ∀k ∈ R, Ψ(k, α) ≤ 0. The second factor in (4.9) is positive. To prove
that the first factor is non-positive we prove the equivalent condition

η−(k) ≤ σt
i + σt

e

σl
i + σl

e

k2 < η+(k) ∀k ∈ R. (4.20)

For k = 0, inequality (4.20) is easily satisfied. For any k > 0, let

a1 =
σt

e

σl
e

k2, b1 =
σt

i

σl
i

k2, c =
1√
σl

iσ
l
e

χCm

Δt
, d =

σt
i + σt

e

σl
i + σl

e

k2,

a = a1 +

√
σl

i

σl
e

c =
1
σl

e

(
χCm

Δt
+ σt

ek
2

)
, b = b1 +

√
σl

e

σl
i

c =
1
σl

i

(
χCm

Δt
+ σt

ik
2

)
, (4.21)
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so that

η± =
1
2
(a + b) ± 1

2

√
(a − b)2 + 4c2. (4.22)

Assuming without loss of generality σt
eσ

l
i ≥ σl

eσ
t
i (otherwise swap the definitions of a and b), the following

relations hold

a1 ≥ d ≥ b1, a > d,

√
σl

e

σl
i

(a1 − d) =

√
σl

i

σl
e

(d − b1). (4.23)

Then, on the one hand, we have

η+ − d =
1
2

(
a + b − 2d +

√
(a − b)2 + 4c2

)
≥ 1

2
(a + b − 2d + |a − b|) ≥ a − d > 0.

On the other hand

(η− − d)(η+ − d) =
1
4
(a + b − 2d)2 − 1

4
(a − b)2 − c2 = −(a − d)(d − b) − c2,

and, owing to (4.21) and (4.23)

(η− − d)(η+ − d) = −(d − b1)(a1 − d) + c

⎡⎣√
σl

e

σl
i

(a1 − d) −

√
σl

i

σl
e

(d − b1)

⎤⎦ = −(d − b1)(a1 − d) ≤ 0.

Thus, being η+ − d > 0, we can infer η− − d ≤ 0, and this concludes the proof. �

We point out that starting the algorithm by solving the Monodomain first would provide the same result,
since

η̂p+1
2 (k) =

M1,B(k, α)
M1,M (k, α)

· B1,M (k, α)
B1,B(k, α)

η̂p
2(k).

4.2. Optimal Robin interface conditions and low frequency approximation

We focus here on the choice of the parameter α in the Robin interface conditions. Ideally, the optimal
parameter forces the reduction factor ρ(k, α) to be zero, so that convergence is attained in a number of iterations
equal to the number of subdomains (two, in the case at hand). Expressions for optimal parameter are obtained
from (4.8)

αexact
1 (k) = σl

i

√
μM (k) αexact

2 (k) : αexact
2 (k) = σl

i

√
η+(k) − Ψ(k, αexact

2 (k))
√

η−(k)
[1 − Ψ(k, αexact

2 (k))]
√

η+(k)
, (4.24)

which unfortunately depend on the frequency k. In fact, αexact
1 (k) and αexact

2 (k) are actually the symbols of
two linear, pseudodifferential, operators acting along the interface. These expressions are not viable since their
back transform in the space of physical variables is a nonlocal operator. We resort therefore to a different,
even suboptimal, choice. We propose to approximate αexact

1 (k) with a constant. The standard approach in
the Optimized Schwarz Methods literature (see [1,14,15]) consists in finding the values of the parameters that
minimize the convergence rate over all the relevant frequencies of the problem. This amounts to solve the
min-max problem

min
α,∈R+

max
k∈[0,kmax]

ρ(k, α), (4.25)

where kmax is the largest frequency supported by the numerical grid and is of the order π/h, where h is the
mesh size. Solution to (4.25) is nontrivial and it is not available at the moment.
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Figure 1. Reduction factor of the Optimized Schwarz Algorithm as a function of the frequency
for a two domain decomposition with kmax = 1000π (left), and with a more practical kmax =
100π (right).

Another approach is to approximate αexact
1 (k) with its zero-th order Taylor expansion around k = 0.

