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STABILITY AND CONVERGENCE OF TWO DISCRETE SCHEMES
FOR A DEGENERATE SOLUTAL NON-ISOTHERMAL

PHASE-FIELD MODEL ∗

Francisco Guillén-González1 and Juan Vicente Gutiérrez-Santacreu1

Abstract. We analyze two numerical schemes of Euler type in time and C0 finite-element type with
P1-approximation in space for solving a phase-field model of a binary alloy with thermal properties.
This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute
concentration and temperature, where the diffusion for the temperature and solute concentration may
degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is
linear but conditionally stable and convergent. A maximum principle is avoided in both schemes, using
a truncation operator on the L2 projection onto the P0 finite element for the discrete concentration.
In addition, for the model when the heat conductivity and solute diffusion coefficients are constants,
optimal error estimates for both schemes are shown based on stability estimates.
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1. Introduction

1.1. The model

The phase-field method provides a mathematical description for free-boundary problems associated to phys-
ical processes with phase transitions. It postulates the existence of a function, called the phase-field, whose
value identifies the phase at a particular point in space and time. The method is particularly suitable for cases
with complex growth structures occurring during phase transitions. The mathematical model studied in this
work describes the solidification process occurring in a binary alloy with temperature-dependent properties. It
is based on a highly non-linear parabolic system of partial differential equations with three dependent variables:
phase-field, solute concentration and temperature. Moreover, the temperature and concentration equation have
nonlinear degenerate diffusivity.
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Let Ω ⊆ R
d (d = 2 or 3) be a bounded domain with boundary Γ. Denote by [0, T ] the time interval (T > 0).

We use the notation Q = Ω × (0, T ), Σ = Γ × (0, T ) and n(x ) is the outwards unit normal vector to Ω at the
point x ∈ Γ.

After some physical simplifications [5], we consider the following differential problem, related to a phase-field
model of a binary alloy with thermal properties [1]:⎧⎪⎪⎨⎪⎪⎩

αε2φt − ε2Δφ =
1
2
(φ − φ3) + β(θ − θAc− θB(1− c)) in Q,

CV θt +
l

2
φt = ∇ · [K1(φ)∇θ] in Q,

ct = ∇ · [K2(φ)(∇c +Mc(1− c)∇φ)] in Q.

(1.1)

This model is completed with the Neumann boundary conditions

∂φ

∂n

∣∣∣
Σ

= 0, (K1(φ)∇θ) · n
∣∣∣
Σ

= 0, (K2(φ)∇c) · n
∣∣∣
Σ

= 0 (1.2)

and the initial conditions

φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), c(x, 0) = c0(x) x ∈ Ω. (1.3)

The unknowns for this problem are: φ : Q→ R (phase-field) is the state variable characterizing the different
phases so that φ = 1 represents the liquid phase and φ = −1 represents the solid phase, θ : Q → R is the
temperature of the material, c : Q → [0, 1] (concentration) represents the fraction of one of the two materials
in the mixture. The parameter α > 0 is the relaxation scaling; the parameter β is given by β = ε[s]/3σ, where
ε > 0 is the measure of the interface width, σ the surface tension and [s] the entropy density difference between
phases; θA, θB are the melting temperatures of each of the two materials in the alloy; CV > 0 is the specific
heat; l > 0 the latent heat; K1 ≥ 0 the thermal conductivity; K2 ≥ 0 the solute diffusivity; M ∈ R is a constant
related to the slopes of solid and liquid lines.

We will assume that K1 = K1(φ) and K2 = K2(φ) are two globally Lipschitz continuous functions satisfying

0 ≤ K1(r) ≤ b1, 0 ≤ K2(r) ≤ b2 ∀ r ∈ R,

with b1, b2 > 0. In this sense, the problem is singular with respect to the temperature and concentration
when K1(φ) = 0 or K2(φ) = 0, respectively. As physically the diffusion of material in the solid phase can be
considered close to zero [5]; this leads to a degenerate solute diffusion. Such a phenomenon is included in this
model, assuming that K2(φ) = 0 if φ = −1. On the other hand, although the heat conductivity is nonzero
in both solid and liquid phases, we also consider a degenerate diffusion for the temperature with the aim of
considering a more general model. Moreover, this may help the development of numerical methods for systems
with similar characteristics.

The phase-field model for solidification (1.1) is used to treat phenomena such as crystal growth and the fusion
of materials.

Now we introduce the definition of weak solutions similar to that given in [1,12] which take into account
the heat and solute degenerate diffusivity, respectively. Moreover, the maximum principle for the concentration
equation says us that 0 ≤ c ≤ 1 in Q if 0 ≤ c0 ≤ 1 in Ω.

