
ESAIM: M2AN 44 (2010) 1155–1191 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2010019 www.esaim-m2an.org

FINITE ELEMENT DISCRETIZATION OF DARCY’S EQUATIONS
WITH PRESSURE DEPENDENT POROSITY
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Abstract. We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous
medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We
propose a finite element discretization of this problem and, in the case where the dependence on the
pressure is bounded from above and below, we prove its convergence to the solution and propose an
algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential,
we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of
this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods.
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1. Introduction

1.1. Position of the paper

The system of equations commonly referred to as Darcy’s law was obtained on an experimental basis by
Darcy [14], more than 150 years ago. It approximates the balance of linear momentum of a fluid flowing
through a porous rigid body and is the simplest model of flow of a viscous incompressible fluid through a porous
medium. Darcy’s equations were obtained rigorously by Homogenization; without being exhaustive, we refer
the reader to the works of Ene and Sanchez-Palencia [16], Allaire [2], Cioranescu et al. [13], Pastukhova [30],
and Skjetne and Auriault [34].

Recently, in [31], Rajagopal developed systematically a family of models within the framework of Mixture
Theory, deriving first Darcy’s system, and next relaxing one or more restrictions that were used in deriving this
law. The steady nonlinear model studied in the present work is one of the numerous models obtained through
this approach, see Section 3.5 of [31]. It is a much simplified version of a model of enhanced oil recovery, where
oil is forced to flow through rocks by injecting steam at high pressure. This model is simplified because only
one fluid is considered and the viscous and inertial effects are neglected, thus resulting in a steady system. On
the other hand, it is nonlinear because the porosity of the solid medium is allowed to depend exponentially
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on the pressure. Indeed, it has been observed experimentally that high variations on the pressure induce an
exponential variation on the porosity of the medium.

Let Ω be a bounded domain in Rd, with d = 2, 3. The boundary, ∂Ω, of this domain is divided into two
parts Γw and Γ. We are interested in the following model, which as we have stated above was derived by
Rajagopal [31], ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
α(p)u + ∇p = f , in Ω,

∇ · u = 0, in Ω,

p = 0, on Γw,

u · n = g on Γ,

(1.1)

where the unknowns are the velocity u and the pressure p of the fluid. The function α is the permeability of
the medium; for simplicity, it is assumed homogeneous, but it depends exponentially on the pressure:

α(ξ) = α0eγξ, (1.2)

for positive parameters α0 and γ. The homogeneous boundary condition in the third row of (1.1) is just intro-
duced to simplify the discussion. More generally, a non homogeneous boundary condition can be prescribed
on p: p = pw on Γw. Owing to the nature of α(p), the subsequent analysis readily carries over to this case for
adequately smooth boundary data pw; see Remark 2.2.

For the sake of brevity, in what follows we shall refer to equations (1.1) simply as the nonlinear Darcy
equations. Of course, there are other nonlinear Darcy’s model, such as the well-known Forchheimer model
introduced by Forchheimer in [19]. The reader can refer to a discrete scheme, closely related to the one studied
here, for a steady Forchheimer model studied by Girault and Wheeler in [21].

The analysis of the nonlinear Darcy equations is difficult because of the exponential nonlinearity. Following
the work of Azäıez et al. in [3], we propose in a first part to discretize (1.1) when the function α is truncated
above and below. We introduce a straightforward finite element scheme, such as Pk−1 for each component of the
velocity and Pk for the pressure, similar to the scheme studied by Roberts and Thomas in [32] and by Kim and
Park in [27]. When the exact solution is sufficiently small so that it satisfies a sufficient condition for uniqueness,
we establish optimal a priori error estimates, and geometric convergence of a successive approximation algorithm
for computing the discrete solution. We also study the case when the exact solution is nonsingular in the sense
of Brezzi et al. [11], but is not necessarily unique. We give sufficient conditions for the finite element scheme
to have a nonsingular solution, establish convergence and a priori error estimates, and study the convergence
of Newton’s algorithm for computing this solution. In particular, we prove that Newton’s method converges
quadratically, but not uniformly. This confirms the convergence analysis for nonlinear second order elliptic
problems studied by Douglas and Dupont in [15] and by Park in [29].

The problem with fully exponential porosity is studied in a second part. To begin with, the velocity is
eliminated by

(1) dividing the equation by the exponential,
(2) taking the divergence of the equation,
(3) and making a change in variable.

This splits the problem into exactly two consecutive linear equations: first a diffusion-convection-reaction equa-
tion and next a linear Darcy system. These are discretized by an easy variant of the finite element scheme used
in the first approach. The analysis of each discrete linear system is straightforward, but the global analysis of
the complete algorithm is still an open problem.

We present numerical experiments for testing each method. As expected, the split algorithm (that involves
no iteration) performs better than the successive approximation algorithm.

The rest of this work is organized as follows. In Section 1.2 we set up the notation and conventions that will
be used in the sequel. The next three sections are devoted to the case where the function α is bounded above
and below and is uniformly Lipschitz-continuous. In Section 2, we present some results established in [3] on the
existence of the solution to the nonlinear Darcy equation, as well as some sufficient conditions for uniqueness
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and regularity. Section 2.2 gives sufficient conditions for the existence of a nonsingular solution. Section 3 is
devoted to the analysis of the discrete problem. In the case where the solution is unique, we prove in Sec-
tion 3.1 optimal error estimates and convergence of the successive approximation algorithm. In Section 3.2, we
approximate nonsingular solutions, and we analyze Newton’s method when used to find the discrete nonsingular
solution. The splitting method is developed and studied in Section 4. Finally, Section 5 gives some numeri-
cal experiments which illustrate the theory and methods developed in the previous sections. We consider the
method developed in Section 3.1 and show its performance on a series of model problems for different types of
finite element spaces. We also test the algorithm of Section 4 for various types of finite element spaces on each
of the sub-problems involved.

1.2. Notation and conventions

Henceforth we denote by Ω a bounded connected domain in Rd, with d = 2 or 3. As usual, we denote by Lp(Ω)
the space of Lebesgue integrable functions with exponent p ∈ [1,∞] defined on Ω, normed, for 1 ≤ p < ∞, by

∀v ∈ Lp(Ω),
∥∥v

∥∥
Lp(Ω)

=
(∫

Ω

|v|p
)1/p

,

with the usual extension when p = ∞. By W s
p (Ω), for an integer s, we denote the Sobolev space of functions

in Lp(Ω) with partial derivatives of order up to s in Lp(Ω), namely

W s
p (Ω) = {v ∈ Lp(Ω) ; ∂kv ∈ Lp(Ω) ∀|k| ≤ s},

equipped with the seminorm

|v|W s
p (Ω) =

⎡
⎣ ∑
|k|=s

∫
Ω

|∂kv|p
⎤
⎦

1/p

,

and norm (for which it is a Banach space)

‖v‖W s
p (Ω) =

⎡
⎣ ∑

0≤|k|≤s

|v|p
W k

p (Ω)

⎤
⎦

1/p

.

When s is not an integer, W s
p (Ω) is defined by interpolation (cf. Lions and Magenes [28], or Berg and

Löfström [6]). In this case, there are several definitions with equivalent norms. Here, we choose the following
seminorm and norm: let s = m + s′ for an integer m ≥ 0 and 0 < s′ < 1, then we set

|v|W s
p (Ω) =

⎛
⎝ ∑

|k|=m

∫
Ω

∫
Ω

|∂kv(x) − ∂kv(y)|p
|x − y|d+p s′ dxdy

⎞
⎠

1/p

,

‖v‖W s
p (Ω) =

(
‖v‖p

W m
p (Ω) + |v|pW s

p (Ω)

)1/p

.

When p = 2, we set Hs(Ω) := W s
2 (Ω), for any s. In particular, we have the following trace property on a

domain Ω with Lipschitz-continuous boundary ∂Ω: if v belongs to Hs(Ω) for some real number s ∈ ]1/2, 1],
then its trace on ∂Ω belongs to Hs−1/2(∂Ω) (cf. for instance Grisvard [23], Thm. 1.5.1.2), and there exists a
constant C such that

∀v ∈ Hs(Ω), ‖v‖Hs−1/2(∂Ω) ≤ C‖v‖Hs(Ω).
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Finally, if Γ is a subset of ∂Ω with positive measure, |Γ| > 0, we say that a function g in H1/2(Γ) belongs to
H

1/2
00 (Γ) if its extension by zero to ∂Ω belongs to H1/2(∂Ω). For a discussion on this space see Tartar [35] for

instance.
For vector-valued functions we use boldface and the spaces of these functions are denoted, for instance,

by Lp(Ω)d.
Whenever E is a normed space, ‖ · ‖E denotes its norm and E′ its dual. We use the convention that when

taking the supremum of any quantity A over the elements of a space E,

sup
x∈E

A

actually means the supremum over the elements of E which are nonzero.
By C we denote a constant, the value of which might change at each occurrence. This constant may depend

on the problem data. When discussing discretization, this constant can also depend on the exact solution of
the problem, but it does not depend on the discretization parameter h.

The constant in the Sobolev embedding H1(Ω) ↪→ L6(Ω) (see Adams [1] or Tartar [35]) shall appear re-
peatedly and, therefore, we assign it the symbol C(Ω). More precisely, C(Ω) is the smallest constant such
that

‖q‖L6(Ω) ≤ C(Ω) |q|H1(Ω) , ∀q ∈ H1(Ω).

Finally, we must say that all the reasoning carried on in the following sections assume that the space dimen-
sion d equals three. This is done only for the sake of definiteness. The reader can easily verify that similar
arguments and less restrictive assumptions can be used to obtain the same results in the case when d = 2.

2. Analysis of the problem

Before considering the discretization of problem (1.1) we will discuss some properties of its exact solution,
namely, its existence and sufficient conditions for this solution to be globally unique and possess certain smooth-
ness properties. When the nonlinear Darcy equations have more than one solution we shall discuss so-called
nonsingular solutions, in the sense of [11]. This shall prove useful for the development and analysis of the
discretization.

2.1. Variational formulation

We intend to study problem (1.1) under the following assumptions:

• The domain Ω has a Lipschitz-continuous boundary ∂Ω divided into two parts Γw and Γ, also with
Lipschitz continuous boundaries.

• The part of the boundary Γw has positive surface measure.
• The function α is continuous from R to R and there are two positive constants αmin and αmax such that

αmin ≤ α(ξ) ≤ αmax, ∀ξ ∈ R. (2.1)

• The function α is uniformly Lipschitz-continuous on R. That is, there is a constant Lα > 0 such that
for all ξ1, ξ2 ∈ R

|α(ξ1) − α(ξ2)| ≤ Lα |ξ1 − ξ2| . (2.2)

Remark 2.1. Assumptions (2.1) and (2.2) are not true when the function α is unbounded, as it is the case when
it is exponential. However, these assumptions can be easily recovered by truncating the original function α.
Obviously, the solution of the truncated problem will not in general solve the original one. The analysis of how
these two problems are related is beyond the scope of this paper.
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It is well known that Darcy’s equations have several variational formulations. We have chosen here the
formulation that treats the boundary condition on p as an essential one and leads, roughly speaking, to taking u
in L2(Ω)3 and p in H1(Ω). This choice is motivated by the fact that the forthcoming analysis of the nonlinear
term α(p)u uses intensively the fact that p is in H1(Ω). Moreover, a velocity u in L2(Ω)3 is easily discretized.
Another option consists in taking u in H(div; Ω) and p in L2(Ω). Then u must be discretized with mixed finite
elements, with the advantage that this leads to a locally conservative scheme. But the drawback is that the
analysis of the nonlinear term is not so clear.

Let us define the space
H1

w(Ω) :=
{
q ∈ H1(Ω) : q|Γw = 0

}
,

and assume, for the sake of simplicity, that pw = 0. Then the variational formulation is the following
Given f ∈ L2(Ω)3 and g ∈ H

1/2
00 (Γ)′, find a pair (u, p) ∈ L2(Ω)3 × H1

w(Ω) such that

{
ap(u,v) + b(v, p) =

∫
Ω

f · v, ∀v ∈ L2(Ω)3,
b(u, q) = 〈g, q〉Γ, ∀q ∈ H1

w(Ω).
(2.3)

The bilinear forms aξ(·, ·) for any measurable function ξ on Ω and b(·, ·) are defined by

aξ(v,w) :=
∫

Ω

α(ξ)v · w, (2.4)

b(v, q) :=
∫

Ω

v · ∇q, (2.5)

and 〈·, ·〉Γ denotes the duality pairing between H
1/2
00 (Γ) and its dual space H

1/2
00 (Γ)′.

It is readily checked that under assumption (2.1) the forms aξ(·, ·) and b(·, ·) are continuous on L2(Ω)3×L2(Ω)3

and L2(Ω)3 × H1(Ω) respectively. Thus, standard arguments yield the equivalence of problem (2.3) with the
system (1.1) in the distribution sense.

Remark 2.2. The above variational formulation is defined for homogeneous boundary conditions: pw = 0.
Standard techniques (i.e. lifting arguments) allow us to reduce the case of nonhomogeneous Dirichlet boundary
conditions on the pressure p to the present one. For this, it is sufficient to assume that pw ∈ H1/2(Γw) and
notice that the function ξ �→ α(ξ − p̄w), where p̄w is a proper lifting of pw, has the same properties as ξ �→ α(ξ).
Hence, there is no loss of generality in considering only homogeneous Dirichlet boundary conditions.

The existence of a solution to problem (2.3) is studied in [3]. For the sake of completeness we list here the
results that later prove useful for our purposes. Regarding existence we have the following theorem.

Theorem 2.3. Assume that the function α satisfies assumption (2.1). Then, for any data (f , g) ∈ L2(Ω)3 ×
H

1/2
00 (Γ)′ problem (2.3) has a solution (u, p) ∈ L2(Ω)3 × H1

w(Ω). Moreover, this solution satisfies

‖u‖L2(Ω)3 + ‖p‖H1(Ω) ≤ C
(
‖f‖L2(Ω)3 + ‖g‖

H
1/2
00 (Γ)′

)
. (2.6)

A sufficient condition for the global uniqueness of the solution is:

Proposition 2.4. Assume that the function α satisfies assumptions (2.1) and (2.2). If problem (2.3) has a
solution (u, p) such that u ∈ L3(Ω)3 and satisfies

αmax + αmin

αmin
C(Ω)Lα ‖u‖L3(Ω)3 < 1, (2.7)

then, there is no other solution of problem (2.3).
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This uniqueness result is stated in [3] under the condition that u belongs to Lr(Ω)d with r > d, where d is
the dimension. This is due to the Sobolev imbedding when d = 2 (see Rem. 2.8). However, when d = 3, the
proof in [3] is also valid with r = 3.

