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ENABLING NUMERICAL ACCURACY OF NAVIER-STOKES-α
THROUGH DECONVOLUTION AND ENHANCED STABILITY ∗
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Abstract. We propose and analyze a finite element method for approximating solutions to the Navier-
Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabiliza-
tion and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer
from two major sources of error if their solutions are considered approximations to true fluid flow:
(1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error
on the velocity error that arises from the (necessary) use of the rotational form nonlinearity. The
proposed scheme “fixes” these two numerical issues through the combined use of a modified grad-div
stabilization that acts in both the momentum and filter equations, and an adapted approximate decon-
volution technique designed to work with the altered filter. We prove the scheme is stable, optimally
convergent, and the effect of the pressure error on the velocity error is significantly reduced. Several
numerical experiments are given that demonstrate the effectiveness of the method.
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1. Introduction

We study a finite element method (FEM) for the NS-α model that employs both a stabilization of grad-div
type and adapted van Cittert approximate deconvolution to produce high accuracy flow simulations. This new
scheme provides accurate computations with NS-α, which is widely known as a physically accurate model, but
whose widespread use has not yet caught on due to large error in its numerical approximations. Motivated by the
belief that the large errors are a shortcoming of the FEM implementations and not the model, we identify two
major sources of numerical error arising in FEM discretizations of NS-α, and propose a scheme that “fixes” both
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of them. Analysis of this new scheme shows both unconditional stability and optimal convergence, and several
numerical experiments including the Green-Taylor vortex problem, flow over a step, and the 3d Ethier-Steinman
problem demonstrate its effectiveness.

Originally called the 3d viscous Camassa-Holm equations [9], NS-α has attracted significant attention in recent
years due to its many attractive mathematical and physical properties. It admits unique regular solutions [20,
37], is frame invariant [24], conserves energy, helicity, and 2d enstrophy [19,46], obeys Kelvin’s circulation
theorem [19], cascades energy through the inertial range at the same rate as the Navier-Stokes equations (NSE)
up to a filtering radius dependent cut-off length scale after which it accelerates energy decay [19], can be fully
resolved with O(Re3/2) degrees of freedom (compared to O(Re9/4) for the NSE) [19], and dissipates energy and
helicity independent of Reynolds number as O(U3/L) and O(U3/L2) respectively, as in true fluid flow [35].

These properties suggest NS-α is more physically accurate than many other models. For example, the k − ε,
Smagorinsky, Leray, and Bardina models do not conserve helicity and thus will nonphysically inject or dissipate
helicity (and thus rotation) in their solutions. Moreover, the Bardina model [4,45] does not even conserve
energy, the Leray model is not frame invariant and fails to satisfy Kelvin’s circulation theorem [24], and the
Smagorinksy model has been shown to dissipate energy too quickly through the inertial range [41]. However,
despite all of NS-α’s excellent theoretical properties, and that direct numerical simulation (DNS) testing of the
model was successful for flow in a channel and in a cylinder [10–12,36], its use has still remained limited. We
believe this has not been due to a lack of effort from the CFD (computational fluid dynamics) community or
that the model itself is inherently inaccurate, but instead because of poor accuracy caused by subtle numerical
problems arising in FEM implementations of the model.

NS-α uses the Helmholtz filter (also called the α filter), which for a chosen filtering radius α, is given by

u := F u := (−α2Δ + I)−1u. (1.1)

The NS-α model is then defined to be

ut − u × (∇× u) + ∇p − νΔu = f, (1.2)
∇ · u = ∇ · u = 0, (1.3)

with ν representing the kinematic viscosity.
Although (1.1)–(1.3) is well-posed in the periodic case, for wall bounded flows it is not. In this case, the

divergence free condition ∇·u = 0 is not consistent with the definition of the filter in (1.1), which would have a
unique solution without the constraint. However, this constraint is necessary for nonlinear stability (and thus
well-posedness) of the system, so it cannot be removed. Hence the natural solution, first suggested in [47] and
subsequently used successfully in [16,39], is to relax the filter equation with a Lagrange multiplier to allow for
the divergence free constraint on the filtered velocity. This is accomplished by adding 0 = ∇(∇ · u) to the filter
equation, then replacing ∇ · u with the new variable (Lagrange multiplier) λ. Note this formulation has the
additional advantage that the physically important constraint ∇ · u = 0 can now also be included. That this
new system is well-posed now follows easily by the Galerkin method, essentially following proof by [20] for the
periodic case. Hence the system we study is (1.2)–(1.3) with the filter equation

u − α2Δu + ∇λ = u. (1.4)

The scheme proposed herein attempts to reduce significantly the numerical error arising from two sources.
First, the rotational form of the nonlinearity leads to a complex Bernoulli-like pressure. This Bernoulli pressure
accounts for the kinematic term u2

2 and so may share internal and boundary layers of the velocity field. Thus,
if a mesh is not sufficiently fine a large pressure error arises, causing a scaling of the velocity error as velocity
error ≈ Re * pressure error (cf. Sect. 4), where Re is the Reynolds number. Hence for large Re, the velocity
error can be very large. In [33], it is shown that a similar problem arises when computing the Navier-Stokes
equations (NSE) with the rotational form of the nonlinearity, and can be fixed with grad-div stabilization
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described in the next section. Similar fixes have been successfully used for the same purpose in the Stokes
equations [43] and the steady NSE [42]. An extension of this idea to NS-α was proposed by Connors in [16], by
adding the usual grad-div stabilization term to a standard FEM for NS-α. However, his analysis showed that
for unconditional stability, the grad-div stabilization parameter needs chosen smaller than O(ν), which is far
from an optimal choice of O(1). We find that, by also adding grad-div stabilization to the filter equation with a
carefully chosen coefficient, no condition needs placed on the grad-div stabilization parameter for unconditional
stability, allowing for the optimal reduction of the effect of the pressure error on the velocity error. We refer
to these two grad-div stabilizations as a modified grad-div stabilization, as they really work together as one
stabilization, and with a single parameter, to reduce error in an unconditionally stable way.

We point out that the stabilization method suggested herein is inherently tied to Taylor-Hood type elements,
that is, the (Pk, Pk−1) pair for k ≥ 2. Although this is perhaps the most widely used element pair for finite
element computations, it is not the only one. Other element choices may naturally lead to other stabilizations,
or none at all, at least for the purpose of reducing the effect of the Bernoulli pressure. For example, Scott-
Vogelius elements use a large enough pressure space (see [8] for a study of these elements with the Navier-Stokes
equations) that such a stabilization term would be implicitly zero. Similarly, a local discontinuous Galerkin
scheme has been developed in [14] that also would provide pointwise mass conservation. Another example of
interesting element choice would be equal order elements with a pressure stabilization for stability, as in [7],
since the increased degree of approximating polynomials for the pressure will alleviate some of the error arising
from the Bernoulli pressure. Naturally, these alternate element choices have their drawbacks as well, and herein
we consider only the Taylor-Hood type element. Still, future numerical studies of this model with such element
choices would be interesting and likely worthwhile.

The second major source of error in NS-α computations (and in any α-type model) arises from the model’s
consistency error to the NSE. Even for smooth flows, it is clear from (1.3)–(1.4) that one cannot expect accuracy
better than O(α2) from the model itself, even before any computational error is introduced. It is typical to
have α = O(h), where h is the mesh size. In the series of papers [1,2,49] Stolz, Adams and Kleiser suggested
to reduce the filter-induced consistency error in turbulence models via the van Cittert method of approximate
deconvolution and proved it to be an excellent tool for producing reduced order simulations with high accuracy.
The method constructs a family DN of approximate inverses to the filter F as the truncation of the nonconvergent
power series: F−1 =

∑∞
n=0(I − F )n:

DN =
N∑

n=0

(I − F )n. (1.5)

In the NS-α model with approximate deconvolution of order N the filtered velocity u in (1.2) is modified as

u → DNu.

In [46], it is shown how van Cittert approximate deconvolution can be added to NS-α to increase its consistency
error to the NSE to O(α2N+2), where N is typically chosen 1 ≤ N ≤ 5. Computations in [47] show this
can improve accuracy in simulations. This technique has also been used successfully to improve accuracy in
simulations using other α-type models, such as Leray-α and NS-ω [32,34,47]. For numerical experiments in this
paper we set either N = 0 (no deconvolution) or N = 1.