We get

α∗ = αexact
1 (0) = σl

i

√
μM (0) = σl

i

√
χCm

Δt

σl
i + σl

e

σl
iσ

l
e

· (4.26)

We plot in Figure 1 the reduction factor ρ(k, α∗) in the frequency space. Both Bidomain and Monodomain
conductivities are taken from [9], the Robin parameter is the one given by (4.26), the time step is Δt = 0.05 ms,
and the maximal tangential frequency is kmax = 1000π on the left, and kmax = 100π on the right. The reduction
factor of the Optimized Schwarz Algorithm tends to 1 as k → ∞. This is a common feature for this kind of
algorithms, which can slow down the convergence. The reduction factor, with the choice of α∗ given in (4.26),
vanishes for two distinct frequencies, namely for k = 0, and for k0, the latter one being implicitly defined by

α∗ [1 − Ψ(k0, α
∗)]

√
η+(k0) = σl

i

[√
η+(k0) − Ψ(k0, α

∗)
√

η−(k0)
]
.

Remark 4.2. The Robin parameter introduced above has been derived in the special case of an interface
orthogonal to the longitudinal axis of the fibers. The numerical tests of Section 6 show that this choice proves
to be effective also in the case of a more general interface.

Remark 4.3. A similar analysis can be carried out also in the case the Optimized Schwarz Algorithm is
devised with a generic parameter λ. In that case the zero-th order approximation of the exact Robin parameter
is given by

α∗
λ =

1 + λ

λ

√
χCm

Δt

σl
iσ

l
e

σl
i + σl

e

·

5. Numerical results

Numerical tests presented in this section have two different goals. In the first series of tests we analyze the
performance of the Optimized Schwarz Algorithm with respect to the mesh size. The second series of tests
is focused on the comparison of the solution of the coupled problem with the Bidomain solution in the whole
domain. Finally, we provide a three dimensional application, in which we simulate with the propagation on a
simplified left ventricular geometry of the stimulus exerted by an external pacemaker. In all the following tests
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Table 1. Iteration counts for various mesh sizes and different tolerances.

h 1/64 1/128 1/256 1/512
ε = 1 e–3 2 2 2 2
ε = 1 e–6 6 4 4 4
ε = 1 e–9 11 9 12 18

we use the Luo-Rudy Phase I ionic current model for ventricular cells [22], while the conductivity coefficients
and the other parameters of the system are retrieved form [7]. Both Bidomain and Monodomain problems are
advanced in time by the semi-implicit scheme described in Section 2.1, that linearizes the ionic current around
the previous time step. In order to focus only on the performance of the Optimized Schwarz Algorithm, in
all the simulations presented in this section we use a fixed time step Δt = 0.05 ms, which is small enough to
capture the abrupt variations in the transmembrane potential during the action potential. The ionic gating
variables are integrated exactly in time after linearization, while the concentration variables are advanced in
time with a Forward Euler scheme. The first series of test is run with Matlab r© 7.5, while the second series and
the simplified ventricle are implemented in LifeV2, a C++ finite element library that uses Trilinos packages3

to solve the linear systems.

5.1. Influence of the mesh size and the Robin parameter

In this first series of tests the computational domain is the rectangle Ω = [0, 2] × [0, 1] decomposed in the
two subdomains ΩB = [0, 1]× [0, 1] and ΩM = [1, 2]× [0, 1], where we solve the Bidomain and the Monodomain
problems respectively. The fibers are parallel to the reference axes, with the longitudinal direction set orthogonal
to the interface. Both domains are discretized by a uniform triangular grid (we denote with h the mesh size),
associated with P1 finite elements. Since at each time step problems to be solved are linear, we analyze here
the convergence to the zero solution starting from a random value on the interface and in the absence of forcing
terms. The iterative algorithm stops when the maximum between ‖ηp+1

1 −ηp
1‖l2(Γ) and ‖ηp+1

1 ‖l2(Γ) drops below
a given tolerance ε. We report in Table 1 the iteration counts for different mesh sizes and different values of
the stopping tolerance ε.