Finally, concerning the regularity of the solution the following result holds.

Proposition 2.5. There exists a real number ρ0 > 2 only depending on the geometry of Ω such that, for
all ρ, 2 < ρ ≤ ρ0, and for all data (f , g) ∈ Lρ(Ω)3 × W

−1/ρ
ρ (Γ), any solution (u, p) of problem (2.3) belongs to

Lρ(Ω)3 × W 1
ρ (Ω).

Remark 2.6. The existence of ρ0 is obtained in [3] by a perturbation argument, but in dimension d = 3, there
is no guarantee that ρ0 ≥ 3. Therefore, in general, condition (2.7) for global uniqueness cannot be checked from
the data.

2.2. Nonsingular solutions

Let us now consider the case when the solution is only locally unique. In this case, although problem (2.3)
may have more than one solution, we assume that there exists an isolated solution. That is, there exists a
neighborhood of this solution where no other solution exists. A sufficient condition for this to hold is that the
solution is nonsingular (see [11] or Girault and Raviart [20]). In this paragraph we analyze the properties of
nonsingular solutions, and give sufficient conditions for such a solution to exist.

First we cast problem (2.3) in a more convenient, but nevertheless equivalent, functional setting. With this
purpose let us define the data space

Y := L2(Ω)3 × H
1/2
00 (Γ)′,

with norm
‖(f , g)‖Y := ‖f‖L2(Ω)3 + ‖g‖

H
1/2
00 (Γ)′ ,

and the solution space
X := L2(Ω)3 × H1

w(Ω),

with norm
‖(u, p)‖X := ‖u‖L2(Ω)3 + ‖p‖H1(Ω).

We also define T as the solution operator to the linear Darcy problem, i.e. T : Y → X is such that, for every
η = (f , g) ∈ Y, X 
 x = (u, p) = Tη = T (f , g) solves

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ᾱu + ∇p = f , in Ω,

∇ · u = 0, in Ω,

p = 0, on Γw,

u · n = g, on Γ,

(2.8)

for a fixed ᾱ > 0.
It is classical that problem (2.8) is well-posed. This implies that T ∈ L(Y, X). In other words, there is a

constant C > 0 such that for every (f , g) ∈ Y

‖T (f , g)‖X ≤ C ‖(f , g)‖Y . (2.9)

By assumption (2.1) we get that α ∈ L∞(R). Then, for any (u, p) ∈ X, α(p)u ∈ L2(Ω)3 and we can define
the map G : X → Y as follows. If x = (u, p) ∈ X, then

G(x) :=
(

(α(p) − ᾱ)u− f
−g

)
∈ Y.
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Finally, let us define F : X → X as
F (x) := x + TG(x).

With this notation, problem (2.3) can be equivalently restated as:
Find x = (u, p) ∈ X such that

F (x) = 0. (2.10)

We are now in a position to define the notion of nonsingular solutions.

Definition 2.7 ([11]). Let x ∈ X solve problem (2.10). This solution is called nonsingular if the linear operator

F ′(x) = I + TG′(x)

is an isomorphism of X. Here F ′(x) and G′(x) denote the Fréchet derivative of the maps F and G at point x,
respectively.

Our main interest in this paragraph is to provide sufficient conditions for a solution to be nonsingular in
this sense. First of all, by assumption (2.2) we know that the derivative of α exists a.e. on R (cf. Folland [18]).
Denoting this derivative by α̇ we can, formally, obtain the derivative of the map G. Let x = (u, p), y = (v, q) ∈ X,
then

G′(x)y =
(

(α(p) − ᾱ)v + α̇(p)qu
0

)
. (2.11)

From this we can conclude that if x = (u, p) ∈ L3(Ω)3 × H1
w(Ω) ⊂ X, the Fréchet derivative of the map G is

well-defined, given by equation (2.11), and G′(x) ∈ L(X, Y).

Remark 2.8. We need u ∈ L3(Ω)3 because of the term α̇(p)qu. Indeed, by assumption (2.2), Hölder’s inequality
and the Sobolev embedding H1 ↪→ L6, we have

∫
Ω

|α̇(p)qu|2 ≤ L2
α

(∫
Ω

q6

)1/3 (∫
Ω

|u|3
)2/3

≤ C(Ω)2L2
α‖q‖2

H1(Ω)‖u‖2
L3(Ω),

where all inequalities are sharp. Clearly, if d = 2 we should require u ∈ L2+ε(Ω)2 for some ε > 0. In both cases,
we must assume that the velocity u lies in a smaller space than L2(Ω)d for the derivative to make sense. This
is in contrast to the common feature of many nonlinear operators arising in the analysis of partial differential
equations that describe physical phenomena. For such an operator, its derivative is everywhere defined and the
range of the derivative is a smaller space (i.e. more smooth or regular) than the data space. For this reason, we
say that the operator G does not have regularizing properties. The fact that for problem (1.1) the nonlinearity G
does not have regularizing properties lies at the heart of all the difficulties that its theoretical and numerical
analysis present.

We now give sufficient conditions for a solution of problem (2.10) to be nonsingular in the sense of
Definition 2.7.

Proposition 2.9. Assume that for problem (2.10) the function α is such that conditions (2.1) and (2.2) hold.
Let x = (u, p) ∈ X be a solution to problem (2.10). If u ∈ L3(Ω)3 and

αmax + αmin

αmin
C(Ω)Lα‖u‖L3(Ω)3 < 1, (2.12)

then this solution is nonsingular.
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Proof. We need to show that the map I + TG′(x) is an isomorphism of X. Since the operator is continuous, by
the Open Mapping Theorem (see Helemskii [25]) it is sufficient to show that the operator is bijective. That is,
given any z = (w, r) ∈ X there exists a unique y = (v, q) ∈ X such that

y + TG′(x)y = z,

or
(y − z) = T (−G′(x))y.

In other words, we must prove that the problem: Find (v, q) ∈ X such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ᾱ(v − w) + ∇(q − r) = (ᾱ − α(p))v − α̇(p)qu, in Ω,

∇ · (v − w) = 0, in Ω,

(v − w) · n = 0, on Γ,

q − r = 0, on Γw,

always has a unique solution. Doing the elementary change of variables (V, Q) = (v−w, q−r) ∈ X this problem
can be equivalently restated as: Find (V, Q) ∈ X such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(p)V + ∇Q = F(Q), in Ω,

∇ · V = 0, in Ω,

V · n = 0, on Γ,

Q = 0, on Γw,

where
F(Q) := (ᾱ − α(p))w − α̇(p)ru − α̇(p)Qu = F + F̄(Q),

with
F = (ᾱ − α(p))w − α̇(p)ru , F̄(Q) = α̇(p)Qu.

Notice that, since u ∈ L3(Ω)3 then F(Q) ∈ L2(Ω)3. This problem can be written in variational form as: Find
(V, Q) ∈ X such that {∫

Ω α(p)V · W +
∫
Ω W · ∇Q =

∫
Ω F(Q) ·W, ∀W ∈ L2(Ω)3,∫

Ω
V · ∇R = 0, ∀R ∈ H1

w(Ω).
(2.13)

We observe that (2.13) is a linear Darcy’s system with an affine perturbation F(Q). If we define the bilinear
form A : X × X → R by

A ((V, Q), (W, R)) :=
∫

Ω

α(p)V · W +
∫

Ω

W · ∇Q +
∫

Ω

V · ∇R,

and assume for the moment that F̄(Q) = 0, i.e. F(Q) does not depend on Q, then, problem (2.13) has a unique
solution if and only if:

(1) There exists a constant βA > 0 such that

inf
(V,Q)∈X

sup
(W,R)∈X

A ((V, Q), (W, R))
‖(V, Q)‖X‖(W, R)‖X

≥ βA. (2.14)

(2) The form A has the following property:

(A ((V, Q), (W, R)) = 0 ∀(V, Q) ∈ X) ⇒ (W, R) = (0, 0). (2.15)
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These two properties are equivalent to the fact that the linear Darcy problem defined by the form A is well-posed,
which is a classical result. This also implies the a priori estimate

‖V‖L2(Ω)3 + |Q|H1(Ω) ≤ C ‖F‖L2(Ω)3 , (2.16)

for some C > 0 that does not depend on F, V or Q. Now, the well-posedness of (2.13) follows immediately by
proving that the affine mapping S �→ Q, where Q is the second component of the solution pair (V, Q) of (2.13)
with data F(S) is a contraction: There exists k ∈ ]0, 1[ such that

∀S ∈ H1(Ω), |Q|H1(Ω) ≤ k |S|H1(Ω).

To do this, let S be given in H1(Ω), set F = 0, and take W = V in the first equation of problem (2.13). The
second equation, together with condition (2.1) imply

αmin ‖V‖2
L2(Ω)3 ≤

∫
Ω

α(p)V · V

=
∫

Ω

F̄(S) · V

≤
∥∥F̄(S)

∥∥
L2(Ω)3

‖V‖L2(Ω)3 ,

or
‖V‖L2(Ω)3 ≤ 1

αmin

∥∥F̄(S)
∥∥

L2(Ω)3
.

By taking W = ∇Q we obtain

|Q|2H1(Ω) =
∫

Ω

∇Q · ∇Q

=
∫

Ω

F̄(S) · ∇Q −
∫

Ω

α(p)V · ∇Q

≤
∥∥F̄(S)

∥∥
L2(Ω)3

|Q|H1(Ω) + αmax ‖V‖L2(Ω)3 |Q|H1(Ω)

≤
(

1 +
αmax

αmin

)∥∥F̄(S)
∥∥

L2(Ω)3
|Q|H1(Ω)

≤
(

1 +
αmax

αmin

)
‖α̇(p)Su‖L2(Ω)3 |Q|H1(Ω) .

Since
‖α̇(p)Su‖L2(Ω)3 ≤ C(Ω)Lα ‖u‖L3(Ω)3 |S|H1(Ω) ,

we derive
|Q|H1(Ω) ≤

(
1 +

αmax

αmin

)
C(Ω)Lα ‖u‖L3(Ω)3 |S|H1(Ω) .

Therefore the mapping S �→ Q is a contraction if(
1 +

αmax

αmin

)
C(Ω)Lα ‖u‖L3(Ω)3 < 1,

which is condition (2.12). �
Remark 2.10. We see that (2.12) coincides with the condition for global uniqueness (2.7). This reflects that
the nonlinearity G does not have regularizing properties. Nevertheless, these are only sufficient conditions, and
it is plausible that problem (1.1) has a nonsingular solution without satisfying condition (2.12).
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3. The discrete problem

Having analyzed the mathematical properties of problem (1.1) we now proceed to propose several methods
for its approximate solution. With this purpose, let h be a discretization parameter (that will tend to zero).
For every h > 0 we introduce two finite dimensional spaces Xh ⊂ L2(Ω)3 and Mh ⊂ H1

w(Ω) such that:
(1) The pair of spaces (Xh, Mh) is stable, in the sense that they satisfy a uniform inf-sup condition ([10,20],

Ern and Guermond [17] or Boffi et al. [7]). That is, there exists a constant β > 0 independent of h such
that

sup
wh∈Xh

b(wh, qh)
‖wh‖L2(Ω)3

≥ β |qh|H1(Ω) , ∀qh ∈ Mh, (3.1)

where the form b is defined in (2.5).
(2) There exist continuous interpolation operators πh : L2(Ω)3 → Xh, Ih : H1(Ω) → Mh and an integer

k ≥ 1, such that for all (v, q) ∈ Hk(Ω) × Hk+1(Ω)

‖v − πhv‖L2(Ω)3 ≤ Chk ‖v‖Hk(Ω)3 , (3.2)

and
|q − Ihq|H1(Ω) ≤ Chk |q|Hk+1(Ω) . (3.3)

In order to find examples of such discrete spaces, assume to simplify that Ω is a polyhedron, and let Th be a
family of triangulations of Ω, made of tetrahedra with diameter bounded by h. We suppose that Th is regular
in the following sense (cf. Ciarlet [12]): There exists a constant σ > 0, independent of h, such that

∀T ∈ Th,
hT

ρT
≤ σ, (3.4)

where hT is the diameter of T and ρT is the diameter of the ball inscribed in T . Then, for any integer k ≥ 1,
the following pair of spaces satisfy conditions (3.1)–(3.3):

Xh :=
{
vh ∈ L2(Ω)3 : vh|T ∈ P3

k−1, ∀T ∈ Th

}
, (3.5)

and
Mh :=

{
qh ∈ C0(Ω̄) : qh|T ∈ Pk, ∀T ∈ Th

}
. (3.6)

For a proof the reader can consult standard references, for instance [10,17,20].
Finally, we define the discrete solution space

Xh := Xh × Mh,

normed by ‖ · ‖X. Clearly, Xh ⊂ X. For the sequel, it is also useful to introduce the space

Vh = {vh ∈ Xh : ∀qh ∈ Mh, b(vh, qh) = 0}, (3.7)

and its orthogonal in Xh

V ⊥
h = {vh ∈ Xh : ∀wh ∈ Vh,

∫
Ω

vh · wh = 0}. (3.8)

For each such pair of discrete spaces we define the Galerkin solution to problem (2.3) as the pair
xh = (uh, ph) ∈ Xh such that

{
aph

(uh,vh) + b(vh, ph) =
∫
Ω

f · vh, ∀vh ∈ Xh,

b(uh, qh) = 〈g, qh〉Γ, ∀qh ∈ Mh.
(3.9)
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Under assumptions (2.1) and (3.1), the existence of a solution for this problem can be established by the same
techniques used in Theorem 2.3 (cf. [3]). It is even simpler, since problem (3.9) is already set in finite dimension.
All solutions of problem (3.9) satisfy uniform a priori estimates and (3.2) and (3.3) suffice to establish weak
convergence (up to subsequences) of any solution of (3.9) to some solution of (2.3).

In the remainder of this section we analyze this discrete problem. For the case when the solution is unique we
prove optimal error estimates and propose an algorithm to find such an approximate solution. The algorithm
is proved to converge independently of the discretization parameter. For the nonuniqueness case, in the spirit
of [11,20], we show that for h small enough there exists a nonsingular solution to (3.9) in a neighborhood of
the nonsingular solution to the exact problem. We analyze some properties of the application of Newton’s
method to this problem, and we obtain estimates on its speed of convergence and conditions on the initial
approximation. The main difficulty in this analysis is that there exist x in X for which the operator G′(x) is not
bounded in L(X, Y). More precisely, we require that the first component of x belong to L3(Ω)3, a smaller space
than L2(Ω)3. This again is related to the fact that the nonlinearity G does not have regularizing properties.

