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A HETEROGENEOUS ALTERNATING-DIRECTION METHOD
FOR A MICRO-MACRO DILUTE POLYMERIC FLUID MODEL
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Abstract. We examine a heterogeneous alternating-direction method for the approximate solution
of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve
a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this
context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challeng-
ing from a computational point of view. The heterogeneous alternating-direction scheme combines
a spectral Galerkin method for the Fokker–Planck equation in configuration space with a finite ele-
ment method in physical space to obtain a scheme for the high-dimensional Fokker–Planck equation.
Alternating-direction methods have been considered previously in the literature for this problem (e.g.
in the work of Lozinski, Chauvière and collaborators [J. Non-Newtonian Fluid Mech. 122 (2004) 201–
214; Comput. Fluids 33 (2004) 687–696; CRM Proc. Lect. Notes 41 (2007) 73–89; Ph.D. Thesis
(2003); J. Computat. Phys. 189 (2003) 607–625]), but this approach has not previously been subject
to rigorous numerical analysis. The numerical methods we develop are fully-practical, and we present
a range of numerical results demonstrating their accuracy and efficiency. We also examine an advan-
tageous superconvergence property related to the polymeric extra-stress tensor. The heterogeneous
alternating-direction method is well suited to implementation on a parallel computer, and we exploit
this fact to make large-scale computations feasible.
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1. Introduction

Simulating dilute polymeric fluids by solving a Navier–Stokes–Fokker–Planck system of partial differential
equations (also known as a micro-macro model) is well known to be a challenging problem in computational
rheology. It is worth highlighting at the outset that there is an extensive literature on numerical methods for
this problem, but most of the previous work uses either a fully macroscopic approach in order to circumvent the
multiscale nature of the Navier–Stokes–Fokker–Planck system (see the text [31] for an overview of this field) or
a stochastic approach in which the micro-macro system is treated using Monte-Carlo-type methods (cf. [30]).
Our approach is rather different; we focus on using deterministic numerical methods (specifically, finite element
and spectral methods) to directly solve this multiscale model. We refer to this as the deterministic multiscale
approach. This approach was used successfully by Chauvière and Lozinski [10,11,27], however, those authors
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did not focus on analysis of their numerical methods. The aim of the current work, therefore, is to present
rigorous numerical analysis of fully-practical numerical methods for simulating dilute polymeric fluids and to
demonstrate the effectiveness of these numerical methods in practice.

The starting point for mathematical modelling of polymeric fluids is generally to represent the fluid by
a simplified approximation; in the present case, by a suspension of noninteracting dumbbells (two masses
connected by a spring with force law F∼ ) in a Newtonian solvent. The spring force law has a corresponding
potential, U : R≥0 → R, such that F∼ (q

∼
) = U ′(1

2 |q∼|
2)q

∼
, where q

∼
∈ D is the configuration vector (or end-to-end

vector) of a dumbbell. In this paper, we consider the FENE force law [36], which in nondimensional form is:

U(1
2 |q∼|

2) := − b

2
ln

(
1 −

|q
∼
|2

b

)
, F∼ (q

∼
) =

q
∼

1 − |q
∼
|2/b , (1.1)

where D = B(0,
√
b) ⊂ R

d, d = 2 or 3. The dimensionless parameter b is typically in the range [10, 100]. In [19],
Jourdain et al. showed that for the stochastic differential equation modelling a suspension of FENE dumbbells
(which corresponds to the deterministic Fokker–Planck-based model considered here), the solution exists and
has trajectorial uniqueness if, and only if, b > 2 (cf. also Ex. 1.2 in [4]). Hence, throughout the rest of this
paper, we assume that b ∈ (2,∞) for the FENE potential2.

Suppose the fluid is confined to a macroscopic physical domain Ω, assumed to be a bounded open set
in R

d. Let u∼ : (x∼, t) ∈ Ω × [0, T ] �→ u∼(x∼, t) ∈ R
d denote the macroscopic velocity field, and let p : (x∼, t) ∈

Ω × [0, T ] �→ p(x∼, t) ∈ R denote the pressure. It is typical in this problem to let κ≈ denote the macroscopic
velocity gradient, i.e. κ≈ := ∇∼ xu∼. Also, suppose the function (x∼, q∼, t) �→ ψ(x∼, q∼, t) represents the probability, at
time t, of finding a dumbbell with center of mass at x∼ (for a.e. x∼ ∈ Ω) and configuration vector in the element
q
∼

+ dq
∼
. Then, the micro-macro model for a suspension of FENE dumbbells, in nondimensional form, is as

follows (this nondimensionalisation was also considered in [24]):

∂u∼
∂t

+ u∼ · ∇∼ xu∼ + ∇∼ xp =
γ

Re
Δxu∼ +

b+ d+ 2
b

1 − γ

Re Wi
∇∼ x · τ≈, (x∼, t) ∈ Ω × (0, T ], (1.2)

∇∼ x · u∼ = 0, (x∼, t) ∈ Ω × (0, T ], (1.3)
∂ψ

∂t
+ ∇∼ x · (u∼ψ) + ∇∼ q ·

(
κ≈ q∼ψ − 1

2Wi
F∼ (q

∼
)ψ
)

=
1

2Wi
Δqψ, (x∼, q∼, t) ∈ Ω ×D × (0, T ], (1.4)

τ≈(x∼, t) =
∫
D

F∼ ⊗ q
∼
ψ(x∼, q∼, t) dq

∼
, (x∼, t) ∈ Ω × (0, T ], (1.5)

u∼(x∼, 0) = u∼0(x∼), x∼ ∈ Ω, ψ(x∼, q∼, 0) = ψ0(x∼, q∼), (x∼, q∼) ∈ Ω ×D. (1.6)

Here, Re denotes the Reynolds number, Wi is the Weissenberg number (the ratio of microscopic to macroscopic
time-scales) and γ ∈ (0, 1) is the ratio of solvent viscosity to total viscosity. We will also consider the Stokes–
Fokker–Planck model, which is relevant in the limit Re → 0+, in which (1.2) is replaced by:

∇∼ xp = γΔxu∼ +
b+ d+ 2

b

1 − γ

Wi
∇∼ x · τ≈, (x∼, t) ∈ Ω × (0, T ]. (1.7)

The tensor τ≈ is referred to as the polymeric extra-stress, and is the contribution to the fluid stress due to the
microscopic dumbbells. Equation (1.5) is known as the Kramers expression, and it enables computation of τ≈
based on the probability density function (pdf) ψ. Note that τ≈ rather than ψ enters into (1.2) (or (1.7)), hence
in computations with the micro-macro model it is the accuracy of τ≈ that is important, rather than the accuracy
of ψ. In Section 3.7 we examine a superconvergence property for τ≈, which is extremely beneficial in practice.

2The analysis in this paper can be generalised to a broader class of FENE-like potentials that satisfy Hypotheses A and B
from [22]. For simplicity of exposition, we restrict our attention to the FENE potential here.
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Since ψ is a pdf for each x∼ ∈ Ω, the initial condition should be non-negative:

ψ(x∼, q∼, 0) = ψ0(x∼, q∼) ≥ 0, for a.e. (x∼, q∼) ∈ Ω ×D, (1.8)

and should also satisfy the following normalisation property:∫
D

ψ0(x∼, q∼) dq
∼

= 1, for a.e. x∼ ∈ Ω. (1.9)

It is crucial to note that (1.4) is posed in 2d spatial dimensions, plus time. Since the computational com-
plexity of classical numerical methods grows exponentially with the dimension of the spatial domain, the high-
dimensionality of (1.4) poses a significant computational challenge. Hence, in a coupled algorithm for (1.2)–(1.6),
solving the Fokker–Planck equation is generally the bottleneck step. Therefore, the focus of this paper is on
the analysis and implementation of efficient numerical methods for (1.4).

In the discussion above, we have assumed that both Ω and D are domains in R
d so that the Fokker–Planck

equation is posed on Ω ×D ⊂ R
2d. However, it is not essential that this is the case and, for example, in [10]

the authors considered a micro-macro model in which Ω ⊂ R
2 and D ⊂ R

3. No significant complications are
introduced from the theoretical or implementational point of view by allowing the dimensionality of D and Ω
to be different, but for the rest of this paper we will restrict our attention to the case when these domains have
the same dimensionality.

Notice that the Fokker–Planck equation (1.4) contains an unbounded advection coefficient F∼ . This is inconve-
nient from the point of view of analysis. Therefore we will focus on the following Kolmogorov symmetrisation [23]
of the Fokker–Planck equation, in which the spring force, F∼ , has been absorbed into a weighted diffusion term,

∂ψ

∂t
+ ∇∼ x · (u∼ψ) + ∇∼ q · (κ≈ q∼ψ) =

1
2Wi

∇∼ q ·
(
M∇∼ q

(
ψ

M

))
, (1.10)

where M is the (normalised) Maxwellian defined by

q
∼
�→M(q

∼
) :=

1
Z

exp
(
−U(1

2 |q∼|
2)
)
∈ L1(D), Z :=

∫
D

exp
(
−U(1

2 |q∼|
2)
)

dq
∼
, (1.11)

which in the FENE case is:
M(q

∼
) :=

1
Z

(1 − |q
∼
|2/b)b/2. (1.12)

The Maxwellian transformation used in (1.10) allows us to circumvent the analytical difficulties introduced
by the unbounded convection coefficient in (1.4), and also the symmetry of the principal term in (1.10) is
convenient from the analytical point of view – hence, for the rest of this paper we focus on the Maxwellian-
transformed Fokker–Planck equation. It should be noted, however, that an alternative transformation of (1.4)
was proposed by Chauvière and Lozinski [11], in which the substitution ψ̂ := ψ/M2s/b was used3. It was shown
in Section 3.2 of [22] that with b ≥ 4s2/(2s − 1) and s > 1/2, this also leads to a well-posed problem and a
stable semidiscretisation in any number of space dimensions. Therefore, the Chauvière–Lozinski transformation
would also allow us to deal with the unbounded convection term in (1.4), and indeed, the Chauvière–Lozinski
method has some advantages from a practical point of view; in particular, the substitution ψ̂ := ψ/M2s/b

is independent of b, whereas we use a b-dependent substitution to solve (1.10), which (as discussed in [22])
is less effective for large values of b. Nevertheless, the analysis of (1.10) is simpler, and therefore for the
remainder of this paper we focus on the Maxwellian-transformed form of the Fokker–Planck equation, and when
considering computations, we restrict our attention to moderate values of b, e.g. b � 20, for which, as shown in
Section 7 of [22], numerical methods based on the Maxwellian transformed equation perform comparably well

3Based on computational experience, Chauvière and Lozinski recommended s = 2 and s = 2.5 for d = 2 and d = 3, respectively.
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to the Chauvière–Lozinski formulation. If larger values of b are of interest, then it would be straightforward to
extend the analysis and numerical methods introduced in this paper to the Chauvière–Lozinski formulation of
the Fokker–Planck equation.

In the papers of Chauvière and Lozinski [10,11,26,27] and Helzel and Otto [17], the authors decomposed the
Fokker–Planck equation (1.4) (i.e. in the nonsymmetrised form) according to ∂ψ

∂t + (Lx + Lq)ψ = 0, where

Lqψ = ∇∼ q · (κ≈ q∼ψ) − 1
2Wi

(
∇∼ q · F∼ (q

∼
)ψ + Δqψ

)
, (1.13)

Lxψ = ∇∼ x · (u∼ψ), (1.14)

and then they used an alternating-direction approach based on the operators Lq and Lx to compute numerical
solutions.

That is, suppose that 0 = t0 < t1 < . . . < tn < . . . ≤ T is a uniform partition of spacing Δt of the
interval [0, T ]. A (two-stage) alternating-direction scheme involves approximating the solution, ψ, by ψ2 in the
following manner: given ψ2(tn), n ≥ 0, with ψ2(t0) = ψ0, find ψ1 and ψ2 such that,

∂ψ1

∂t
+ Lqψ1 = 0, t ∈ (tn, tn+1], ψ1(tn) = ψ2(tn), (1.15)

∂ψ2

∂t
+ Lxψ2 = 0, t ∈ (tn, tn+1], ψ2(tn) = ψ1(tn+1), (1.16)

subject to suitable boundary conditions. A practical alternating-direction numerical method is based on spatial
and temporal discretisation of (1.15) and (1.16).

In the case of the Fokker–Planck equation, (1.15) is a convection-diffusion equation posed onD and (1.16) is a
first-order hyperbolic equation on Ω. After discretising in space and time, the two-stage scheme described above
can be implemented by alternating between applying Lx to Ω cross-sections of Ω×D and Lq to D cross-sections
of Ω ×D. This type of scheme is also referred to as a dimension-splitting or operator-splitting approach. We
use these three terms (i.e. alternating direction/dimension-splitting/operator-splitting) interchangeably.

Using this operator-splitting, the “curse of dimensionality” associated with the numerical solution of the
Fokker–Planck equation in 2d dimensions is ameliorated, as the splitting leads to a sequence of d-dimensional
solves at each time step rather than a single 2d-dimensional solve. Also, this splitting of L allows different
numerical methods to be used in Ω and D (resulting in, what we call, a heterogeneous alternating-direction
scheme). In Section 3 we introduce heterogeneous alternating-direction numerical methods for the FENE
Fokker–Planck equation that use a finite element method in Ω and a single-domain Galerkin spectral inD. These
are appropriate choices because a finite element method is flexible enough to deal with the general domain Ω,
whereas D is always a ball in R

d and therefore the Lq operator is well suited to a spectral discretisation via a
polar or spherical coordinate transformation to a cartesian product domain.

Also, note that alternating-direction algorithms are particularly well suited to implementation on parallel
computers since they involve solving a large number of independent equations in each time-step. As shall be
seen later, our alternating-direction algorithm can be efficiently implemented in parallel, and this enables us to
solve large-scale deterministic multiscale problems that may otherwise have been computationally intractable
(e.g. an important large-scale case is when Ω ×D ⊂ R

6).
The structure of this paper is as follows. In Section 2 we briefly discuss the Galerkin spectral method in

the q
∼
-direction that was examined in detail in [22]. Then we introduce alternating-direction schemes for the

full Fokker–Planck equation on Ω × D in Section 3. Finally, in Section 5 we present a range of numerical
results for (i) the isolated Fokker–Planck equation for an enclosed flow model problem and (ii) the coupled
Navier–Stokes–Fokker–Planck system for some channel flow problems of physical interest. We make concluding
remarks in Section 6.
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2. The Fokker–Planck equation in configuration space

First, we briefly summarise some results from [22] on the discretisation of the d-dimensional Fokker–Planck
equation posed in configuration space:

∂ψ

∂t
+ ∇∼ q · (κ≈ q∼ψ) =

1
2Wi

∇∼ q ·
(
M∇∼ q

ψ

M

)
, (q

∼
, t) ∈ D × (0, T ], (2.1)

supplemented with the following initial conditions:

ψ(q
∼
, 0) = ψ0(q∼), for all q

∼
∈ D. (2.2)

No boundary condition on ψ will be (explicitly) imposed along ∂D. However, the function ψ/
√
M will be

sought in a weighted Sobolev space H1(D;M) defined below; thereby, indirectly, ψ/
√
M will be forced to satisfy

a homogeneous Dirichlet boundary condition on ∂D. This is consistent with the recent results of Zhang and
Zhang [37] and Liu and Liu [25]; see in particular Theorem 1.1 in [25]. The implied homogeneous Dirichlet
boundary condition on ψ/

√
M can be seen as an asymptotic decay condition for ψ as q

∼
approaches ∂D; viz.,

ψ(q
∼
, t) = o

(√
M(q

∼
)
)
, as dist(q

∼
, ∂D) → 0+, for all t ∈ (0, T ]. (2.3)

Following [22], we let ϕ̂ := ϕ/
√
M and ∇∼ M ϕ̂ :=

√
M ∇∼ q

(
ϕ̂/

√
M
)
, and define the function space H1

0(D;M) to

be the closure of C∞
0 (D) in the norm of H1(D;M), and

H1(D;M) :=
{
ζ ∈ L2(D) : ‖ζ‖2

H1(D;M) :=
∫
D

(
|ζ|2 + |∇∼ Mζ|2

)
dq

∼
<∞

}
·

Then (2.1) has the following weak formulation: given ψ̂0 := ψ0/
√
M ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩

L2(0, T ; H1
0(D;M)) such that

d
dt

∫
D

ψ̂ ϕ̂ dq
∼
−
∫
D

κ≈ q∼ψ̂ · ∇∼ M ϕ̂ dq
∼

+
1

2Wi

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

= 0 ∀ϕ̂ ∈ H1
0(D;M), (2.4)

in the sense of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·). Notice that we solve for ψ̂; ψ is recovered by setting
ψ :=

√
Mψ̂.