The Optimized Schwarz Algorithm is robust and effective. Two iterations are sufficient to fulfill a tolerance
requirement of ε =1 e–3, whereas four iterations suffice for a tolerance of ε =1 e–6 independently of the mesh
size. When the required tolerance is set to ε =1 e–9, which is general fairly small for this kind of problems, a
sublinear growth is observed in the iteration counts.

We then tested the optimality for the choice of α∗ as the Robin parameter. We report in Figure 2 the
iteration counts to reach convergence and the error after three iterations for different values of α. Test are
carried out with mesh size h = 1/128, and a tolerance of ε = 1 e–6. We enlighten in both pictures the values of
α∗ provided by (4.26). Even if the result of an approximation, such choice appears pretty accurate with respect
to the iteration counts (left) and effective with respect to the error at convergence (right).

5.2. Convergence and accuracy of the domain decomposition solution during action
potential propagation

In this section we consider the action potential propagation on the same 2D geometry of the previous section.
During the first millisecond of the simulation we apply a current stimulus Iapp

i = Iapp
e = 50 mA·cm−3 in the

circle (x−0.2)2 +(y−0.2)2 ≤ (0.12)2. Figure 4 (top) shows the transmembrane potential at different time-steps
computed with the Bidomain model. We solve the problem on a structured mesh with h = 1/64. Simulations
of larger tissue volumes typically employ a spatial resolution of between 0.1 mm and 0.2 mm typically. For
example, 0.25 mm is an adequate resolution for the Nygren et al. model [25], while for the Fox et al. model [13],

2LifeV software, http://www.LifeV.org.
3Trilinos software, http://trilinos.sandia.gov.

http://www.LifeV.org
http://trilinos.sandia.gov
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Figure 2. Left: iteration counts with respect to the value of the Robin parameter α. Right:
error after three iterations with respect to the value of the Robin parameter α. (ε = 1 e–6,
h = 1/128.)

which has a faster upstroke, a finer resolution of 0.15 mm is required [5]. The linear systems are solved with the
GMRES and CG algorithms provided by the library AZTEC4. In particular the Bidomain system is solved with
the GMRES method preconditioned with an incomplete LU factorization, while the Monodomain equation is
solved with CG method preconditioned with an incomplete Cholesky factorization. The stopping criteria used
in the linear solvers are based on the Euclidean norm of the residual normalized with the Euclidean norm of
the forcing term. We require the normalized residual to be less than 1 e–8.

Convergence

In Figure 3 (left) we report ‖up
B − up

M‖L∞(Γ) as a function of the number of Schwarz iterations, at different
time levels, chosen according to the position of the depolarization front (standard notation is adopted for Banach
Lp spaces). At t = 9 ms the front is approaching the interface, but it is still completely inside ΩB, at t = 14 ms
the front is partly in ΩB and partly in ΩM, while at t = 26 ms the front is on his way out of ΩM, and the
interface lies in the plateau region of the action potential (top Fig. 4). The position of the depolarization front is
clearly affecting the initial error, but not the convergence of the Schwarz Algorithm, which proves to be robust
showing the same slope in all three conditions. For the sake of simplicity we just performed a low number of
steps in the iterative framework using as initial guess the solution at the previous time step. We thus analyzed
the error after two and four iterations, and we report in Figure 3 (right) the results along the time interval
[0, 450] ms. Both cases show the same pattern, and the major errors are concentrated in the time frames when
the depolarization front and the late repolarization wave cross the interface. This is not surprising since those
are the stiff parts in the time evolution in the modelling of the action potential in a single cell.

Accuracy

We denote by uDD the solution obtained with the Schwarz Algorithm, with uBido the solution obtained from a
Bidomain simulation on the whole domain Ω, and with uMono the one obtained from a Monodomain simulation
on the whole domain Ω. In Figure 4 we report the transmembrane potential uBido (top), the difference between
uBido and uDD, computed with two Schwarz iterations per time step (middle) and the transmembrane potential
uMono (bottom). Snapshots are taken at different time levels (t = 9, 14, 26 ms). As was to be expected,
error is localized in the surroundings of the depolarization front. The Monodomain model fails in the proper
representation of the front velocity, being slower than in the Bidomain model [29]: this aspect is well enlightened

4AZTEC software, http://acts.nersc.gov/aztec.

http://acts.nersc.gov/aztec
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Figure 3. Left: ‖up
B − up

M‖L∞(Γ) as a function of the number of Schwarz iterations p at
different time levels. Right: ‖up

B − up
M‖L∞(Γ) as a function of time after two and four Schwarz

iterations. Fibers orthogonal to the interface.