The numerical examples presented herein will show that the combination of modified grad-div stabilization with
approximate deconvolution has a tremendous impact in obtaining accurate solutions with FEM discretizations
of NS-α. Although one rarely will know a priori, sometimes the velocity error will be dominated by the modeling
error, and other times by (Re ∗ pressure error). By themselves, the proposed “fixes” of the scheme will help
significantly in only one of the two cases, but likely very little in the other. When used together, however, they
can greatly reduce the error in most problems, and have an even greater effect than either one used individually.

This paper is arranged as follows. Section 2 introduces notation and important general properties of the
nonlinear term and finite element spaces. In particular, it introduces the semidiscrete scheme, new discrete
operators and relevant properties of induced norms. These are rather technical, but simplify the stability
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and convergence proofs. Section 3 presents a full discretization of the scheme and its stability analysis, together
with some preliminary results needed in Section 4, in which the convergence analysis is proven. Section 5 features
numerical experiments that corroborate the convergence analysis of Section 4 and show that the scheme is able
to predict expected physical behavior accurately.

2. The finite element scheme and preliminaries

Let Ω ⊂ R
d, d = 2, 3, be a polyhedral domain and τh be a regular discretization of Ω such that the

inverse inequality holds. Let (Xh, Qh) ⊂ (X, Q) = (H1
0 (Ω)d, L2

0(Ω)) be the velocity-pressure spaces satisfying
the discrete inf-sup (or LBB) condition [25]. Denote by (·, ·) and ‖·‖ the L2(Ω) inner product and norm,
respectively. The space Hk represents the Sobolev space W 2

k (Ω) and ‖·‖k denotes the norm in Hk. For
functions v(x, t) defined on the entire time interval (0, T ), we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
0<t<T

‖v(t, ·)‖k, and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖m
k dt

)1/m

.

All other norms and inner products will be labeled with subscripts.
We make use of the following approximation properties:

inf
v∈Xh

‖u − v‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω)d,

inf
v∈Xh

‖u − v‖1 ≤ Chk|u|k+1, u ∈ Hk+1(Ω)d,

inf
r∈Qh

‖p − r‖ ≤ Chs+1|p|s+1, p ∈ Hs+1(Ω). (2.1)

Moreover, if ∇ · u = 0, then in the first estimates from (2.1), the finite element space Xh can be replaced by its
subspace [6]:

Vh := {vh ∈ Xh | (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

2.1. The finite element scheme

The spatial discretization of (1.2)–(1.3) reads: Find {uh(t), ph(t)} ∈ Xh × Qh ∀t ∈ (0, T ] solving

(
∂uh

∂t
, vh

)
+ ν(∇uh,∇vh) − (Dh

NFhuh × (∇× uh), vh) − (ph,∇ · vh) + (qh,∇ · uh)

+ γ(∇ · uh,∇ · vh) = (f, vh), ∀{vh, qh} ∈ Xh × Qh, ∀t ∈ (0, T ]. (2.2)

A particular time discretization is not important for us at this moment and will be specified later. The discrete
filter Fh and the discrete deconvolution operator Dh

N are defined below. If γ > 0 then the violation of the
divergence constraint by the finite element solutions is additionally penalized; γ = 0 corresponds to the plain
Galerkin method. Adding such a term is known as the grad-div stabilization and corresponds to adding the
vanishing −γ∇divu term to the momentum equation (1.2). The convergence analysis in Section 4 recovers the
stabilizing effect of the γ-term with respect to a possible poor pressure resolution.

Besides the stabilizing of the Bernoulli pressures discretizations and turbulence modelling, penalizing the
divergence constraint is not a new idea. This term was part of the Petrov-Galerkin method (SUPG) in [18,26].
In practice this term is often omitted, and until recently it was not clear if it is needed for technical rea-
sons of the analysis or played an important role in computations. The role of the grad-div stabilization was
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again emphasized in the recent studies of the (stabilized) finite element methods for incompressible flow prob-
lems, see [21,38,43,50], also in conjunction with the rotation form of nonlinearities in the Navier-Stokes equa-
tions [33,34,42] and variational multiscale turbulence modelling [27]. Its relation to the variational multiscale
approach is revealed in [15,22,44].

In numerical experiments done with LBB-stable finite element discretizations and presented further in the
paper, we show that the simple choice γ = 1 already leads to a dramatic improvement of accuracy compared
to γ = 0. Although γ = 1 may not be an optimal choice, it is not the intention of this paper to find optimal
parameter. It should be noted, however, that if the discretization provides better pressure approximation,
as happens with stabilized equal-order FE, one may put less emphasis on the additional enforcement of the
divergence free constraint and decrease γ accordingly. The Scott-Vogelius element [48] ultimately enforces the
divergence free condition point-wise. In a more general setting, γ may vary in Ω from element to element and an
optimal choice may depend on a particular flow problem, discretization, etc., see [44] for a detailed discussion.

It remains to define the discrete filter Fh and the discrete deconvolution operator Dh
N . We found that

it is important in numerical implementations to force the divergence-free condition for the filtered function
(similar observations can be found in [16,39,47]). Therefore, instead of the discrete Helmholtz type problem
we are considering the following discrete Stokes type problem: For a chosen filtering radius α > 0 and a given
u ∈ L2(Ω) define Fhu = uh from

α2
(
(∇uh,∇vh) +

γ

ν
(∇ · uh,∇ · vh)

)
− (λh,∇ · vh) + (qh,∇ · uh) + (uh, vh) = (u, vh),

∀{vh, qh} ∈ Xh × Qh. (2.3)

It is important for the analysis and accurate numerics that the discrete filter (2.3) is also stabilized with the
grad-div term and the parameters ν and γ are taken the same as in (2.2). The Lagrange multiplier λh is never
used further in calculations.

Finally, given the discrete filter Fh the discrete van Cittert approximate deconvolution Dh
N is defined through

(1.5) with F replaced by Fh. As an example, the first few operators of the family are

Dh
0 φ = φ,

Dh
1 φ = 2φ − φ

h
,

Dh
2 φ = 3φ − 3φ

h
+ φ

h
h

.

Further in this paper we prove stability and error estimate for this stabilized discrete NS-α model with the
approximate deconvolution. For this purpose we need some technical results formulated further in this section.

2.2. Grad-div modified Laplacian and filtering

For both readability and a smooth analysis, we believe it is useful to develop notation for a grad-div modified
Laplacian and the modified filter defined in terms of this new Laplacian.

We begin by defining the grad-div modified discrete Laplacian operator acting on the space of discretely
solenoidal functions Vh.

Definition 2.1 (modified Laplacian). Given parameters γ, ν > 0, define the grad-div modified discrete
Laplacian Δ̃h : H1(Ω) → Vh as the unique solution in Vh to

(Δ̃hφ, v) = −(∇φ,∇v) − γ

ν
(∇ · φ,∇ · v), ∀v ∈ Vh. (2.4)

For φ ∈ L2(Ω), Fhφ = φ
h

from (2.3) can equivalently be defined as the unique solution in Vh to

− α2(Δ̃hφ
h
, v) + (φ

h
, v) = (φ, v), ∀v ∈ Vh. (2.5)
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Thus, restricted on Vh the filter Fh has a well-defined inverse and can be written in the following compact way:
Fh := (−α2Δ̃h + I)−1.

The following lemma provides some simple identities and inequalities that arise from the filter definitions.
They will be of great importance in the later analysis.

Lemma 2.2. For φ ∈ L2(Ω), we have that

‖φh‖2 + α2‖∇φ
h‖2 +

α2γ

ν
‖∇ · φh‖2 = (φ, φ

h
), (2.6)

‖∇φ
h‖2 +

γ

ν
‖∇ · φh‖2 + α2‖Δ̃hφ

h‖2 = (∇φ,∇φ
h
) +

γ

ν
(∇ · φ,∇ · φh

), (2.7)

‖φh‖ ≤ ‖φ‖, (2.8)

‖I − Fh‖ ≤ 1, (2.9)

‖∇φ
h‖2 +

γ

ν
‖∇ · φh‖2 + α2‖Δ̃hφ

h‖2 ≤ ‖∇φ‖2 +
γ

ν
‖∇ · φ‖2. (2.10)

Proof. The first identity follows immediately from choosing v = φ
h

in (2.5). For the second identity, choose
v = −Δ̃hφ

h
in (2.5) to get

α2‖Δ̃hφ
h‖2 − (φ

h
, Δ̃hφ

h
) = −(φ, Δ̃hφ

h
).