3.1. The uniqueness case

Recall that condition (2.7) is sufficient for the solution to problem (2.3) to be unique. In the setting that we
have described, and under a similar assumption, we have the following a priori estimate.

Theorem 3.1. Let the pair of finite dimensional spaces Xh satisfy condition (3.1). Assume that the solution
x = (u, p) ∈ X to (2.3) is such that u ∈ L3(Ω)3 and is small enough, in the sense that

1
β

αmax + αmin

αmin
C(Ω)Lα ‖u‖L3(Ω)3 ≤ θ < 1. (3.10)

Then both (2.3) and (3.9) have a unique solution and there exists a constant C > 0 independent of h such that
the solution xh = (uh, ph) ∈ Xh of problem (3.9) satisfies

‖u − uh‖L2(Ω)3 + |p − ph|H1(Ω) ≤ C

(
inf

vh∈Xh

‖u− vh‖L2(Ω)3 + inf
qh∈Mh

|p − qh|H1(Ω)

)
. (3.11)

Proof. The proof proceeds in three steps.
1) The second equation in (3.9) can be viewed as a non-homogeneous constraint; let us show that we can
approximate u with functions of Xh that satisfy this constraint. For this, let vh be an arbitrary function of Xh,
define rh in Xh by

∀qh ∈ Mh , b(rh, qh) = b(u− vh, qh),
and set wh := rh + vh. It follows from (3.1) and the Babuška–Brezzi’s theory (cf. [4,9] or [10,17,20]) that this
equation has a solution rh ∈ Xh, unique in V ⊥

h , and such that

β ‖rh‖L2(Ω)3 ≤ ‖u − vh‖L2(Ω)3 . (3.12)

Thus
b(wh, qh) = b(u, qh) = 〈g, qh〉 = b(uh, qh), ∀qh ∈ Mh,

and uh − wh ∈ Vh. This implies

αmin ‖uh − wh‖L2(Ω)3 ≤ sup
yh∈Vh

aph
(uh − wh,yh)
‖yh‖L2(Ω)3

≤ sup
yh∈Vh

aph
(uh − u,yh)
‖yh‖L2(Ω)3

+ sup
yh∈Vh

aph
(u − wh,yh)
‖yh‖L2(Ω)3

≤ sup
yh∈Vh

aph
(uh − u,yh)
‖yh‖L2(Ω)3

+ αmax ‖u− wh‖L2(Ω)3 .
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2) Subtract the first equation of (2.3) from the first equation in (3.9) with test function yh ∈ Vh. Since
Xh ⊂ L2(Ω)3,

aph
(uh − u,yh) =

∫
Ω

(α(p) − α(ph))u · yh +
∫

Ω

yh · ∇(p − ph)

≤ Lα ‖p − ph‖L6(Ω) ‖u‖L3(Ω)3 ‖yh‖L2(Ω)3 + b(yh, p − ph)

≤ C(Ω)Lα |p − ph|H1(Ω) ‖u‖L3(Ω)3 ‖yh‖L2(Ω)3 + b(yh, p − qh) + b(yh, qh − ph).

This yields

αmin ‖uh − wh‖L2(Ω)3 ≤ C(Ω)Lα |p − ph|H1(Ω) ‖u‖L3(Ω)3 + |p − qh|H1(Ω) + αmax ‖u− wh‖L2(Ω)3 ,

where the last inequality holds since yh ∈ Vh. Finally, by the triangle inequality and (3.12)

αmin ‖u− uh‖L2(Ω)3 ≤ (αmin + αmax)
(

1 +
1
β

)
‖u− vh‖L2(Ω)3

+ C(Ω)Lα |p − ph|H1(Ω) ‖u‖L3(Ω)3 + |p − qh|H1(Ω) . (3.13)

3) Let qh ∈ Mh be arbitrary. By the inf-sup condition (3.1),

β |ph − qh|H1(Ω) ≤ sup
yh∈Xh

b(yh, ph − qh)
‖yh‖L2(Ω)3

≤ sup
yh∈Xh

b(yh, ph − p)
‖yh‖L2(Ω)3

+ sup
yh∈Xh

b(yh, p − qh)
‖yh‖L2(Ω)3

≤ sup
yh∈Xh

b(yh, ph − p)
‖yh‖L2(Ω)3

+ |p − qh|H1(Ω) .

Subtracting the first equation of (2.3) from the first equation of (3.9), since Xh ⊂ L2(Ω)3 we obtain

b(yh, ph − p) =
∫

Ω

(α(p) − α(ph))u · yh +
∫

Ω

α(ph)(u − uh) · yh

≤ C(Ω)Lα |p − ph|H1(Ω) ‖u‖L3(Ω)3 ‖yh‖L2(Ω)3 + αmax ‖u − uh‖L2(Ω)3 ‖yh‖L2(Ω)3 ,

which implies

|ph − qh|H1(Ω) ≤
1
β
|p − qh|H1(Ω) +

C(Ω)Lα

β
‖u‖L3(Ω)3 |p − ph|H1(Ω) +

αmax

β
‖u− uh‖L2(Ω)3 .

By the triangle inequality

|p − ph|H1(Ω) ≤
(

1 +
1
β

)
|p − qh|H1(Ω) +

C(Ω)Lα

β
‖u‖L3(Ω)3 |p − ph|H1(Ω) +

αmax

β
‖u − uh‖L2(Ω)3 .

Assumption (3.10) implies

αmax + αmin(1 − θ)
αmax + αmin

|p − ph|H1(Ω) ≤
(

1 +
1
β

)
|p − qh|H1(Ω) +

αmax

β
‖u − uh‖L2(Ω)3 .
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Combining this last inequality, assumption (3.10), and (3.13) we obtain

‖u− uh‖L2(Ω)3 ≤ C
(
‖u − vh‖L2(Ω)3 + |p − qh|H1(Ω)

)
+

αmaxθ

αmax + αmin(1 − θ)
‖u− uh‖L2(Ω)3 .

Since
1 − αmaxθ

αmax + αmin(1 − θ)
=

αmax + αmin

αmax + αmin(1 − θ)
(1 − θ) > 0

and the pair (vh, qh) ∈ Xh is arbitrary we obtain the desired result. �
Remark 3.2. For the pair of finite element spaces (3.5), (3.6) condition (3.1) holds with β = 1. Hence, in this
case, assumption (3.10) is the same as (2.7).

The next corollary follows readily from this theorem.

Corollary 3.3. Under the setting of Theorem 3.1, if the spaces Xh and Mh satisfy assumptions (3.2) and (3.3),
then

lim
h→0

(
‖u− uh‖L2(Ω)3 + |p − ph|H1(Ω)

)
= 0.

Moreover, if the exact solution (u, p) ∈ Hs(Ω)3 × Hs+1(Ω) for some real number s ∈ [0, k], then there is a
constant C > 0 independent of h such that

‖u − uh‖L2(Ω)3 + |p − ph|H1(Ω) ≤ Chs
(
‖u‖Hs(Ω)3 + |q|Hs+1(Ω)

)
.

Proof. The conclusion of Theorem 3.1, an elementary density argument and assumptions (3.2) and (3.3) give
that the Galerkin solution converges to the exact solution as h → 0. If the exact solution is more regular,
assumptions (3.2) and (3.3) give the claimed error estimates. �

We now propose an iterative scheme to solve the discrete nonlinear system (3.9). Although the scheme
requires assembling a new matrix at each iterative step, we show that, under an assumption similar to (2.7),
the speed of convergence to the Galerkin solution is independent of the discretization parameter h.

The proposed scheme is the following:
Given an arbitrary initial approximation p

(0)
h ∈ Mh, for n = 0, 1, 2, . . . find (u(n+1)

h , p
(n+1)
h ) ∈ Xh that solve⎧⎨

⎩
a

p
(n)
h

(
u(n+1)

h ,vh

)
+ b

(
vh, p

(n+1)
h

)
=

∫
Ω

f · vh, ∀vh ∈ Xh,

b
(
u(n+1)

h , qh

)
= 〈g, qh〉Γ, ∀qh ∈ Mh.

(3.14)

Now we prove that this scheme converges independently of the discretization parameter.

Proposition 3.4. Assume that the pair of spaces (Xh, Mh) satisfies condition (3.1). Let the solution to (3.9)
be small enough, in the sense that there are two constants θ < 1 and h0 > 0 such that for every h ≤ h0

αmax + αmin

αmin
C(Ω)Lα ‖uh‖L3(Ω)3 ≤ θ. (3.15)

Then for the iterative scheme (3.14) the following error estimates hold

∥∥∥uh − u(n+1)
h

∥∥∥
L2(Ω)3

≤ 1
αmax + αmin

θn+1

βn

∣∣∣ph − p
(0)
h

∣∣∣
H1(Ω)

,

and ∣∣∣ph − p
(n+1)
h

∣∣∣
H1(Ω)

≤
(

θ

β

)n+1 ∣∣∣ph − p
(0)
h

∣∣∣
H1(Ω)

.
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Proof. Take the difference of equations (3.9) and (3.14), we obtain

⎧⎨
⎩
∫
Ω

(
α(ph)uh − α

(
p
(n)
h

)
u(n+1)

h

)
· vh + b

(
vh, ph − p

(n+1)
h

)
= 0, ∀vh ∈ Xh,

b
(
uh − u(n+1)

h , qh

)
= 0, ∀qh ∈ Mh.

Set vh = uh − u(n+1)
h , then

αmin

∥∥∥uh − u(n+1)
h

∥∥∥2

L2(Ω)3
≤

∣∣∣∣
∫

Ω

(
α
(
p
(n)
h

)
− α(ph)

)
uh ·

(
uh − u(n+1)

h

)∣∣∣∣
≤ C(Ω)Lα

∣∣∣ph − p
(n)
h

∣∣∣
H1(Ω)

‖uh‖L3(Ω)3

∥∥∥uh − u(n+1)
h

∥∥∥
L2(Ω)3

,

which by (3.15) implies ∥∥∥uh − u(n+1)
h

∥∥∥
L2(Ω)3

≤ θ

αmax + αmin

∣∣∣ph − p
(n)
h

∣∣∣
H1(Ω)

. (3.16)

By the inf-sup condition (3.1),

β
∣∣∣ph − p

(n+1)
h

∣∣∣
H1(Ω)

≤ sup
vh∈Xh

b
(
vh, ph − p

(n+1)
h

)
‖vh‖L2(Ω)3

= sup
vh∈Xh

∫
Ω

(
α(ph)uh − α

(
p
(n)
h

)
u(n+1)

h

)
· vh

‖vh‖L2(Ω)3

≤ sup
vh∈Xh

∫
Ω

(
α(ph) − α(p(n)

h )
)
uh · vh

‖vh‖L2(Ω)3
+ sup

vh∈Xh

∫
Ω

α
(
p
(n)
h

)(
uh − u(n+1)

h

)
· vh

‖vh‖L2(Ω)3

≤ C(Ω)Lα

∣∣∣ph − p
(n)
h

∣∣∣
H1(Ω)

‖uh‖L3(Ω)3 + αmax

∥∥∥uh − u(n+1)
h

∥∥∥
L2(Ω)3

.

By condition (3.15) and inequality (3.16)

β
∣∣∣ph − p

(n+1)
h

∣∣∣
H1(Ω)

≤ θ

αmax + αmin
(αmax + αmin)

∣∣∣ph − p
(n)
h

∣∣∣
H1(Ω)

= θ
∣∣∣ph − p

(n)
h

∣∣∣
H1(Ω)

.

From this inequality and (3.16) the claimed error bounds follow. �

Remark 3.5. One might argue that the previous error bounds do not guarantee convergence of the algorithm,
since the value of β is not known and, hence, the ratio θ/β could be greater than one. Using a similar assumption
as (3.10), namely

1
β

αmax + αmin

αmin
C(Ω)Lα ‖uh‖L3(Ω)3 ≤ θ,

we can bypass this constraint. Moreover, as we have mentioned before, for the concrete examples of spaces
(3.5)–(3.6) we have β = 1.

Remark 3.6. In addition to (3.1)–(3.3), assume that the following inverse inequality holds

‖vh‖L3(Ω)3 ≤ Ch−1/2 ‖vh‖L2(Ω)3 , ∀vh ∈ Xh. (3.17)
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If the exact solution (u, p) belongs to Hs(Ω)3 × Hs+1(Ω) for some real number s with 1
2 < s ≤ 1, then the

uniqueness condition (2.7) implies (3.15). Indeed, under these assumptions we have

‖u− uh‖L3(Ω)3 = O(hs− 1
2 ),

hence, if
αmax + αmin

αmin
C(Ω)Lα ‖u‖L3(Ω)3 ≤ Θ < 1,

then,
αmax + αmin

αmin
C(Ω)Lα ‖uh‖L3(Ω)3 ≤ (1 + O(hs− 1

2 ))Θ.

If h is small enough, we obtain condition (3.15).

3.2. The nonuniqueness case. Approximation of nonsingular solutions

First, we introduce a final assumption on the function α, namely

α ∈ W 2
∞(R). (3.18)

As we have mentioned before, in the truncated case this is not restrictive for the problem we are treating.
Next, we complement (3.1)–(3.3) and (3.17) with an additional inverse inequality:

‖qh‖L∞(Ω) ≤ Ch−1/2 |qh|H1(Ω) , ∀qh ∈ Mh. (3.19)

Both inverse inequalities (3.17) and (3.19) hold when the family of triangulations Th is quasi-uniform (or
uniformly regular) in the following sense (cf. [12]): In addition to (3.4), there exists a constant τ > 0, independent
of h, such that

∀T ∈ Th , hT ≥ τ h. (3.20)
We are now concerned with the approximation of nonsingular solutions to (2.10) under the hypotheses (3.1)–

(3.3), (3.17), and (3.19). In order to do that, let us define the discrete solution operator to the linear Darcy
equations Th : Y → Xh. That is, for any η = (f , g) ∈ Y, Xh 
 xh = (uh, ph) = Thη = Th(f , g) solves

{
a(uh,vh) + b(vh, ph) =

∫
Ω

f · vh, ∀vh ∈ Xh,

b(uh, qh) = 〈g, qh〉Γ, ∀qh ∈ Mh,

where the bilinear form a : L2(Ω)3 × L2(Ω)3 is defined by

a(u,v) := ᾱ

∫
Ω

u · v.