Figure 4. Membrane potential uBido (top) and errors uBido−uDD (with two Schwarz iterations
at each time step – middle) and uBido − uMono (bottom) at different time levels (left to right
t = 9, 14, 26 ms): ΩB = [0, 1] × [0, 1], ΩM = [1, 2] × [0, 1], θ = 0. Notice the different scales in
the values. The bottom rightmost picture enlightens the different velocities of the wavefronts.
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Figure 5. Left: relative differences in space, as a function of time, between uBido and uMono

(dotted line), and between uBido and uDD at convergence, for two different partitions of Ω;
ΩB = [0, 1] × [0, 1] (dashed line) or ΩB = [0, 1.5]× [0, 1] (solid line). Right: detail of the figure
on the left. The vertical lines enlighten the times when the action potentials reach the interfaces.

by the bottom rightmost picture in Figure 4. In there, the upper boundary of the dark region identifies the
Bidomain wavefront, while the lower boundary identifies the Monodomain wavefront. As a consequence, the
error in the coupled simulation is actually significant as the front approaches the interface, and gets slowed
down by the presence of the Monodomain region.

To quantify the error, we compute

δs =
||uBido − u∗||L2(Ω)

||uBido − urest||L2(Ω)
,

where u∗ is time to time the DD or the Monodomain solution. Normalization with uBido − urest enhances the
visualization of the errors we are interested in.

We investigate the influence of the size of the region ΩM on the overall accuracy. We consider two partitions
of the domain Ω : ΩB = [0, 1] × [0, 1] and ΩM = [1, 2] × [0, 1], ΩB = [0, 1.5] × [0, 1] and ΩM = [1.5, 2] × [0, 1].
In addition we consider the case ΩB = ∅ and ΩM = Ω. In Figure 5 we illustrate the time dependence of δs for
the different cases considered. From Figure 5 (left) we can appreciate the significant improvement with respect
to the full Monodomain solution (dotted line). Again, the error is larger when the depolarization front and the
late repolarization wave are located in ΩM. The influence of the size of ΩB is visible: the error peaks at 10%
when ΩB = [0, 1] × [0, 1], and at less than 5% when ΩB = [0, 1.5] × [0, 1]. A detailed view of the early part of
the simulation (Fig. 5, right) enlightens the fact that, even if the error grows as the wavefront approaches the
interface (the crossing instant is put into evidence by the two vertical lines), the approximation is still very good
inside ΩB (error peaks below 0.4% in the vicinity of the interface). This fact is promising in view of a model
adaptive strategy. In this case, the final goal is to solve the Bidomain model only in those regions where it
is needed, and the Monodomain model elsewhere. The problem of identifying the Bidomain and Monodomain
regions have been recently addressed in [23]. In that paper the Bidomain model has been shown to be necessary
where the upstroke and the recovery of the action potential occur. A model adaptive solver is supposed to be
able to track the wavefront and associate it to the Bidomain model. In this scenario, it is realistic to assume
that the interface between the Bidomain and the Monodomain regions is not crossed by the potential wavefront.
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Table 2. Relative difference in space and time between uBido and uDD (after two Schwarz
iterations and at convergence), and between uBido and uMono: θ denotes the angle between the
fibers direction and the x axis.

δs,t
u∗ = uDD u∗ = uMono

ΩB ΩM Ω ΩB ΩM Ω

θ = 0 2 it. 2.82 e–3 2.44 e–2 1.74 e–2 2.42 e–2 5.05 e–2 3.96 e–2
ε = 1 e–8 2.86 e–3 2.44 e–2 1.73 e–2

θ = π
4

2 it. 1.87 e–3 4.36 e–2 3.09 e–2 2.95 e–2 7.95 e–2 5.99 e–2
ε = 1 e–8 1.68 e–3 4.42 e–2 3.13 e–2
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Figure 6. Left: relative differences in space between uBido and uEM (dotted line), and between
uBido and uDD, with two Schwarz iterations per time step (dashed line) and at convergence (solid
line). Right: detail.