It is shown in Section 2 of [22] that H1(D;M) = H1
0(D;M) and H1

0(D) ⊂ H1
0(D;M)4. The connection between

H1
0(D;M) and H1

0(D) is helpful in the development of Galerkin methods for (2.4), since the construction of
finite-dimensional subspaces of H1

0(D) and the analysis of their approximation properties are well understood.
In [22], a backward-Euler semidiscretisation of (2.4) was studied in detail, and was proved to be uncondi-

tionally stable. Also, the existence and uniqueness of a weak solution of (2.4) was established in Theorem 3.2
of [22]. The proof makes use of the stability result alluded to above in order to use compactness results for the
bounded sequence of solutions to the semidiscrete problem as Δt→ 0+.

We studied the following fully-discrete Galerkin spectral method for the q
∼
-direction problem in detail.

4In fact, these results hold for all FENE-like potentials, cf. footnote 2.
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Let PN (D) be a finite-dimensional subspace of H1
0(D;M) and let ψ̂nN ∈ PN (D) be the solution at time level n

of the following fully-discrete Galerkin method5:
∫
D

ψ̂n+1
N − ψ̂nN

Δt
ϕ̂ dq

∼
−
∫
D

(κ≈
n+1 q

∼
ψ̂n+1
N ) · ∇∼ M ϕ̂ dq

∼
+

1
2Wi

∫
D

∇∼ M ψ̂
n+1
N · ∇∼ M ϕ̂ dq

∼
= 0

∀ϕ̂ ∈ PN (D), n = 0, . . . , NT − 1, (2.5)

ψ̂0
N (·) := the L2(D) orthogonal projection of ψ̂0(·) = ψ̂(·, 0) onto PN (D). (2.6)

The convergence analysis of (2.5), (2.6) in the case D ⊂ R
2 was considered in [22], where we proved an

optimal order convergence estimate. The convergence argument in [22] made use of a number of approximation
results; these approximation results will be discussed in more detail in Section 3.5.

3. An alternating-direction scheme for the full Fokker–Planck equation

In this section, we develop numerical methods for the Maxwellian-transformed Fokker–Planck equation posed
on Ω ×D × (0, T ]:

∂ψ

∂t
+ u∼ · ∇∼ xψ + ∇∼ q · (κ≈ q∼ψ) =

1
2Wi

∇∼ q ·
(
M∇∼ q

ψ

M

)
, (x∼, q∼, t) ∈ Ω ×D × (0, T ], (3.1)

ψ(x∼, q∼, 0) = ψ0(x∼, q∼), (x∼, q∼) ∈ Ω ×D. (3.2)

We assume here that u∼ : (x∼, t) ∈ Ω × [0, T ] �→ u∼(x∼, t) ∈ R
d is an a priori defined vector field (hence κ≈ = ∇∼ xu∼ is

known a priori also). The precise hypotheses on u∼ and κ≈ shall be specified below.
The above equation will be referred to as the full Fokker–Planck equation, to distinguish it from the equation

posed on D×(0, T ] only, that was studied in [22], and discussed in Section 2 above. We focus on the Maxwellian-
transformed form of the Fokker–Planck equation given above; however, it should be noted that the numerical
methods developed and analysed in the forthcoming sections could just as well be based on the Chauvière–
Lozinski-transformed equation that was used to solve the full FENE Fokker–Planck equation in [10,11,27], and
was analysed in Section 3.2 of [22].

As discussed in the Introduction, due to the cartesian product structure of the domain Ω × D, a natural
approach to solving (3.1), (3.2) is to use an operator-splitting/alternating-direction method, cf. (1.15), (1.16).
The Galerkin spectral method on D discussed in Section 2 will be used to solve (1.15), and a finite element
method for (1.16) will also be introduced. A finite element method is convenient for the x∼-direction solver
because the physical space domain, Ω, need not have simple geometry.

We propose a fully-practical alternating-direction Galerkin method for (3.1). The approach is similar in
spirit to the alternating-direction method used by Chauvière and Lozinski in [10,11,27]. However, there are
some important theoretical questions related to applying alternating-direction methods in this context, which
have not previously been addressed in the literature, and we focus on these questions here. In particular, we
consider the stability and convergence analysis of our alternating-direction scheme for (3.1) in Sections 3.4,
3.5 and 3.6. It is not obvious a priori what effect applying a splitting of the form (1.15), (1.16) will have
on a discretisation of (3.1), and therefore it is important to rigorously establish the stability and convergence
properties of the alternating-direction numerical methods that we propose.

The reader will note that the alternating-direction method under consideration is nonstandard in the sense
we consider d-dimensional cross-sections (rather than one-dimensional cross-sections) of Ω × D. This poses
a formidable computational challenge because, as shall be seen below, we typically need to solve a large
number problems posed in d spatial dimensions in each time-step. However, the method is extremely well
suited to implementation on a parallel architecture since the q

∼
-direction solves are completely independent from

one another, and similarly the x∼-direction solves are decoupled also. We discuss the parallel implementation

5Here we introduce a backward-Euler temporal discretisation. We will also consider a semi-implicit discretisation in Section 3.
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of our alternating-direction scheme in Section 4.2. The computational results in Section 5 were obtained using
this parallel implementation.

3.1. Weak formulation and spatial discretisation

The full Fokker–Planck equation considered in this section depends on x∼ ∈ Ω as well as q
∼
∈ D, and therefore

we will require the use of slightly different function spaces than in Section 2. Let L2(Ω ×D) be defined in the
obvious way, and let (·, ·) and ‖ · ‖ denote the L2 inner-product and norm over Ω ×D:

(f, g) :=
∫

Ω×D
f(x∼, q∼)g(x∼, q∼) dx∼ dq

∼
and ‖f‖2 := (f, f).

We assume throughout Section 3 that u∼ is a divergence-free d-component vector function, i.e.

∇∼ x · u∼(x∼, t) = 0 for a.e. (x∼, t) ∈ Ω × [0, T ]. (3.3)

It would be straightforward to adapt the arguments in this section to the case where u∼ is not divergence-free,
but this would make the analysis more messy and would shed no further light on the properties of the numerical
methods under consideration. Therefore in the interests of clarity and brevity, we restrict our attention to the
case when (3.3) is satisfied.

Also, we suppose that

u∼ ∈ L∞(0, T ; L∞(Ω)) and ∇∼ xu∼ =: κ≈ ∈ W1,∞(0, T ; L∞(Ω)), (3.4)

where, to simplify notation, we do not explicitly label the d or d × d dimensionality of the function spaces for
u∼(x∼, t) ∈ R

d and κ≈(x∼, t) ∈ R
d×d. The assumption in (3.4) for κ≈ is slightly stronger than the assumptions in [22],

in which κ≈ ∈ C[0, T ] was required for Lemma 3.1 and κ≈ ∈ H1(0, T ) was required for Lemma 3.6.

We shall also use the space X :=
{
ϕ ∈ L2(Ω ×D) : ϕ ∈ L2(Ω; H1

0(D;M)) ∩ H1(Ω; L2(D))
}

equipped with

the norm ‖ϕ‖X :=
{∫

Ω×D
(
|ϕ|2 + |∇∼ Mϕ|2

)
dx∼ dq

∼

} 1
2
.

Employing the substitution ψ̂ = ψ/
√
M as in Section 2, the weak formulation of (3.1), (3.2) is as follows:

given ψ̂0 ∈ L2(Ω ×D), find ψ̂ ∈ L∞(0, T ; L2(Ω ×D)) ∩ L2(0, T ;X ) such that

d
dt

(ψ̂, ζ) +
(
u∼ · ∇∼ xψ̂ , ζ

)
−
(
κ≈ q∼ψ̂ , ∇∼ Mζ

)
+

1
2Wi

(
∇∼ M ψ̂ , ∇∼ Mζ

)
= 0 ∀ζ ∈ X , (3.5)

ψ̂(x∼, q∼, 0) = ψ̂0(x∼, q∼), (x∼, q∼) ∈ Ω ×D, (3.6)

in the sense of distributions on (0, T ). For simplicity, we avoid boundary conditions on ∂Ω × D by assuming
that the macroscopic velocity field is an enclosed flow, i.e. that

u∼ · n∼ = 0 on ∂Ω, (3.7)

where n∼ ∈ R
d is the unit outward normal for Ω. Also, the initial condition (3.6) is understood to be imposed in

a weak sense and ψ is recovered by multiplying ψ̂ by
√
M .

The term containing κ≈ in (3.5) will be of particular interest since, as we shall see, it is the most difficult term
to treat using an alternating-direction method. We introduce the following bilinear form notation for this term,
which will be convenient later on:

C(κ≈; f, g) :=
(
κ≈ q∼ f , ∇∼ Mg

)
. (3.8)
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We now introduce the spatial discretisation of (3.5), (3.6). Let Vh be an NΩ-dimensional H1(Ω)-conforming
finite element space corresponding to a mesh Th on Ω. Also, let PN (D) ⊂ H1

0(D) ⊂ H1
0(D;M) be an ND-

dimensional space spanned by a set of spectral basis functions on D. Noting that Vh ⊗PN (D) ⊂ X , we obtain
a spatially discrete formulation of the full Fokker–Planck equation as follows:

Let ψ̂h,N (·, ·, 0) ∈ Vh ⊗ PN (D) be the L2(Ω × D) projection of ψ̂0 onto Vh ⊗ PN(D). Find ψ̂h,N (·, ·, t) ∈
Vh ⊗ PN (D), t ∈ (0, T ] satisfying (3.5) for all ζ ∈ Vh ⊗ PN (D) in the sense of distributions on (0, T ).

3.2. Discretisation in alternating-direction form

We now discuss Galerkin alternating-direction methods for the fully discrete formulation of (3.5), (3.6) defined
above.

First of all, define the bases

{Yk ∈ PN(D) : 1 ≤ k ≤ ND} and {Xi ∈ Vh : 1 ≤ i ≤ NΩ}, (3.9)

such that span({Yk}1≤k≤ND ) = PN (D) and span({Xi}1≤i≤NΩ) = Vh. Also, we define Mq, Sq ∈ R
ND×ND as

(Mq)lk :=
∫
D

Yk(q∼)Yl(q∼) dq
∼
, (Sq)lk :=

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼
. (3.10)

Similarly, Mx, Tx ∈ R
NΩ×NΩ are defined as follows:

(Mx)ij :=
∫

Ω

Xi(x∼)Xj(x∼) dx∼, (Tx)ij :=
∫

Ω

(u∼ · ∇∼ xXj(x∼))Xi(x∼) dx∼. (3.11)

Following [14], a fully discrete form of (3.5) using a backward-Euler time discretisation can be written
as follows: Given ψ̂nN =

∑
jl γ

n
jlXj Yl ∈ Vh ⊗ PN (D), find the vector γ

∼
n+1 ∈ R

NΩND , defining a function

ψ̂n+1
N =

∑
jl γ

n+1
jl Xj Yl ∈ Vh ⊗ PN (D), such that

(Mx ⊗Mq)

(
γ
∼
n+1 − γ

∼
n

Δt

)
+ (Tx ⊗Mq) γ∼

n+1 +
1

2Wi
(Mx ⊗ Sq) γ∼

n+1 − C(κ≈
n+1; ψ̂n+1

N , ζik) = 0, (3.12)

where ζik = Xi · Yk ∈ Vh ⊗ PN (D) and where the matrix tensor product is defined as follows for matrices
A ∈ R

m×n and B ∈ R
p×q:

A⊗B =

⎡
⎢⎣

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎤
⎥⎦ ∈ R

mp×nq.

It is also possible to obtain a tensor product form discretisation matrix of C(κ≈; ·, ·); i.e. consider C(κ≈; ζjl, ζik)
as follows:

C(κ≈; ζjl, ζik) =
∫

Ω×D

(
κ≈
n+1(x)q

∼
Xj(x∼)Yl(q∼)

)
· ∇∼ M (Xi(x∼)Yk(q∼)) dx∼ dq

∼

=
d∑

s,t=1

(∫
Ω

κn+1
st (x∼)Xi(x∼)Xj(x) dx∼

)(∫
D

qt Yl(q∼)
√
M

∂

∂qs

(
Yk(q∼)
√
M

)
dq

∼

)
.
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Therefore, on defining the matrices Cstx ∈ R
NΩ×NΩ and Cstq ∈ R

ND×ND for 1 ≤ s, t ≤ d such that

(
Cstx
)
ij

:=
∫

Ω

κn+1
st (x∼)Xi(x∼)Xj(x) dx∼,

(
Cstq
)
kl

:=
∫
D

qt Yl(q∼)
√
M

∂

∂qs

(
Yk(q∼)
√
M

)
dq

∼
, (3.13)

we can rewrite the final term of (3.12) as
∑d

s,t=1(C
st
x ⊗ Cstq ) γ

∼
n+1.

However, since this matrix expression for C(κ≈; ·, ·) contains neither Mx nor Mq, we can not factorise the
resulting equation in the same way as in [14] to obtain a suitable alternating-direction scheme. That is, the
term C(κ≈; ·, ·) causes difficulties because its ‘coefficient’, κ≈(x∼)q

∼
, depends on both the x∼- and q

∼
-directions.

This issue has been considered a number of times in the literature. For example, in the context of collocation-
based alternating-direction schemes, Celia and Pinder [8,9] and Bialecki and Fernandes [5], developed methods
that could handle equations with general variable coefficients. However, our focus is on developing a Galerkin-
based framework, and therefore, again, the work of Douglas and Dupont is the most relevant here. In [14],
Douglas and Dupont developed a “Laplace modification” scheme for the heat equation with general coefficients.
However, it is not obvious how to apply this kind of approach to (3.12), because our problematic term is a
convection term rather than a diffusion term. The most natural idea in the spirit of Douglas and Dupont
would be to move the C(κ≈; ·, ·) term to the right-hand side of (3.12) and treat it explicitly in time. This idea is
feasible, but for the purposes of practical computations, we would like to have the option of using a fully-implicit
temporal discretisation. Indeed, numerical results in Section 2.6.2 of [21] demonstrated that the semi-implicit
temporal discretisation of the Fokker–Planck equation in which the term C(κ≈; ·, ·) was treated explicitly in time
was less stable for practical computations than the backward Euler discretisation, especially for problems in
which the product Wi ‖κ≈‖L∞(0,T ;L∞(Ω)) is significantly larger than 1.

In order to circumvent this limitation, we develop a Galerkin alternating-direction approach that is an
amalgamation of the Douglas and Dupont framework and a new quadrature-based method. Using this approach,
we can define either a fully-implicit in time or a semi-implicit in time alternating-direction method for the
Fokker–Planck equation. We shall consider both options in detail below.

3.3. The alternating-direction schemes

The first ingredient that we need is a quadrature rule on Ω. Let {(x∼m, wm), wm > 0, x∼m ∈ Ω,m = 1, . . . , QΩ}
define an element-based quadrature rule on the mesh Th, where the x∼m are the quadrature points and the wm are
the corresponding weights. Therefore, for functions f, g ∈ C0(Ω), the quadrature sum is evaluated elementwise
as follows,

QΩ∑
m=1

wmf(x∼m)g(x∼m) =
∑
K∈Th

QK∑
l=1

wKl f(x∼
K
l )g(x∼

K
l ), (3.14)

where QK is the number of quadrature points in element K; clearly QΩ ≤
∑

K∈Th
QK , with equality if there

are no shared quadrature points between neighbouring elements. From now on, we will use the left-hand side
of (3.14) as a shorthand for the right-hand side.

We now introduce two alternative hypotheses on the accuracy of the quadrature rule, Quadrature Hypothe-
sis 1 (QH1) and Quadrature Hypothesis 2 (QH2).
Quadrature Hypothesis 1 (QH1). The quadrature rule satisfies

QΩ∑
m=1

wmκij(x∼m)f(x∼m)g(x∼m) =
∫

Ω

κij(x∼)f(x∼)g(x∼) dx∼, (3.15)

for all f, g ∈ Vh and for each component κij of κ≈.
In Section 5, we perform computations for the Navier–Stokes–Fokker–Planck system in which the macro-

scopic velocity field u∼ is obtained by solving the Navier–Stokes equations using a finite element method on Th,
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i.e. the same triangulation that is used for the alternating-direction method for the Fokker–Planck equation.
As a result, it is reasonable to assume that the components of κ≈ = ∇∼ xu∼ are represented by piecewise polynomial
functions on Th and in this case it is certainly possible to satisfy QH1 by choosing an appropriate element-based
quadrature rule.

Quadrature Hypothesis 2 (QH2). The quadrature rule satisfies

QΩ∑
m=1

wmf(x∼m)g(x∼m) =
∫

Ω

f(x∼)g(x∼) dx∼, (3.16)

for all f, g ∈ Vh.

QH1 is a stronger hypothesis than QH2, and therefore in general we will require a larger value of QΩ in order
to satisfy QH1. Some results in the following analysis will require QH1, whereas for others QH2 will suffice.