Definition 1.1. A triplet (φ, θ, c) is called a weak solution of (1.1)–(1.3) in (0, T ) if:

(1) φ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T,H1(Ω)), φt ∈ L2(Q), φ(0) = φ0,
∂φ

∂n
= 0 a.e. on Σ,

(2) θ ∈ L∞(0, T ;L2(Ω)), θt ∈ L2(0, T,H1(Ω)′), θ(0) = θ0,
(3) c ∈ L∞(0, T ;L2(Ω)), ct ∈ L2(0, T ;H1(Ω)′), c(0) = c0, 0 ≤ c ≤ 1 a.e. in Q,
(4) J1 := ∇(K1(φ)θ) − θ∇K1(φ) ∈ L2(Q),
(5) J2 := ∇(K2(φ)c) − c∇K2(φ) ∈ L2(Q),
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verifying

αε2φt − ε2Δφ =
1
2
(φ− φ3) + β(θ − θAc− θB(1− c)) a.e. in Q,

CV

∫ T

0

〈θt, η〉dt+
l

2

∫ T

0

(
φt, η

)
dt+

∫ T

0

(
J1,∇η

)
= 0,∫ T

0

〈ct, η〉dt+
∫ T

0

(
J2,∇η

)
dt+M

∫ T

0

(
K2(φ)c(1 − c)∇φ,∇η

)
= 0,

for each η ∈ L2(0, T ;H1(Ω)). If, in addition, K1,K2 ≥ b0 > 0, then θ, c ∈ L2(0, T ;H1(Ω)) and J1 = K1(φ)∇θ,
J2 = K1(φ)∇c.

Here and in what follows,
(
·, ·
)

denotes the inner product in L2(Ω) and 〈·, ·〉 denotes the duality between

H1(Ω)′ and H1(Ω).

1.2. Known results

In [1], the existence of weak solutions of problem (1.1)–(1.3) but with a constant solute diffusivity (K2 > 0) is
obtained via the introduction of a regularized problem approximating the degenerate thermal conductivityK1 by
a strictly positive, regular function followed by the derivation of suitable a priori estimates and the application
of compactness arguments. More concretely, the following existence result was established in [1].

Theorem 1.2. Let Ω be an open bounded domain of R
d, d = 2 or 3, with smooth boundary Γ. Assume

φ0 ∈ H1+γ(Ω) with 1/2 < γ ≤ 1 such that ∂φ0
∂n = 0 on Γ, θ0 ∈ L2(Ω) and c0 ∈ H1(Ω) such that 0 ≤ c0 ≤ 1 a.e.

in Ω. Then, there exists (φ, θ, c) a weak solution of (1.1)–(1.3) (with K1 > 0 a constant) in (0, T ).

In addition, in [1] the authors say that the hypothesis φ0 ∈ H1+γ(Ω) with 1/2 < γ ≤ 1 is not essential, and
the result holds for φ0 ∈ H1(Ω).

Scheid [12] proved the existence of weak solutions, by using a similar methodology to [1], for the following
isothermal phase-field model of a binary alloy{

αε2φt − ε2Δφ = F1(φ) + cF2(φ) in Q,
ct = ∇ · [D1(φ)(∇c +D2(c, φ)∇φ)] in Q, (1.4)

which has a degenerate solute diffusivity D1(φ) ≥ 0. The main difficulty of model (1.4) is the treatment of the
nonlinear term involving D1(φ)D2(c, φ)∇φ in the concentration equation. Moreover, the maximum principle
for the phase-field variable gives −1 ≤ φ ≤ 1 under the assumptions that the above nonlinearities F1(φ) and
F2(φ) vanish when φ = −1 and φ = 1.

Error estimates of nonlinear numerical schemes for isothermal phase-field models related to binary alloys are
given in [10] for a model as (1.4), and, in [4], considering anisotropic diffusion for the phase-field equation and
a more general right-hand side in the phase-field equation, changing the terms F1(φ) + cF2(φ) considered in
[10] by S(c, φ) being a bounded, Lipschitz function.

In [7], optimal error estimates are given for a fully discrete nonlinear numerical scheme of a more simplified
phase-field model than (1.1) without the concentration (that is one material is only considered) and with constant
thermal conductivityK1 > 0, paying special attention on the dependency of the parameter ε. Stability estimates
independent of ε are proved for k small enough with respect to ε, and α, β are constants depending on ε. It is
also shown some error bounds depending only on a lower polynomial order for 1/ε. Moreover, error estimates
are used to establish the convergence of the fully discrete scheme to solutions of the sharp interface limits under
different scaling hypotheses in its coefficients.