Since Δ̃hφ
h ∈ Vh, the result now follows the definition of the modified discrete Laplacian (2.4). The inequal-

ities (2.8) and (2.10) are immediate consequences of (2.6) and (2.7) respectively, by applying Cauchy-Schwarz
and Young’s inequalities. The inequality (2.9) follows from (2.8), noting that Fh also denotes the modified
Helmholtz filter. �

2.3. Natural energy and energy dissipation norms

The numerical scheme studied herein can be more easily analyzed in the following natural energy and energy
dissipation norms.

Definition 2.3. We define the natural energy and energy dissipation norms for NS-α-deconvolution to be

‖φ‖2
E;N := (φ, Dh

Nφ
h
), (2.11)

‖φ‖2
ε;N := −(Δ̃hφ, Dh

Nφ
h
). (2.12)

Remark 2.4. In their continuous forms, for general α, these norms (and the natural norms of continuous
NS-α-deconvolution [19,46]) are equivalent to the H−1 and L2 norms, respectively, which is one degree less
than is common for fluid flow schemes. However, provided the inverse inequality holds and the filtering radius
is chosen as α = O(h) (as it should be for optimal accuracy with sufficient regularization [32,34]) on Vh, these
discrete norms are equivalent to the L2 and H1 norms, respectively, cf. [39].

For the ease of analysis, it will be very helpful to have equivalence between the natural norms for varying
orders of deconvolution N .

Lemma 2.5. For φ ∈ Vh and for each natural number N , the energy norm defined by (2.11) is equivalent to
the zeroth order energy norm defined by (2.11). That is,

‖φ‖E;0 ≤ ‖φ‖E;N ≤
√

N‖φ‖E;0. (2.13)

For φ ∈ Vh and for each natural number N , the energy dissipation norm defined by (2.12) is equivalent to the
zeroth order energy dissipation norm defined by (2.12). That is,

‖φ‖ε;0 ≤ ‖φ‖ε;N ≤
√

N‖φ‖ε;0. (2.14)
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Proof. Consider the expansion of ‖φ‖2
E;N :

‖φ‖2
E;N = (φ, Dh

Nφ
h
) =

N∑
n=0

(φ, (I − Fh)nFhφ).

From (2.8), we have that ‖Fhφ‖ = ‖φh‖ ≤ ‖φ‖, and thus that ‖Fh‖ ≤ 1, and (I − Fh) and Fh are positive and
self adjoint on Vh. Then since Fh and (I − Fh)n commute, for each term in the expansion we get

(φ, (I − Fh)nFhφ) = ((I − Fh)
n
2 F

1
2

h φ, (I − Fh)
n
2 F

1
2

h φ) = ‖(I − Fh)
n
2 F

1
2

h φ‖2.

Thus ‖φ‖2
E;N is a sum of nonnegative terms, the first of which is (φ, Fhφ) = ‖φ‖2

E;0, and therefore we get
‖φ‖E;0 ≤ ‖φ‖E;N .

Also, since ‖I − Fh‖ ≤ 1, we have

(φ, (I − Fh)nFhφ) = ‖(I − Fh)
n
2 F

1
2

h φ‖2 ≤ ‖F 1
2

h φ‖2 = (φ, Fhφ) = ‖φ‖2
E;0.

Thus, ‖φ‖2
E;N ≤ N‖φ‖2

E;0, which completes the proof of the equivalence of the natural energy norms.
For the second equivalence result, consider the expansion of ‖φ‖2

ε;N :

‖φ‖2
ε;N = −(Δ̃hφ, Dh

Nφ
h
) =

N∑
n=0

−(Δ̃hφ, (I − Fh)nFhφ) =
N∑

n=0

−(FhΔ̃hφ, (I − Fh)nφ). (2.15)

Using the definition of Fh,

FhΔ̃hφ =
−1
α2

Fh

(
(I − α2Δ̃h) − I

)
φ =

−1
α2

Fh

(
F−1

h − I
)
φ =

−1
α2

(I − Fh)φ. (2.16)

Combining (2.16) and (2.15) gives

‖φ‖2
ε;N =

N∑
n=0

1
α2

((I − Fh)φ, (I − Fh)nφ) =
N∑

n=0

1
α2

‖(I − Fh)(n+1)/2φ‖2.

Since 1
α2 ‖(I − Fh)

1
2 φ‖2 = ‖φ‖2

ε;0, using (2.4) and (2.5), we have proven that ‖φ‖2
ε;N is a sum of positive terms,

including ‖φ‖2
ε;0. Thus we have that ‖φ‖ε;0 ≤ ‖φ‖ε;N . To complete the proof, since ‖I − Fh‖ ≤ 1, we note

that each term in the expansion of ‖φ‖ε;N is less than or equal to ‖φ‖ε;0. Summing these terms completes the
proof. �

The following technical lemmas lead to simpler stability and convergence analysis.

Lemma 2.6. Let φ ∈ Vh. Then the following inequalities hold:

‖Dh
Nφ

h‖ ≤ N‖φ‖E;0, ‖∇Dh
Nφ

h‖ ≤ N‖φ‖ε;0.

Proof. We prove the second (harder) inequality first. The first inequality will follow in an analogous way. This
proof uses the definitions of the natural energy dissipation norms and modified discrete Laplacian, and manip-
ulates using commutation and positive definite properties of the filter and deconvolution operator. From (2.4)
we obtain

‖∇Dh
Nφ

h‖2 =
(
∇Dh

Nφ
h
,∇Dh

Nφ
h
)
≤ −

(
Δ̃hDh

Nφ
h
, Dh

Nφ
h
)
.
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Since the filter and deconvolution operators commute and are both positive definite and self-adjoint, and also
using the norm equivalence lemma, we get

−
(
Δ̃hDh

Nφ
h
, Dh

Nφ
h
)

= −
(

Δ̃hDh
N

1
2 F

1
2

h φ, Dh
NDh

N

1
2 F

1
2

h φ
h
)

= ‖Dh
N

1
2 F

1
2

h φ‖2
ε;N ≤ N‖Dh

N

1
2 F

1
2

h φ‖2
ε;0

= −N

(
Δ̃hDh

N

1
2 F

1
2

h φ, Dh
N

1
2 F

1
2

h φ
h
)

= −N

(
Δ̃hF

1
2

h φ, Dh
NF

1
2

h φ
h
)

= N‖F 1
2

h φ‖2
ε;N ≤ N2‖F 1

2
h φ‖2

ε;0.

Expanding out the last term and using the norm equivalence result as well as (2.7) yields

N2‖F 1
2

h φ‖2
ε;0 = −N2(Δ̃hφ

h
, φ

h
) = N2

(
‖∇φ

h‖2 +
γ

ν
‖∇ · φh‖2

)
≤ N2

(
(∇φ,∇φ

h
) +

γ

ν
(∇ · φ,∇ · φh

)
)

= N2‖φ‖2
ε;0,

which completes the proof. �

Lemma 2.7. For φ ∈ Vh, the following inequalities hold:

γ‖∇ · φh‖2 ≤ ν‖φ‖2
ε;0, (2.17)

‖φh‖ε;0 ≤ ‖φ‖ε;0, (2.18)

γ‖∇ · Dh
Nφ

h‖2 ≤ C(N)ν‖φ‖2
ε;N . (2.19)

Proof. The first inequality is a direct consequence of (2.7). For the second inequality, expanding the difference
of squares of the terms gives

‖φ‖2
ε;0 − ‖φh‖2

ε;0 = (∇φ,∇φ
h
) +

γ

ν
(∇ · φ,∇ · φh

) −
(
∇φ

h
,∇φ

h
h
)

− γ

ν

(
∇ · φh

,∇ · φh
h
)

.

Equations (2.7) and (2.10) now imply the difference is positive. For the last inequality, expand the deconvolution
operator as a sum with coefficients βn, and use (2.17), as

γ‖∇ · Dh
Nφ

h‖2 ≤
N∑

n=0

βnγ‖∇ · Fn
h φ

h‖2 ≤
N∑

n=0

βnγ‖∇ · Fn
h φ

h‖2 ≤
N∑

n=0

βnν‖Fn
h φ‖2

ε;0.

Applying (2.18) now gives

N∑
n=0

βnν‖Fn
h φ‖2

ε;0 ≤
N∑

n=0

βnν‖φ‖2
ε;0 ≤ C(N)ν‖φ‖2

ε;0 ≤ C(N)ν‖φ‖2
ε;N . �

The lemmas below provide necessary estimates involving the new grad-div modified Laplacian and the
van Cittert operator Dh

N . Due to the similarity of the proofs with those in [32], we omit them herein.