Next, let ψ̂h,N ∈ Vh ⊗ PN (D) denote the numerical solution of the full Fokker–Planck equation. Recalling
the bases from (3.9), ψ̂h,N can be written in terms of coefficients {ψ̂ik} as follows:

ψ̂h,N :=
NΩ∑
i=1

ND∑
k=1

ψ̂ikXiYk ∈ Vh ⊗ PN (D). (3.17)

Define the line functions, ψ̂k, for k = 1, . . . , ND, as follows:

ψ̂k :=
NΩ∑
i=1

ψ̂ikXi ∈ Vh, (3.18)

and note that (3.17) can be rewritten using (3.18) as follows:

ψ̂h,N (x∼, q∼) =
ND∑
k=1

ψ̂k(x∼)Yk(q∼). (3.19)

The formula (3.19) shall be useful in the discussion of the alternating-direction methods below.
As discussed above, the term C(κ≈; ·, ·) is the most problematic in terms of applying an alternating-direction

method to the Fokker–Planck equation. Therefore we begin by considering how to use a quadrature-based
scheme to derive an alternating-direction type of formulation of this term.

Suppose that QH1 is satisfied and that we have the line function decomposition (3.19) for ψ̂h,N , in which
ψ̂k ∈ Vh for k = 1, . . . , ND. Also, let ζ = X · Y ∈ Vh ⊗ PN(D). Then,

C(κ≈; ψ̂h,N , ζ) =
∫

Ω×D
(κ≈ q∼ ψ̂h,N (x∼, q∼)) · ∇∼ Mζ(x∼, q∼) dq

∼
dx∼

=
∫
D

ND∑
k=1

∫
Ω

[
κ≈ q∼ ψ̂k(x∼)Yk(q∼)

]
· ∇∼ M

(
X(x∼)Y (q

∼
)
)
dx∼ dq

∼

=
∫
D

ND∑
k=1

QΩ∑
m=1

wm

[
κ≈(x∼m) q

∼
ψ̂k(x∼m)Yk(q∼)

]
· ∇∼ M

(
X(x∼m)Y (q

∼
)
)
dq

∼

=
QΩ∑
m=1

wmX(x∼m)

{
ND∑
k=1

ψ̂k(x∼m)
(∫

D

(κ≈(x∼m) q
∼
Yk(q∼)) · ∇∼ MY (q

∼
) dq

∼

)}
· (3.20)
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This shows the equivalence between the Galerkin formulation of C(κ≈; ·, ·) on Ω × D and the quadrature sum
over m = 1, . . . , QΩ of the term

ND∑
k=1

ψ̂k(x∼m)
(∫

D

(κ≈(x∼m) q
∼
Yk(q∼)) · ∇∼ MY (q

∼
) dq

∼

)
, (3.21)

which is the q
∼
-direction discretisation of C(κ≈; ·, ·) where the coefficient vector (corresponding to the quadrature

point x∼m) is the set of sampled line functions ψ̂k(x∼m), k = 1, . . . , ND.
It is clear from (3.20) that sampling functions at the quadrature points {x∼m ∈ Ω, m = 1, . . . , QΩ} will play

an important role in the alternating-direction methods we define below. We will also require a reconstruction
operator, which maps from a set of values at the quadrature points to a function in Vh. We now introduce this
operator. To simplify the notation, we first define the following discrete inner product and norm over Ω for
{fm}, {gm} ∈ R

QΩ :

({fm}, {gm})�2(Ω) :=
QΩ∑
m=1

wmfmgm, and ‖{fm}‖�2(Ω) := ({fm}, {fm})
1
2
�2(Ω). (3.22)

Note that, by (3.15) or (3.16), for f, g ∈ Vh, ({f(x∼m)}, {g(x∼m)})�2(Ω) = (f, g)L2(Ω), where (·, ·)L2(Ω) is the
standard L2 inner product on Ω. Next we define the reconstruction operator R : {fm} ∈ R

QΩ �→ R{fm} ∈ Vh
such that

(R{fm}, X)L2(Ω) = ({fm}, {X(x∼m)})�2(Ω) ∀X ∈ Vh. (3.23)

Remark 3.1. For any R{fm} ∈ Vh, there exist real numbers γ1, . . . , γNΩ such that R{fm} =
∑NΩ
j=1 γjXj . Let-

ting X = Xi, i = 1, . . . , NΩ, above it is clear that (3.23) is equivalent to the linear system Mxγ∼ = F∼ where Mx ∈
R
NΩ×NΩ is the Vh mass matrix, γ

∼
= (γ1, . . . , γNΩ)T , and F∼ ∈ R

NΩ is such that Fi = ({fm}, {Xi(x∼m)})�2(Ω).
The matrix Mx is nonsingular, and therefore the reconstruction operator R is correctly defined by (3.23).

We now define two alternating-direction methods for (3.5), (3.6), referred to as method I and method II.
The distinction between these schemes is that method I uses a semi-implicit spectral method in the q

∼
-direction

(i.e. the term containing κ≈ is treated explicitly in time) whereas method II uses a fully-implicit temporal
discretisation.
Method I: Semi-implicit scheme. Method I is initialised by computing the L2(Ω ×D) projection, ψ̂0

h,N , of
the initial datum ψ̂0 ∈ L2(Ω ×D) onto Vh ⊗ PN (D), so that ψ̂0

h,N ∈ Vh ⊗ PN (D) satisfies

(
ψ̂0, ζ

)
=
(
ψ̂0
h,N , ζ

)
for all ζ ∈ Vh ⊗ PN (D). (3.24)

Then, as in (1.15), (1.16), this alternating-direction method consists of two stages at each time-step: the
q
∼
-direction stage and the x∼-direction stage. We begin with the q

∼
-direction stage, in which we essentially use the

Galerkin spectral method in D from Section 2.
Suppose ψ̂nh,N ∈ Vh ⊗ PN (D). Then in the q

∼
-direction stage we compute ψ̂n∗h,N (x∼m, ·) ∈ PN (D) for each

m = 1, . . . , QΩ satisfying

∫
D

ψ̂n∗h,N (x
∼
m, q

∼
) − ψ̂nh,N (x

∼
m, q

∼
)

Δt
Yl(q

∼
) dq

∼
+

1
2Wi

∫
D

∇
∼
M ψ̂

n∗
h,N(x

∼
m, q

∼
) · ∇

∼
MYl(q

∼
) dq

∼

=
∫
D

(κ
≈
n(x

∼
m) q

∼
ψ̂nh,N(x

∼
m, q

∼
)) · ∇

∼
MYl(q

∼
) dq

∼
, (3.25)
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for l = 1, . . . , ND. Thus, (3.25) defines an ND × ND linear system at each quadrature point x∼m. In order to
separate out the x∼- and q

∼
-direction dependencies more clearly, we rewrite this equation in terms of line functions

using (3.19), i.e.:

ND∑
k=1

ψ̂n∗k (x
∼
m)
(∫

D

Yk(q
∼
)Yl(q

∼
) dq

∼
+

Δt
2Wi

∫
D

∇
∼
MYk(q

∼
) · ∇

∼
MYl(q

∼
) dq

∼

)

=
ND∑
k=1

ψ̂nk (x
∼
m)
(∫

D

Yk(q
∼
)Yl(q

∼
) dq

∼
+ Δt

∫
D

(κ
≈
n(x

∼
m) q

∼
Yk(q

∼
)) · ∇

∼
MYl(q

∼
) dq

∼

)
, (3.26)

for l = 1, . . . , ND. This system is solved at each quadrature point x∼m, m = 1, . . . , QΩ.
Equation (3.26) shows that in the q

∼
-direction stage, the sampled values of the line functions, i.e. ψ̂n∗k (x∼m),

k = 1, . . . , ND, m = 1, . . . , QΩ, are the coefficients to be computed. We determine these values by solving a
different linear system at each quadrature point. Note that these linear systems are completely independent
from one another. This independence enables parallel computation to be used very effectively in this context;
this will be discussed in more detail later.

The q
∼
-direction stage is complete once the values ψ̂n∗k (x∼m), k = 1, . . . , ND, m = 1, . . . , QΩ have been

computed, and then we can begin solving in the x∼-direction. In the x∼-direction stage, we use a finite element
discretisation of the transport equation (1.16) to update the output data from the q

∼
-direction stage. That is,

for a given k, we find ψ̂n+1
k ∈ Vh, satisfying:

∫
Ω

ψ̂n+1
k Xi dx∼ + Δt

∫
Ω

(
u∼
n+1 · ∇∼ xψ̂

n+1
k

)
Xi dx∼ =

∫
Ω

R{ψ̂n∗k (x∼m)}Xi dx∼, (3.27)

for i = 1, . . . , NΩ.
Note, however, that based on (3.23) for the right-hand side in (3.27) we have:

∫
Ω

R{ψ̂n∗k (x∼m)}Xi dx∼ =
QΩ∑
m=1

wm ψ̂
n∗
k (x∼m)Xi(x∼m) =: Fi. (3.28)

Hence we do not actually have to explicitly compute R{ψ̂n∗k (x∼m)} ∈ Vh in order to solve (3.27), since the
following system is equivalent to (3.27):

∫
Ω

ψ̂n+1
k Xi dx∼ + Δt

∫
Ω

(
u∼
n+1 · ∇∼ xψ̂

n+1
k

)
Xi dx∼ = Fi, (3.29)

for i = 1, . . . , NΩ. We solve (3.29) for each k = 1, . . . , ND, and, just as in the q
∼
-direction, these computations

are decoupled from one another.
Once the x∼-direction computations are complete, we have the numerical solution at time level n+1: ψ̂n+1

h,N =∑ND

k=1 ψ̂
n+1
k Yk ∈ Vh ⊗ PN (D). Hence method I is defined by the initialisation (3.24), the q

∼
-direction spectral

method (3.26) and the x∼-direction finite element method (3.29).
It is straightforward to show that this numerical method is well-defined (see Lem. 3.4 in [21]). In the next

lemma we derive a Galerkin formulation posed on Ω×D for method I. The availability of an equivalent one-step
method is extremely useful for the numerical analysis of Galerkin alternating-direction methods.
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Lemma 3.2. Suppose the x∼-direction quadrature rule satisfies QH1. Method I is equivalent to the following
fully-discrete formulation:

Given ψ̂0
h,N ∈ Vh ⊗ PN (D) defined as in (3.24), for each n = 0, . . . , NT − 1, ψ̂n+1

h,N ∈ Vh ⊗ PN (D) satisfies

(
ψ̂n+1
h,N − ψ̂nh,N

Δt
, ζ

)
+
(
u
∼
· ∇
∼
xψ̂

n+1
h,N , ζ

)
+

1
2Wi

(
∇
∼
M ψ̂

n+1
h,N , ∇

∼
Mζ
)

+
Δt
2Wi

(
∇
∼
M

(
u
∼
· ∇

∼
xψ̂

n+1
h,N

)
,∇
∼
Mζ
)
−
(
κ
≈
n q

∼
ψ̂nh,N , ∇∼ Mζ

)
= 0, (3.30)

for all ζ ∈ Vh ⊗ PN (D).

Proof. Multiplying (3.26) through by Xi(x∼m), where Xi ∈ Vh, and performing the weighted sum according
to (3.14) gives,

ND∑
k=1

({ψ̂n∗k (x
∼
m)}, {Xi(x

∼
m)})�2(Ω)

(∫
D

Yk(q
∼
)Yl(q

∼
) dq

∼
+

Δt
2Wi

∫
D

∇
∼
MYk(q

∼
) · ∇

∼
MYl(q

∼
) dq

∼

)

=
ND∑
k=1

({ψ̂nk (x
∼
m)}, {Xi(x

∼
m)})�2(Ω)

(∫
D

Yk(q
∼
)Yl(q

∼
) dq

∼

)

+ Δt
QΩ∑
m=1

wmXi(x
∼
m)

{
ND∑
k=1

ψ̂nk (x
∼
m)
(∫

D

(κ
≈
n(x

∼
m) q

∼
Yk(q

∼
)) · ∇

∼
MYl(q

∼
) dq

∼

)}
· (3.31)

Using the reconstruction operator, (3.23), with the 	2 inner products and the argument of (3.20) on the term
on the third line6, we obtain the following formulation for Rψ̂n∗h,N ∈ Vh ⊗ PN (D):

∫
Ω×D

Rψ̂n∗h,N (x
∼
, q
∼
) − ψ̂nh,N(x

∼
, q
∼
)

Δt
ζ(x

∼
, q
∼
) dq

∼
dx

∼
+

1
2Wi

∫
Ω×D

∇
∼
MRψ̂n∗h,N (x

∼
, q
∼
) · ∇

∼
Mζ(x

∼
, q
∼
) dq

∼
dx

∼

=
∫

Ω×D
(κ
≈
n(x

∼
) q

∼
ψ̂nh,N (x

∼
, q
∼
)) · ∇

∼
Mζ(x

∼
, q
∼
) dq

∼
dx

∼
, (3.32)

where ζ = Xi · Yl is an element of Vh ⊗ PN (D) and the numerical solution at the intermediate “time level” n∗
is defined as:

Rψ̂n∗h,N :=
ND∑
k=1

R{ψ̂n∗k (x∼m)}Yk ∈ Vh ⊗ PN (D). (3.33)

The x∼-direction stage is more straightforward to deal with; we use the classical Douglas–Dupont Galerkin
alternating-direction approach (cf. [14]) for (3.27), since it does not contain any q

∼
-dependent coefficients.

Let R{ψ̂n∗k (x∼m)} =
∑NΩ
i=1 γ

n∗
ik Xi so that according to (3.33), the vector

γ
∼
n∗ = (γn∗11 , . . . , γ

n∗
NΩ1, γ

n∗
12 , . . . , γ

n∗
NΩND

) ∈ R
NΩND

determines Rψ̂n∗h,N . Similarly, denote the coefficient vector for ψ̂n+1
h,N as γ

∼
n+1 ∈ R

NΩND , and since the vector
entries are ordered in blocks according to the q

∼
-direction degrees-of-freedom, it follows that (3.27) can be written

6Note that ψ̂k in the term on the last line of (3.31) must be at time level n for the argument of (3.20) to apply since it relies

on the values {ψ̂n
k (x∼m)} interpolating a function in Vh.
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as a linear system where the matrices are in tensor product form, i.e.:

(Iq ⊗Mx + ΔtIq ⊗ Tx) γ∼
n+1 = (Iq ⊗Mx)γ∼

n∗, (3.34)

where the discretisation matrices are as in (3.11) and Iq is the ND ×ND identity matrix.
Equation (3.32) can be written in tensor product matrix form also:

(
Mq ⊗Mx +

Δt
2Wi

Sq ⊗Mx

)
γ
∼
n∗ = (Mq ⊗Mx)γ∼

n + ΔtC(κ≈
n; ψ̂nh,N , ζil), (3.35)

where ζil = Xi · Yl ∈ Vh ⊗ PN (D), for 1 ≤ i ≤ NΩ and 1 ≤ l ≤ ND. Also, Mq and Sq are defined in (3.10).
Multiplying (3.34) by (Mq ⊗ Ix + Δt/(2Wi)Sq ⊗ Ix), where Ix is the NΩ ×NΩ identity matrix, yields,

(
Mq ⊗Mx + ΔtMq ⊗ Tx +

Δt
2Wi

Sq ⊗Mx +
(Δt)2

2Wi
Sq ⊗ Tx

)
γ
∼
n+1 =

(
Mq ⊗Mx +

Δt
2Wi

Sq ⊗Mx

)
γ
∼
n∗, (3.36)

and equating the left-hand side of (3.35) with the right-hand side of (3.36), gives:

(
Mx ⊗Mq + ΔtMq ⊗ Tx +

Δt
2Wi

Sq ⊗Mx +
(Δt)2

2Wi
Sq ⊗ Tx

)
γ
∼
n+1 = (Mq ⊗Mx)γ∼

n + ΔtC(κ≈
n; ψ̂nh,N , ζil). (3.37)

Equation (3.37) is equivalent to the inner product form in (3.30) and hence the proof is complete. �

Method II: Fully-implicit scheme. Method II is very similar to method I, the sole difference being that
the term C(κ≈; ·, ·) is now treated implicitly in time, and therefore we refer to method II as a fully-implicit
scheme. We do not discuss the initialisation step or the x∼-direction scheme here because they are the same as
in method I. Instead, we move immediately to discussing the q

∼
-direction stage of method II.

Using the line function notation of (3.26), the q
∼
-direction numerical method is defined as follows: Given the

line functions ψ̂nk ∈ Vh, k = 1, . . . , ND, determine the values ψ̂n∗k (x∼m) satisfying

ND∑
k=1

ψ̂n∗k (x∼m)
(∫

D

Yk(q∼)Yl(q∼) dq
∼

+
Δt
2Wi

∫
D

∇∼ MYk(q∼) · ∇∼ MYl(q∼) dq
∼

−Δt
∫
D

(κ≈
n+1(x∼m) q

∼
Yk(q∼)) · ∇∼ MYl(q∼) dq

∼

)
=

ND∑
k=1

ψ̂nk (x∼m)
∫
D

Yk(q∼)Yl(q∼) dq
∼
, (3.38)

for all l = 1, . . . , ND, and for each quadrature point x∼m,m = 1, . . . , QΩ. Equation (3.38) is exactly the backward
Euler Galerkin spectral method that was studied in [22].