In order to have a global estimation of the error over the time interval of simulation we compute also the
index

δs,t =

⎛⎜⎜⎜⎝
T∫
0

||uBido − u∗||2L2(V )dt

T∫
0

||uBido − urest||2L2(V )dt

⎞⎟⎟⎟⎠
1/2

,

where V is time to time L2(ΩB), L2(ΩM), and L2(Ω). In Table 2 we report the relative difference in space
and time between uBido and uDD, after two iterations of the Schwarz Algorithm and at convergence (‖ηp+1

1 −
ηp

1‖l2(Γ) < ε), and between uBido and uMono. The subdomains are ΩB = [0, 1]× [0, 1] and ΩM = [1, 2]× [0, 1]. We
report the relative differences computed over the domains ΩB, ΩM and Ω, for two different fibers orientations,
one orthogonal and the other with an angle of θ = π/4 with respect to the interface. The time interval of the
simulation is [0, 450] ms.

We can infer from Table 2 that the solution obtained from the Schwarz Algorithms proves to be more accurate
than the pure Monodomain one both locally within ΩB and globally in Ω. Moreover, the fibers orientation with
respect to the interface does not affect significantly the results. On the other hand, Table 2 and Figure 6 show
that there is neither a global improvement in space and time nor an appreciable difference along time between
running the Schwarz Algorithm until convergence and running only two iterations of it.

Moreover, in Table 3 we report the relative CPU time with respect to a full Bidomain simulation: the 53%
gain in the overall computational time is significant. Therefore, for the sake of computational cost reduction,
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Table 3. Relative CPU time with respect to a full Bidomain simulation. Here uDD is computed
with two Schwarz iterations.

uBido uDD uMono

CPU Time 1.00 0.47 0.15

Table 4. Relative difference in space and time between uEM and uDD (at convergence), and
between uEM and uBido: θ denotes the angle between the fibers direction and the x axis.

‖uEM−u∗‖L2(0,T ;V )

‖uEM−urest‖L2(0,T ;V )

u∗ = uDD u∗ = uBido

ΩB ΩM Ω ΩB ΩM Ω
θ = 0 5.31 e–4 1.21 e–3 9.34 e–4 2.46 e–3 2.47 e–2 1.75 e–2
θ = π

4 2.70 e–4 1.96 e–3 1.40 e–3 1.48 e–3 4.49 e–2 3.17 e–2

we will perform in practical applications (such as the one in Sect. 5.3) only two iterations of the Optimized
Schwarz Algorithm.

Comparison with the Extended Monodomain

The second interface condition in (3.6) relies on approximating the unknown ue,M . In order to highlight
the error due to this approximation, we compare the domain decomposition solution uDD with the solution
uEM obtained coupling the Bidomain and the Extended Monodomain through conditions (3.4) and (3.5). The
corresponding Schwarz algorithm is implemented until convergence. We consider here again ΩB = [0, 1]× [0, 1]
and ΩM = [1, 2]×[0, 1], and we run the simulation for 450 ms. We plot in Figure 6 (right) the relative difference in
space between uBido and uEM, uBido and uDD (with both two Schwarz iterations and at convergence) as a function
of time. The curves are nearly overlapped, showing analogous performance between the Bidomain/Monodomain
coupling and the Bidomain/Extended Monodomain one. As a matter of fact (Fig. 6, right), very small difference
between the two kinds of coupling are present.

Finally, we report in Table 4 the relative difference in space and time between uEM and uDD for two different
fibers orientations, one orthogonal and the other with an angle of θ = π/4 with respect to the interface. In both
cases uDD is very close to uEM. Moreover, since uEM computes also the extracellular potential, from Table 4
we can infer that the main error between uDD and uBido comes from the Monodomain approximation, and not
from the extracellular potential approximation in the interface coupling.