Lemma 2.8. The operators DN : L2(Ω) → L2(Ω) and Dh
N : Vh → Vh are bounded, self-adjoint positive

operators. For φ ∈ L2(Ω),
φ = DNφ + (−1)(N+1)α2N+2ΔN+1FN+1φ,
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and for φ ∈ Vh,
φ = Dh

Nφ
h

+ (−1)(N+1)α2N+2Δ̃N+1
h FN+1

h φ.

Proof. The proof is based on an algebraic identity, following [5]. �
The following lemma is the key to reducing the error arising from the consistency of the model.

Lemma 2.9. For divergence free φ ∈ H2N+2
0 (or φ ∈ H2N+2 is zero mean periodic), the discrete approximate

deconvolution operator defined on the inf-sup stable spaces of continuous piecewise polynomial (Pk, Pk−1) satisfies

‖φ − Dh
Nφ

h‖ ≤ C(N)hk

(
ν1/2

αγ1/2
+ α + h +

αγ1/2

ν1/2

)( N∑
n=0

| Fnφ |k+1

)
+ Cα2N+2‖ΔN+1FN+1φ‖. (2.20)

Remark 2.10. When φ lacks the smoothness required for Lemma 2.9, the error caused by applying discrete
deconvolution is of the same order as the filtering error. If φ is divergence free but only satisfies φ ∈ X and
Δφ ∈ L2(Ω), then it can be shown that

||φ − Dh
Nφ

h|| ≤ C(N) inf
vh∈V h

(||φ − vh||2 + α2||∇(φ − vh)||2 +
α2γ

ν
||∇ · (φ − vh)||2) 1

2

+ C(N)

(
α2||Δφ|| + α

√
γ

ν
‖∇ · φ‖

)
.

Proof. We start the proof by splitting the error

‖φ − Dh
Nφ

h‖ ≤ ‖φ − DNφ‖ + ‖DNφ − Dh
Nφ‖ + ‖Dh

Nφ − Dh
Nφ

h‖. (2.21)

For the first term, Lemma 2.8 gives

‖φ − DNφ‖ ≤ C α2N+2‖ΔN+1FN+1φ‖. (2.22)

Analysis of the second and third terms relies on an estimate for ‖φ− φ
h‖, and so we derive this first. From the

definitions of the discrete and continuous filters, we have for vh ∈ Vh,

(φ, vh) + α2(∇φ,∇vh) +
α2γ

ν
(∇ · φ,∇ · vh) − (λ,∇ · vh) = (φ, vh),

(φ
h
, vh) + α2(∇φ

h
,∇vh) +

α2γ

ν
(∇ · φh

,∇ · vh) = (φ, vh).

Subtracting these equations, defining e := φ − φ
h
, decomposing e into its parts in and out of Vh by e =

(φ − Φ) + (Φ − φ
h
) =: s + rh, where Φ is the L2 projection of φ into Vh, gives for every vh ∈ Vh,

(rh, vh) + α2(∇rh,∇vh) +
α2γ

ν
(∇ · rh,∇ · vh) = (λ,∇ · vh) + (s, vh) + α2(∇s,∇vh) +

α2γ

ν
(∇ · s,∇ · vh). (2.23)

Since vh ∈ Vh, (λ,∇ · vh) = (λ − qh,∇ · vh). Using this, choosing vh = rh, and applying Cauchy-Schwarz and
Young’s inequalities yields

‖rh‖2 + α2‖∇rh‖2 +
α2γ

ν
‖∇ · rh‖2 ≤ inf

qh∈Qh

‖λ − qh‖‖∇ · rh‖ + ‖s‖2 + α2‖∇s‖2 +
α2γ

ν
‖∇ · s‖2. (2.24)
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We bound the pressure term using Young’s inequality as

inf
qh∈Qh

‖λ − qh‖‖∇ · rh‖ ≤ ν

2α2γ
inf

qh∈Qh

‖λ − qh‖2 +
α2γ

2ν
‖∇ · rh‖2. (2.25)

Inserting the bound (2.25) into (2.24), using the triangle inequality and dropping positive terms on the left
hand side, then taking square roots implies

‖φ − φ
h‖ ≤ C

(
ν1/2

αγ1/2
hs+1 |λ|s+1 + hk+1

∣∣φ∣∣
k+1

+ hkα
∣∣φ∣∣

k+1
+ hk αγ1/2

ν1/2

∣∣φ∣∣
k+1

)
. (2.26)

Since from the filter equation we have that |λ|k ≤ ∣∣φ∣∣
k+1

, and with the assumption of (Pk, Pk−1) elements, (2.26)
becomes

‖φ − φ
h‖ ≤ Chk

∣∣φ∣∣
k+1

(
ν

1
2

αγ
1
2

+ h + α +
αγ1/2

ν1/2

)
·

For the third term in (2.21), we use the fact that Dh
N is a polynomial in the bounded operator Fh, and so

‖Dh
Nφ − Dh

Nφ
h‖ ≤ C(N + 1)‖φ − φ

h‖

≤ C(N + 1)hk
∣∣φ∣∣

k+1

(
ν

1
2

αγ
1
2

+ h + α +
αγ1/2

ν1/2

)
·

It is left to bound the second term from (2.21); we do so for the general Nth case. From the definitions of DN

and Dh
N , it is clear that both Dh

Nφ and Dh
Nφ can be written as polynomials in their respective filters, with

matching coefficients. Note that since N is typically chosen less than 5 or 6, the coefficients are O(1). Thus we
have that

‖DNφ − Dh
Nφ‖ =

∥∥∥∥∥
N∑

n=0

βn

(
Fnφ − (Fh)nφ

) ∥∥∥∥∥ ≤
N∑

n=0

βn‖Fnφ − (Fh)nφ‖,

and we will consider this sum starting at n = 1, the first non zero term. Thus we now desire a bound on the
difference in the filters applied multiple times, so we add and subtract terms with mixed continuous and discrete
filtering. Hence,

N∑
n=1

βn‖Fnφ − (Fh)nφ‖ =
N∑

n=1

βn‖(Fnφ − FhFn−1φ)

+ (FhFn−1φ − F 2
hFn−2φ) + ... + (Fn−1

h Fφ − Fn
h φ)‖. (2.27)

Applying the triangle inequality to (2.27) yields

N∑
n=1

βn‖Fnφ − (Fh)nφ‖ ≤
N∑

n=1

βn(‖Fnφ − FhFn−1φ‖

+ ‖FhFn−1φ − F 2
hFn−2φ‖ + ... + ‖Fn−1

h Fφ − Fn
h φ‖). (2.28)
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Using the bound ‖Fh‖ ≤ 1, and factoring Fn−iφ in each norm, (2.28) can be further reduced to

N∑
n=1

βn‖Fnφ − (Fh)nφ‖ ≤
N∑

n=1

βn(‖(F − Fh)(Fn−1φ)‖ + ‖(F − Fh)(Fn−2φ)‖ + ... + ‖(F − Fh)(F 0φ)‖)

≤
N∑

n=1

Chk

(
ν1/2

αγ1/2
+ h + α +

αγ1/2

ν1/2

)
(|Fnφ|k+1 + |Fn−1φ|k+1 + ... + |φ|k+1),

and now substituting into (2.21) finishes the proof. �

Remark 2.11. There remains the question of uniform in α bound of the last term, |Fnφ|k+1, in (2.20). This
is a question about uniform-regularity of an elliptic-elliptic singular perturbation problem and some results are
proven in [30]. To summarize, in the periodic case it is very easy to show by Fourier series that for all k

|Fnφ|k+1 ≤ C|φ|k+1. (2.29)

The non-periodic case can be more delicate. Suppose ∂Ω ∈ Ck+3 and φ = 0 on ∂Ω (i.e. φ ∈ H1
0 (Ω)

⋂
Hk+1(Ω)).

Then it is known that φ ∈ Hk+3(Ω)
⋂

H1
0 (Ω), and Δφ = 0 on ∂Ω. Further,

‖φ‖j ≤ C‖φ‖j j = 0, 1, 2.

So, (2.29) holds for k = −1, 0, +1. It also holds for higher values of k provided additionally Δjφ = 0 on ∂Ω for
0 ≤ j ≤ [k+1

2

]− 1.