Unfortunately we cannot derive an equivalent one-step Galerkin formulation for method II using the same
reasoning as in Lemma 3.2 because the proof of that lemma relied on the term C(κ≈; ·, ·) being explicit-in-time
(cf. footnote 6). In order to derive a one-step formulation for method II, we would need to recover an integral
of R{ψn∗k (x∼m)} over Ω × D from the C(κ≈; ·, ·) term in (3.38). However, this is not possible because it would
require a κ≈-weighted reconstruction operator, as distinct from the unweighted reconstruction operator defined
in (3.23).

Remark 3.3. In both methods I and II we use a standard Galerkin discretisation of the convection equation
in Ω. With piecewise polynomials of degree p the rate of convergence of a standard Galerkin method in the
L2 norm for this equation is O(hp), which is one less than the optimal order O(hp+1). With streamline-
diffusion (SUPG) stabilization, the order of convergence on a general triangulation is O(hp+1/2). It would
be straightforward to replace (3.27) with an SUPG scheme such as the one described in [6], but we prefer
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the standard Galerkin formulation here for the sake of simplicity. In the numerical results in Section 5 we do
not observe any oscillations in Ω, which indicates that the standard Galerkin discretisation performs well in
practice in the present context.

3.4. Stability of methods I and II

First of all, we consider the stability of method I, which is straightforward due to the availability of an
equivalent one-step method. We introduce right-hand side terms into (3.30) as follows:

(
ψ̂n+1
h,N − ψ̂nh,N

Δt
, ζ

)
+
(
u
∼
· ∇
∼
xψ̂

n+1
h,N , ζ

)
+

1
2Wi

(
∇
∼
M ψ̂

n+1
h,N , ∇

∼
Mζ
)

+
Δt
2Wi

(
∇
∼
M

(
u
∼
· ∇

∼
xψ̂

n+1
h,N

)
, ∇

∼
Mζ
)
−
(
κ
≈
n q

∼
ψ̂nh,N , ∇∼ Mζ

)
=
(
μn+1, ζ

)
+
(
ν
∼
n+1 , ∇

∼
Mζ
)
, (3.39)

for all ζ ∈ Vh ⊗PN (D), where μn+1 ∈ L2(Ω ×D) and ν∼
n+1 ∈ L2(Ω ×D)d, n = 0, . . . , NT − 1. Right-hand side

terms of this form will be useful when we derive convergence estimates in Section 3.6.

Lemma 3.4. If QH1 holds, so that we have the equivalent one-step formulation for method I given in Lemma 3.2,
then letting Δt = T/NT , NT ≥ 1, for ψ̂sh,N ∈ Vh ⊗ PN (D) we have the following stability estimate for (3.39):

‖ψ̂sh,N‖2 +
s−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1
h,N − ψ̂nh,N√

Δt

∥∥∥∥∥
2

+
s−1∑
n=0

Δt
2Wi

‖∇
∼
M ψ̂

n+1
h,N ‖2

≤ eKsΔt
{
‖ψ̂0

h,N‖2 +
s−1∑
n=0

2Δt
(
‖μn+1‖2 + 4‖ν

∼
n+1‖2

)}
, (3.40)

for 1 ≤ s ≤ NT , where K = 2(1 + 4Wi b |κ≈|
2
L∞(0,T ;L∞(Ω))).

Proof. Set ζ = ψ̂n+1
h,N in (3.39) to get

(
ψ̂n+1
h,N − ψ̂nh,N

Δt
, ψ̂n+1

h,N

)
+
(
u
∼
· ∇
∼
xψ̂

n+1
h,N , ψ̂

n+1
h,N

)
+

1
2Wi

‖∇
∼
M ψ̂

n+1
h,N ‖2

+
Δt
2Wi

(
∇
∼
M

(
u
∼
· ∇
∼
xψ̂

n+1
h,N

)
, ∇

∼
M ψ̂

n+1
h,N

)
−
(
κ
≈
n q

∼
ψ̂nh,N , ∇∼ M ψ̂

n+1
h,N

)

=
(
μn+1, ψ̂n+1

h,N

)
+
(
ν
∼
n+1, ∇

∼
M ψ̂

n+1
h,N

)
. (3.41)

The x∼-transport term vanishes because of (3.3) and (3.7). Similarly, the first term on the second line vanishes
since

(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
, ∇∼ M ψ̂

n+1
h,N

)
=

∫
Ω×D

M

d∑
j=1

(
d∑
i=1

ui

(
∂

∂xi

∂

∂qj

ψ̂n+1
h,N√
M

)(
∂

∂qj

ψ̂n+1
h,N√
M

))
dx∼ dq

∼

=
1
2

∫
Ω×D

M
d∑
j=1

⎛
⎝ d∑
i=1

ui
∂

∂xi

(
∂

∂qj

ψ̂n+1
h,N√
M

)2
⎞
⎠ dx∼ dq

∼

= −1
2

∫
Ω×D

M

d∑
j=1

⎛
⎝(∇∼ x · u∼)

(
∂

∂qj

ψ̂n+1
h,N√
M

)2
⎞
⎠ dx∼ dq

∼
= 0.
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Applying the identity 2(a− b)a = a2 − b2 + (a− b)2 to the first term in (3.41), yields

‖ψ̂n+1
h,N ‖2 +

∥∥∥ψ̂n+1
h,N − ψ̂nh,N

∥∥∥2

+
Δt
Wi

‖∇
∼
M ψ̂

n+1
h,N ‖2 = ‖ψ̂nh,N‖2 + 2Δt

(
κ
≈
n q

∼
ψ̂nh,N ,∇∼ M ψ̂

n+1
h,N

)

+ 2Δt
(
μn+1, ψ̂n+1

h,N

)
+ 2Δt

(
ν
∼
n+1 , ∇

∼
M ψ̂

n+1
h,N

)
=: ‖ψ̂nh,N‖2 + T1 + T2 + T3. (3.42)

Applying the Cauchy–Schwarz inequality to T1, T2 and T3, we obtain:

(1 − Δt)‖ψ̂n+1
h,N ‖2 + Δt

∥∥∥∥∥ ψ̂
n+1
h,N − ψ̂nh,N√

Δt

∥∥∥∥∥
2

+
Δt
2Wi

‖∇
∼
M ψ̂

n+1
h,N ‖2

≤ (1 + C0Δt)‖ψ̂nh,N‖2 + Δt
(
‖μn+1‖2 + 4‖ν

∼
n+1‖2

)
, (3.43)

where C0 := 4Wi b |κ≈|
2
L∞(0,T ;L∞(Ω)). Suppose that Δt ≤ 0.5; then

‖ψ̂n+1
h,N ‖2 + Δt

∥∥∥∥∥ ψ̂
n+1
h,N − ψ̂nh,N√

Δt

∥∥∥∥∥
2

+
Δt
2Wi

‖∇∼ M ψ̂
n+1
h,N ‖2 ≤ 1 + C0Δt

1 − Δt
‖ψ̂nh,N‖2 + 2Δt

(
‖μn+1‖2 + 4‖ν∼n+1‖2

)
≤ (1 +KΔt)‖ψ̂nh,N‖2 + 2Δt

(
‖μn+1‖2 + 4‖ν∼n+1‖2

)
,

where K = 2(1 + C0) = 2(1 + 4Wi b |κ≈|
2
L∞(0,T ;L∞(Ω))).

Summing over n = 0, . . . , s− 1 gives,

‖ψ̂sh,N‖2 +
s−1∑
n=0

Δt

∥∥∥∥∥ ψ̂
n+1
h,N − ψ̂nh,N√

Δt

∥∥∥∥∥
2

+
s−1∑
n=0

Δt
2Wi

‖∇
∼
M ψ̂

n+1
h,N ‖2

≤
{
‖ψ̂0

h,N‖2 +
s−1∑
n=0

2Δt
(
‖μn+1‖2 + 4‖ν

∼
n+1‖2

)}
+K

s−1∑
n=0

Δt‖ψ̂nh,N‖2,

and applying a discrete Gronwall lemma yields (3.40). �

We cannot apply an analogous argument for method II due to the absence of an equivalent one-step method.
However, by combining stability results for the q

∼
-direction and x∼-direction methods we can establish the stability

of method II, as shown in Lemma 3.5.

Lemma 3.5. Suppose QH2 is satisfied and let Δt = T/NT , NT ≥ 1. Then for ψ̂nh,N ∈ Vh ⊗ PN (D) computed
using alternating-direction method II we have

‖ψ̂nh,N‖ ≤ ec0nΔt‖ψ̂0
h,N‖ (3.44)

for 1 ≤ n ≤ NT , where c0 := 1 + 4Wi b |κ≈|
2
L∞(0,T ;L∞(Ω)).

Proof. From the proof of Lemma 3.1 in [22], we have the following bound for (3.38) at a given quadrature point
x∼m ∈ Ω,

‖ψ̂n∗(x∼m, ·)‖2
L2(D) ≤ (1 + 2c0Δt)‖ψ̂n(x∼m, ·)‖2

L2(D). (3.45)
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Rewriting (3.45) in terms of a basis {Y1, . . . , YND} of PN (D), which, without loss of generality may be assumed
to be orthogonal in the L2(D) inner product, we obtain:

ND∑
k=1

ψ̂n∗k (x∼m)2‖Yk‖2
L2(D) ≤ (1 + 2c0Δt)

ND∑
k=1

ψ̂nk (x∼m)2‖Yk‖2
L2(D). (3.46)

Using (3.14) to sum (3.46) for m = 1, . . . , QΩ, and then employing (3.22), we have

ND∑
k=1

‖{ψ̂n∗k (x∼m)}‖2
�2(Ω) ‖Yk‖2

L2(D) ≤ (1 + 2c0Δt)
ND∑
k=1

‖{ψ̂nk (x∼m)}‖2
�2(Ω) ‖Yk‖2

L2(D). (3.47)

Since ψ̂nh,N ∈ Vh ⊗ PN (D), it follows that ψ̂nk ∈ Vh, and therefore (as observed below (3.22)) the discrete
	2(Ω) norm on the right-hand side above is equal to the L2(Ω) norm, so that

ND∑
k=1

‖{ψ̂n∗k (x∼m)}‖2
�2(Ω) ‖Yk‖2

L2(D) ≤ (1 + 2c0Δt)
ND∑
k=1

‖ψ̂nk‖2
L2(Ω) ‖Yk‖2

L2(D)

= (1 + 2c0Δt)‖ψ̂nh,N‖2. (3.48)

Also, by (3.3) and (3.7), it follows easily from (3.27) that:

‖ψ̂n+1
k ‖2

L2(Ω) ≤ ‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω), (3.49)

for each k. Multiplying through by ‖Yk‖2
L2(D) in (3.49) and summing over k = 1, . . . , ND gives

‖ψ̂n+1
h,N ‖2 =

ND∑
k=1

‖ψ̂n+1
k ‖2

L2(Ω)‖Yk‖2
L2(D) ≤

ND∑
k=1

‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω)‖Yk‖2

L2(D). (3.50)

By taking {fm} = {ψ̂n∗k (x∼m)} and X = R{ψ̂n∗k (x∼m)} ∈ Vh in (3.23) and applying the Cauchy–Schwarz
inequality in the 	2 inner product, we have

‖R{ψ̂n∗k (x∼m)}‖2
L2(Ω) =

(
{ψ̂n∗k (x∼m)}, {R{ψ̂n∗k (x∼m)}(x∼m)}

)
�2(Ω)

≤ ‖{ψ̂n∗k (x∼m)}‖�2(Ω) ‖{R{ψ̂n∗k (x∼m)}(x∼m)}‖�2(Ω)

= ‖{ψ̂n∗k (x∼m)}‖�2(Ω) ‖R{ψ̂n∗k (x∼m)}‖L2(Ω),

and therefore,
‖R{ψ̂n∗k (x∼m)}‖L2(Ω) ≤ ‖{ψ̂n∗k (x∼m)}‖�2(Ω). (3.51)

Combining (3.48), (3.50) and (3.51), gives,

‖ψ̂n+1
h,N ‖2 ≤ (1 + 2c0Δt)‖ψ̂nh,N‖2, (3.52)

from which (3.44) follows easily on noting that 1 + 2c0Δt ≤ e2c0Δt. �

Remark 3.6. The argument in Lemma 3.5 can also be applied to method I and hence it follows that method I
is stable when only QH2 is satisfied.
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3.5. Discrete spaces and approximation results

In Section 3.6, we will derive a convergence estimate for method I. The argument relies on approximation
results on Ω ×D, hence the purpose of this section is to obtain the required results.

Our approach is to deduce the appropriate results on Ω and D separately, and then it is straightforward to
combine them. The approximation results for the finite element method on Ω are standard and hence we defer
their discussion until later.
Spectral bases on D. In [22], we considered a Galerkin spectral method on D in the case that d = 2 in
detail. Our approach was to perform a polar-coordinate transformation of D into the rectangle (r, θ) ∈ R :=
(0, 1) × (0, 2π) using q

∼
= (q1, q2) = (

√
b r cos θ,

√
b r sin θ). Since H1

0(D) ⊂ H1
0(D;M), we sought a solution

ψ̂ ∈ H1
0(D); also we used the notation ψ̃(r, θ) := ψ̂(q1, q2). It was proved in Lemma 5.2 of [22] that ψ̃ can be

decomposed in polar coordinates as follows:

ψ̃(r, θ) = ψ̃1(r) + rψ̃2(r, θ), (r, θ) ∈ R = (0, 1) × (0, 2π). (3.53)

This is in fact a first-order version of the pole condition [15] for spectral methods in polar coordinates, see
Section 7 of [22] for a detailed discussion.

We performed a detailed analysis of the approximation properties of the space spanned by the basis A, where
A is defined as A := A1 ∪ A2 and:

A1 := {(1 − r)Pk(r) : k = 0, . . . , Nr − 1},
A2 := {r(1 − r)Pk(r)Φil(θ) : k = 0, . . . , Nr − 1; i = 0, 1; l = 1, . . . , Nθ}·

Pk is a polynomial of degree k in r ∈ [0, 1] and Φil(θ) = (1− i) cos(2lθ)+ i sin(2lθ), θ ∈ [0, π]. We only use even
trigonometric modes in A; this is because ψ̂(q

∼
) = ψ̂(−q

∼
) (cf. Rem. 7.1 in [22]). Note that the structure of A

mimics the decomposition (3.53).
We also considered a second basis, basis B, which is essentially the basis proposed by Matsushima and

Marcus [29] and Verkley [34], and satisfies the full pole condition; see [22] for more details.
In the present work, we are also interested in obtaining numerical results when D ⊂ R

3, and therefore we
shall now introduce a basis, referred to as basis C, that is appropriate when d = 3. In this case we use the
following spherical coordinate change of variables:

q
∼

= (
√
br cos θ sinφ ,

√
br sin θ sinφ ,

√
br cosφ), (r, θ, φ) ∈ R := (0, 1) × (0, 2π) × (0, π).

Following Chauvière and Lozinski [10], we choose each of our basis functions to be a product of a spherical
harmonic in (θ, φ) and a polynomial in r (see the definition of basis C below). Discretisations of this type have
also been considered in the recent paper by Huang and Guo [18].

Letting g̃(r, θ, φ) := g(q1, q2, q3), it follows that

‖g‖2
H1(D) =

∫
R

r2 sinφ

(
b3/2|g̃|2 +

√
b

∣∣∣∣∂g̃∂r
∣∣∣∣
2

+
√
b

1
r2

∣∣∣∣ ∂g̃∂φ
∣∣∣∣
2

+
√
b

1
r2 sin2 φ

∣∣∣∣∂g̃∂θ
∣∣∣∣
2
)

dr dθ dφ =: ‖g̃‖2
H̃1(R)

,

and following the approach in Section 5 of [22] for the case of d = 2, we define H̃1(R) as:

H̃1(R) := {f̃ ∈ L2
loc(R) : f̃(r, ·, φ) ∈ H1

p(0, 2π) for a.e. (r, φ) ∈ (0, 1) × (0, π) and ‖f̃‖H̃1(R) <∞},

where the periodic Sobolev space Ht
p(0, 2π) is given by

Ht
p(0, 2π) := {f̃ ∈ Ht

loc(R) : f̃(θ + 2π) = f̃(θ) ∀θ ∈ R}·

Also, let H̃1
0(R) denote the subspace of all g̃ ∈ H̃1

0(R) such that g̃(1, ·, ·) = 0.
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We denote the spherical harmonics by Sl,m : (θ, φ) �→ Sl,m(θ, φ) ∈ R. They are the solutions of the equation

1
sinφ

∂

∂φ

(
sinφ

∂

∂φ
Sl,m(θ, φ)

)
+

1
sin2 φ

∂2

∂θ2
Sl,m(θ, φ) + l(l + 1)Sl,m(θ, φ) = 0, (3.54)

for (θ, φ) ∈ (0, 2π) × (0, π), where (3.54) is the angular part of the Laplace equation in spherical coordinates;
it is well known that the solutions of (3.54) are of the form, Sl,m(θ, φ) = C(l,m)Pml (cosφ)eimθ , for l ∈ Z≥0,
|m| ≤ l, where Pml denotes an associated Legendre function and C(l,m) is a normalisation constant. Also, the
(appropriately normalised) spherical harmonics satisfy the following orthogonality property:

∫ 2π

0

∫ π

0

Sl1,m1(θ, φ)Sl2,m2(θ, φ) sin φdθ dφ = δm1,m2δl1,l2 , (3.55)

where the δij are Kronecker deltas and the overline notation denotes complex conjugation.
The next lemma shall motivate our definition of a spectral basis in the case of d = 3.