It is a classical matter [10,17] to show that, under assumption (3.1), this operator is well-defined, injective,
Th ∈ L(Y, Xh), and there is a constant C independent of h such that

‖Th(f , g)‖X ≤ C ‖(f , g)‖Y , ∀(f , g) ∈ Y. (3.21)

We can also define the discrete nonlinearity. This is an operator Gh : Xh → Xh × H
1/2
00 (Γ)′ ⊂ Y, such that if

xh = (uh, ph) ∈ Xh, then Gh(xh) := (Fh,−g) , where Fh ∈ Xh is the unique solution to∫
Ω

Fh · vh =
∫

Ω

[(α(ph) − ᾱ)uh − f ] · vh, ∀vh ∈ Xh.
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Finally, define the operator Fh : Xh → Xh by

Fh(xh) := xh + ThGh(xh).

With this notation, problem (3.9) can be equivalently rewritten as:
Find xh ∈ Xh such that

Fh(xh) = 0. (3.22)
The approximation properties of the operator Th are the following.

Proposition 3.7. Assume that (3.1)–(3.3) hold. Let (f , g) ∈ Y be such that T (f , g) ∈ Hs(Ω)3 ×H1+s(Ω) ⊂ X,
for some 0 < s ≤ k. Then, there is a constant C > 0, independent of h such that

‖(T − Th)(f , g)‖X ≤ Chs ‖T (f , g)‖Hs(Ω)3×H1+s(Ω) . (3.23)

Proof. It is a direct consequence of assumptions (3.1)–(3.3), together with a basic interpolation argument [6]. �

Corollary 3.8. Under the hypotheses of Proposition 3.7, the operator Th satisfies

lim
h→0

‖(T − Th)‖L(Y,X) = 0. (3.24)

Proof. Standard regularity results for the linear Darcy problem (2.8) imply that, for sufficiently small s > 0,

T (f , g) ∈ Hs(Ω)3 ×H1+s(Ω) if (f , g) belongs to Ỹ := Hs(Ω)3 ×Hs−1/2(∂Ω), which is a dense subset of Y. The
boundedness of operator T (see (2.9)), together with inequality (3.23) imply

sup
(f ,g)∈Y

‖(T − Th)(f , g)‖X

‖(f , g)‖Y

= sup
(f ,g)∈Ỹ

‖(T − Th)(f , g)‖X

‖(f , g)‖Y

≤ Chs ‖T (f , g)‖X

‖(f , g)‖Y

≤ Chs,

from which (3.24) clearly follows. �

We are interested in approximating a nonsingular solution x = (u, p) ∈ X to (2.10). For this, we must assume
that there is a real number s > 1/2 such that

(u, p) ∈ Hs(Ω)3 × H1+s(Ω). (3.25)

Remark 3.9. Since s > 1/2, (3.25) implies that (u, p) ∈ L3(Ω)3 × C0(Ω̄), see [1].

To alleviate the notation, define

x0
h := (u0

h, p0
h) = (πhu, Ihp) ∈ Xh, (3.26)

where πh and Ih are the interpolation operators of (3.2) and (3.3) respectively. Important properties of the
interpolant x0

h and the operator F ′
h(x0

h) are established below.

Lemma 3.10. Let the function α satisfy conditions (2.1), (2.2) and (3.18). Let the solution (u, p) ∈ X to
problem (2.10) be nonsingular and satisfy the smoothness condition (3.25). If the pair of spaces (Xh, Mh)
satisfies assumptions (3.2), (3.3), then there exists a constant C > 0 independent of h, such that∥∥u− u0

h

∥∥
L2(Ω)3

≤ Chs |u|Hs(Ω)3 , (3.27)
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and ∣∣p − p0
h

∣∣
H1(Ω)

≤ Chs |p|H1+s(Ω) . (3.28)

Moreover, if the pair (Xh, Mh) also satisfies conditions (3.1), (3.17) and (3.19), then there exists a h0 > 0 such
that for every h ≤ h0 the operator F ′

h(x0
h) is an isomorphism of Xh and the norm of its inverse is bounded

independently of h.

Proof. Inequalities (3.27) and (3.28) are a simple consequence of (3.2), (3.3) and assumption (3.25) via inter-
polation [6].

To show that F ′
h(x0

h) is an isomorphism of Xh, notice that

I + ThG′
h(x0

h) = I + ThG′(x) + Th

(
G′(x0

h) − G′(x)
)

+ Th

(
G′

h(x0
h) − G′(x0

h)
)
.

Let us consider each term separately.
(1) I + ThG′(x). Notice, first of all, that if yh ∈ Xh, then (I + ThG′(x)) yh ∈ Xh. Moreover,

I + ThG′(x) − F ′(x) = (Th − T )G′(x).

Since x is a nonsingular solution, F ′(x) is an isomorphism of X. Corollary 3.8 and an application of the
Theorem about the Perturbation of an Invertible Operator (see [26], Thm. 4, p. 207 for instance) imply
that there is h

(1)
0 > 0 such that for all h ≤ h

(1)
0 the operator I + ThG′(x) is an isomorphism of X. Hence

it is an isomorphism of Xh. Thus, the result of the lemma will be proved if we show that the remaining
two terms tend to zero (in the ‖ · ‖L(Xh)–norm) as h → 0.

(2) Th(G′(x0
h) − G′(x)). Let yh = (vh, qh); using the definition of the derivatives, for any w ∈ L2(Ω)3

〈
(G′(x0

h) − G′(x))yh, (w, 0)
〉

=
∫

Ω

(
α(p0

h) − α(p)
)
vh · w +

∫
Ω

(
α̇(p0

h)u0
h − α̇(p)u

)
qh · w

=
∫

Ω

(
α(p0

h) − α(p)
)
vh · w +

∫
Ω

(
α̇(p0

h) − α̇(p)
)
qhu · w

+
∫

Ω

α̇(p0
h)

(
u0

h − u
)
qh ·w.

Consider each term separately. By (2.2) and the inverse inequality (3.17)∫
Ω

(
α(p0

h) − α(p)
)
vh ·w ≤ C(Ω)Lα

∣∣p − p0
h

∣∣
H1(Ω)

‖vh‖L3(Ω)3 ‖w‖L2(Ω)3

≤ Ch−1/2
∣∣p − p0

h

∣∣
H1(Ω)

‖vh‖L2(Ω)3 ‖w‖L2(Ω)3 .

By (3.18) and the inverse inequality (3.19)∫
Ω

(
α̇(p0

h) − α̇(p)
)
qhu · w ≤ C ‖qh‖L∞(Ω)

∫
Ω

∣∣p − p0
h

∣∣ |u| |w|

≤ Ch−1/2
∣∣p − p0

h

∣∣
H1(Ω)

|qh|H1(Ω) ‖u‖L3(Ω)3 ‖w‖L2(Ω)3 .

Finally, by (2.2) and the inverse inequality (3.19)∫
Ω

α̇(p0
h)

(
u0

h − u
)
qh · w ≤ Lα

∥∥u − u0
h

∥∥
L2(Ω)3

‖qh‖L∞(Ω) ‖w‖L2(Ω)3

≤ Ch−1/2
∥∥u− u0

h

∥∥
L2(Ω)3

|qh|H1(Ω) ‖w‖L2(Ω)3 .
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Thus, by the stability property (3.21) of Th,

∥∥Th(G′(x0
h) − G′(x))

∥∥
L(Xh)

≤ C
∥∥G′(x0

h) − G′(x)
∥∥
L(Xh,Y)

= C sup
yh∈Xh

∥∥(G′(x0
h) − G′(x))yh

∥∥
Y

‖yh‖X

= C sup
yh∈Xh

sup
w∈L2(Ω)3

〈
(G′(x0

h) − G′(x))yh,w
〉

‖yh‖X ‖w‖L2(Ω)3

≤ Ch−1/2
(∣∣p − p0

h

∣∣
H1(Ω)

+
∥∥u − u0

h

∥∥
L2(Ω)3

)
,

which by the approximation properties (3.27) and (3.28) of x0
h and the fact that s > 1/2 implies that

this last quantity tends to zero as h → 0.
(3) Th(G′

h(x0
h) − G′(x0

h)). It is sufficient to notice that for any wh ∈ Xh〈
(G′

h(x0
h) − G′(x0

h))yh, (wh, 0)
〉

= 0. �

Remark 3.11. In the example (3.5), (3.6), as in most finite element spaces, inverse estimates such as (3.17) and
(3.19) hold locally. Therefore they may be applied locally when used in proving the interpolation Lemma 3.10,
because interpolation properties are also local. In this case, the statement of Lemma 3.10 is valid even if the
triangulation is not quasi-uniform. But of course intermediate results would have to be stated differently. For
instance the bound for ∫

Ω

(
α(p0

h) − α(p)
)
vh ·w

would read, for s > 1
2 :

∫
Ω

(
α(p0

h) − α(p)
)
vh ·w ≤ Chs−1/2 |p|H1+s(Ω) ‖vh‖L2(Ω)3 ‖w‖L2(Ω)3 .

However, this does not apply to inverse inequalities that are used in conjunction with global error estimates,
such as in Remark 3.6 or in Lemma 3.12 below, in which case some restriction on the mesh cannot be avoided.

Once we know the main properties of the operator F ′
h(x0

h), it is possible to study F ′
h(yh) for yh close to x0

h.

Lemma 3.12. Under the assumptions of Lemma 3.10, there is a constant C0 > 0 independent of h such that
∥∥G′

h(yh) − G′
h(x0

h)
∥∥
L(Xh,Y)

≤ C0h
−1/2

∥∥yh − x0
h

∥∥
X

, ∀yh ∈ Xh. (3.29)

Proof. Let yh = (vh, qh), zh = (wh, rh) ∈ Xh. For an arbitrary th ∈ Xh

〈
(G′

h(yh) − G′
h(x0

h))zh, (th, 0)
〉

=
∫

Ω

(
α(qh) − α(p0

h)
)
wh · th +

∫
Ω

α̇(qh)
(
vh − u0

h

)
rh · th

+
∫

Ω

(
α̇(qh) − α̇(p0

h)
)
u0

hrh · th

≤ C
(∥∥p0

h − qh

∥∥
L∞(Ω)

‖wh‖L2(Ω)3 ‖th‖L2(Ω)3

+
∥∥u0

h − vh

∥∥
L3(Ω)3

|rh|H1(Ω) ‖th‖L2(Ω)3

+
∥∥p0

h − qh

∥∥
L∞(Ω)

∥∥u0
h

∥∥
L3(Ω)3

|rh|H1(Ω) ‖th‖L2(Ω)3

)
,
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hence ∥∥G′
h(yh) − G′

h(x0
h)
∥∥
L(Xh,Y)

≤ C
(∥∥p0

h − qh

∥∥
L∞(Ω)

+
∥∥u0

h − vh

∥∥
L3(Ω)3

)
.

This estimate and the inverse inequalities (3.17), (3.19) imply (3.29). �

Remark 3.13. Lemma 3.12 states that G′
h is Lipschitz-continuous in a neighborhood of x0

h, but this continuity
is not uniform with respect to h. One more time, the absence of regularizing properties for the nonlinearity G
does not allow us to obtain uniform in h bounds.

It is important to know whether the consistency error Fh(x0
h) tends to zero as h → 0, and if this is the case

at which rate. The following lemma shows that the convergence is optimal given the regularity of the exact
nonsingular solution x.

Lemma 3.14. Under the assumptions of the first part of Lemma 3.10, there is a constant C > 0, independent
of h such that ∥∥Fh(x0

h)
∥∥

X
≤ Chs

(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
. (3.30)

Proof. Since F (x) = 0,

Fh(x0
h) = x0

h − x + Th(Gh(x0
h) − G(x)) + (Th − T )G(x),

which implies ∥∥Fh(x0
h)
∥∥

X
≤

∥∥x − x0
h

∥∥
X

+ ‖(T − Th)G(x)‖X +
∥∥Th(G(x) − Gh(x0

h))
∥∥

X
.

From (3.27) and (3.28), ∥∥x − x0
h

∥∥
X
≤ Chs

(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
.

Estimate (3.23) implies

‖(T − Th)G(x)‖X ≤ Chs ‖TG(x)‖Hs(Ω)3×H1+s(Ω) = Chs
(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
.

Finally, since Th(Gh(x0
h) − G(x)) belongs to Xh, by the stability property (3.21) of Th we see that it is

sufficient to control the difference of the first coordinate of G(x) − Gh(x0
h) when tested against an element

of Xh. Let vh ∈ Xh, then using (3.27) and (3.28)

∫
Ω

[
G(x) − Gh(x0

h)
]
1
· vh ≤ (ᾱ + αmax)

∥∥u − u0
h

∥∥
L2(Ω)3

‖vh‖L2(Ω)3 + C(Ω)Lα

∣∣p − p0
h

∣∣
H1(Ω)

‖u‖L3(Ω)3 ‖vh‖L2(Ω)3

≤ Chs
(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
‖vh‖L2(Ω)3 . �

According to the theory in [11,20], Lemmas 3.10, 3.12, and 3.14 allow us to prove our main result, namely,
the existence of a nonsingular solution for the discrete problem and optimal error estimates for it.

Theorem 3.15. Let α satisfy (2.1), (2.2) and (3.18). Assume that problem (2.10) has a nonsingular solution
x = (u, p) ∈ Hs(Ω)3 × H1+s(Ω) ⊂ X, for some s > 1/2. If the pair of spaces (Xh, Mh) satisfies (3.1), (3.2),
(3.3), (3.17), and (3.19), then there is a h0 > 0 such that for all h ≤ h0 the discrete problem (3.22) has a unique
nonsingular solution xh = (uh, ph) in a neighborhood of the interpolant x0

h = (u0
h, p0

h) of the exact nonsingular
solution. Moreover, this solution satisfies the following error estimate

‖x − xh‖X ≤ Chs
(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
, (3.31)

where the constant C > 0 does not depend on h.
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Proof. Let us define
εh :=

∥∥Fh(x0
h)
∥∥

X
,

and
Mh(δ) := sup

yh∈Xh,‖yh−x0
h‖X

<δ

∥∥F ′
h(yh) − F ′

h(x0
h)
∥∥
L(X)

.

Lemma 3.10 implies that there is a h
(1)
0 > 0 such that for all h ≤ h

(1)
0 the operator F ′

h(x0
h) is an isomorphism

of Xh with inverse bounded independently of h. Denote this bound by Δ. Inequalities (3.29) and (3.30) imply
that

2ΔMh(2Δεh) ≤ Chs−1/2,

hence there is a h
(2)
0 > 0 such that for all h ≤ h

(2)
0

2ΔMh(2Δεh) < 1.

Set h0 = min{h(1)
0 , h

(2)
0 } and consider h ≤ h0.