5.3. A three dimensional application

In many applications the Monodomain model is accurate enough to capture the desired dynamics and effects
of the action potential propagation. Potse et al. [29] stated that “in absence of applied currents, propagating of
action potentials on the scale of a human heart can be studied with a monodomain model”. Our idea is to solve
the Bidomain equations only in those regions where the presence of applied currents cannot be treated with the
Monodomain model. We simulate the propagation of the stimulus exerted by a bipolar pacemaker [19,32] on a
simplified left ventricular geometry, constituted by a truncated ellipsoid [7], with the analytical fibers mapping
described therein. As usual we denote with Ω the computational domain, that we split in the two subdomains
ΩB and ΩM (Fig. 7). We discretize the computational domain with a tetrahedral mesh, whose average element
diameter is 0.6 mm: although this mesh size is not fine enough for an accurate capturing of the action potential
propagation, it is sufficient to have a reasonable comparison between the solutions obtained with the different
approaches considered.

We consider an epicardial pacemaker stimulation. In such situation the pacemaker lead reaches the left
ventricle through a branch of the coronary sinus, thus its dipole is located on the exterior of the ventricle wall.
This provides a stimulus through a variation of the extracellular current. The adoption of the Monodomain
model in this case is not recommended since the Monodomain is unable to correctly capture the changes
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Figure 7. The domains ΩB (dark) and ΩM (light), and the pacemaker lead. The arrow points
out the visualization angle in the subsequent plots of the solution.

in the extracellular current [37]. This will be confirmed by our simulations. We consider two point sources, rep-
resenting the cathode and the anode, located 5 mm apart in xc = (2.75, 0, 0) and xa = (3.25, 0, 0) respectively.
The distance between the cathode and the epicardial wall is 0.5 mm. We assume the electrodes to be immersed
in an isotropic medium of conductance g. The electrical potential ϕ satisfies the equation

−∇ · (g∇ϕ) = Istim (δ(x − xc) − δ(x − xa)) (5.1)

where δ(x) is the Dirac distribution centred in 0 [19]. We take Istim = −4 mA for the first millisecond of
the simulation, and 0 afterwards. Hence, solving the above equation in R

3 and prescribing that ϕ vanishes at
infinity, we get

ϕ =
Istim

4πg

(
1

|x − xc|
− 1

|x − xa|

)
· (5.2)

We thus solve the Bidomain Problem (2.8), with boundary conditions

nT Di (∇uB + ∇ue,B) = 0

nT De∇ue,B = nT g∇ϕ = −Istim

4π
nT

(
x − xc

|x − xc|3
− x − xa

|x − xa|3

) (5.3)

and no applied current (Iapp = Ĩapp = 0). Notice that
∫

∂Ω nT g∇ϕdΣ =
∫
Ω ∇ · (g∇ϕ) dx = 0, since the point

sources are outside the truncated ellipsoid (Gauss’ law). This implies that the compatibility conditions on the
second equation of the Bidomain problem is fulfilled. Again we ask ue,B to have zero mean.

We take the Bidomain region ΩB close to the electrodes. More precisely, ΩB is given by the intersection of
a cylinder of radius r = 0.75cm and axis x with the truncated ellipsoid, as shown in Figure 7. On ∂ΩB ∩ ∂Ω
we prescribe the boundary conditions (5.3). We couple the two domains with the Schwarz algorithm proposed,
performing only two iterations per time step. The parameter α∗ is the one given in (4.26). If we face this
problem with the Monodomain equation over the entire domain, by the usual assumption De = σl

e

σl
i

Di the
boundary conditions (5.3) read

nT DM∇u = nT σl
e

σl
i + σl

e

Di (∇uB + ∇ue,B) − nT σl
i

σl
i + σl

e

De∇ue,B

= −nT gσl
i

σl
i + σl

e

∇ϕ =
Istimσl

i

4π(σl
i + σl

e)
nT

(
x − xc

|x − xc|3
− x − xa

|x − xa|3

)
·

(5.4)
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Figure 8. Left: transmembrane potential [mV] (top to bottom: uBido, uDD, uMono) in the
area enlightened by the arrow in Figure 7 at different time-steps (from left to right: t = 2 ms,
t = 5 ms, t = 10 ms, t = 25 ms). Right: relative differences in space (on Ω), as a function of
time, between uBido and uMono (dashed line) and between uBido and uDD (solid line).