Now consider the second term n = 2 i.e. F 2φ = φ. We know from elliptic theory for φ ∈ Hk+1(Ω)
⋂

H1
0 (Ω),

that φ ∈ Hk+3(Ω)
⋂

H1
0 (Ω), (as noted above) Δφ = 0 on ∂Ω and

−δ2Δφ + φ = φ in Ω, and φ = Δφ = 0 on ∂Ω.

Theorem 1.1 in [30] then implies, uniformly in α,

‖φ‖j ≤ C‖φ‖j, j = 0, 1, 2, 3, 4.

This extends directly to Fnφ.

The next results and definitions will be important in the convergence analysis, see Section 4.

Lemma 2.12. Assume u ∈ C0(tn, tn+1; L2(Ω)). If u is twice differentiable in time and utt ∈ L2((tn, tn+1)×Ω)
then

‖un+ 1
2 − u(tn+ 1

2 )‖2 ≤ 1
48

(Δt)3
∫ tn+1

tn

‖utt‖2 dt.

If ut ∈ C0(tn, tn+1; L2(Ω)) and uttt ∈ L2((tn, tn+1) × Ω) then∥∥∥∥∥un+1 − un

Δt
− ut(tn+ 1

2 )

∥∥∥∥∥
2

≤ 1
1280

(Δt)3
∫ tn+1

tn

‖uttt‖2 dt.

If ∇u ∈ C0(tn, tn+1; L2(Ω)) and ∇utt ∈ L2((tn, tn+1) × Ω) then

‖∇(un+ 1
2 − u(tn+ 1

2 ))‖2 ≤ (Δt)3

48

∫ tn+1

tn

‖∇utt‖2 dt.
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In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤M

‖vn‖k, ‖|v 1
2
|‖∞,k := max

1≤n≤M
‖vn− 1

2 ‖k,

‖|v|‖m,k :=

(
M∑

n=0

‖vn‖m
k Δt

)1/m

, ‖|v 1
2
|‖m,k :=

(
M∑

n=1

‖vn− 1
2 ‖m

k Δt

)1/m

.

Further in analysis we use the following properties of the nonlinear term.

Lemma 2.13. For u, v, w ∈ X and ∇× v ∈ L∞(Ω),

| (u ×∇× v, w) | ≤ C ‖u‖‖∇× v‖∞‖w‖,
| (u ×∇× v, w) | ≤ C ‖∇u‖‖∇× v‖‖∇w‖,
| (u ×∇× v, w) | ≤ C ‖u‖ 1

2 ‖∇u‖ 1
2 ‖∇× v‖‖∇w‖,

| (u ×∇× v, w) | ≤ C ‖∇u‖‖∇× v‖‖w‖ 1
2 ‖∇w‖ 1

2 .

3. A time-stepping scheme for NS-α and its stability

To discretize (2.2) in time we apply the Crank-Nicolson type scheme. We assume that initial velocity u0
h,

forcing term f , a filtering radius α > 0, kinematic viscosity ν > 0, stabilization parameter γ ≥ 0, approximate
deconvolution order N ≥ 0, timestep Δt > 0, and the endtime T ≥ Δt are given. Let v(tn+ 1

2 ) = v((tn+1+tn)/2)
for the continuous variables, and vn+ 1

2 = (vn+1 + vn)/2 for both the continuous and discrete variables. With
the notation given in the previous section one may write down the scheme in the compact form of Algorithm 3.1
below.

Algorithm 3.1. Set M = T
Δt and for n = 0, 2, ..., M − 1, find un

h ∈ Vh satisfying ∀vh ∈ Vh,

1
Δt

(un+1
h − un

h, vh) −
(

Dh
Nu

n+ 1
2

h

h

×∇× u
n+ 1

2
h , vh

)
− ν(Δ̃hu

n+ 1
2

h , vh) =

(
f(tn+ 1

2 ), vh

)
. (3.1)

Remark 3.2. In some situations, it may be advantageous to linearize the scheme via the method of Baker [3],

using Dh
Nu

n+ 1
2

h

h

× ∇× u∗
h in the second term of (3.1) with u∗

h = 3
2un

h − 1
2un−1

h . This linear problem will have
identical stability and convergence results as that of the nonlinear scheme (3.1).

Lemma 3.3. Algorithm 3.1 is unconditionally stable. Its solutions satisfy

‖uM
h ‖2

E;N + νΔt
M−1∑
n=0

‖un+ 1
2

h ‖2
ε;N ≤ ‖u0

h‖2
E;N +

N2

ν
Δt

M−1∑
n=0

‖f(tn+ 1
2 )‖2

H−1 .

Proof. Choose vh = Dh
Nu

n+ 1
2

h

h

in (3.1). The nonlinear term vanishes, and switching to the natural energy and
energy dissipation norms yields

1
2Δt

(‖un+1
h ‖2

E;N − ‖un
h‖2

E;N

)
+ ν‖un+ 1

2
h ‖2

ε;N =

(
f(tn+ 1

2 ), Dh
Nu

n+ 1
2

h

h
)

. (3.2)
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We majorize the right hand side term first by using using Cauchy-Schwarz, Young’s inequality and Lemma 2.6
with (2.14) to get(

f(tn+ 1
2 ), Dh

Nu
n+ 1

2
h

h
)

≤ ‖f(tn+ 1
2 )‖H−1

∥∥∥∥∥∇Dh
Nu

n+ 1
2

h

h
∥∥∥∥∥ ≤ N‖f(tn+ 1

2 )‖H−1‖un+ 1
2

h ‖ε;N

≤ N2

2ν
‖f(tn+ 1

2 )‖2
H−1 +

ν

2
‖un+ 1

2
h ‖2

ε;N . (3.3)

Combining (3.2) and (3.3), and multiplying both sides by 2Δt gives

(‖un+1
h ‖2

E;N − ‖un
h‖2

E;N

)
+ νΔt‖un+ 1

2
h ‖2

ε;N ≤ N2Δt

ν
‖f(tn+ 1

2 )‖2
H−1 .

Summing from n = 0 to M − 1 provides the estimate

‖uM
h ‖2

E;N + νΔt
M−1∑
n=0

‖un+ 1
2

h ‖2
ε;N ≤ ‖u0

h‖2
E;N +

N2

ν
Δt

M−1∑
n=0

‖f(tn+ 1
2 )‖2

H−1 . �

4. Analysis of full Crank-Nicolson scheme

In this section, we show that solutions of the scheme (3.1), are unconditionally stable, well defined and
optimally convergent to solutions of the NSE. Our main convergence estimates are given next.

Theorem 4.1. Let (u(t), p(t)) be a smooth strong solution of the NSE (see, e.g. [31]) such that the norms of
(u(t), p(t)) on the right hand side of (4.1)–(4.3) are finite. Assume (2.1) with some k ≥ 1, s ≥ 0 and suppose
(u0

h, q0
h) are approximations of (u(0), p(0)) to the accuracy of (2.1), respectively. Then for �t small enough,

α = O(h), and γ chosen to satisfy ν
α2γ ≤ O(1), there is a constant C = C(u, p) such that

‖|u − uh|‖∞,0 ≤ F (Δt, h, α) + Chk+1‖|u|‖∞,k+1, (4.1)(
νΔt

M−1∑
n=0

‖∇(un+ 1
2 − u

n+ 1
2

h )‖2

) 1
2

≤ F (Δt, h, α) + Cν
1
2 hk‖|u|‖2,k+1, (4.2)

where

F (Δt, h, α) := C∗
{
CN(ν

1
2 + γ

1
2 )hk‖|u|‖2,k+1 + CN2ν− 1

2 hk
(‖|u|‖2

4,k+1 + ‖|∇u|‖2
2,0

)
+ CNγ− 1

2 hs+1‖|p 1
2
|‖2,s+1 + CNν− 1

2 α2N+2‖|ΔN+1FN+1u 1
2
‖|2,0

+ CNν− 1
2 hk(α−1γ− 1

2 ν
1
2 + α + h + αγ

1
2 ν− 1

2 )

(
N∑

l=0

‖| F l u 1
2
‖|2,k+1

)
+ CN(Δt)2

(
‖uttt‖2,0 + γ− 1

2 ‖ptt‖2,0 + ‖ftt‖2,0 + (ν
1
2 + γ

1
2 )‖∇utt‖2,0

+ ν− 1
2 ‖∇utt‖2

4,0 + ν− 1
2 ‖|∇u|‖2

4,0 + ν− 1
2 ‖|∇u 1

2
|‖2

4,0

)}
. (4.3)

Remark 4.2. The theorem shows that the addition of grad-div stabilization does affect (improve) convergence
of the new scheme. The velocity error is not scaled as Re * pressure error, as would be the case without
stabilization. If γ = 0, the treatment of the pressure term in the convergence proof would need handled in
the usual way, which leads to the undesirable scaling: with ν− 1

2 in all instances where γ− 1
2 appears in (4.3).
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On the other hand, the error due to the filtered velocity is scaled by αγ
1
2 ν−1. This scaling comes from the

grad-div stabilization of the filter, and suggests that for very small ν the parameter γ in the filter might need
to be reduced accordingly. Our analysis does not cover, however, the case of different stabilization parameters
in momentum and filter equations. As shown in [16] using no stabilization in filtering still leads to a reasonable
numerical results, although theoretical analysis becomes rather limited and for comparison the results found
herein for the 2D step problem are superior to those of [16].