Since the operator F ′
h(x0

h) is an isomorphism, solving problem (3.22) is equivalent to finding a fixed point of
the map Φh : Xh → Xh defined by

Φh(yh) := yh −
[
F ′

h(x0
h)
]−1

Fh(yh).

Denote
S :=

{
yh ∈ Xh : ‖yh − x0

h‖X ≤ 2Δεh

}
.

We shall show that Φh is a contraction from S to S.
If yh ∈ S,

Φh(yh) − x0
h =

[
F ′

h(x0
h)
]−1 (

F ′
h(x0

h)(yh − x0
h) −

(
Fh(yh) − Fh(x0

h)
)
− Fh(x0

h)
)
.

By the Mean Value Theorem

Fh(yh) − Fh(x0
h) =

∫ 1

0

F ′
h

(
x0

h + θ(yh − x0
h)
)
(yh − x0

h)dθ,

from which follows

∥∥F ′
h(x0

h)(yh − x0
h) −

(
Fh(yh) − Fh(x0

h)
)∥∥

X
≤

∫ 1

0

∥∥F ′
h(x0

h) − F ′
h(x0

h + θ(yh − x0
h))

∥∥
L(Xh)

∥∥yh − x0
h

∥∥
X

dθ

≤ 2ΔεhMh(2Δεh).

And, by the choice of h

‖Φh(yh) − x0
h‖X ≤ Δ (2ΔεhMh(2Δεh) + εh) = Δεh (2ΔMh(2Δεh) + 1) < 2Δεh,

which means that Φh(yh) ∈ S.
Let yh, zh ∈ S, then a similar computation shows that

‖Φh(yh) − Φh(zh)‖X ≤ ΔMh(2Δεh) ‖yh − zh‖X <
1
2
‖yh − zh‖X ,

which implies that Φh is a contraction and we can conclude that there is a unique xh ∈ S such that xh = Φh(xh).
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To realize that this solution is nonsingular, notice that

∥∥F ′
h(x0

h) − F ′
h(xh)

∥∥
L(Xh)

≤ Mh(2Δεh) <
1

2Δ
,

and apply the Theorem about the Perturbation of an Invertible Operator (see Kantorovich and Akilov [26],
Thm. 4, p. 207 for instance).

Finally, to get the error estimate (3.31) it is sufficient to use (3.30), the triangle inequality; and proper-
ties (3.27) and (3.28) of x0

h,

‖xh − x‖X ≤
∥∥xh − x0

h

∥∥
X

+
∥∥x0

h − x
∥∥

X

≤ 2Δεh + Chs
(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
≤ Chs

(
|u|Hs(Ω)3 + |p|H1+s(Ω)

)
. �

This concludes the proof.

Remark 3.16. From the proof of this theorem we see that the discrete nonsingular solution xh is unique in a
ball larger than S. Namely, it is unique in the ball

S(δ̄) :=
{
yh ∈ Xh :

∥∥yh − x0
h

∥∥
X

< δ̄
}

,

where δ̄ is such that ΔMh(δ̄) < 1. Both radii tend to zero as h → 0. But, according to (3.30), the radius of S
is O(hs), s > 1/2, whereas δ̄ = O(h1/2).

We have obtained that the discrete problem (3.22) has a unique nonsingular solution in a neighborhood of
the exact nonsingular solution. We now analyze the application of Newton’s method to the solution of this
discrete problem. The algorithm is the following:

Given x
(0)
h ∈ Xh, for n = 0, 1, . . . define x

(n+1)
h by

x
(n+1)
h = x

(n)
h −

[
F ′

h

(
x

(n)
h

)]−1

Fh

(
x

(n)
h

)
.

For this method to make sense F ′
h

(
x

(n)
h

)
must be an isomorphism of Xh for all n. Let us introduce the

following notation
S(xh, δ) := {yh ∈ Xh : ‖yh − xh‖X < δ} ,

and,

K :=
1

4 ‖Th‖L(Y,Xh) C0Δ
,

where the constant C0 is the constant in inequality (3.29), Δ is such that for h small enough

∥∥∥[F ′
h(x0

h)
]−1

∥∥∥
L(Xh)

≤ Δ,

and x0
h is the interpolant of x defined in (3.26).

Lemma 3.17. There exists a real number h0 > 0 such that for all h ≤ h0, if δ = O(h1/2) and yh ∈ S(xh, δ),
then the linear operator F ′

h(yh) is an isomorphism of Xh. Moreover, the norm of the inverse of this operator is
bounded independently of h.
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Proof. Since

F ′
h(yh) = F ′

h(xh) + (F ′
h(yh) − F ′

h(xh)) ,

and, by Theorem 3.15, there exists h0 > 0 such that for all h ≤ h0, F ′
h(xh) is an isomorphism of Xh, the result

is obtained if we show that F ′
h(yh) − F ′

h(xh) is small enough. We know that,

∥∥∥[F ′
h(xh)]−1

∥∥∥
L(Xh)

≤ 2Δ.

A similar argument as in the proof of Lemma 3.12 gives us that

‖F ′
h(yh) − F ′

h(xh)‖L(Xh) ≤ C0h
−1/2 ‖Th‖L(Y,Xh) ‖yh − xh‖X .

Hence, if

2C0 ‖Th‖L(Y,Xh) ‖yh − xh‖X Δh−1/2 < 1,

then the Theorem about the Perturbation of an Invertible Operator implies that F ′
h(yh) is an isomorphism

of Xh. Moreover, from this inequality we see that it is sufficient to set

δ ≤ Kh1/2,

where K is a constant independent of h. �

Theorem 3.18. There exists a real number h0 > 0 such that for all h ≤ h0, if

δ ≤ εKh1/2,

for some real number ε with 0 < ε < 1, and if the initial approximation of Newton’s method x
(0)
h belongs

to S(xh, δ), then Newton’s method converges to the discrete nonsingular solution xh and the following error
estimate holds ∥∥∥x

(n+1)
h − xh

∥∥∥
X
≤ 1

K
h−1/2

∥∥∥x
(n)
h − xh

∥∥∥2

X
.

Proof. Assume h is small enough. Let us show by induction that if x
(0)
h ∈ S(xh, δ), then x

(n)
h ∈ S(xh, δ) for

all n > 0. If x
(n)
h is in S(xh, δ) and δ is chosen as indicated, then by the previous lemma, K can be chosen

independently of h, so that F ′
h(x(n)

h ) is an isomorphism of Xh, with

∥∥∥∥[F ′
h

(
x

(n)
h

)]−1
∥∥∥∥
L(Xh)

≤ 4Δ.

Furthermore with a similar argument as in the proof of Theorem 3.15 we obtain

x
(n+1)
h − xh =

[
F ′

h

(
x

(n)
h

)]−1 (
F ′

h

(
x

(n)
h

)(
x

(n)
h − xh

)
−

(
Fh

(
x

(n)
h

)
− Fh(xh)

))
=

[
F ′

h

(
x

(n)
h

)]−1
∫ 1

0

[
F ′

h

(
x

(n)
h

)
− F ′

h

(
x

(n)
h − θ

(
x

(n)
h − xh

))](
x

(n)
h − xh

)
dθ.



DARCY’S EQUATIONS WITH PRESSURE DEPENDENT POROSITY 1177

Then, by the induction hypothesis, a similar argument as in Lemma 3.12 and the choice of δ and K imply

∥∥∥x
(n+1)
h − xh

∥∥∥
X
≤

∥∥∥∥[F ′
h

(
x

(n)
h

)]−1
∥∥∥∥
L(Xh)

‖Th‖L(Y,Xh)

×
∫ 1

0

∥∥∥G′
h

(
x

(n)
h

)
− G′

h

(
x

(n)
h − θ

(
x

(n)
h − xh

))∥∥∥
L(Y,Xh)

dθ
∥∥∥x

(n)
h − xh

∥∥∥
X

≤ 4Δ ‖Th‖L(Y,Xh) C0h
−1/2

∥∥∥x
(n)
h − xh

∥∥∥2

X

≤ ε
∥∥∥x

(n)
h − xh

∥∥∥
X

.

On one hand, this shows that x
(n+1)
h ∈ S(xh, δ) and hence, by Lemma 3.17, that F ′

h(x(n+1)
h ) is an isomorphism

of Xh for all n ≥ 1, on the other hand this shows the claimed error estimate. �
Remark 3.19. As we can see, the initial guess in Newton’s method must be very close to the discrete solution.
Moreover, the convergence of the method deteriorates as the discretization parameter h tends to zero. This is
again related to the lack of regularizing properties for the nonlinearity G, as is reflected by Lemma 3.12.

4. A Splitting algorithm for exponential porosity

The preceding analysis does not apply to an exponential porosity α, since assumptions (2.1) and (2.2) are not
satisfied. So far, a rigorous analysis of this problem is beyond our reach. Nevertheless, for the exponential case,
we propose a split formulation derived heuristically by taking the divergence of the first equation of (1.1) and
making a change of variable. Thus, by precisely exploiting the exponential character of the porosity (1.2), we are
able to decompose the nonlinear Darcy problem into a linear elliptic equation and a linear Darcy system. But
this process is heuristic since we develop this method without even knowing whether in general problem (1.1),
with the porosity defined as (1.2), does have a solution.

This section is organized as follows. First, we present the motivation behind the split formulation, next
we study the properties of the solution to the auxiliary problem, i.e. the linear elliptic equation. Finally, we
discretize the split formulation and we study the convergence of the resulting algorithm.

4.1. Motivation

Let (u, p) be a solution of problem (1.1) with the porosity given by (1.2) and assume that p belongs to L∞(Ω).
Since α(p) > 0, we can divide the first equation in (1.1) by α(p), take the divergence of the result, and make a
suitable change in variable. Using the second equation of (1.1), we obtain

0 = ∇ · u = ∇ ·
(

1
α(p)

f − 1
α(p)

∇p

)
.

Since 1/α(p) = 1/α0e−γp, then
1

α(p)
∇p =

1
α0

e−γp∇p = − 1
α0γ

∇e−γp,

and the above equation can be rewritten as

− Δe−γp = γ∇ ·
(
e−γpf

)
. (4.1)

Let us introduce the new variable
q = e−γp − 1. (4.2)

Since p = 0 on Γw,
q = e−γp|Γw − 1 = 0 on Γw.
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From (4.1) and (4.2), this new variable satisfies a.e. in Ω

−Δq − γ∇ · (qf) = γ∇ · f ,

α(p) =
α0

q + 1
· (4.3)

Assume that the right-hand side f is smooth enough so that it has a normal trace on Γ. Then it is legitimate
to multiply the first equation of (1.1) by n on Γ and obtain

α(p)g + ∂np = f · n.

Denote F̃ := f · n. By (4.2),

∂nq + γF̃q = α0γg − γF̃ .

Thus, for the variable q, we have obtained the following boundary value problem

⎧⎪⎨
⎪⎩
−Δq − γ∇ · (qf) = γ∇ · f , in Ω,

q = 0, on Γw,

∂nq + γF̃ q = α0γg − γF̃ , on Γ.

(4.4)

This motivates the following split formulation for problem (1.1):

(1) Find q that solves (4.4).
(2) In view of (4.3), define

α̃(x) =
α0

q(x) + 1
, x ∈ Ω. (4.5)

(3) Find (U, P ) that solve ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α̃U + ∇P = f , in Ω,

∇ ·U = 0, in Ω,

P = pw, on Γw,

U · n = g, on Γ.

(4.6)

Summing up, if (u, p) is a solution of problem (1.1) and p belongs to L∞(Ω), then (q,U, p) solves (4.4)–(4.6).
The converse is partially established in the next subsection.

Remark 4.1. This formulation requires only the solution of two linear problems.

4.2. Analysis of the auxiliary problem

Let us first examine the well-posedness of the boundary value problem (4.4). For this, we write it in a
variational form. Multiply the first equation of (4.4) by a sufficiently smooth function r that vanishes on Γw,
apply Green’s formula and use the last equation of (4.4). We obtain

∫
Ω

∇q · ∇r + γ

∫
Ω

qf · ∇r = α0γ

∫
Γ

gr − γ

∫
Ω

f · ∇r.
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In the case d = 3, the minimal smoothness requirements for these integrals to be meaningful are q, r ∈ H1(Ω),
f ∈ L3(Ω)3, and g ∈ H

1/2
00 (Γ)′. Hence, the weak formulation of problem (4.4) that we will consider is the

following:
Given f ∈ L3(Ω)3 and g ∈ H

1/2
00 (Γ)′, find q ∈ H1

w(Ω) such that

∫
Ω

∇q · ∇r + γ

∫
Ω

qf · ∇r = α0γ 〈g, r〉Γ − γ

∫
Ω

f · ∇r, ∀r ∈ H1
w(Ω). (4.7)

A sufficient condition for this problem to be well posed is the following.

Proposition 4.2. Assume there exists a constant χ < 1 such that

γC(Ω) ‖f‖L3(Ω)3 ≤ χ < 1. (4.8)

Then, problem (4.7) has a unique solution q ∈ H1
w(Ω).

Proof. Let q = r in (4.7); Hölder’s inequality and (4.8) give

∣∣∣∣γ
∫

Ω

qf · ∇q

∣∣∣∣ ≤ γ ‖q‖L6(Ω) ‖f‖L3(Ω)3 ‖∇q‖L2(Ω)3

≤ γC(Ω) ‖f‖L3(Ω)3 |q|
2
H1(Ω)

≤ χ |q|2H1(Ω) .

Then Lax–Milgram’s Lemma implies that problem (4.7) is well-posed. �

Remark 4.3. Condition (4.8) is only sufficient for problem (4.4) to be well-posed. We do not want to provide
a thorough analysis of this problem, but only to show that there are cases when the algorithm that we are
developing is meaningful.

Next, we turn to problem (4.6). This problem is well-posed if α̃ defined by (4.5) belongs to L∞(Ω) and is
bounded away from zero. For this, it suffices that there exists a constant q0 > 0 such that

q + 1 ≥ q0 > 0, a.e. in Ω (4.9)

and
q ∈ L∞(Ω). (4.10)

Condition (4.10) can be regarded as a restriction on the smoothness of the data and the domain. Sufficient
conditions for assumption (4.9) to hold elude us at the moment, but we have the following partial result, in the
simpler case when Γw = ∂Ω.

Proposition 4.4. Assume that Γw = ∂Ω and condition (4.8) holds. Then q satisfies

q + 1 ≥ 0, a.e. in Ω.