Lemma 3.7. Let g̃(r, θ) =
∑Nsph

l=0

∑
|m|≤l γ̃

m
l (r)Sl,m(θ, φ), Nsph ∈ Z≥0, γ̃0

0 ∈ H1
r2(0, 1), where H1

r2(0, 1) is the
r2-weighted H1-space and

γ̃ml ∈ H1(0, 1; 1, r2) :=
{
f̃ ∈ H1

loc(0, 1) :
∫ 1

0

(
|f̃(r)|2 + r2|f̃ ′(r)|2

)
dr <∞

}
,

for l > 0 and |m| ≤ l; then g̃ ∈ H̃1(R).

Proof. Periodicity of g̃ in θ follows directly from the definition of the spherical harmonics; hence it only remains
to verify that ‖g̃‖H̃1(R) <∞.

Integrating by parts in θ and φ (which is valid for spherical harmonics), we obtain:

‖g̃‖2
H̃1(R)

=
∫
R

r2 sinφ

(
b3/2|g̃|2 +

√
b

∣∣∣∣∂g̃∂r
∣∣∣∣
2
)

dr dθ dφ

−
√
b

∫
R

sinφ g̃
(

1
sinφ

∂

∂φ

(
sinφ

∂g̃

∂φ

)
+

1
sin2 φ

∂2g̃

∂θ2

)
dr dθ dφ, (3.56)

where the boundary conditions vanish due to periodicity. Substituting the series expression of g̃ into (3.56) and
using (3.54) and (3.55), we get:

‖g̃‖2
H̃1(R)

=
Nsph∑
l=0

∑
|m|≤l

∫ 1

0

r2

{
b3/2|γ̃ml (r)|2 dr +

√
b

∣∣∣∣ dγ̃mldr

∣∣∣∣
2
}

dr

+
√
b

∫
R

⎧⎨
⎩
Nsph∑
l1=0

∑
|m1|≤l1

γ̃m1
l1

(r)Sl1,m1(θ, φ)

⎫⎬
⎭
⎧⎨
⎩
Nsph∑
l2=0

∑
|m2|≤l2

l2(l2 + 1) γ̃m2
l2

(r)Sl2,m2(θ, φ)

⎫⎬
⎭ sinφdφdθ dr

=
Nsph∑
l=0

∑
|m|≤l

∫ 1

0

{
b3/2r2|γ̃ml (r)|2 +

√
b r2
∣∣∣∣ d
dr
γ̃ml (r)

∣∣∣∣
2

+
√
b l(l+ 1)|γ̃ml (r)|2

}
dr. (3.57)

By the hypotheses on the γ̃ml , it follows that ‖g̃‖H̃1(R) is finite. �
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Note that the γ̃ml in Lemma 3.7 need not be bounded on (0, 1): for example, r−1/4 ∈ H1
r2(0, 1)∩H1(0, 1; 1, r2).

It will be convenient from now on to use the real and imaginary parts of the spherical harmonics:

Sil,m(θ, φ) := C(l,m)Pml (cosφ)((1 − i) cos(mθ) + i sin(mθ)), (3.58)

where now 0 ≤ l ≤ Nsph, i ∈ {0, 1}, and i ≤ m ≤ l. In this section, we consider basis functions of the form:

Y iklm(r, θ, φ) := (1 − r)Qk(r)Sil,m(θ, φ). (3.59)

Here Qk is a polynomial of degree k, 0 ≤ k ≤ Nr− 1, so that (1− r)Qk ⊂ PNr,0(0, 1), where PNr,0(0, 1) denotes
the set of polynomials on (0, 1) that vanish at r = 1. Since PNr,0(0, 1) ⊂ H1

r2(0, 1) ∩ H1(0, 1; 1, r2), it follows
from Lemma 3.7 that any finite linear combination of functions of the form (3.59) is contained in H̃1

0(R). This is
a simpler situation than in two dimensions, since now we do not need to impose a specialised decomposition
(cf. (3.53)) in order to guarantee inclusion in H̃1(R).

Basis C will be introduced below, but first we consider the implications of the symmetry property ψ̂(q
∼
) =

ψ̂(−q
∼
) mentioned above. In the present context, the symmetry condition we wish to impose is that for any Y iklm,

we have Y iklm(r, θ, φ) = Y iklm(r, θ+π, π−φ). This, in turn, requires that Sil,m(θ, φ) = Sil,m(θ+π, π−φ). Noting that
Sil,m(θ, φ) = Pml (cosφ)((1−i) cos(mθ)+i sin(mθ)), and Sil,m(θ+π, π−φ) = (−1)mPml (− cosφ)((1−i) cos(mθ)+
i sin(mθ)), it follows that we can only use associated Legendre functions for which Pml (x) = (−1)mPml (−x), for
all x ∈ [−1, 1]. Since the associated Legendre functions are defined as:

Pml (x) = (−1)m(1 − x2)m/2
dm

dxm
(Pl(x)),

where Pl(x) is a Legendre polynomial of degree l (for which Pl(x) = (−1)lPl(−x)), it follows that the required
symmetry condition is satisfied if, and only if, l is an even number (for any m = 0, . . . , l).

With these considerations in mind, we define basis C as follows:

C := {Y iklm : 0 ≤ k ≤ Nr − 1, i ∈ {0, 1}, l ∈ {0, 2, 4, . . . , Nsph} and i ≤ m ≤ l}·

Remark 3.8. In [10], Chauvière and Lozinski restricted their attention to two-dimensional macroscopic velocity
fields, in which case a more restrictive symmetry condition was appropriate, i.e. that ψ(r, θ, φ) = ψ(r, θ+ π, φ),
and hence they only considered spherical harmonics for which both l and m were even numbers. Compared
to the more general symmetry condition considered above, the condition of Chauvière and Lozinski leads to a
reduction in computational effort because, for a given Nsph, fewer basis functions are used since the spherical
harmonics with odd m are discarded, and also it is only necessary to consider θ ∈ (0, π). In this paper, however,
we are interested in treating the case in which the macroscopic velocity field can be three-dimensional, and
therefore we require the symmetry condition identified above.

Approximation results on D. In Section 5 of [22], we derived a number of approximation results for span(A)
in the case of d = 2. We will use these results in the next section, so we summarise them here.

We must first recall several preliminary definitions from [22]. Let R := (0, 1) × (0, 2π) and let H̃1(R) and
H̃1

0(R) be defined analogously to the corresponding spaces defined above in the case of d = 3. We shall need
weighted Sobolev spaces7 of the form Hs,t

r (R) := Hs
r(0, 1; Ht

p(0, 2π)) where Hs,t
r (R) is equipped (for non-negative

integers s and t) with the norm ‖ · ‖Hs,t
r (R) defined by

‖f̃‖2
Hs,t

r (R)
:=

∑
0≤i≤s, 0≤j≤t

∫ 1

0

r

∫ 2π

0

|Di
rD

j
θ f̃(r, θ)|2 dθ dr.

7The weight r arises from the change of measure due to the polar coordinate transformation.
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Similarly, for integers s ≥ 1 and t ≥ 0, we define Hs,t
r,0(R) := Hs

r,0(0, 1; Ht
p(0, 2π)), where Hs

r,0(0, 1) :=
Hs
r(0, 1) ∩ H1

r,0(0, 1).
Finally, we define the space Hk+1,l+1(D), with k, l ≥ 1, where

Hk,l(D) := {g ∈ H1
0(D) : g̃ ∈ H̃1

0(R) has a decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ),
with g̃1 = 1

2π (g̃, 1)L2(0,2π) ∈ Hk
r,0(0, 1)

and g̃2 ∈ Hk,0
r,0 (R) ∩ Hk−1,1

r (R) ∩ H0,l
r (R) ∩ H1,l−1

r (R)},

equipped with the norm ‖g‖Hk,l(D) :=
(
‖g‖2

Hk
r(D) + ‖g‖2

Hl
θ(D)

) 1
2

where,

‖g‖Hk
r(D) :=

(
‖g̃1‖2

Hk
r (0,1) + ‖g̃2‖2

Hk,0
r (R)

+ ‖g̃2‖2
Hk−1,1

r (R)

) 1
2
,

and
‖g‖Hl

θ(D) :=
(
‖g̃2‖2

H0,l
r (R)

+ ‖g̃2‖2
H1,l−1

r (R)

) 1
2
.

Also, note that Hk,l(D) ⊂ H1
0(D) ⊂ H1

0(D;M) for k, l ≥ 1.
In Section 5 of [22], we defined a projection operator Πq : H1,1(D) → PN (D) and established the following

two optimal-order approximation results for all ψ̂ ∈ Hk,l(D), with k, l ≥ 1:

‖ψ̂ − Πqψ̂‖H1
0(D;M) ≤ C1N

−k
r ‖ψ̂‖Hk+1

r (D) + C2N
−l
θ ‖ψ̂‖Hl+1

θ (D), (3.60)

and

‖ψ̂ − Πqψ̂‖L2(D) ≤ C1N
−k
r ‖ψ̂‖Hk

r (D) + C2N
−l
θ ‖ψ̂‖Hl

θ
(D). (3.61)

The results (3.60) and (3.61) are based on the assumption that D ⊂ R
2 and that we use basis A for the

q
∼
-direction spectral method. It would be possible to derive analogous results for basis B when d = 2, or for

basis C when d = 3 (indeed Huang and Guo [18] recently derived approximation results for a spectral method
on the unit ball in R

3, which could be used to obtain results analogous to (3.60) and (3.61) for basis C) but for
the sake of brevity we do not consider these topics here.
Approximation results on Ω. In the x∼-direction we consider a quasi-interpolation operator, Ix : L1(Ω) → Vh;
we refer to Section 4.8 of [7] for the details of the definition of this operator (alternatively, see [12] or [33]).

The following result holds for Ix (cf. Thm. 4.8.12 in [7]).

Theorem 3.9. Suppose that Th is nondegenerate in the sense that there exists ρ > 0 such that for all K ∈ Th,
diam(BK) ≥ ρ diam(K), where BK is the largest ball contained in K. Suppose also that the set of shape
functions for each element K ∈ Th contains all polynomials of degree less than m. Then, there exists a positive
constant C such that ( ∑

K∈Th

h
p(s−k)
K ‖v − Ix v‖pWs,p(K)

)1/p

≤ C|v|Wk,p(Ω),

for all v ∈ Wk,p(Ω), 0 ≤ k ≤ m, 1 ≤ p ≤ ∞, 0 ≤ s ≤ k, where hK := diam(K).

Corollary 3.10 (cf. Cor. 4.8.15 in [7]). Setting s = k in Theorem 3.9, it follows that there exists a positive
constant C such that

‖Ix v‖Wk,p(Ω) ≤ C|v|Wk,p(Ω) ∀v ∈ Wk,p(Ω), (3.62)
for 0 ≤ k ≤ m, where m is as in Theorem 3.9, and 1 ≤ p ≤ ∞. Also, letting h = maxK∈Th

diam(K) in
Theorem 3.9, we obtain

‖v − Ixv‖Ws,p(Ω) ≤ Chk−s|v|Wk,p(Ω), (3.63)
for 0 ≤ s ≤ k, 0 ≤ k ≤ m, and m, p as in (3.62).



1138 D.J. KNEZEVIC AND E. SÜLI

Approximation results on Ω×D. Suppose that d = 2 and that we are using basis A for the q
∼
-direction spec-

tral method so that PN (D) is span(A) mapped from R to D. Let the projection operator Π : L1(Ω;H1,1(D)) →
Vh ⊗PN (D) be defined as Π := Ix Πq = Πq Ix, so that η := ψ̂ −Πψ̂. With the approximation properties listed
above for Πq and Ix, the following optimal order bounds can be derived for 0 ≤ s ≤ m, with m as above, and
any k, l ≥ 1 (see Sect. 3.6 of [21]):

‖η0‖ ≤ Chs‖ψ̂0‖Hs(Ω;L2(D)) + C1N
−k
r ‖ψ̂0‖L2(Ω;Hk

r (D)) + C2N
−l
θ ‖ψ̂0‖L2(Ω;Hl

θ(D)),

‖η‖�2(0,tn;L2(Ω×D)) ≤ Chs
∥∥∥ψ̂∥∥∥

�2(0,tn;Hs(Ω;L2(D)))
+ C1N

−k
r

∥∥∥ψ̂∥∥∥
�2(0,tn;L2(Ω;Hk

r (D)))

+ C2N
−l
θ

∥∥∥ψ̂∥∥∥
�2(0,tn;L2(Ω;Hl

θ(D)))
,

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,tn;L2(Ω×D))

≤ Chs

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;Hs(Ω;L2(D)))

+ C1N
−k
r

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;L2(Ω;Hk
r (D)))

+ C2N
−l
θ

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,tn;L2(Ω;Hl
θ(D)))

,

‖∇∼ xη‖�2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖�2(0,tn;Hs+1(Ω;L2(D)))

+ C1N
−k
r ‖ψ̂‖�2(0,tn;H1(Ω;Hk

r (D))) + C2N
−l
θ ‖ψ̂‖�2(0,tn;H1(Ω;Hl

θ
(D))),

‖∇∼ Mη‖�2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖�2(0,tn;Hs(Ω;H1
0(D;M)))

+ C1N
−k
r ‖ψ̂‖�2(0,tn;L2(Ω;Hk+1

r (D))) + C2N
−l
θ ‖ψ̂‖�2(0,tn;L2(Ω;Hl+1

θ (D))),

‖∇∼ x∇∼ Mη‖�2(0,tn;L2(Ω×D)) ≤ Chs‖ψ̂‖�2(0,tn;Hs+1(Ω;H1
0(D;M)))

+ C1N
−k
r ‖ψ̂‖�2(0,tn;H1(Ω;Hk+1

r (D))) + C2N
−l
θ ‖ψ̂‖�2(0,tn;H1(Ω;Hl+1

θ (D))).

These results will be used in the convergence argument in the next section.

3.6. Convergence analysis for method I

In this section we outline an a priori convergence argument for method I using the equivalent one-step
scheme (3.30) and Lemma 3.4. The argument presented here is analogous to the approach in Section 4 of [22]
and therefore for the sake of brevity we omit many details; see Section 3.5 of [21] for more details. Note that
we need access to an equivalent one-step formulation for this argument and therefore we only consider the
convergence analysis of method I.

Let ψ̂(·, ·, t) be the weak solution of (3.5), (3.6) at time t ∈ (0, T ). To simplify the notation, we write
ψ̂(t) := ψ̂(·, ·, t) throughout the rest of this section. Define

enh,N := ψ̂(tn) − ψ̂nh,N = (ψ̂(tn) − Πψ̂(tn)) + (Πψ̂(tn) − ψ̂nh,N) =: ηn + ξn,

where Π : L1(Ω;H1,1(D)) → Vh⊗PN(D) as in Section 3.5 (although the specific definition of Π and PN(D) are
irrelevant at this point in the convergence argument).
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Noting that ξn ∈ Vh ⊗ PN (D), we apply the equivalent one-step formulation for method I, (3.30), to ξn =
ψ̂(tn) − ψ̂nh,N − ηn and set ζ = ξn+1, to obtain:

(
ξn+1 − ξn

Δt
, ξn+1

)
+
(
u∼ · ∇∼ xξ

n+1, ξn+1
)

+
1

2Wi
‖∇∼ Mξ

n+1‖2

+
Δt
2Wi

(
∇∼ M (u∼ · ∇∼ xξ

n+1),∇∼ Mξ
n+1
)
−
(
κ≈
nq

∼
ξn,∇∼ Mξ

n+1
)

=

(
ψ̂(tn+1) − ψ̂(tn)

Δt
, ξn+1

)
+
(
u∼ · ∇∼ xψ̂(tn+1), ξn+1

)
+

1
2Wi

(
∇∼ M ψ̂(tn+1),∇∼ Mξ

n+1
)

+
Δt
2

(
∇∼ M (u∼ · ∇∼ xψ̂(tn+1)),∇∼ Mξ

n+1
)
−
(
κ≈
nq

∼
ψ̂(tn),∇∼ Mξ

n+1
)

−
(
ηn+1 − ηn

Δt
, ξn+1

)
−
(
u∼ · ∇∼ xη

n+1, ξn+1
)
− 1

2Wi
(
∇∼ Mη

n+1,∇∼ Mξ
n+1
)

− Δt
2Wi

(
∇∼ M (u∼ · ∇∼ xη

n+1),∇∼ Mξ
n+1
)

+
(
κ≈
nq

∼
ηn,∇∼ Mξ

n+1
)
, (3.64)

where the terms containing ψ̂nh,N and ψ̂n+1
h,N vanish since ψ̂h,N satisfies (3.30). We apply Lemma 3.4 to this

equation to obtain:

‖ξn‖2 +
n−1∑
m=0

Δt
2Wi

‖∇∼ Mξ
m+1‖2 ≤ eKnΔt

{
‖ξ0‖2 +

n−1∑
m=0

2Δt
(
‖μm+1‖2 + 4‖ν∼m+1‖2

)}
, (3.65)

where

μn+1 :=
ψ̂(tn+1) − ψ̂(tn)

Δt
− ∂ψ̂

∂t
(tn+1) − ηn+1 − ηn

Δt
− u∼ · ∇∼ xη

n+1, (3.66)

ν∼
n+1 :=

Δt
2Wi

∇∼ M (u∼ · ∇∼ xψ̂(tn+1)) +K1∼
+K2∼

−K3∼
− 1

2Wi
∇∼ Mη

n+1 (3.67)

− Δt
2Wi

∇∼ M (u∼ · ∇∼ xη
n+1) + κ≈

nq
∼
ηn,

and K1 :=
(∫ tn+1

tn
∂κ≈
∂t dt

)
q
∼
ψ̂(tn), K2 := κ≈

n+1q
∼

(∫ tn+1

tn
∂ψ̂
∂t dt

)
, K3 :=

(∫ tn+1

tn
∂κ≈
∂t dt

)
q
∼

(∫ tn+1

tn
∂ψ̂
∂t dt

)
.