Corollary 4.3. Suppose that in addition to the assumptions made in Theorem 4.1, the finite element spaces
Xh and Qh are composed of (Pk, Pk−1) polynomial elements with order k ≥ 1. Suppose that the indicated norms
on the right hand side of (4.1)–(4.3) are finite. Then the error in the Crank-Nicolson finite element scheme for
NS-α with approximate deconvolution is of the order

‖|u − uh|‖∞,0 +

(
νΔt

M∑
n=1

‖∇(un+ 1
2 − u

n+ 1
2

h )‖2

) 1
2

= O(hk + Δt2 + h2N+2). (4.4)

Remark 4.4. The restriction of γ to satisfy ν < O(γα2) is very weak since it is only when ν is small that a
model would be used.

Proof of Theorem 4.1. At time tn+ 1
2 , u from the NSE solution satisfies(

un+1 − un

Δt
, vh

)
+ ν(∇un+ 1

2 ,∇vh) + γ(∇ · un+ 1
2 ,∇ · vh)

−
(

Dh
Nun+ 1

2

h

×∇× un+ 1
2 , vh

)
− (pn+ 1

2 ,∇ · vh)

= (fn+ 1
2 , vh) + Intp(un, pn; vh), (4.5)

for all vh ∈ Vh, where Intp(un, pn; vh), representing the interpolating error, denotes

Intp(un, pn; vh) =
(

un+1 − un

Δt
− ut(tn+ 1

2 ), vh

)
+ ν(∇un+ 1

2 − ∇u(tn+ 1
2 ),∇vh)

+ γ(∇ · un+ 1
2 −∇ · u(tn+ 1

2 ),∇ · vh)

−
(

Dh
Nun+ 1

2

h

×∇× un+ 1
2 , vh

)
−
(
u(tn+ 1

2 ) ×∇× u(tn+ 1
2 ), vh

)
−
(
pn+ 1

2 − p(tn+ 1
2 ),∇ · vh

)
+
(
f(tn+ 1

2 ) − fn+ 1
2 , vh

)
, (4.6)

since (∇ · u, q) = 0 ∀q ∈ Q.
Subtracting (4.5) from (3.1) and letting en = un − un

h, we have

1
Δt

(en+1 − en, vh) + ν(∇en+ 1
2 ,∇vh) + γ(∇ · en+ 1

2 ,∇ · vh)

=
(

Dh
Nun+ 1

2

h

×∇× un+ 1
2 , vh

)
−
(

Dh
Nu

n+ 1
2

h

h

×∇× u
n+ 1

2
h , vh

)
+ (pn+ 1

2 ,∇ · vh) + Intp(un, pn; vh), ∀vh ∈ Vh. (4.7)

Decompose the error as en = (un −Un)− (un
h −Un) := ηn −φn

h where φn
h ∈ Vh, and U is the L2 projection of u

in Vh. Setting vh = Dh
Nφ

n+ 1
2

h

h

in (4.7), using

(
q,∇ · Dh

Nφ
n+ 1

2
h

h
)

= 0 for all q ∈ Qh, equations (2.4) and (2.12),
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we obtain

(
φn+1

h − φn
h , Dh

Nφ
n+ 1

2
h

h
)

+ νΔt‖φn+ 1
2

h ‖2
ε,N =

(
ηn+1 − ηn, Dh

Nφ
n+ 1

2
h

h
)

+ νΔt

(
∇ηn+ 1

2 ,∇Dh
Nφ

n+ 1
2

h

h
)

− γΔt

(
∇ · ηn+ 1

2 ,∇ · Dh
Nφ

n+ 1
2

h

h
)

− Δt

(
Dh

Nu
n+ 1

2
h

h

×∇× u
n+ 1

2
h , Dh

Nφ
n+ 1

2
h

h
)

− Δt

(
Dh

Nun+ 1
2

h

×∇× un+ 1
2 , Dh

Nφ
n+ 1

2
h

h
)

+ Δt

(
pn+ 1

2 − q,∇ · Dh
Nφ

n+ 1
2

h

h
)

+ Δt Intp

(
un, pn; Dh

Nφ
n+ 1

2
h

h
)

, (4.8)

or rewriting the nonlinear terms,

1
2
(‖φn+1

h ‖2
E,N − ‖φn

h‖2
E,N) + νΔt‖φn+ 1

2
h ‖2

ε,N

=

(
ηn+1 − ηn, Dh

Nφ
n+ 1

2
h

h
)

− νΔt

(
∇ηn+ 1

2 ,∇Dh
Nφ

n+ 1
2

h

h
)

− γΔt

(
∇ · ηn+ 1

2 ,∇ · Dh
Nφ

n+ 1
2

h

h
)

+ Δt

(
Dh

Nun+ 1
2

h

×∇× ηn+ 1
2 , Dh

Nφ
n+ 1
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, (4.9)

since

(
Dh

Nφ
n+ 1

2
h

h

×∇× un+ 1
2 , Dh

Nφ
n+ 1

2
h

h
)

= 0.

We now bound the terms in the RHS of (4.9) individually, using that, according to the choice of U , it holds(
ηn+1 − ηn, Dh

Nφ
n+ 1

2
h

h
)

= 0.

Cauchy-Schwarz and Young’s inequalities, together with Lemma 2.6 for the first term and Lemma 2.7 for the
last two terms, give
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γΔt
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Δt

(
pn+ 1

2 − q,∇ · Dh
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2 − q‖2. (4.12)

Lemmas 2.13, 2.5, 2.6, equivalence of norms (Rem. 2.4) and standard inequalities give
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E,N , (4.16)
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16
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2
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2 ‖2. (4.17)
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Combining (4.10) to (4.17) and summing from n = 0 to M − 1 (assuming that ‖φ0
h‖ = 0) reduces (4.9) to

‖φM
h ‖2

E,N + νΔt

M−1∑
n=0

‖φn+ 1
2

h ‖2
ε,N ≤ Δt

M−1∑
n=0

CN8 ν−3(‖un+ 1
2 ‖4

ε,0 + ‖ηn+ 1
2 ‖4
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2
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E,N
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∣∣∣∣∣Intp
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Nφ
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2
h

h
)∣∣∣∣∣. (4.18)

Now, we continue to bound the terms on the RHS of (4.18). We have that

Δt

M−1∑
n=0

CN8 ν−3(‖un+ 1
2 ‖4
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, (4.20)

and similarly,
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)
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from Lemma 2.12,

Δt
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We now bound the terms in Intp

(
un, pn; Dh

Nφ
n+ 1

2
h

h
)

. Using Cauchy-Schwarz and Young’s inequalities, Lem-

mas 2.12, 2.7 and 2.9,(
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Combine (4.23)–(4.29) to obtain
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Let ε0 = ε1 = ε2 = ε3 = ε4 = 1/10 and with (4.19)–(4.22), (4.30), from (4.18), and using the assumption on γ,
we obtain
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Hence, with Δt sufficiently small, i.e. Δt < C(N8ν−3(‖|∇u‖|4∞ + h4k‖|u‖|4∞,k+1) + 1)−1, from the discrete
Gronwall’s Lemma we have
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(4.32)

where C∗ = C exp(Cν−1T ).
Estimates (4.1) and (4.2) then follow from the triangle inequality and (4.32). �

5. Numerical experiments

In this section, we provide several examples to demonstrate the effectiveness of the proposed scheme for
computing accurate approximations to a variety of fluid flow problems. We study four problems: Green-Taylor
vortices, flow over a 2D and 3D step, and the 3d Ethier-Steinman problem. We find that the modified grad-div
stabilized scheme with deconvolution for NS-α shows very good accuracy in each of these problems. Moreover,
we find it is the combination of these two numerical “fixes”, and not either one individually, that provides for
such high accuracy.
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Figure 1. The velocity field and pressure contours of the Taylor-Green vortex decay problem
at t = 0.