Proof. Let us define the set
Ω− = {x ∈ Ω : q(x) + 1 ≤ 0} ,

and the function

r0(x) =

{
0, x �∈ Ω−,

−
(
q(x) + 1

)
, x ∈ Ω−.
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Clearly, r0 ∈ H1(Ω) and by definition r0 ≥ 0 almost everywhere in Ω. Moreover, since q + 1|∂Ω = 1 > 0 then
r0 ∈ H1

0 (Ω). By setting r = r0 in (4.7) and changing signs we obtain that

∫
Ω−

|∇ r0|2 + γ

∫
Ω−

r0f · ∇ r0 = 0. (4.11)

Owing to condition (4.8), equality (4.11) implies that

(1 − χ)
∫

Ω

|∇ r0|2 ≤ 0.

In other words ∇ r0 = 0, a.e. in Ω. Since r0 ∈ H1
0 (Ω), we have r0 = 0, a.e. in Ω thus implying the result. �

Under restrictions (4.9), (4.10) and (4.8), we are able to show that the solution (U, P ) to (4.6) solves (1.1).

Proposition 4.5. In addition to (4.8), assume that the solution q to problem (4.4) is in L∞(Ω) and satisfies
(4.9). Then problem (4.6) has a unique solution (U, P ) and this solution solves (1.1).

Proof. By (4.9), there is a unique P̃ such that a.e. in Ω,

e−γP̃ = q + 1.

The assumption that q ∈ L∞(Ω) together with (4.9) imply that P̃ ∈ H1(Ω). Moreover, since q = 0 on Γw, we
obtain P̃ ∈ H1

w(Ω).
Define Ũ ∈ L2(Ω)3 by

α0γŨ := ∇q + γ(q + 1)f ;

by (4.4), this implies that

∇ · Ũ = 0.

Moreover, by the definition of P̃ ,

α0γŨ = ∇(e−γP̃ − 1) + γe−γP̃ f

= −γe−γP̃∇P̃ + γe−γP̃ f ;

hence

α(P̃ )Ũ + ∇P̃ = f .

The boundary condition on Ũ can be obtained in a similar way. This implies not only that the pair (Ũ, P̃ )
solves (1.1), but also that

α0

q + 1
Ũ + ∇P̃ = f .

Since the solution to (4.6) is unique (Ũ, P̃ ) = (U, P ). �

Remark 4.6. In the case of Dirichlet boundary conditions on the whole boundary: Γw = ∂Ω, if we slightly
restrict the angles of the domain and assume that f is smoother, for instance f ∈ L6(Ω)3 and ∇ · f ∈ L2(Ω),
then a bootstrap argument, and regularity results for the Laplace equation, show that q ∈ W 1

r (Ω) for some
r > 3 and hence q is continuous. Therefore (4.10) is satisfied.
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4.3. Discretization

Let us discretize (4.4)–(4.6). In order to approximate the linear Darcy system (4.6) we use the spaces Xh and
Mh introduced in Section 3 and assume that they satisfy (3.1). We also introduce another finite dimensional
space Wh ⊂ H1

w(Ω) to discretize (4.4). Then, the discrete algorithm is the following:

(1) Find qh ∈ Wh such that

∫
Ω

∇qh · ∇sh + γ

∫
Ω

qhf · ∇sh = α0γ

∫
Γ

gsh − γ

∫
Ω

f · ∇sh, ∀sh ∈ Wh. (4.12)

(2) Compute the function

α̃h(x) =
α0

qh(x) + 1
, x ∈ Ω. (4.13)

(3) Find (ũh, p̃h) ∈ Xh × Mh that solve the discrete linear Darcy system

{∫
Ω

α̃hũh · vh +
∫
Ω

vh · ∇p̃h =
∫
Ω

f · vh, ∀vh ∈ Xh,∫
Ω ũh · ∇rh = 〈g, rh〉Γ, ∀rh ∈ Mh.

(4.14)

Remark 4.7. Note that finding this approximate solution involves solving only two consecutive linear problems.

Remark 4.8. Clearly, under assumption (4.8), problem (4.12) has a unique solution. Then, for the discrete
version of the splitting method to make sense we need assumptions analogous to (4.9) and (4.10). When Wh has
the same structure as in (3.6), (4.10) is always satisfied, although the upper bound may not be uniform with
respect to h. Furthermore, if qh(x) + 1 > 0 for all x in Ω, then since problem (4.14) is set into finite dimension,
it also has a unique solution. But of course, (4.9) is not guaranteed, although in the numerical experiments of
Section 5.2, we observe indeed that the discrete solution satisfies qh + 1 > 0.

4.4. Heuristic error analysis

Now, we present an error analysis of the algorithm (4.12)–(4.14), but this analysis is still heuristic because
we must assume that the function qh satisfies uniformly assumptions similar to (4.9) and (4.10). More precisely,
we suppose that there are constants qmin, qmax > 0 such that for every h > 0,

0 < qmin ≤ qh(x) + 1 ≤ qmax, ∀x ∈ Ω̄. (4.15)

With this, we can proceed in two directions: a straightforward analysis of (4.12)–(4.14), or a comparison
with (3.9). In both cases, we suppose that (4.8) holds, so that (4.12) has a unique solution.

Let us proceed first with the second option, namely comparison with (3.9). We do not know whether the
nonlinear Darcy problem with exponential porosity has a solution or not; and if so, which are its properties.
For this reason, we shall carry this error analysis under the assumption that problem (1.1) with the function α
defined by (1.2) does have a solution. Moreover, we shall assume that the discrete problem defined by (3.9),
with α as in (1.2) has a unique solution for all h > 0.

Proposition 4.9. In addition to (3.1) and (4.8), assume that the solution qh to problem (4.12) satisfies (4.15).
If the pair (ũh, p̃h) ∈ Xh × Mh solves (4.14), then there exists a constant C > 0 independent of h such that

‖uh − ũh‖L2(Ω)3 + |ph − p̃h|H1(Ω) ≤ C sup
x∈Ω̄

|α(ph(x)) − α̃h(x)| ‖uh‖L2(Ω)3 , (4.16)

where (uh, ph) ∈ Xh × Mh solves (3.9).
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Proof. Let us take the difference of equations (3.9) and (4.14). We obtain{∫
Ω

(α(ph)uh − α̃hũh) · vh +
∫
Ω

vh · ∇(ph − p̃h) = 0, ∀vh ∈ Xh,∫
Ω(uh − ũh) · ∇rh = 0, ∀rh ∈ Mh.

Let vh = uh − ũh; assumption (4.15) implies

α0

qmax
‖uh − ũh‖2

L2(Ω)3 ≤
∫

Ω

α̃h |uh − ũh|2

=
∣∣∣∣
∫

Ω

(α(ph) − α̃h)uh · (uh − ũh)
∣∣∣∣ ,

whence
‖uh − ũh‖L2(Ω)3 ≤ C sup

x∈Ω̄

|α(ph(x)) − α̃h(x)| ‖uh‖L2(Ω)3 .

By the inf-sup condition (3.1)

β |ph − p̃h|H1(Ω) ≤ sup
vh∈Xh

∫
Ω (α(ph)uh − α̃hũh) · vh

‖vh‖L2(Ω)3

= sup
vh∈Xh

∫
Ω

α̃h (uh − ũh) · vh +
∫
Ω

(α(ph) − α̃h)uh · vh

‖vh‖L2(Ω)3

≤ C ‖uh − ũh‖L2(Ω)3 + sup
x∈Ω̄

|α(ph(x)) − α̃h(x)| ‖uh‖L2(Ω)3

≤ C sup
x∈Ω̄

|α(ph(x)) − α̃h(x)| ‖uh‖L2(Ω)3 . �

This estimate should be regarded as the basic one. If the exact solution is smooth enough, it can easily be
reduced, for instance, to max-norm error estimates for the pressure p and the auxiliary variable q.

Corollary 4.10. In addition to (3.1) and (4.8), assume that the solution q to (4.7) belongs to L∞(Ω) and
satisfies (4.9). Assume, also, that the pair (u, p) that solves (1.1) is such that p ∈ L∞(Ω). If qh satisfies (4.15)
then there is a constant C > 0 independent of h such that

‖uh − ũh‖L2(Ω)3 + |ph − p̃h|H1(Ω) ≤ C
(
‖p − ph‖L∞(Ω) + ‖q − qh‖L∞(Ω)

)
‖uh‖L2(Ω)3 . (4.17)

Proof. Using (4.16) it is sufficient to bound the L∞ norm of the difference α(ph) − α̃h. Then

‖α(ph) − α̃h‖L∞(Ω) ≤ ‖α(p) − α(ph)‖L∞(Ω) + ‖α(p) − α̃h‖L∞(Ω)

≤ D ‖p − ph‖L∞(Ω) + ‖α(p) − α̃h‖L∞(Ω) ,

where the constant D satisfies

D ≤ α0γ exp
(
γ max

{
‖p‖L∞(Ω) , ‖ph‖L∞(Ω)

})
.

Comparing (4.3) and (4.13), we obtain for a.e. x in Ω

|α(p(x)) − α̃h(x)| ≤ α0
|qh(x) − q(x)|

|(q(x) + 1)(qh(x) + 1)|
≤ α0

|(q(x) + 1)(qh(x) + 1)| ‖qh − q‖L∞(Ω).
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Assumptions (4.9) and (4.15) imply that there is a constant C > 0 independent of h such that

|(q(x) + 1)(qh(x) + 1)| > C for a.e. x ∈ Ω,

whence (4.17). �
Finally, to be able to provide an order of convergence, we must assume one additional approximation property

of the space Mh, and we must assume that the space Wh has adequate approximation properties. More precisely,
(1) There is a constant C > 0, independent of h, such that for every r ∈ W k∞(Ω) the interpolation opera-

tor Ih defined in (3.3) satisfies

‖r − Ihr‖L∞(Ω) ≤ Chk |r|W k∞(Ω) . (4.18)

(2) There exists an interpolation operator ρh : H1(Ω) → Wh, such that for all 1 ≤ s ≤ ∞, if r ∈ W k+1
s (Ω)

‖r − ρhr‖Ls(Ω) + h |r − ρhr|W 1
s (Ω) ≤ Chk+1 |r|W k+1

s (Ω) , (4.19)

where the constant C > 0 does not depend on r or h.
(3) There is a constant C > 0 independent of h, such that for every rh ∈ Wh the following inverse inequality

holds
‖rh‖L∞(Ω) ≤ Ch−1/2 |rh|H1(Ω) . (4.20)

Remark 4.11. The space Mh defined in (3.6) has properties (4.18) and (4.19) with the same interpolation
operator Ih. Hence, the triple (Xh, Mh, Mh) with Xh defined in (3.5) and Mh defined in (3.6) has all the desired
properties for all k ≥ 1.

Under these assumptions, we first bound the error of the auxiliary problem.

Proposition 4.12. If (4.8) holds, the solution qh of (4.12) satisfies

|q − qh|H1(Ω) ≤ 2
(
1 +

γC(Ω)
1 − χ

‖f‖L3(Ω)3

)
inf

rh∈Wh

|q − rh|H1(Ω). (4.21)

Proof. By taking the difference between (4.12) and (4.7), inserting any function rh in Wh and testing with
sh = qh − rh, we obtain

|qh − rh|H1(Ω)

(
1 − γC(Ω)‖f‖L3(Ω)3

)
≤ |q − rh|H1(Ω)

(
1 + γC(Ω)‖f‖L3(Ω)3

)
.

By virtue of (4.8), this implies that

|qh − rh|H1(Ω) ≤
(
1 + 2

γC(Ω)‖f‖L3(Ω)3

1 − γC(Ω)‖f‖L3(Ω)3

)
|q − rh|H1(Ω).

Then (4.21) follows from (4.8) and the triangle inequality. �
Now we are able to prove a convergence result.

Corollary 4.13. In addition to (4.8), assume that the solution q to problem (4.4) belongs to Hk+1(Ω)∩W k
∞(Ω)

and satisfies (4.9). Moreover, assume that the solution (u, p) to (1.1) is such that p ∈ Hk+1(Ω) ∩ W k∞(Ω).
Then, if the space Mh satisfies (3.3), (3.19) and (4.18), and the space Wh satisfies (4.19) and (4.20), and if qh

satisfies (4.15), there exists a constant C > 0 that does not depend on h, such that

‖uh − ũh‖L2(Ω)3 + |ph − p̃h|H1(Ω) ≤ Chk−1/2
(
|p|W k∞(Ω) + |p|Hk+1(Ω) + |q|W k∞(Ω) + |q|Hk+1(Ω)

)
‖uh‖L2(Ω)3 .
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Proof. By property (4.18),

‖p − ph‖L∞(Ω) ≤ ‖p − Ihp‖L∞(Ω) + ‖Ihp − ph‖L∞(Ω)

≤ Chk |p|W k∞(Ω) + ‖Ihp − ph‖L∞(Ω) .

By the inverse inequality (3.19) and by (3.3)

‖Ihp − ph‖L∞(Ω) ≤ Ch−1/2 |Ihp − ph|H1(Ω)

≤ Ch−1/2
(
|p − Ihp|H1(Ω) + |p − ph|H1(Ω)

)
≤ Ch−1/2

(
hk |p|Hk+1(Ω) + |p − ph|H1(Ω)

)
.

To estimate the term |p − ph|H1(Ω) it is sufficient to recall Corollary 3.3 in the uniqueness case, or (3.31) for
nonsingular solutions (with s = k + 1). We obtain

‖p − ph‖L∞(Ω) ≤ Chk |p|W k∞(Ω) + Chk−1/2 |p|Hk+1(Ω) .

Then we conclude the proof by applying (4.21) and the inverse inequality (4.20). �
Remark 4.14. The above estimates are suboptimal, but they show heuristically that the splitting algorithm
does indeed converge. By using a more refined analysis, for instance the method of weighted norms of Nitsche (see
[12], Brenner and Scott [8], Chap. 8, or Girault et al. [22], for more details) we may derive (again heuristically)
optimal error estimates. The results of Section 5.2 give examples where the errors have indeed optimal order.

Remark 4.15. If q belongs to H2(Ω) ∩ W 1
∞(Ω) and satisfies (4.9), then for all sufficiently small h, qh also

satisfies (4.15).

Now, let us estimate the error of (4.12)–(4.14) without reverting to (3.9).
The estimate (4.21) is rigorous because it is derived solely under assumptions on the data. However, the

remaining estimates are heuristic because we do not know how to estimate the error on ũh without assuming
that qh satisfies (4.15) and q satisfies (4.9) and (4.10). Then we have the following result.