Figure 9. Difference between uBido and uDD [mV] in the area enlightened by the arrow in
Figure 7 at different time-steps (from left to right: t = 2 ms, t = 5 ms, t = 10 ms, t = 25 ms).
uDD is computed with two Schwarz iterations.

In Figure 8 (left) we report the transmembrane potential on the epicardial wall near the stimulus region (the
area enlightened by the arrow in Fig. 7) computed with different models. In Figure 8 (right) we plot the relative
difference in space, as a function of time, between uBido and uMono and uBido and uDD. When the depolarization
and repolarization waves travel in ΩB, the error uDD is of the order of 50% of uBido. This is much larger than
that in the 2D case, since now |ΩB| � |ΩB|. In Figure 9 we report the difference between uBido and uDD.

Table 5 shows that both uDD and uEM are more accurate solutions than uMono, especially within ΩB. The
solutions uDD and uEM are comparable in terms of accuracy, but the latter one is computationally more expensive
(Tab. 6); it is actually more expensive than the Bidomain solution itself. This is due to the fact that to get
uEM one has to solve the ill-conditioned system (2.16).

The computational costs associated with the Schwarz algorithm and the full Monodomain approach are
similar and significantly smaller than the full Bidomain one. Thus if one wants to properly solve the coupling
between the myocardium and the bipolar pacemaker, the Schwarz algorithm is a cheap alternative to the full
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Table 5. Relative difference in space and time between uBido and uDD, uBido and uMono, uBido

and uEM.

u∗ = uDD u∗ = uEM u∗ = uMono

ΩB ΩM Ω ΩB ΩM Ω ΩB ΩM Ω
δs,t 8.67 e–3 1.14 e–1 1.13 e–1 7.34 e–3 1.14 e–1 1.13 e–1 5.41 e–2 1.42 e–1 1.40 e–1

Table 6. Relative CPU time. uDD and uEM computed with two Schwarz iterations.

uBido uDD uEM uMono

CPU Time 1.000 0.309 1.400 0.308

Bidomain approach. In this case, the full Monodomain approach is infeasible since the Monodomain equation
fails to handle the extracellular potential.

6. Conclusions

Reduction of computational costs from solving the Bidomain equations in electrocardiology is usually attained
by means of parallel hardware architectures. In this paper we address a different (complementary rather
than alternative) approach essentially based on downscaling the expensive Bidomain model to the simpler
Monodomain one on (one or more) parts of the computational domain supposed to be less relevant to the entire
potential dynamics. Coupling the Bidomain system with the Monodomain equation is by itself a nontrivial
task, since the two problems have different mathematical features. In particular, the Monodomain problem
solves the transmembrane potential, while the Bidomain one considers the intra- and extracellular potentials
separately. In this paper we presented some possible interface conditions obtained started from a Bidomain
problem solved by subdomains. Moving from classical interface conditions, we downscaled them in a natural
way as a consequence of the approximation with the Monodomain problem. Robin-Robin conditions have been
used in the context of an Optimized Schwarz Algorithm. Fourier analysis allowed to prove the convergence and
to find a good approximation of the optimal values for the parameter in the interface condition. Numerical
results carried out in both 2D and 3D confirmed that our DD approach is a viable method for reducing CPU
costs without affecting significantly the accuracy. Due to the fast convergence of the Schwarz Algorithm, the
DD approach is effective whenever we are interested in solving the Bidomain model only on specific regions
of the domain, as in the presence of pacemakers. Another promising application is the development of a
model adaptive solver. Dynamics of the differences between the DD and the fully Bidomain system suggest
to investigate a posteriori error estimates in view of an adaptive implementation of the algorithms presented
here. An effective and reliable a posteriori error estimator has been presented in [23], where the downscaled
model was the Extended Monodomain. However, our numerical results showed that the solution computed
with the Bidomain/Monodomain DD approach is pretty close to that computed with the Bidomain/Extended
Monodomain DD approach. The implementation of the Optimized Schwarz Algorithm presented here in a
model adaptive strategy to solve real problems with mesh sizes fine enough to capture the details of the action
potential propagation are an ongoing development of the present work and will be subject of a forthcoming
paper.
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