5.1. Numerical experiment 1: Green-Taylor vortices with ν = 0.1

Our first numerical experiment is to test the theoretically predicted convergence rates. For that, we choose
the Green-Taylor vortex decay problem [23,52]. It is an interesting test problem in which the true solution is
known, and was used as a numerical test in Chorin [13], Tafti [51] and John and Layton [28].

The prescribed NSE solution in Ω = (0, 1) × (0, 1) has the form

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p(x, y, t) = −1
4
(cos(2nπx) + cos(2nπy))e−2n2π2t/τ .

The pressure p is given here in its usual form. To recover the Bernoulli pressure, compute P = p + 1
2 |u|2. Note

it is the Bernoulli pressure that gets computed in the scheme proposed herein.
When the relaxation time τ = Re := 1

ν , this is a solution of the NSE with f = 0, consisting of an n×n array
of oppositely signed vortices that decay as t → ∞. Figure 1 shows the velocity field and pressure contours for
the test problem, with n = 2.

For this experiment, we choose Re = 10, h =
{

1
4 , 1

8 , 1
12 , 1

16 , 1
24

}
, Δt ≈ h3/2 using (P3, P2) elements. We

consider approximations for four cases of parameter choices: usual NS-α (γ = 0, N = 0), with modi-
fied grad-div stabilization only (γ = 1, N = 0), with order 1 deconvolution only (γ = 0, N = 1), and
NS-α with both the modified grad-div stabilization and order 1 van Cittert approximate deconvolution
(γ = 1, N = 1). The L2(0, 0.5; H1(Ω)) errors and convergence rates are given in Table 1. These results
verify our predicted convergence rates for (P3, P2) elements when Δt ≤ h3/2: the L2(0, 0.5; H1(Ω)) convergence
will be O(h2N+2 + h3). That is, provided a smooth solution, the N = 1 schemes will converge to the NSE
solution faster than the N = 0 scheme, and thus the N = 1 scheme can be expected to be more accurate in
smooth flow regions. Moreover, this means that even for smooth flows, one cannot expect error from the N = 0
schemes to be any better than O(h2). At such a small Reynolds number, we see grad-div stabilization can
have a slight negative effect on error on very coarse meshes, from introducing consistency error. On the finer
(although still quite coarse) meshes, this effect is negligible.
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Table 1. L2(0, 0.5, H1(Ω)) errors and convergence rates for approximating solutions when
Re = 10, for the grad-div modified scheme for NS-α with approximate deconvolution.

γ=0
N=0

γ=0
N=0

γ=1
N=0

γ=1
N=0

γ=0
N=1

γ=0
N=1

γ=1
N=1

γ=1
N=1

h ‖u − uh‖2,1 Rate ‖u − uh‖2,1 Rate ‖u − uh‖2,1 Rate ‖u − uh‖2,1 Rate

1/4 0.2065 0.3682 0.1928 0.3612

1/8 0.0593 1.80 0.0535 2.78 0.0357 2.56 0.0411 3.14

1/12 0.0222 2.42 0.0227 2.11 0.0061 4.36 0.0076 4.16

1/16 0.0129 1.89 0.0130 1.94 0.0030 2.47 0.0035 2.70

1/24 0.0055 2.10 0.0055 2.12 0.0010 2.71 0.0011 2.85

Table 2. L∞(0, 0.5, L2(Ω)) errors for approximations when Re = 10 000, for the grad-div
modified scheme for NS-α with approximate deconvolution.

γ = N = 0 γ = 1, N = 0 γ = 0, N = 1 γ = N = 1
h ‖|u − uh|‖∞,0 ‖|u − uh|‖∞,0 ‖|u − uh|‖∞,0 ‖|u − uh|‖∞,0

1/4 0.4564 0.3145 0.3848 0.2449
1/8 0.3389 0.1801 0.2689 2.05
1/12 0.1852 0.0847 0.1546 0.0110
1/16 0.0885 0.0489 0.0583 0.0038
1/24 0.0276 0.0192 0.0123 0.0026

Table 3. L2(0, 0.5, H1(Ω)) errors and convergence rates for approximating solutions when
Re = 10 000, for the grad-div modified scheme for NS-α with approximate deconvolution.

γ = N = 0 γ = 1, N = 0 γ = 0, N = 1 γ = N = 1
h ‖|u − uh|‖2,1 ‖|u − uh|‖2,1 ‖|u − uh|‖2,1 ‖|u − uh|‖2,1

1/4 6.8575 4.0065 6.2504 3.2493
1/8 10.3975 3.3753 9.1907 1.2740
1/12 7.8530 2.2385 7.1056 0.3691
1/16 4.9461 1.5756 3.8409 0.1912
1/24 2.1009 0.7727 1.3455 0.1246

5.2. Numerical experiment 2: Green-Taylor vortices with ν = 0.0001

We now test the errors if we change numerical experiment 1 with one modification: set ν = 0.0001 (i.e. set
the Reynolds number to 10 000). Results are shown in Tables 2 and 3, as L∞(0, 0.5; L2(Ω)) and L2(0, 0.5; H1(Ω))
errors. In both tables, it is clear that the the addition of the modified grad-div stabilization and deconvolution
each individually improve error versus the usual NS-α scheme, but it is the combination of modified grad-div
stabilization and deconvolution (γ = 1, N = 1) that gives the best results.

5.3. Experiment 3: the Ethier-Steinman problem

The next numerical experiment we consider is for computing approximations to the Ethier-Steinman exact
Navier-Stokes solution from [17] on [−1, 1]3. For chosen parameters a, d and viscosity ν, their exact NSE solution
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Figure 2. The velocity solution to the Ethier-Steinman problem with a = 1.25, d = 1 at t = 0
on the (−1, 1)3 domain. The complex flow structure is seen in the streamribbons in the box
and the velocity streamlines and speed contours on the sides.

is given by

u1 = −a (eax sin(ay + dz) + eaz cos(ax + dy)) e−νd2t (5.1)

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd2t (5.2)

u3 = −a (eaz sin(ax + dy) + eay cos(az + dx)) e−νd2t (5.3)

p = −a2

2
(e2ax + e2ay + e2az + 2 sin(ax + dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax + dy)ea(z+x)

+ 2 sin(az + dx) cos(ay + dz)ea(x+y))e−νd2t. (5.4)

Again we give the pressure in its usual form, although our scheme indeed approximates instead the Bernoulli
pressure P = p + 1

2 |u|2.
This problem was developed as a 3d analogue to the Taylor vortex problem, for the purpose of benchmarking.

Although unlikely to be physically realized, it is a good test problem because it is not only an exact NSE solution,
but also it has non-trivial helicity which implies the existence of turbulent structure [40] in the velocity field.
The t = 0 solution for a = 1.25 and d = 1 is illustrated in Figure 2.

We compute approximations to (5.1)–(5.4) with a = 1.25, d = 1, viscosity ν = 0.0001, timestep
Δt = 0.01, endtime T = 1, and initial velocity u0 = (u1(0), u2(0), u3(0))T , using Algorithm 3.1 with 3072 (P2, P1)
tetrahedral elements, enforcing Dirichlet boundary conditions (from (5.1)–(5.3) on the sides of the box). We
compute four cases, to compare results with and without the modified grad-div stabilization and approximate
deconvolution (γ, N = 0, 1). Note that with given small ν = 0.0001 the solution changes only slightly on the
time interval [0, 1].

The results of this experiment are displayed in Figure 3 in a plot of the approximated solutions’ relative
L2(Ω) error versus time. The superiority of the approximated solutions computed with the modified grad-div



300 C.C. MANICA ET AL.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

t

||u
(tn )−

u hn || /
 ||u

(tn )||

 

 

γ=0, N=0
γ=0, N=1
γ=1, N=0
γ=1, N=1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

t
||u

(tn )−
u hn || /

 ||u
(tn )||

 

 

γ=1, N=0

γ=1, N=1

Figure 3. Relative L2 error vs. time in the numerical scheme for NS-α studied herein, for the
Ethier-Steinman problem with a = 1.25, d = 1, Re = 10 000, Δt = 0.01, with varying γ and N .
The left plot shows the error from four schemes, but since the error when (γ = 0, N = 0 or 1)
is so large, comparing the (γ = 1, N = 0) and (γ = 1, N = 1) schemes was impossible due to
scaling. The plot on the right is thus the same plot, but without the error from the γ = 0
schemes.

stabilization is evident from Figure 3, as we see from the plot on the left that when γ = 0, relative L2 error grows
exponentially fast with time, while by comparison relative errors in the (γ = 1, N = 0) and (γ = 1, N = 1)
schemes are very small in comparison. The plot on the right is the same as the left plot, except that the
γ = 0 plots are removed, allowing a comparison of the γ = 1 schemes. From this we see how deconvolution
adds accuracy. Its effect appears more pronounced with later times, and it appears that if we continued the
simulations, its effect would be even greater.