Bounding the terms on the right-hand side of (3.65) leads to the following result:

‖ξn‖2 +
n−1∑
m=0

Δt
2Wi

‖∇∼ Mξ
m+1‖2 ≤ eKnΔt

{
‖η0‖2 + 6Δt2

∥∥∥∥∥∂
2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tn;L2(Ω×D))

+ 6
∥∥∥∥∂η∂t

∥∥∥∥
2

L2(0,tn;L2(Ω×D))

+ 6‖u∼‖2
L∞(0,T ;L∞(Ω))‖∇∼ xη‖2

�2(0,tn;L2(Ω×D))

+
14

Wi2
Δt2‖u‖2

L∞(0,T ;L∞(Ω))

(
‖∇∼ x∇∼ M ψ̂‖2

�2(0,tn;L2(Ω×D)) + ‖∇∼ x∇∼ Mη‖2
�2(0,tn;L2(Ω×D))

)
+

14
Wi2

‖∇∼ Mη‖2
�2(0,tn;L2(Ω×D)) + 56 b‖κ≈‖

2
L∞(0,tn;L∞(Ω)) ‖η‖2

�2(0,tn;L2(Ω×D))

+ 56 bΔt2
∥∥∥∥∂κ≈∂t

∥∥∥∥
2

L∞(0,T ;L∞(Ω))

∥∥∥ψ̂∥∥∥2

�2(0,tn;L2(Ω×D))

+ 56 Δt2 b‖κ≈‖
2
W1,∞(0,T ;L∞(Ω))

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

2

L2(0,tn;L2(Ω×D))

}
· (3.68)
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Note that up until this point the convergence argument is independent of the dimension, the choice of Π and
the choice of PN (D). However, we now require the approximation results on Ω ×D from Section 3.5 in order
to bound the terms containing η. Hence, we let d = 2 and define PN(D) be span(A) mapped from R to D.
Substituting the appropriate bounds into (3.68) and applying the triangle inequality, we obtain:

‖ψ̂ − ψ̂h,N‖�∞(0,T ;L2(Ω×D)) + ‖∇∼ M (ψ̂ − ψ̂h,N )‖�2(0,T ;L2(Ω×D))

≤ C1h
s
(
‖ψ̂‖�∞(0,T ;Hs(Ω;L2(D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hs(Ω;L2(D)))

+
∥∥∥ψ̂∥∥∥

�2(0,T ;Hs(Ω;H1
0(D;M)))

+
∥∥∥ψ̂∥∥∥

�2(0,T ;Hs+1(Ω;L2(D)))

)

+ C2N
−k
r

(
‖ψ̂‖�∞(0,T ;L2(Ω;Hk

r (D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hk
r (D)))

+ ‖ψ̂‖�2(0,T ;H1(Ω;Hk
r (D)))

+ ‖ψ̂‖�2(0,T ;L2(Ω;Hk+1
r (D)))

)

+ C3N
−l
θ

(
‖ψ̂‖�∞(0,T ;L2(Ω;Hl

θ(D))) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;L2(Ω;Hl
θ(D)))

+ ‖ψ̂‖�2(0,T ;H1(Ω;Hl
θ(D)))

+
∥∥∥ψ̂∥∥∥

�2(0,T ;L2(Ω;Hl+1
θ (D)))

)
+ C4Δt

( ∥∥∥ψ̂∥∥∥
�2(0,T ;L2(Ω×D))

+
∥∥∥ψ̂∥∥∥

H2(0,T ;L2(Ω×D))
+ ‖∇∼ x∇∼ M ψ̂‖�2(0,T ;L2(Ω×D))

+ N−k
r ‖ψ̂‖�2(0,T ;H1(Ω;Hk+1

r (D))) +N−l
θ ‖ψ̂‖�2(0,T ;H1(Ω;Hl+1

θ (D)))

)
, (3.69)

for 0 ≤ s ≤ m, m as in Theorem 3.9, and k, l ≥ 1. Note that an obvious difference between (3.69) and
the corresponding error estimate for the q

∼
-direction method in [22] is that in (3.69) we require∥∥∥∇∼ x∇∼ M ψ̂

∥∥∥
�2(0,T ;L2(Ω×D))

< ∞. This regularity condition is necessitated by the presence of the cross term(
∇∼ M

(
u∼ · ∇∼ xψ̂

n+1
h,N

)
,∇∼ Mζ

)
in (3.30), which in turn arises from the structure of the alternating-direction method.

Remark 3.11. Looking at (3.69), it could be argued that there is a mismatch between the convergence rates
of the finite element method in Ω and the spectral method in D, in the sense that the spectral method will
generally be far more accurate. This is a reasonable point, but we believe that in practice the numerical method
analysed here is appropriate. First of all, while in general an h-version finite element scheme will have a low-
order convergence rate, its flexibility is invaluable when it comes to meshing physical space domains that may
be complicated. Moreover, we do not have a diffusion operator in the x∼-direction, so it is not obvious that ψ̂
will be highly smooth on Ω.

Nevertheless, it is certainly also reasonable to use a higher-order method for solving the transport equation in
physical space, for example, Chauvière and Lozinski used a spectral element method for this purpose in [10,11].
Note that the analysis in this section would carry over essentially unchanged if we replaced the finite element
discretisation of (3.27) by a spectral element method.

On the other hand, the q
∼
-direction is much better suited to the use of a high-order method since D is always

a ball in R
d, and, as seen in [22], the solution profiles in D are generally very smooth. Note that in practice

the spectral convergence of the q
∼
-direction numerical method means that the discrete space PN (D) need only

have a rather low dimensionality (in fact, the superconvergence of τ≈ discussed in the next section accentuates
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this effect further). This is highly advantageous because (a) each q
∼
-direction solve requires relatively modest

computational resources and (b) a reduction in the dimensionality of PN (D) reduces the number of x∼-direction
solves that need to be performed each time-step (cf. (3.27)).

Remark 3.12. We assumed d = 2 and that basis A was used for the q
∼
-direction spectral method; it is worth

emphasising that the same argument could be used for basis B or basis C as well. One would need to derive
approximation results analogous to (3.60) and (3.61) for these alternative bases, which could be done using the
approach in Section 5 of [22].

Remark 3.13. In the preceding argument, we made use of the (pointwise) divergence-free assumption, (3.3).
This assumption was made to simplify the argument, but it is not essential, i.e. it follows from (3.4) that
∇∼ x ·u∼ ∈ L∞(Ω), hence if we allowed ∇∼ x ·u∼ to be nonzero the preceding convergence argument could be modified
to use the norm ‖∇∼ x · u∼‖L∞(Ω) instead of (3.3).

3.7. Superconvergence of the polymeric extra-stress

We now consider the convergence of τ≈. For consistency with the convergence analysis in the preceding
sections, we again restrict our attention to the d = 2 case with basis A. For simplicity, we only consider the
component τ11 of τ≈, although the other components can be treated in exactly the same way.

Using the Fourier series representation of ψ̃ ∈ H̃1(R) from Lemma 5.2 in [22] (recall that ψ̂(x∼, q∼, t) =
ψ̃(x∼, r, θ, t)), we have (cf. (3.53)):

ψ̃(x∼, r, θ, t) = ψ̃1(x∼, r, t) + r
∞∑
l=1

(
Ãl(x∼, r, t) cos(2lθ) + B̃l(x∼, r, t) sin(2lθ)

)
. (3.70)

We consider τ11 to be a functional defined on ψ̂ ∈ L2(D) as τ11(ψ̂) =
∫
D
F1(q∼) q1

√
M(q

∼
) ψ̂(q

∼
, t) dq

∼
, where F1 is

defined by (1.1). Hence,

|τ11(ψ̂)| =
∣∣∣∣
∫
D

q21 U
′(1

2 |q
∼
|2)
√
M(q

∼
) ψ̂ dq

∼

∣∣∣∣ ≤ b

(∫
D

U ′(1
2 |q

∼
|2)2M(q

∼
) dq

∼

) 1
2

‖ψ̂‖L2(D)

=
b√
Z

(∫
D

(
1 − |q

∼
|2/b
) b

2−2

dq
∼

) 1
2

‖ψ̂‖L2(D) =
b√
Z

(
2πb
∫ 1

0

(1 − r2)
b
2−2 r dr

) 1
2

‖ψ̂‖L2(D)

≤ b√
Z

(
2

b
2−1 πb

∫ 1

0

(1 − r)
b
2−2 dr

) 1
2

‖ψ̂‖L2(D), (3.71)

where Z is the normalisation constant from (1.12). Hence, we require b > 2 so that τ11 ∈ L2(D)′ = L2(D),
which is the same condition on b that we have assumed throughout.

Applying τ11 to (3.70) gives:

τ11(ψ̂) =
b2√
Z

∫ 1

0

∫ 2π

0

(1 − r2)
b
4−1r3 cos2(θ) ψ̃(x∼, r, θ, t) dr dθ

=
π b2√
Z

∫ 1

0

r3(1 − r2)
b
4−1
(
ψ̃1(x∼, r, t) +

r

2

(
Ã1(x∼, r, t)

))
dr. (3.72)

This shows that, quite remarkably, due to orthogonality with cos2(θ) = 1
2 + 1

2 cos(2θ) over θ ∈ (0, 2π), the
functional τ11 filters out all but two terms of the infinite series in (3.70). The same filtering occurs for Galerkin
spectral methods that use trigonometric polynomials in θ in the d = 2 case, or methods that use spherical
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harmonics in the d = 3 case. For concreteness, we consider the numerical method that uses basis A in the
q
∼
-direction. Then, the numerical solution is given by:

ψ̃h,N (x∼, r, θ) = (1 − r)
Nr−1∑
k=0

Ψ̃0,k(x∼)Pk(r) + r(1 − r)
1∑
i=0

Nθ∑
l=1

Nr−1∑
k=0

Ψ̃i
l,k(x∼)Pk(r)Φil(θ),

where Ψ̃0,k, Ψ̃i
l,k ∈ Vh are line functions as in (3.18). Applying the Cauchy–Schwarz inequality, it follows that

‖τ11(ψ̂(tn)) − τ11(ψ̂nh,N )‖2
L2(Ω) ≤ C∗

∫
Ω

∥∥∥∥∥ψ̃1(x∼, r, t
n) − (1 − r)

Nr−1∑
k=0

Ψ̃n
0,k(x∼)Pk(r)

∥∥∥∥∥
2

L2
r(0,1)

dx∼

+
C∗
4

∫
Ω

∥∥∥∥∥rÃ1(x∼, r, t
n) − r(1 − r)

Nr−1∑
k=0

Ψ̃0,n
1,k (x∼)Pk(r)

∥∥∥∥∥
2

L2
r(0,1)

dx∼, (3.73)

where,

C∗ =

⎧⎨
⎩

2π2b4

(b/2−1)C , 2 < b < 4,

π2 b4

3C , b ≥ 4,
(3.74)

and L2
r(0, 1) is the r-weighted L2 space on (0, 1).

On the other hand, we have:

‖ψ̂(·, ·, tn) − ψ̂nN (·, ·)‖2
L2(Ω×D) = 2πb

∫
Ω

∥∥∥∥∥ψ̃1(x∼, r, t
n) − (1 − r)

Nr−1∑
k=0

Ψ̃n
0,k(x∼)Pk(r)

∥∥∥∥∥
2

L2
r(0,1)

dx∼

+ πb

Nθ∑
l=1

∫
Ω

∥∥∥∥∥rÃl(x∼, r, tn) − r(1 − r)
Nr−1∑
k=0

Ψ̃0,n
l,k (x∼)Pk(r)

∥∥∥∥∥
2

L2
r(0,1)

dx∼

+ πb

Nθ∑
l=1

∫
Ω

∥∥∥∥∥rB̃l(x∼, r, tn) − r(1 − r)
Nr−1∑
k=0

Ψ̃1,n
l,k (x∼)Pk(r)

∥∥∥∥∥
2

L2
r(0,1)

dx∼

+ πb

∞∑
l=Nθ+1

∫
Ω

(∥∥∥rÃl(x∼, r, tn)∥∥∥2

L2
r(0,1)

+
∥∥∥rB̃l(x∼, r, tn)∥∥∥2

L2
r(0,1)

)
dx∼, (3.75)

and hence, the τ11 error only contains two terms from the infinite series in (3.75), and we have

‖τ11(ψ̂) − τ11(ψ̂h,N )‖�∞(0,T ;L2(Ω)) ≤
√
C∗
2πb

‖ψ̂ − ψ̂h,N‖�∞(0,T ;L2(Ω×D)). (3.76)

Note that since the line functions Ψ̃n
0,k and Ψ̃0,n

1,k in (3.73) are computed by solving (3.27) using the x∼-direction
finite element method, we expect an O(hs) error to dominate the spatial convergence rate of τ≈, just as in (3.69).
However, more importantly, by comparing (3.73) and (3.75), we can see that only relatively few terms in the
q
∼
-direction spectral expansion of ψ̂h,N contribute to the τ11 error. Hence, this suggests that the accuracy

of τ≈ will be less sensitive to the resolution of the q
∼
-direction spectral method than the accuracy of ψ̂h,N . We

demonstrate in Section 5.1 that in practice this results in superconvergence of τ≈ with respect to the q
∼
-direction

spectral method.
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4. Implementation of the alternating-direction methods

In this section we furnish further details about the implementation of the alternating-direction methods.

4.1. The x∼- and q
∼
-direction schemes

Recall, first of all, from Section 3.3 that from an implementational point of view method I and method II are
almost identical; the only difference between the two methods is that method I uses a semi-implicit temporal
discretisation whereas method II uses the backward Euler scheme. We begin by considering implementational
issues for the q

∼
-direction solvers. Note that this topic was considered in Section 7 of [22], and therefore we refer

the reader there for further details.
For both method I and method II, we must solve an ND ×ND linear system QΩ times per time-step in the

q
∼
-direction. QΩ can be very large in practice. For example, in Section 5 we consider some computations for

which QΩ is on the order of 104. The use of parallel computation can be very helpful in this context because
the q

∼
-direction linear solves are independent and therefore it is straightforward to perform them in parallel (we

discuss this in detail below).
Note that in the q

∼
-direction method I requires significantly less computational effort in each time-step than

method II because the matrix on the left-hand side in (3.26) is constant for all m and therefore with method I
we only need to perform the LU-factorisation of this matrix once, whereas the linear system in (3.38) must be
reassembled and solved afresh at each quadrature point x∼m since in general κ≈(x∼m) varies from one quadrature
point to the next. On the other hand, numerical experiments in Section 2.6.2 of [21] indicate that the backward
Euler temporal discretisation of the q

∼
-direction equation used in method II is more stable in practice than the

semi-implicit scheme used in method I, especially for larger values of Wi or ‖κ≈‖L∞(Ω) (note that Lems. 3.4
and 3.5 show that both method I and method II are unconditionally stable on any finite time interval, but that
the stability constant grows exponentially with T , and therefore for long-time computations we can still observe
rapid growth of the solution; in practice, method I tends to require Δt to be chosen to be smaller than for
method II to avoid this pathological behaviour). Hence, there is a familiar trade-off in efficiency: each time-step
is faster with method I, but we can take larger time-steps with method II. Therefore the optimal choice of
numerical method depends on the problem at hand.

Remark 4.1. The alternating direction method used by Chauvière and Lozinski in [11] is similar to method II
in that it treats the κ≈ convection term implicitly in time. In the follow-up papers [10,27] the same authors
developed a fast solver in which the computational work required for each q

∼
-direction solve was significantly

reduced. However, their fast solver was based on the assumption that κ≈ arises from a two-dimensional velocity
field (i.e. that Ω ⊂ R

2) whereas in the present work we are interested in developing numerical methods that are
suitable for both Ω ⊂ R

2 and Ω ⊂ R
3.