Theorem 4.16. In addition to (3.1) and (4.8), suppose that the solution q to (4.7) satisfies (4.9) and (4.10),
the solution U of (4.6) belongs to L3(Ω)3, and the solution qh of (4.12) satisfies (4.15). Then

‖U− ũh‖L2(Ω)3 ≤
(

1 +
qmax

qmin

)(
1 +

1
β

)
inf

vh∈Xh

‖U− vh‖L2(Ω)3 +
qmax

qmin

1
q0

C(Ω)‖U‖L3(Ω)3 |q − qh|H1(Ω)

+
qmax

α0
inf

rh∈Mh

|P − rh|H1(Ω), (4.22)

and

|P − p̃h|H1(Ω) ≤
(

1 +
1
β

)
inf

rh∈Mh

|P − rh|H1(Ω) +
1
β

α0

qmin

(
‖U − ũh‖L2(Ω)3 +

C(Ω)
q0

‖U‖L3(Ω)3 |q − qh|H1(Ω)

)
.

(4.23)

Proof. First, the assumptions on q and qh imply that α̃ and α̃h are well-defined and strictly positive. Next, by
taking the difference between the first row of (4.14) and (4.6) in weak form, and inserting any element vh of Xh

and rh of Mh, we obtain for any wh in Xh,∫
Ω

α̃h(ũh − vh) · wh +
∫

Ω

(α̃h − α̃)U · wh +
∫

Ω

∇(p̃h − rh) ·wh =
∫

Ω

α̃h(U − vh) ·wh +
∫

Ω

∇(P − rh) · wh.
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In order to eliminate p̃h, we proceed as in Theorem 3.1: owing to (3.1), there exists vh in Xh such that
wh := ũh − vh belongs to Vh (see (3.7)), and

‖U− vh‖L2(Ω)3 ≤
(

1 +
1
β

)
inf

vh∈Xh

‖U− vh‖L2(Ω)3 . (4.24)

This choice of test function eliminates the last term in the left-hand side of the above difference. Then by
applying (4.15), we derive

‖ũh − vh‖L2(Ω)3 ≤ qmax

qmin
‖U− vh‖L2(Ω)3 +

qmax

α0
‖α̃h − α̃‖L6(Ω)‖U‖L3(Ω)3 +

qmax

α0
|P − rh|H1(Ω). (4.25)

There remains to estimate α̃h − α̃:

‖α̃h − α̃‖L6(Ω) ≤
α0

q0qmin
C(Ω)|q − qh|H1(Ω). (4.26)

Then (4.22) follows by substituting this bound into (4.25) and using (4.24) and the triangle inequality.
To obtain (4.23) notice that, by the discrete inf-sup condition (3.1), for any rh ∈ Mh

β|p̃h − rh|H1(Ω) ≤ sup
yh∈Xh

b(yh, p̃h − rh)
‖yh‖L2(Ω)3

≤ |P − rh|H1(Ω) + sup
yh∈Xh

b(yh, P − p̃h)
‖yh‖L2(Ω)3

,

which shows that it is sufficient to estimate b(yh, P − p̃h). By taking the difference of the first equation in (4.6)
in weak form and the first equation of (4.14) we obtain

b(yh, P − p̃h) =
∫

Ω

(α̃hũh − α̃U) · yh =
∫

Ω

α̃h (ũh − U) · yh −
∫

Ω

(α̃ − α̃h)U · yh

≤ ‖α̃h‖L∞(Ω)‖U − ũh‖L2(Ω)3‖yh‖L2(Ω)3 + ‖α̃ − α̃h‖L6(Ω)‖U‖L3(Ω)3‖yh‖L2(Ω)3 ,

which, by (4.26) and (3.1) implies

|p̃h − rh|H1(Ω) ≤
1
β

(
|P − rh|H1(Ω) +

α0

qmin

(
‖ũh − U‖L2(Ω)3 +

C(Ω)
q0

‖U‖L3(Ω)3 |q − qh|H1(Ω)

))
. (4.27)

The error estimate (4.23) follows from (4.27) and the triangle inequality. �

Remark 4.17. Proposition 4.12 and Theorem 4.16 immediately yield straightforward orders of convergence
for (ũh, p̃h). We skip them for the sake of brevity.

5. Numerical experiments

To illustrate the theory of the previous sections, we present a series of numerical experiments, in two and
three dimensions, which show the performance of the developed methods in a series of test cases.

The numerical experiments in two dimensions were conducted using the package FreeFem++ (see [24]). In
this case, unless otherwise stated, the domain is Ω = ]0, 1[2, where the top and right sides are Γw and the other
two sides are Γ.

The numerical experiments in three dimensions were carried out with the help of the deal.II library (see [5]).
For the experiments in this dimension, the domain is Ω = ]0, 1[3, with Γw = {(x, y, z) ∈ ∂Ω : x = 1}
∪ {(x, y, z) ∈ ∂Ω : y = 1} and Γ = ∂Ω \ Γ̄w.
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Table 1. 3-D. Iterative algorithm. Small porosity. Q1dc-velocity, Q1-pressure.

Level h ‖u− uh‖L2(Ω) Order |p − ph|H1(Ω) Order Iterations
1 0.5000 1.63E+000 — 3.25E+000 — 5
2 0.2500 9.35E–001 0.80 1.72E+000 0.92 9
3 0.1250 4.97E–001 0.91 8.66E–001 0.99 8
4 0.0625 2.53E–001 0.97 4.35E–001 0.99 8
5 0.0313 1.27E–001 0.99 2.18E–001 1.00 8

5.1. The uniqueness case

To test the algorithm developed in Section 3.1 we have conducted a series of numerical experiments, the
results of which we present below. We always initiate the iterative process (3.14) with p0

h = 0 and use the
stopping criterion √∥∥∥u(n+1)

h − u(n)
h

∥∥∥2

L2(Ω)d
+

∣∣∣p(n+1)
h − p

(n)
h

∣∣∣2
H1(Ω)√∥∥∥u(n+1)

h

∥∥∥2

L2(Ω)d
+

∣∣∣p(n+1)
h

∣∣∣2
H1(Ω)

< 10−10.

5.1.1. Small data

To test the algorithm in the case when the porosity does not have high variations, we define the porosity as

α(ξ) = 1 +
1

1 + ξ2
, ξ ∈ R.

Notice that 1 ≤ α(ξ) ≤ 2. We define the exact solution as

u(x, y) = (−y2, z2, x2)�, p(x, y) = sin(2πx) sin(2πy) sin(2πz).

These functions determine the right-hand side and boundary data.
The results of the algorithm obtained using a discontinuous-Q1 approximation of the velocity and a Q1

approximation of the pressure are reported in Table 1. We see that the number of iterations does not depend
on the discretization parameter, and the errors on the velocity and pressure have optimal order. We obtained
similar results in two dimensions, using spaces P0-P1 and P1dc-P2. For the sake of brevity, we do not present
them here.

Notice that for the last level the number of cells equals 32 768 and

dimXh = 786 432 dimMh = 35 937.

5.1.2. Large data

To illustrate the case when the porosity has high variations, but is still bounded we consider

α(ξ) = 1 +
10

1 + ξ2
·

Notice that 1 ≤ α(ξ) ≤ 11. We define the exact solution to be

u(x, y) = (−y2, x2)�, p(x, y) = 10 sin(2πx) sin(2πy).

These functions determine the right-hand side and boundary data.
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Table 2. 2-D. Iterative algorithm. Big porosity. P1dc-velocity, P2-pressure.

h ‖u − uh‖L2(Ω) Order |p − ph|H1(Ω) Order Iterations

0.250000 2.07E+000 — 9.27E+000 — 14
0.125000 8.57E–001 1.33 2.64E+000 1.43 10
0.062500 2.66E–001 1.27 6.76E–001 1.81 9
0.031250 7.11E–002 1.69 1.69E–001 1.96 9
0.015625 1.81E–002 1.90 4.22E–002 2.00 10

Table 3. 3-D. Iterative algorithm. Exponential porosity. Q1dc-velocity, Q1-pressure.

Level h ‖u− uh‖L2(Ω) Order |p − ph|H1(Ω) Order Iterations
1 0.5000 3.26E+000 — 3.25E+000 — 8
2 0.2500 1.73E+000 0.91 1.72E+000 0.92 8
3 0.1250 8.93E–001 0.96 8.68E–001 0.98 7
4 0.0625 4.61E–001 0.95 4.39E–001 0.98 7
5 0.0313 2.50E–001 0.88 2.25E–001 0.96 7

The results of the algorithm obtained with a discontinuous–P1 approximation of the velocity and a P2 ap-
proximation of the pressure are reported in Table 2. We see that the number of iterations does not depend on
the discretization parameter, and the errors on the velocity and pressure have optimal order. Using lower order
elements, i.e. a P0-P1 approximation, we obtain the same results.

5.1.3. Exponential porosity

Finally, although the theory developed for algorithm (3.14) does not cover the case of an unbounded (i.e. ex-
ponential) porosity, we nevertheless test this case. We set the porosity to be defined as in (1.2) with

α0 = 1, γ = 1/4,

and the exact solution

u(x, y) =
1
2
(−y2, z2, x2)�, p(x, y) = 2 + sin(2πx) sin(2πy) sin(2πz).

These functions determine the right-hand side and boundary data.
The results of the algorithm obtained using a discontinuous-Q1 approximation of the velocity and a Q1 ap-

proximation of the pressure are reported in Table 3. We see that the number of iterations does not depend on
the discretization parameter, and the errors on the velocity and pressure have optimal order. In two dimensions,
and on a similar problem, we obtain similar results using P0-P1 and P1dc-P2 approximations.

5.2. Splitting method

To test the algorithm developed in Section 4, let

α0 = 1, γ = 1/4.

We define the exact solution to be

u(x, y) =
1
2
(−y2, z2, x2)�, p(x, y) = 2 + sin(2πx) sin(2πy) sin(2πz).

Notice that this is the same problem we solved in Section 5.1.3 using the iterative algorithm. The following
triple of finite element spaces was used: Xh-discontinuous-Q1, Mh-Q1 and Wh-Q1. The obtained results can be
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Table 4. 3-D. Splitting algorithm. Q1dc–velocity space, Q1-pressure space, Q1-auxiliary variable.

Level h ‖u− uh‖L2(Ω) Order |p − ph|H1(Ω) Order
1 0.5000 5.25E+000 — 3.25E+000 —
2 0.2500 2.80E+000 0.91 1.72E+000 0.92
3 0.1250 1.45E+000 0.95 8.70E–001 0.98
4 0.0625 7.73E–001 0.91 4.44E–001 0.97
5 0.0313 3.95E–001 0.97 2.35E–001 0.92

Table 5. 2-D. Computational time (s). Exponential porosity.

Iterative Splitting
h (P0, P1) (P1dc, P2) (P0, P1, P1) (P0, P1, P2) (P1dc, P2, P1) (P1dc, P2, P2)

0.500000 0.21 0.74 0.02 0.04 0.04 0.06
0.250000 0.40 1.13 0.08 0.09 0.10 0.13
0.125000 1.20 3.35 0.23 0.27 0.53 0.59
0.062500 4.71 23.16 0.95 1.08 5.15 5.25
0.031250 23.69 248.62 5.81 7.00 69.87 82.07
0.015625 167.36 3341.34 50.64 65.48 1366.66 1702.59
0.007813 1711.00 — 713.58 894.86 — —

seen in Table 4. The errors ‖u − uh‖L2(Ω)3 and |p − ph|H1(Ω) asymptotically have optimal order. Testing the
method on a similar two-dimensional problem, we can draw the same conclusions for the triples (P0, P1, P1),
(P0, P1, P2), (P1dc, P2, P1) and (P1dc, P2, P2).

5.3. Computational time

In order to estimate the computational complexity of the proposed algorithms, we compare the computational
time involved in solving the following two dimensional problem:

α(ξ) = eξ/2,

u = (−y3, x3)�, p(x, y) = 2 + sin(2πx) sin(2πy).

We compare the iterative algorithm (3.14) and the splitting method of Section 4. The obtained results are
shown in Table 5.

From the results shown in this Table we can clearly see that the splitting algorithm of Section 4 outperforms
the iterative algorithm of Section 3.1. This is expected to be the case, since the splitting algorithm requires
solving only two linear problems as opposed to the iterative algorithm; which although converges independently
of the discretization parameter, requires the assembly and solution of a linear problem at each iterative step.

Finally, when comparing the computational times for the splitting algorithm using a fixed velocity-pressure
pair but different approximation spaces for the auxiliary problem, we see that the computational times differ
very little, their relative difference is never greater than 20%. This suggests that the most time consuming
procedure is solving the linear Darcy problem (4.14). This is in agreement with the theory, as this problem
has more unknowns and its matrix is indefinite. A better approach for the solution of this problem may reduce
the time involved in solving this problem (see the work of Schöberl and Zulehner [33] and Zulehner [36] for
instance).
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IsoValue
0.748916
1.13947
1.39984
1.6602
1.92057
2.18094
2.4413
2.70167
2.96204
3.22241
3.48277
3.74314
4.00351
4.26388
4.52424
4.78461
5.04498
5.30535
5.56571
6.21663

0
IsoValue
-1.27562
-0.67323
-0.271634
0.129961
0.531556
0.933152
1.33475
1.73634
2.13794
2.53953
2.94113
3.34272
3.74432
4.14591
4.54751
4.9491
5.3507
5.7523
6.15389
7.15788

10
IsoValue
-30.2762
-24.5031
-20.6543
-16.8056
-12.9569
-9.10812
-5.25938
-1.41065
2.43808
6.28682
10.1356
13.9843
17.833
21.6818
25.5305
29.3792
33.228
37.0767
40.9254
50.5473

20
IsoValue
-99.2695
-86.9384
-78.7177
-70.4969
-62.2762
-54.0554
-45.8347
-37.6139
-29.3932
-21.1724
-12.9516
-4.73089
3.48986
11.7106
19.9314
28.1521
36.3729
44.5936
52.8144
73.3663

30
IsoValue
-87.0865
-74.3859
-65.9188
-57.4518
-48.9847
-40.5177
-32.0506
-23.5836
-15.1166
-6.64951
1.81754
10.2846
18.7516
27.2187
35.6857
44.1528
52.6198
61.0869
69.5539
90.7215

40
IsoValue
-82.2937
-69.8142
-61.4946
-53.175
-44.8553
-36.5357
-28.2161
-19.8964
-11.5768
-3.25717
5.06246
13.3821
21.7017
30.0214
38.341
46.6606
54.9803
63.2999
71.6195
92.4186

50
IsoValue
-79.7306
-67.4334
-59.2353
-51.0372
-42.839
-34.6409
-26.4428
-18.2447
-10.0466
-1.84845
6.34967
14.5478
22.7459
30.944
39.1421
47.3403
55.5384
63.7365
71.9346
92.4299