5.4. Numerical experiment 4: flow over a step

This numerical experiment shows the effectiveness of adding the modified grad-div stabilization and decon-
volution to NS-α by testing it on the benchmark problem of flow over a forward and backward facing step. The
domain Ω is a 40× 10 rectangle with a 1 × 1 step 5 units into the channel at the bottom. The top and bottom
of the channel as well as the step are prescribed with no-slip boundary conditions, and the sides are given the
parabolic profile (y(10 − y)/25, 0)T. We use the initial condition of u0 = (y(10 − y)/25, 0)T inside Ω, and run
the test to T = 40 using timestep Δt = 0.01. For a chosen viscosity ν = 1/600, it is known that the correct
behavior is for an eddy to form behind the step, grow, detach from the step to move down the channel, and a
new eddy forms. For a more detailed description of the problem, see [25] or [28].

The eddy formation and separation present in this test problem is part of a complex flow structure, and
its capture is critical for an effective fluid model. Moreover, a useful fluid model will correctly predict this
behavior on a coarser mesh than a NSE direct numerical simulation could. We compute using Algorithm 3.1
with (P3, P2) triangular elements on two meshes, a coarse mesh yielding 5091 degrees of freedom and a finer
mesh with 8927 degrees of freedom.

Figures 4 and 5 show the solution of the NSE computed directly on the coarse and finer meshes respectively,
each using the skew-symmetric form of the nonlinearity (thus avoiding the larger error associated with Bernoulli
pressures in the rotational form of the nonlinearity [33]). Figure 4 shows that the direct computation of the
NSE on the coarse mesh is under-resolved; although an eddy forms and detaches, oscillations become present
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Figure 4. The above figure shows the velocity streamlines and speed contours for the coarse
mesh solution of the NSE with the skew-symmetric form of the nonlinearity. Shown is the
solution at T = 10, 20, 30 and 40, which is under-resolved, as evidenced by the oscillations in
the speed contours.

in the solution by T = 10, and by T = 40 have accumulated enough to destroy the solution. From Figure 5, we
observe that the NSE is fully resolved on fine mesh, and captures eddy generation and separation behind the
step while maintaining a smooth flow structure. These plots match the solution found in [25,28,32], and thus
we take it as the “truth” solution.

Figure 6 shows the coarse mesh solution for NS-α at α = 0.25 (for the coarse mesh, h ≈ 0.25) and without
any stabilization or deconvolution (γ = N = 0). The α = 0.25 solution does predict eddy detachment and
reformation, but has oscillations that have grown to create a very bad solution; this computation was clearly
under-resolved. Increasing the regularization parameter was found to suppress oscillations from destroying
the solution, but prevents the detachment of the eddy from the step; increasing N also showed only slight
improvement over the N = 0 solution, and so we omit showing these results. We note this is consistent with
our hypothesis about the base model: since the pressure in this flow will have boundary layer effects, it will
be complex and thus will be the dominant source of error. Increasing the order of deconvolution reduces
the consistency error created by the regularization in the nonlinearity, and thus will have a negligible effect
on reducing velocity error when the pressure error’s effect is dominant. Hence the NS-α scheme, even with
deconvolution, does not give an accurate approximation when computed on the coarser mesh when γ = 0.

Figures 7 and 8 show the coarse mesh solutions to the NS-α scheme again with α = 0.25, N = 0 and N = 1
respectively, but with the modified grad-div stabilization added: γ = 1 in Algorithm 3.1. The stabilization
completely eliminates the oscillations present in Figure 6, correctly predicts eddy formation and detachment,
and gives streamlines and speed contours that agree well with those of the truth solution in both the N = 0 and
N = 1 cases. However, the N = 1 is visibly a better match to the true solution at both T = 30 and T = 40.
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Figure 5. The above figure shows the velocity streamlines and speed contours for the NSE at
T = 10, 20, 30 and 40 on the finer mesh. This is the “truth” solution for the test problem.

5.5. Numerical experiment 5: 3D flow over a step

Our final experiment is for 3D flow over a step. The problem setup is similar to the 2D step, and is taken
from [29]. The domain is a 10×40×10 rectangular box, with a step of height 1 and width 1 set at the bottom of
the channel, starting 5 units in. No slip boundary conditions are prescribed on the top, bottom, front and back
of the box as well as on the step. The constant inflow profile of u = 〈0, 1, 0〉 is used as a Dirichlet condition for
the inflow. Since the model studied herein is in rotational form, the so-called do-nothing boundary condition
(which corresponds to zero traction) is inappropriate, and so the advective boundary condition is used. As
in [29], we use the steady NSE solution with Re = 20 as the initial condition, and compute to T = 20 using
ν = 1/200, giving the Reynolds number Re = 200, using the size of the step for the length scale.

Results were computed using (P3, P2) Taylor-Hood elements on a coarse tetrahedral mesh providing 7842 ve-
locity degrees of freedom, with a timestep of Δt = 0.01. Simulations were run with γ = N = 0, γ = 1, N = 0,
and γ = N = 1, and α = 1. The plot of the x = 5 midplane’s velocity streamlines and speed contours at T = 20
for γ = N = 0 is shown in Figure 9, and is clearly incorrect. The streamlines indicate significant oscillations
are present, and by examining the scale of the speed contours it is clear the solution is non-physical. For the
solutions with γ = 1, however, we see much better results. The plot for the γ = 1, N = 0 solution is shown in
Figure 10; the plot for γ = N = 1 is visually identical, and so is omitted. The speed contours and streamlines
show a relatively smooth flow is obtained, and recirculation after the step is found. On this coarse mesh, not
every detail of the flow can be resolved. However, this experiment does show that the stabilized method can be
effective at finding flow averages on coarse meshes, whereas the unstabilized method can be unstable.
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Figure 6. The above figure shows the velocity streamlines and speed contours for the coarse
mesh solution of NS-α with α = 0.25, γ = N = 0. Shown is the solution at T = 10, 20,
30 and 40, which shows eddy formation and detachment, but reveals the flow is very under-
resolved, as evidenced by the oscillations in the speed contours.
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Figure 7. The above figure shows the velocity streamlines and speed contours for the coarse
mesh solution of NS-α with α = 0.25, γ = 1 and N = 0. Shown is the solution at T = 10, 20,
30 and 40, which shows eddy formation and detachment, and a smooth resolved flow.
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Figure 8. The above figure shows the velocity streamlines and speed contours for the coarse
mesh solution of NS-α with α = 0.25, γ = 1 and N = 1. Shown is the solution at T = 10, 20, 30
and 40, which shows eddy formation and detachment, and a smooth resolved flow that matches
the truth solution well.

Figure 9. Shown above is the speed contours and velocity streamlines at T = 20 for the NS-α
(γ = N = 0) simulation of experiment 5. This solution is very poor.
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Figure 10. Shown above is the speed contours and velocity streamlines at T = 20 for the
NS-α with stabilization (γ = 1) simulation of experiment 5. This solution is much better than
for the unstabilized simulation.

6. Conclusions

We have proposed and analyzed a FEM scheme for NS-α that combines the model with the carefully derived
combination of a stabilization of grad-div type and an adapted approximate deconvolution of the (modified) fil-
tering. The scheme “fixes” two major sources of error, consistency error of the model and the negative influence
of the Bernoulli type of pressure on the velocity error, that arise in FEM computations of NS-α, and thus
provides for accurate and reliable computations with NS-α. Through a delicate analysis, we prove the scheme is
both stable and optimally convergent, and that the grad-div type stabilization reduces the effect of the pressure
error on the velocity error. Finally numerical experiments were given that demonstrate a dramatic improve-
ment of the proposed scheme over the standard scheme, with only approximate deconvolution and grad-div
stabilization individually and with both of them.
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