The q
∼
-direction solvers for methods I and II were implemented in the C++ programming language and PETSc [3]

was used to perform the linear algebra operations. PETSc was a natural choice in this context because it is
designed for use on parallel architectures, which is a feature we made extensive use of.

In the x∼-direction, methods I and II are identical: For each line function, ψ̂n∗k , k = 1, . . . , ND, we solve the
transport equation (3.29). This involves solving an NΩ × NΩ linear system ND times, although the system
matrix Mx + Δt Tx only needs to be assembled once per time-step.

In our implementation, we used an H1(Ω)-conforming finite element method with quadratic shape functions
to perform the x∼-direction computations, and we used GMRES to solve the resulting linear systems. Hence,
assuming sufficient regularity for ψ̂, we can set s = 2 in (3.69), which yields O(h2) terms in the error estimate.

The x∼-direction finite element method was implemented using the free, open source C++ finite element library
libMesh [20].
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4.2. Parallel implementation of the alternating-direction methods

It is clear that the computational effort required to solve the high-dimensional Fokker–Planck equation
can be very large, particularly in the case d = 3, and hence parallel computation is a key ingredient in the
alternating-direction framework developed here. As indicated above, methods I and II are very well suited to
implementation on a parallel architecture; indeed these algorithms are “embarrassingly parallel” in the sense
that they involve performing a large number of independent solves in each time-step.

More specifically, suppose we use Nproc processors (Nproc ≥ 1) to solve a problem (using either method I
or II) with parameters ND, NΩ denoting the number of basis functions in the q

∼
-direction and x∼-direction,

respectively, and QΩ defining the number of quadrature points in Ω, as in (3.14). At time-level n, we store a
dense matrix Dn ∈ R

QΩ×ND , where (Dn)ij = ψ̂nj (x∼i), and ψ̂nj ∈ Vh is a line function as in (3.18). The entries
of Dn uniquely determine ψ̂nh,N ∈ Vh ⊗ PN (D). In practice Dn can be a very large matrix, so we partition it
among the processors so that each processor stores a subset of the rows (for q

∼
-direction solves) or columns (for

x∼-direction solves) of Dn. We would like these submatrices to be equally sized to obtain ideal load balancing
between processors, but depending on QΩ, ND and Nproc, this is often not possible. However, to simplify the
discussion here, we will assume for the remainder of this section that Nproc is a common divisor of QΩ and ND
and hence that the submatrices are equally sized.

Now, let us consider the q
∼
-direction computations at time-level n (we do not distinguish between methods I

and II here because, from the point of view of the current discussion, they are identical). We distribute Dn

so that each processor stores QΩ/Nproc rows of the matrix. Then, simultaneously, each processor solves the
QΩ/Nproc q∼-direction problems corresponding to its rows in Dn and updates the data in the matrix. In this

manner, Dn is updated to Dn∗ where (Dn∗)ij = ψ̂n∗j (x∼i).
Next, we perform the x∼-direction computations. First of all, however, we need to redistributeDn∗ so that each

processor stores ND/Nproc columns of the matrix8. This involves a global communication operation between
all of the processors, which can be time-consuming. The time required to perform this parallel communication
step depends on the problem size and the number of processors being used. We discuss this issue with regard to
some practical computations in Section 5.1, where we show that by selecting Nproc appropriately it is generally
possible to ensure that the matrix redistribution steps take only a small proportion of the overall computation
time.

So, once this matrix redistribution is complete, the x∼-direction computations on each processor proceed in
the same way as in the q

∼
-direction. That is, each processor works sequentially through its ND/Nproc columns,

first solving (3.29), and then sampling the resulting line function ψ̂n+1
k at x∼m for m = 1, . . . , QΩ and writing

these values back into the matrix. This yields the updated matrix Dn+1 on completion of all of the x∼-direction
solves.

4.3. Coupled algorithm for the micro-macro model

We now define the algorithm for solving the micro-macro model (i.e. the Navier–Stokes–Fokker–Planck or
Stokes–Fokker–Planck system). The algorithm that we use is essentially the same as those used by Chauvière
and Lozinski [10,11,27] and Helzel and Otto [17] for this purpose.

Note, first of all, that we use the well known Taylor–Hood mixed finite element method for solving the
Navier–Stokes or Stokes equations, i.e. let Vh denote the H1(Ω)-conforming finite element space based on Th
that uses continuous piecewise quadratic shape functions (cf. Sect. 4.1) and let Ph be the corresponding space
based on continuous piecewise linear shape functions. Then we use Vh and Ph as, respectively, the Taylor–Hood
velocity and pressure finite element spaces (cf. Chap. 5 of [16]) such that u∼h ∈ Vh and ph ∈ Ph; these spaces
are known to satisfy the inf-sup stability condition (cf. Sect. 12.6 of [7]).

8In our implementation, we performed this redistribution using PETSc’s transpose operation for parallel dense matrices.
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We implemented this Taylor–Hood scheme in libMesh in order to obtain the computational results in Sec-
tion 5.2, and in the Navier–Stokes case we used a Newton scheme to solve the resulting nonlinear system of
equations. The linear systems were solved using GMRES with incomplete LU factorisation as a preconditioner.
In order to obtain faster convergence rates for the iterative solver one could apply more advanced precondi-
tioning techniques, such as the techniques discussed in [16] that take advantage of the structure of the linear
systems arising from the discretisation of Stokes or Navier–Stokes problems. However, there is little incentive
for us to accelerate the convergence of our Navier–Stokes or Stokes solvers in this way because the overall
computation time for computations with the Navier–Stokes–Fokker–Planck system is dominated by solving the
Fokker–Planck equation on Ω ×D.

Note that in Section 3 we restricted our attention to enclosed flows to simplify the analysis, but in Section 5.2
we perform computational simulations of channel flows with the micro-macro model, and therefore we must now
consider the necessary modifications to the alternating-direction framework of Section 3 for problems that have
inflow and outflow boundaries. In particular, we need to define the boundary conditions for the Fokker–Planck
equation on ∂Ωin and ∂Ωout.

In fact, since the Fokker–Planck equation on Ω is a pure advection problem, we do not need to do anything
different on ∂Ωout since by definition we have u∼h ·n∼ > 0 there. However, we do need to treat the inflow boundary
differently. Suppose we set u∼

n
h|∂Ωin

= u∼
n
in for the Stokes/Navier–Stokes system for n = 1, . . . , NT . Then that

boundary data also defines κ≈
n
in = ∇∼ xu∼

n
in on ∂Ωin

9, and κ≈in in turn determines the inflow boundary data, ψ̂in,
on ∂Ωin × D for the Fokker–Planck equation. That is, for s ∈ ∂Ωin, ψ̂nin(s, ·) : q

∼
∈ D �→ ψ̂nin(s, q∼) ∈ R for

n = 1, . . . , NT is determined by solving the q
∼
-direction Fokker–Planck equation corresponding to κ≈

n
in(s), so that

ψ̂nin(s, ·) ∈ PN(D) for each n. Writing ψ̂in(s, q
∼
) =

∑ND

k=1 ψ̂in,k(s)Yk(q) for (s, q
∼
) ∈ ∂Ωin × D, it then follows

from (3.19) that ψ̂in,k defines the inflow boundary data on ∂Ωin for ψ̂k in (3.29). In practice we only solve for
ψ̂in at the nodes of Th on ∂Ωin so that we can impose the inflow boundary condition on the line function ψ̂k
in an interpolatory sense. Notice also that we can compute the inflow boundary data for ψ̂h,N before we begin
solving the Navier–Stokes–Fokker–Planck system, since u∼in and κ≈in are specified a priori.

We now define the coupled micro-macro algorithm. We first initialise the algorithm to the equilibrium state
by setting u∼

0
h = 0∼ on Ω, and therefore κ≈

0 = ∇∼ xu∼
0
h = 0≈ on Ω also. The corresponding equilibrium steady-state

solution of the Fokker–Planck equation is ψ = M , and hence we set ψ̂0
h,N =

√
M ∈ Vh ⊗ PN(D) on Ω ×D10.

Also, for consistency with ψ̂0
h,N , we set τ≈

0
h,N to be the identity tensor on Ω. Then, for n = 0, . . . , NT − 1, we

perform the following steps:

1. Compute u∼
n+1
h ∈ Vh and pn+1

h ∈ Ph using the mixed finite element method discussed above for either
the Navier–Stokes or Stokes system. We use the tensor τ≈

n
h,N as the source term in the momentum

equation ((1.2) or (1.7)).
2. Use method I or method II to compute ψ̂n+1

h,N ∈ Vh ⊗ PN(D) with κ≈
n in (3.26) for method I or with

κ≈
n+1 in (3.38) for method II, and u∼

n+1
h in (3.29) for either method.

3. Using (1.5), compute τ≈
n+1
h,N on Ω based on ψ̂n+1

h,N ∈ Vh ⊗ PN (D).
4. Return to 1. and continue marching in time.

Note that in this algorithm the τ≈h,N terms in the momentum equations are explicit in time. This allows
the Stokes/Navier–Stokes equations to be coupled to the Fokker–Planck equation in a simple manner, but the
drawback is that the algorithm defined in steps 1. to 4. above is only conditionally stable. In Section 5.2 we use
Δt = 0.01 and this time-step size is sufficiently small to yield a reliable numerical method for the micro-macro
problems that we consider.

9We assume that u∼in is a fully-developed flow, and therefore that the velocity field upstream of ∂Ωin has the same profile as u∼in;

this ensures that ∇∼ xu∼in is well-defined on the inflow boundary.
10We assume here that

√
M ∈ PN (D), which is reasonable according to Remark 6.1 in [22].
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Figure 1. Streamlines of the macroscopic velocity field u∼ driving the enclosed flow model
problem. The velocity field is the solution of the steady Navier–Stokes equation with Re = 1
on Ω = (0, 1)2 with forcing f(x, y) = (5 sin(2πy),−5 sin(2πx)).

5. Numerical results

In this section we present some numerical results. First of all, in Section 5.1 we consider a model problem for
the isolated FENE Fokker–Planck equation in which u∼ is taken to be a fixed enclosed flow. This model problem
conforms to the assumptions of Section 3, and hence it provides experimental verification of the theoretical
results derived therein. Then in Section 5.2 we present computational results for two channel flow problems for
the micro-macro model.

5.1. Enclosed flow model problem

Here we take u∼ to be the enclosed flow velocity field in Figure 1, and we take u∼ to be constant in time
throughout t ∈ (0, T ]. We obtained u∼ by solving the steady incompressible Navier–Stokes equations (using the
Taylor–Hood finite element scheme) with Re = 1, and with forcing term f(x, y) = (5 sin(2πy),−5 sin(2πx)), in
the domain Ω = (0, 1)2 and with zero Dirichlet condition for u∼ on ∂Ω. In this case, ‖κ≈‖L∞(Ω) ≈ 2. Note that in
general the Taylor–Hood scheme for the Navier–Stokes equations does not yield a (pointwise) divergence-free
velocity field, and hence the assumption (3.3) is not satisfied for the computational results in this section.
However, as noted in Remark 3.13, the analysis developed in Sections 3.6 and 3.7 can be extended essentially
unchanged to the case in which u∼ is not divergence-free.

We now consider computations using methods I and II with basis A in the q
∼
-direction for the model problem

described above, with the parameters Wi = 1 and b = 12. Also, in each of the computations discussed below,
we used the initial condition ψ̂0

h,N (x∼, q∼) =
√
M(q

∼
) and we ensured that Nr ≥ 6, since according to Remark 6.1

in [22], that guarantees that
√
M ∈ PN (D) in this case. Our goal is to compare the performance of methods I

and II, and to study the convergence of these methods under mesh refinement. All of the computations in this
section were performed on the Lonestar parallel computer at the Texas Advanced Computing Center (TACC),
http://www.tacc.utexas.edu, and we used the parallel implementation of the alternating direction method
described in Section 4.2.

We do not know the exact solution of the Fokker–Planck equation with the velocity field in Figure 1 and
therefore in order to obtain quantitative convergence results we first computed a “reference solution”, ψ̂ref ,
and corresponding polymeric extra-stress tensor, τ≈ref , using method I with basis A in the q

∼
-direction, and

with a quadrature rule on Ω that satisfied QH1. We obtained this reference solution using a discrete space,
(Vh ⊗ PN (D))ref , for which Th was a 40 × 40 uniform mesh of square finite elements and (Nr, Nθ) = (14, 14).

http://www.tacc.utexas.edu
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τref,11 τref,12 τref,22

Figure 2. The components of τ≈ref at T = 0.2. Note that we do not show τref,21 since it is
identical to τref,12. In the τref,11 and τref,22 plots, the values range from 0.882 (blue) to 1.15 (red),
and in the τref,12 plot we have −0.229 (blue) to 0.229 (red) (figure in colour available online at
http://www.esaim-m2an.org/).

In order to satisfy QH1 in this case we used a tensor product Gauss-Legendre quadrature rule with 16 quadrature
points per element, and hence QΩ = 25 600. We took 200 time-steps with Δt = 10−3 so that T = 0.2; this value
of Δt is sufficiently small so that temporal discretisation error does not contaminate the spatial convergence
results presented below. The components of τ≈ref at T = 0.2 are shown in Figure 2.

In order to obtain convergence data, we then computed ψ̂h,N and the corresponding stress tensor τ≈ for several
discrete spaces coarser than (Vh ⊗ PN (D))ref . First of all we carried out this process using the same numerical
method with which we obtained the reference solution, i.e. method I with basis A and a quadrature rule that
satisfied QH1. The solution data obtained from these computations are denoted ψ̂I and τ≈I below. Then, we
also computed a corresponding set of numerical solutions on the same discrete spaces, but using method II with
basis A and a quadrature rule that only satisfied QH211. We denote the solution data in this second case by
ψ̂II and τ≈II.

The numerical results for ψ̂I and τ≈I were obtained using a numerical method that satisfies all of the hypotheses
required by the convergence estimates for ψ̂ and τ≈ in Sections 3.6 and 3.7 (except the divergence-free assumption
on u∼, but, as mentioned above, this assumption is not essential; we only introduced it to simplify the analysis).
Hence, the ψ̂I and τ≈I convergence data in the table allow us to compare the theoretical estimates with practical
convergence results. Also, the numerical results enable us to compare the convergence behaviour of method I
with QH1 to method II with QH2. These two methods are very similar to one another hence we expect to
observe the same convergence behaviour in the two cases, but it is important to provide experimental evidence
that these two methods converge to the same solution, and at the same rate in practice because strictly speaking
our convergence analysis is only valid for method I with QH1.

The convergence estimates (3.69) and (3.76) indicate that if the error due to the q
∼
-direction spectral method is

negligible compared to the error from the x∼-direction finite element method, we should obtain O(h2) convergence
rates for both ψ̂ and τ≈ as Th is refined. Table 1 gives the relative errors ‖ψ̂I − ψ̂ref‖L2(Ω×D)/‖ψ̂ref‖L2(Ω×D) and
‖ψ̂II − ψ̂ref‖L2(Ω×D)/‖ψ̂ref‖L2(Ω×D) as well as the relative τ11 errors ‖τI,11 − τref,11‖L2(Ω)/‖τref,11‖L2(Ω) and
‖τII,11 − τref,11‖L2(Ω)/‖τref,11‖L2(Ω), at T = 0.2, for the discrete spaces that we considered.

11We only require nine tensor product Gauss-Legendre quadrature points per element to satisfy QH2 on square finite elements.

http://www.esaim-m2an.org/
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Table 1. Convergence of ψ̂ and τ11 with respect to the reference solution ψ̂ref and reference poly-
meric stress tensor τref,11 for a series of increasingly refined discrete spaces. The errors are calculated

in the L2 norm at T = 0.2, and are normalised by dividing by ‖ψ̂ref(·, ·, T )‖L2(Ω×D) = 0.31 and
‖τref,11(·, T )‖L2(Ω) = 1.04.

Th (Nr, Nθ) ψ̂I error τI,11 error ψ̂II error τII,11 error
5 × 5 (6, 6) 2.07 × 10−2 1.63 × 10−2 2.08 × 10−2 1.63 × 10−2

5 × 5 (8, 8) 2.05 × 10−2 1.63 × 10−2 2.06 × 10−2 1.63 × 10−2

5 × 5 (10, 10) 2.05 × 10−2 1.63 × 10−2 2.06 × 10−2 1.63 × 10−2

10 × 10 (6, 6) 6.25 × 10−3 4.22 × 10−3 6.30 × 10−3 4.24 × 10−3

10 × 10 (8, 8) 5.62 × 10−3 4.22 × 10−3 5.65 × 10−3 4.23 × 10−3

10 × 10 (10, 10) 5.54 × 10−3 4.22 × 10−3 5.58 × 10−3 4.23 × 10−3

20 × 20 (6, 6) 3.29 × 10−3 9.95 × 10−4 3.40 × 10−3 1.07 × 10−3

20 × 20 (8, 8) 1.80 × 10−3 9.90 × 10−4 1.89 × 10−3 1.04 × 10−3

20 × 20 (10, 10) 1.52 × 10−3 9.90 × 10−4 1.67 × 10−3 1.04 × 10−3

In order to gain further insight into the convergence behaviour of the numerical methods, we plotted the
data in Table 1 in Figure 3.