60
IsoValue
-78.7835
-66.6165
-58.5052
-50.3938
-42.2825
-34.1712
-26.0599
-17.9486
-9.83723
-1.72591
6.38541
14.4967
22.608
30.7194
38.8307
46.942
55.0533
63.1646
71.276
91.5543

70
IsoValue
-75.899
-63.9991
-56.0658
-48.1324
-40.1991
-32.2658
-24.3325
-16.3992
-8.46589
-0.532579
7.40073
15.334
23.2674
31.2007
39.134
47.0673
55.0006
62.9339
70.8672
90.7005

80
IsoValue
-75.4126
-63.4097
-55.4078
-47.4059
-39.404
-31.4021
-23.4001
-15.3982
-7.39631
0.605607
8.60752
16.6094
24.6114
32.6133
40.6152
48.6171
56.619
64.6209
72.6228
92.6276

90

IsoValue
-74.8272
-62.9189
-54.98
-47.041
-39.1021
-31.1632
-23.2243
-15.2854
-7.34648
0.592435
8.53135
16.4703
24.4092
32.3481
40.287
48.2259
56.1648
64.1037
72.0427
91.8899

100
IsoValue
-76.0479
-64.086
-56.1114
-48.1368
-40.1622
-32.1876
-24.213
-16.2384
-8.26377
-0.289166
7.68544
15.66
23.6346
31.6092
39.5838
47.5584
55.5331
63.5077
71.4823
91.4188

110
IsoValue
-75.2347
-63.2954
-55.3358
-47.3763
-39.4168
-31.4573
-23.4977
-15.5382
-7.5787
0.38082
8.34034
16.2999
24.2594
32.2189
40.1784
48.138
56.0975
64.057
72.0165
91.9153

120
IsoValue
-73.1165
-61.3238
-53.462
-45.6001
-37.7383
-29.8765
-22.0147
-14.1529
-6.29108
1.57073
9.43254
17.2944
25.1562
33.018
40.8798
48.7416
56.6034
64.4652
72.327
91.9816

130
IsoValue
-73.8404
-61.9978
-54.1027
-46.2076
-38.3125
-30.4174
-22.5223
-14.6272
-6.73214
1.16295
9.05804
16.9531
24.8482
32.7433
40.6384
48.5335
56.4286
64.3237
72.2187
91.9565

140
IsoValue
-73.0932
-61.3755
-53.5637
-45.7519
-37.9401
-30.1283
-22.3165
-14.5047
-6.69288
1.11892
8.93072
16.7425
24.5543
32.3661
40.1779
47.9897
55.8015
63.6134
71.4252
90.9547

150
IsoValue
-75.4097
-63.3785
-55.3578
-47.337
-39.3163
-31.2955
-23.2748
-15.254
-7.23328
0.787471
8.80822
16.829
24.8497
32.8705
40.8912
48.912
56.9327
64.9535
72.9742
93.0261

160
IsoValue
-74.0045
-62.1869
-54.3085
-46.4301
-38.5517
-30.6733
-22.7949
-14.9165
-7.03805
0.840358
8.71876
16.5972
24.4756
32.354
40.2324
48.1108
55.9892
63.8676
71.746
91.442

170
IsoValue
-75.0995
-63.1859
-55.2434
-47.3009
-39.3585
-31.416
-23.4735
-15.5311
-7.58863
0.353834
8.2963
16.2388
24.1812
32.1237
40.0661
48.0086
55.9511
63.8935
71.836
91.6921

180
IsoValue
-71.3416
-59.7246
-51.9799
-44.2353
-36.4906
-28.7459
-21.0013
-13.2566
-5.51191
2.23276
9.97743
17.7221
25.4668
33.2114
40.9561
48.7008
56.4455
64.1901
71.9348
91.2965

190

IsoValue
-69.7935
-58.2757
-50.5973
-42.9188
-35.2403
-27.5618
-19.8833
-12.2048
-4.52633
3.15216
10.8306
18.5091
26.1876
33.8661
41.5446
49.2231
56.9016
64.5801
72.2586
91.4548

200
IsoValue
-67.3119
-56.0385
-48.5228
-41.0072
-33.4916
-25.976
-18.4603
-10.9447
-3.42909
4.08654
11.6022
19.1178
26.6334
34.149
41.6647
49.1803
56.6959
64.2116
71.7272
90.5162

210
IsoValue
-67.48
-56.239
-48.7451
-41.2511
-33.7571
-26.2631
-18.7691
-11.2752
-3.78119
3.71279
11.2068
18.7007
26.1947
33.6887
41.1827
48.6767
56.1706
63.6646
71.1586
89.8936

220
IsoValue
-65.2376
-54.1083
-46.6888
-39.2693
-31.8497
-24.4302
-17.0107
-9.59114
-2.17161
5.24792
12.6674
20.087
27.5065
34.926
42.3456
49.7651
57.1846
64.6041
72.0237
90.5725

230
IsoValue
-59.137
-48.5383
-41.4725
-34.4067
-27.3409
-20.2751
-13.2093
-6.14345
0.922357
7.98817
15.054
22.1198
29.1856
36.2514
43.3172
50.383
57.4488
64.5147
71.5805
89.245

240
IsoValue
-58.5291
-47.9816
-40.9499
-33.9181
-26.8864
-19.8547
-12.823
-5.79129
1.24043
8.27214
15.3039
22.3356
29.3673
36.399
43.4307
50.4624
57.4941
64.5259
71.5576
89.1369

250
IsoValue
-52.0244
-42.0896
-35.4664
-28.8433
-22.2201
-15.5969
-8.97373
-2.35056
4.27261
10.8958
17.519
24.1421
30.7653
37.3885
44.0117
50.6348
57.258
63.8812
70.5044
87.0623

260
IsoValue
-52.405
-42.2529
-35.4849
-28.7168
-21.9488
-15.1807
-8.41267
-1.64462
5.12343
11.8915
18.6595
25.4276
32.1956
38.9637
45.7317
52.4998
59.2678
66.0359
72.8039
89.724

270
IsoValue
-52.1682
-42.0823
-35.3584
-28.6344
-21.9105
-15.1865
-8.46256
-1.73861
4.98534
11.7093
18.4332
25.1572
31.8811
38.6051
45.329
52.053
58.7769
65.5009
72.2248
89.0347

280
IsoValue
-52.7597
-42.6251
-35.8688
-29.1124
-22.356
-15.5997
-8.84331
-2.08694
4.66942
11.4258
18.1821
24.9385
31.6949
38.4512
45.2076
51.964
58.7203
65.4767
72.2331
89.124

290

IsoValue
-51.214
-41.1963
-34.5177
-27.8392
-21.1607
-14.4822
-7.80365
-1.12513
5.55339
12.2319
18.9104
25.589
32.2675
38.946
45.6245
52.303
58.9816
65.6601
72.3386
89.0349

300
IsoValue
-51.896
-41.75
-34.986
-28.222
-21.458
-14.694
-7.92997
-1.16597
5.59803
12.362
19.126
25.89
32.654
39.418
46.182
52.946
59.7101
66.4741
73.2381
90.1481

310
IsoValue
-55.8666
-45.3683
-38.3694
-31.3705
-24.3716
-17.3727
-10.3738
-3.37495
3.62395
10.6228
17.6217
24.6206
31.6195
38.6184
45.6173
52.6162
59.6151
66.614
73.6129
91.1101

320
IsoValue
-53.7675
-43.5488
-36.7363
-29.9239
-23.1114
-16.2989
-9.48643
-2.67396
4.13852
10.951
17.7635
24.576
31.3884
38.2009
45.0134
51.8259
58.6383
65.4508
72.2633
89.2945

330
IsoValue
-53.1323
-42.9163
-36.1057
-29.2951
-22.4845
-15.6738
-8.86322
-2.0526
4.75803
11.5686
18.3793
25.1899
32.0005
38.8111
45.6218
52.4324
59.243
66.0536
72.8643
89.8908

340
IsoValue
-52.1154
-41.9874
-35.2353
-28.4833
-21.7313
-14.9792
-8.22719
-1.47515
5.27688
12.0289
18.781
25.533
32.285
39.0371
45.7891
52.5411
59.2932
66.0452
72.7972
89.6773

350
IsoValue
-54.6865
-44.3385
-37.4399
-30.5412
-23.6426
-16.7439
-9.84525
-2.9466
3.95206
10.8507
17.7494
24.648
31.5467
38.4453
45.344
52.2426
59.1413
66.04
72.9386
90.1853

360
IsoValue
-53.525
-43.2716
-36.436
-29.6004
-22.7648
-15.9292
-9.09359
-2.25799
4.57761
11.4132
18.2488
25.0844
31.92
38.7556
45.5912
52.4268
59.2624
66.098
72.9336
90.0227

370
IsoValue
-52.9465
-42.7126
-35.8899
-29.0673
-22.2446
-15.422
-8.59932
-1.77667
5.04598
11.8686
18.6913
25.5139
32.3366
39.1592
45.9819
52.8045
59.6272
66.4498
73.2725
90.3291

380
IsoValue
-52.9241
-42.6884
-35.8646
-29.0408
-22.217
-15.3932
-8.56936
-1.74556
5.07825
11.9021
18.7259
25.5497
32.3735
39.1973
46.0211
52.8449
59.6687
66.4925
73.3163
90.3759

390

IsoValue
-49.6581
-39.7404
-33.1286
-26.5168
-19.905
-13.2932
-6.68136
-0.0695497
6.54226
13.1541
19.7659
26.3777
32.9895
39.6013
46.2131
52.8249
59.4367
66.0485
72.6603
89.1898

400
IsoValue
-53.1025
-42.8389
-35.9965
-29.1541
-22.3117
-15.4693
-8.62686
-1.78444
5.05797
11.9004
18.7428
25.5852
32.4276
39.27
46.1125
52.9549
59.7973
66.6397
73.4821
90.5881

410
IsoValue
-51.958
-41.7514
-34.9471
-28.1427
-21.3383
-14.534
-7.72959
-0.925215
5.87916
12.6835
19.4879
26.2923
33.0966
39.901
46.7054
53.5097
60.3141
67.1185
73.9229
90.9338

420
IsoValue
-54.5327
-44.1672
-37.2568
-30.3464
-23.436
-16.5256
-9.61522
-2.70483
4.20556
11.116
18.0263
24.9367
31.8471
38.7575
45.6679
52.5783
59.4887
66.3991
73.3095
90.5854

430
IsoValue
-52.2468
-42.0815
-35.3046
-28.5277
-21.7508
-14.9739
-8.19703
-1.42014
5.35675
12.1336
18.9105
25.6874
32.4643
39.2412
46.0181
52.795
59.5719
66.3488
73.1256
90.0679

440
IsoValue
-52.5325
-42.3275
-35.5243
-28.721
-21.9177
-15.1144
-8.31115
-1.50787
5.29541
12.0987
18.902
25.7052
32.5085
39.3118
46.1151
52.9184
59.7216
66.5249
73.3282
90.3364

450
IsoValue
-53.5368
-43.2203
-36.3426
-29.4649
-22.5873
-15.7096
-8.83196
-1.95429
4.92337
11.801
18.6787
25.5564
32.434
39.3117
46.1894
53.067
59.9447
66.8224
73.7
90.8942

460
IsoValue
-56.5868
-46.0057
-38.9516
-31.8975
-24.8434
-17.7894
-10.7353
-3.68124
3.37283
10.4269
17.481
24.535
31.5891
38.6432
45.6972
52.7513
59.8054
66.8594
73.9135
91.5487

470
IsoValue
-55.499
-45.0114
-38.0197
-31.028
-24.0362
-17.0445
-10.0528
-3.06109
3.93063
10.9223
17.9141
24.9058
31.8975
38.8892
45.8809
52.8727
59.8644
66.8561
73.8478
91.3271

480
IsoValue
-59.7811
-48.8839
-41.6192
-34.3544
-27.0896
-19.8248
-12.56
-5.29521
1.96958
9.23437
16.4992
23.764
31.0287
38.2935
45.5583
52.8231
60.0879
67.3527
74.6175
92.7795

490

Figure 1. Approximate pressure for the iterative algorithm. Shown every ten (10) iterations.

5.4. Numerical investigation of the convergence condition for the iterative algorithm

In order to further investigate the properties of the iterative algorithm (3.14) and, more precisely, the role of
condition (3.15) we solve the following particular problem in the domain

Ω =
{
(x, y) ∈ R2 : 1 <

√
x2 + y2 < 4

}
,

with
Γw =

{
(x, y) ∈ R2 :

√
x2 + y2 = 1

}
,

and Γ = ∂Ω \Γw. In this domain we solve the nonlinear Darcy equations with exponential porosity. We set the
right-hand side that corresponds to the exact solution

u(x, y) = (xr,−yr)�,

p(x, y) = r,

where r =
√

x2 + y2. In the numerical experiments that follow we use a (P0, P1, P1) approximation of the
velocity-pressure-auxiliary variable. We set α0 = 2 and vary the parameter γ. Experimentally we have obtained
that if γ < 0.038 the iterative algorithm converges independently of the initial guess, and it behaves the same
way as the cases covered in Section 5.1.

For bigger values of the parameter γ, the splitting algorithm of Section 4 performs as before. However, the
iterative algorithm does not converge anymore. Moreover, if we truncate the porosity function α setting, for
instance,

α(ξ) =

⎧⎪⎨
⎪⎩

α0, ξ < 0,

α0eγξ, 0 ≤ ξ ≤ 4.5,

α0e4.5γ , ξ > 4.5,

where the choice of truncation is dictated by 1 ≤ p(x, y) ≤ 4 ∀(x, y) ∈ Ω̄, the method still diverges. For γ = 0.2,
a history of the behaviour of the approximate pressure is shown in Figure 1.



1190 V. GIRAULT ET AL.

From Figure 1 we can see that although the approximate solution diverges, it does remain bounded, and it
seems to be oscillating around more than one fixed functions. A detailed analysis of the reasons behind these
phenomena is a topic for future research.

5.5. Perspectives

These numerical experiments confirm that the splitting formulation is very promising and is worth further
investigation. Although it is doubtful that the exact problem (4.7) with arbitrary mixed boundary conditions
satisfies the maximum principle, the maximum principle may be valid in particular geometrical configurations
such as the one considered in the example of Section 5.4.

Proving that the discrete problem (4.12) satisfies the maximum principle is much more delicate. In the case
of the Laplace equation, it is well-known that the maximum principle holds for finite elements of degree one on
tetrahedra with acute angles. Extension of this result to (4.12) will be the object of future work.
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