In Figure 3a, the convergence results for ψ̂I and ψ̂II with (Nr, Nθ) = (6, 6) and (Nr, Nθ) = (10, 10) are plotted
on a log-log scale. We have also included a plot of h2 to show how the decay of the computed errors compare to
the expected asymptotic rate. First of all, it is clear from the figure that the two numerical methods behave very
similarly; the lines from ψ̂I and ψ̂II are almost indistinguishable. Also, Figure 3a shows that we obtain O(h2)
convergence when (Nr, Nθ) = (10, 10). However, when (Nr, Nθ) = (6, 6), the plots plateau, which indicates that
the error due to the spectral method dominates the O(h2) finite element error when Th is a 20 × 20 mesh.

The τI,11 and τII,11 convergence data is plotted in Figure 3b (the data in Tab. 1 is almost identical for
(Nr, Nθ) = (6, 6), (8, 8) and (10, 10), and therefore we only show the (Nr, Nθ) = (6, 6) data). The plot shows
that we obtained O(h2) convergence for both τI,11 and τII,11 as Th is refined from a 5× 5 mesh to 20× 20 mesh,
when (Nr, Nθ) = (6, 6). This is markedly different from the convergence behaviour of ψ̂h,N , in which the
q
∼
-direction spectral error for (Nr, Nθ) = (6, 6) dominated the finite element error on the 20 × 20 x∼-direction

mesh. Therefore, this indicates that, as expected from Section 3.7, the D domain spectral method exhibits
superconvergence for τ≈ compared to ψ̂. The superconvergence of τ≈ is extremely beneficial in the context
of micro-macro computations for simulating dilute polymeric fluids because in that setting the error in ψ̂ is
irrelevant; we are solely interested in the τ≈ error since τ≈ rather than ψ̂ enters into the macroscopic momentum
equation.

Recall from the discussion in Section 4.1 that we expect method I to require significantly less computational
work per time-step in the q

∼
-direction than method II. To demonstrate this in practice, we solved the same

enclosed flow model problem using both method I and method II. We used a 20×20 uniform mesh Th of square
finite elements with QΩ = 3600 and basis B with (Nr, Nθ) = (15, 15) so that ND = 465. With Nproc = 4, the
total computation time per time-step for method I was 1.75 seconds, whereas for method II it was 3.42 seconds.
This difference is due to the fact that method II took 2.37 seconds per time-step to perform the q

∼
-direction

computations, whereas method I only took 0.70 seconds per time-step in the q
∼
-direction.

Nevertheless, for problems of physical interest, method II is often the preferred alternating-direction method.
This is because the fully implicit temporal discretisation used by method II is more stable than the semi-implicit
scheme in method I, especially for larger macroscopic velocity gradients and Weissenberg numbers (cf. Sect. 6.2
of [21]). Hence method I can require much smaller time-step sizes than method II, and this can often outweigh
the reduced computational complexity per time-step of method I. Also, for large-scale problems we generally
prefer to satisfy only QH2 rather than QH1 since with QH2 we can obtain a smaller value of QΩ, which in turn
reduces the computational work required in each time-step of the alternating-direction method.
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(a)

(b)

Figure 3. Plots of the ψ̂ and τ≈ convergence data in Table 1 (the lines interpolate the conver-
gence data). (a) The black line shows the expected asymptotic decay rate, h2, and the blue and
red liness show the convergence of the two numerical methods when (Nr, Nθ) is fixed at (6, 6)
and (10, 10), respectively. (b) The black line shows the expected asymptotic decay rate, h2, and
the solid and dashed blue lines show, respectively, the τI,11 and τII,11 data for (Nr, Nθ) = (6, 6).
The data for the other values of (Nr, Nθ) are not plotted since the τ11 convergence data in
Table 1 is virtually unaffected by increasing the number of spectral basis functions (figure in
colour available online at http://www.esaim-m2an.org/).

We now move on to consider the scaling of the computation time as we increase the number of processors
in the parallel implementation of the alternating-direction method. The enclosed-flow problem considered
above provides a convenient test case with which we can quantify the parallel speedup for the alternating-
direction method. We studied this speedup by, first of all, solving the enclosed flow problem on one node of the
Lonestar parallel computer (each node contains four processors) to get the base computation time per time-
step, which we denote T (1). We then repeated the same computation, but using more computational nodes

http://www.esaim-m2an.org/
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Figure 4. Plot of speedup, i.e. T (1)/T (N), as the number of computational nodes is in-
creased from 1 to 15 (the plot shows linear interpolation of data points). The speedup data
for (ND, QΩ) = (120, 3600) is plotted as a solid line and the dashed line shows the data
for (ND, QΩ) = (1800, 8100). For each computation we chose the number of nodes so that
Nproc(= 4N) was a common divisor of ND and QΩ in order to ensure optimal load balancing
in each case so that the comparisons of computation time are fair.

of the parallel computer and we recorded the computation time, T (N), in each case, where N denotes the
number of computational nodes that were used. We refer to the ratio T (1)/T (N) as the parallel speedup.

The parameters that have the most significant effect on the computation time of the parallel alternating-
direction scheme are ND and QΩ, since these determine the number of x∼- and q

∼
-direction solves that need to be

performed each time-step. Note that there are only two steps in the alternating-direction algorithm for which
the computation time does not scale down proportionally to the number of processors being used: the matrix
assembly for (3.29), which must be performed exactly once per time-step irrespective of Nproc, and also the
dense matrix redistribution that precedes direction changes in the alternating-direction method. However, if the
x∼- and q

∼
-direction solves dominate the overall computation time, then we can expect that the parallel speedup

will scale linearly with the number of processors being used.
In order to examine the scaling of the parallel speedup in practice, we performed computations for two

different discrete spaces, such that (i) ND = 120 and QΩ = 3600, and (ii) ND = 1800 and QΩ = 8100.
We solved the enclosed flow problem for these spaces using a number of different choices of Nproc. We used
method II with basis B to obtain the data below, but the parallel speedup behaviour is essentially the same
whether we use method I or II or basis A or B. The base computation times were T (1) = 0.53 seconds for the
(ND, QΩ) = (120, 3600) computation, and T (1) = 157.0 seconds for the (ND, QΩ) = (1800, 8100) case.

The parallel speedup of the alternating-direction method for the two discrete spaces discussed above is plotted
in Figure 4. In the case that (ND, QΩ) = (1800, 8100), we obtained a parallel speedup of 14.8 when N = 15
(i.e. Nproc = 60), whereas the speedup tailed off to less than 10 when N = 15 for the computation with
(ND, QΩ) = (120, 3600). This difference in the scaling of the parallel speedup is primarily due to the fact that
the overhead from the redistribution of Dn is much larger, as a proportion of the overall computation time, for
the smaller problem. For example, for the (ND, QΩ) = (120, 3600) problem, matrix redistribution took 8.66% of
the overall computation time when N = 1, but when N = 15, it increased to 30.4%. By contrast, in the larger
problem with (ND, QΩ) = (1800, 8100), more time is spent on the q

∼
- and x∼-direction solves in each time-step,
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so that only 0.89% of the computation time was taken for the matrix redistribution when N = 1, which increased
to 2.25% when N = 15. Since 2.25% is still only a small proportion of the overall computation time, the matrix
redistribution overhead does not significantly detract from the near optimal scaling of the parallel speedup
shown in Figure 4 for the (ND, QΩ) = (1800, 8100) case. This indicates that as long as the values of ND and QΩ

are large enough, the alternating-direction method can scale efficiently to a very large number of processors.

5.2. Computational results for the micro-macro model

We now consider two micro-macro model channel flow problems. In the first, we consider the Navier–Stokes–
Fokker–Planck system for a 4–to–1 contraction problem in two dimensions, and in the second, we consider the
flow around a spherical obstacle in a channel with square cross-section in the case of d = 3. We used the coupled
algorithm discussed in Section 4.3 in both cases. For each of these two problems we present numerical results
for one particular discrete space Vh ⊗ PN(D), but in each case we performed mesh refinement studies (i.e. we
solved using a sequence of increasingly refined spaces) to ensure that the numerical results shown below are
accurate.

4-to-1 contraction. Contraction flows are standard benchmark problems in computational rheology because
they are challenging from the numerical point of view and they also have practical relevance in industrial
applications (for a detailed discussion of contraction flows see Chap. 8 of [31]). In this section we consider
the coupled Navier–Stokes–Fokker–Planck model with Re = 1 in a contracting domain, which is 10 units long,
4 units wide in the wider section and 1 unit wide in the narrow section. We imposed a parabolic inflow profile
on u∼h on the left boundary (∂Ωin) with maximum value of Umax = 1, a zero normal stress outflow condition
on the right boundary (∂Ωout), zero Dirichlet condition on the top boundary and a symmetry condition on the
bottom boundary (by setting the y-component of u∼h to zero there). Also, instead of an L-shaped domain, we
use the physical space domain with a rounded corner shown in Figure 5 to avoid a singularity in the velocity
field and hence ensure that κ≈h = ∇∼ xu∼h is uniformly bounded as h → 0+. Also, in order to resolve the solution
satisfactorily, the finite element mesh, Th, has been graded so that it is finer near the corner.

We set b = 12, Wi = 0.8, γ = 0.59 and took 500 time-steps with Δt = 0.01 so that T = 5. We used alternating-
direction method II with basis A. The mesh Th contained 905 triangular finite elements and QΩ = 543012.
Also, we used (Nr, Nθ) = (20, 20) for the q

∼
-direction spectral method, so that ND = 820. In this computation

Wi ‖κ≈‖L∞(Ω) ≈ 10, and the high velocity gradients are localised to the vicinity of the rounded corner. The
macroscopic velocity field at T = 5 is plotted in Figure 5b and the corresponding components of τ≈h,N are shown
in Figure 6. The computation was performed using 40 processors of the Lonestar supercomputer at the Texas
Advanced Computing Center using a parallel implementation of the alternating-direction method, and each
time-step took 1.16 seconds to compute.

Flow around a spherical obstacle. The planar flow of a polymeric fluid around a cylindrical obstacle in
a channel has also been a popular benchmark problem in the computational rheology literature (see Chap. 9
of [31]). In this section we consider a three-dimensional analogue in which we solve the micro-macro model for a
suspension of FENE dumbbells for the flow around a sphere with radius 1 in a three-dimensional channel with
4 × 4 square cross-section. In this case Ω ⊂ R

3 and Ω×D ⊂ R
6. We set b = 12, Wi = 1, γ = 0.59 and we used

the Stokes equations for the macroscopic velocity field.
The mesh Th is shown in Figure 7. We set u∼in to be the velocity profile corresponding to steady Stokes flow

in a channel with square cross-section, with Umax = 1. We also imposed a zero Neumann boundary condition
on ∂Ωout, a no-slip boundary condition on the channel walls and on the spherical obstacle, and we set two
symmetry boundary conditions so that we only needed to simulate the flow in one quarter of the domain.

12We used six quadrature points per element (with no points on element boundaries) in order to satisfy QH2, cf. [28].
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(a) (b)

Figure 5. (a) The finite element mesh Th used for the contraction flow computations.
Th contains 905 triangular elements. (b) Streamlines for the macroscopic velocity field; this cor-
responds closely to Figure 8.9 in [31], which shows computational results for planar contraction
flows obtained using the fully macroscopic Oldroyd B model.

τ11

τ12

τ22

Figure 6. The components of τ≈h,N at T = 5. In the τ11 plot, values range from 0.45 (blue)
to 15.7 (red), in the τ12 (= τ21) plot we have −9.75 (blue) to 1.41 (red) and in the τ22 plot,
0.46 (blue) to 11.5 (red). The polymeric extra-stress is largest in the region near the rounded
corner (figure in colour available online at http://www.esaim-m2an.org/).

http://www.esaim-m2an.org/
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(a) (b)

Figure 7. (a) Plot of the pressure, ph ∈ Ph, at T = 1, with values ranging from 0.5 (blue)
to 14.4 (red). Also, this plot shows the mesh Th. Note that the mesh is very fine in the vicinity
of the spherical obstacle in order to resolve the solution structure in that region. (b) The
x-component of the macroscopic velocity field at T = 1; values range from 0 (blue) to 1 (red)
(figure in colour available online at http://www.esaim-m2an.org/).

The mesh Th contains 5150 tetrahedral elements and we used QΩ = 72 10013. For the q
∼
-direction spectral

method we used basis C with (Nr, Nsph) = (12, 12), so that ND = 1092. We took 100 time-steps with Δt = 0.01
using method II to reach T = 1 and in this case Wi ‖κ≈‖L∞(Ω) ≈ 5. Plots of the x-component of u∼h and of ph
at T = 1 are shown in Figure 7. Also, the components of the polymeric extra-stress tensor at T = 1 are shown
in Figure 8. This computation was performed with Nproc = 128 and it took 38.7 seconds to evaluate each
time-step of the coupled Stokes–Fokker–Planck system.

6. Conclusions

We have presented a range of theoretical results for alternating-direction methods for the Fokker–Planck
equation from polymeric fluid dynamics. This analysis built upon the results in [22] for the Fokker–Planck
equation in configuration space. We proved rigorous stability results and, in the case of method I, an a priori
convergence estimate. We also established an important property related to the superconvergence of τ≈ with
respect to the q

∼
-direction spectral method; this property is extremely beneficial for practical computations with

the micro-macro model since in that context the accuracy of τ≈ is of primary importance.
We developed a computational framework for the Fokker–Planck equation that is efficient in practice and

is also underpinned by rigorous theoretical analysis. We coupled the alternating-direction method to a mixed
finite element method for the Navier–Stokes or Stokes equations to obtain an algorithm for the full micro-macro
model for dilute polymeric fluids. We used this algorithm to obtain computational results for some channel flow
problems of physical interest. Parallel computation was used in order to significantly reduce the computation
time that was required for these problems and this made large-scale problems (such as the flow around a sphere
problem considered in Sect. 5.2) computationally feasible. To the best of our knowledge our computation for
the flow around a sphere problem is the first ever numerical implementation of the fully coupled micro-macro
model in a case where Ω ×D ⊂ R

6.
An important challenge for future work is to consider the extension of the deterministic multiscale framework

developed here for FENE dumbbells to the case of dumbbell chains, for which the configuration space is higher-
dimensional. This topic has been considered using reduced basis methods in [1,2] and sparse grid methods in [13]

13We used 14 quadrature points per element (with no points on element boundaries) in order to satisfy QH2, cf. [35].

http://www.esaim-m2an.org/
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τ11 τ12

τ13 τ22

τ23 τ33

Figure 8. Plots of the components of the polymeric extra-stress tensor, τ≈h,N , at T = 1 for
the channel flow around a spherical obstacle. The minimum (blue) and maximum (red) values
in each plot are as follows; τ11: 0.53 to 6.25, τ12: −1.25 to 2.41, τ13: −1.23 to 2.54, τ22:
0.48 to 3.35, τ23: −0.33 to 1.15 and τ33: 0.47 to 3.46 (figure in colour available online at
http://www.esaim-m2an.org/).

(see also [32]) for the Fokker–Planck equation in configuration space, and it is plausible that the alternating-
direction framework developed here would be an effective approach for extending these reduced basis or sparse
grid approaches to the full Fokker–Planck equation for dumbbell chains.

http://www.esaim-m2an.org/
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[32] C. Schwab, E. Süli and R.A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion

problems. ESAIM: M2AN 42 (2008) 777–820.
[33] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.

54 (1990) 483–493.
[34] W.T.M. Verkley, A spectral model for two-dimensional incompressible fluid flow in a circular basin. I. Mathematical formula-

tion. J. Comput. Phys. 136 (1997) 100–114.
[35] N.J. Walkington, Quadrature on simplices of arbitrary dimension. http://www.math.cmu.edu/~nw0z/publications/

00-CNA-023/023abs/.
[36] H.R. Warner, Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundamentals

11 (1972) 379–387.
[37] H. Zhang and P. Zhang, Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181

(2006) 373–400.

http://www.math.cmu.edu/~nw0z/publications/00-CNA-023/023abs/
http://www.math.cmu.edu/~nw0z/publications/00-CNA-023/023abs/

	Introduction
	The Fokker--Planck equation in configuration space
	An alternating-direction scheme for the full Fokker--Planck equation
	Weak formulation and spatial discretisation
	Discretisation in alternating-direction form
	The alternating-direction schemes
	Stability of methods I and II
	Discrete spaces and approximation results
	Convergence analysis for method I
	Superconvergence of the polymeric extra-stress

	Implementation of the alternating-direction methods
	The =0pt x- and =0pt q-direction schemes
	Parallel implementation of the alternating-direction methods
	Coupled algorithm for the micro-macro model

	Numerical results
	Enclosed flow model problem
	Computational results for the micro-macro model

	Conclusions
	References