In [2], a time-discrete nonlinear scheme is proposed for a phase-field problem again without the concentration
variable and replacing in the equation for the temperature the term l

2φt by the more general term l
2f(θ, φ)t,

where f is a generic function satisfying some adequate properties. Convergence of this semi-discrete in time
scheme is proved, obtaining the existence and regularity of solutions for the limit problem.
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1.3. Main results of the paper

In this work we will consider two numerical schemes in order to approximate problem (1.1) using continuous
P1-finite elements for the tree variables (φ, θ, c). Since a maximum principle cannot be verified in general by the
discrete concentration, we introduce a truncation operator on the L2 projection onto P0, in order to guarantee
a L∞ bound for some terms in the discrete concentration equation. A similar idea of truncation, but without
the L2 projection onto P0, has been used in [8] for a 2D Navier-Stokes model with mass diffusion.

First of all, we will present in Section 2 the nonlinear numerical scheme (2.1)–(2.3) which will be uncondi-
tionally stable and convergent.

Theorem 1.3 (unconditionally stable, convergent nonlinear scheme). Assume

φ0 ∈ H1(Ω), θ0 ∈ L2(Ω) and c0 ∈ L2(Ω) such that 0 ≤ c0 ≤ 1 a.e. in Ω.

Let Ω be such that the H2-regularity for the Neumann problem (3.19) holds. Let Th be a regular, quasi-uniform
family of a polyhedral domain Ω. Then, there exists a convergent subsequence of functions φh,k, θh,k and ch,k

associated to scheme (2.1)–(2.3) (see Def. 3.5) towards a weak solution (φ, θ, c) of problem (1.1)–(1.3) in (0, T ),
as (h, k)→ 0 in the following sense:

θh,k → θ, ch,k → c, in L∞(0, T ;L2(Ω))-weak∗,

φh,k → φ, in L∞(0, T ;H1(Ω))-weak∗, and in L2(0, T ;H1(Ω))-strong.

Second, we construct the linear numerical scheme (6.1)–(6.3) which will be conditionally stable and convergent.

Theorem 1.4 (conditionally stable, convergent linear scheme). Assume the assumptions of Theorem 1.3 and
the constraint

(S) lim
(h,k)→0

k

h
= 0.

Then, there exists a convergent subsequence of functions φh,k, θh,k and ch,k associated to scheme (6.1)–(6.3)
(see Def. 3.5) towards a weak solution (φ, θ, c) of problem (1.1)–(1.3) in (0, T ), as (h, k)→ 0 in the same sense
of Theorem 1.3.

At this point, it is well to point out that, in particular, the two previous theorems provide the existence
of weak solutions of problem (1.1)–(1.3) under hypotheses on the data weaker than those imposed in [1] (see
Thm. 1.2). To be more precise, the hypothesis on c0 is relaxed from c0 ∈ H1(Ω) imposed in [1] to c0 ∈ L2(Ω) as
was considered in [12]. Recall that in [12] the isothermal case is considered and in [1] there is not degeneration
in the solute diffusivity.

Finally, assuming both the heat conductivity and solute diffusion coefficients are constants, error estimates
of order O(k + h) are shown towards a regular enough continuous solution to (1.1)–(1.3).

Theorem 1.5. Under hypotheses of Theorem 1.3 (respectively Thm. 1.4), admitting that K1,K2 are two pos-
itive constants and that there exist a continuous solution (φ, θ, c) to (1.1)–(1.3) which verifies the regularity
assumptions (7.2), then the discrete solution of scheme (2.1)–(2.3) (respectively (6.1)–(6.3)) satisfies for all
n < N

‖en+1
φ ‖2H1(Ω) +

1
4ε2
‖en+1

φ ‖4L4(Ω) + CV |en+1
θ |2 + |en+1

c |2 + αk

n∑
l=1

∣∣∣∣∣e
l+1
φ − el

φ

k

∣∣∣∣∣
2

+K1 k

n∑
l=1

|∇el+1
θ |2 +K2k

n∑
l=1

|∇el+1
c |2 ≤ C

(
h2 + k2

)
,
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where C is a constant independent of h and k, and the errors are denoted by en+1
φ = φn+1

h − φ(tn+1),
en+1

θ = θn+1
h − θ(tn+1) and en+1

c = cn+1
h − c(tn+1).

The rest of the paper is described as follows. In Section 2 the nonlinear scheme (2.1)–(2.3) is presented,
obtaining its unconditionally stability in Section 3. In Section 4 some necessary compactness results are proved,
passing to the limit in Section 5 and concluding the proof of Theorem 1.3. In addition, a conditionally stable
and convergent linear scheme is studied in Section 6 giving an outline of the proof of Theorem 1.4. Finally,
Section 7 is devoted to studying optimal error estimates for both schemes.

2. A nonlinear scheme

In what follows, let us consider a uniform partition tn = n k of the time interval [0, T ] with k = T/N the
time step, let Ω ⊂ R

d (d = 2 or 3) be a domain with polyhedral boundary and Th be a family of triangulations
of Ω with Ω =

⋃
K∈Th

K. Here h := max
K∈Th

hK with hK the diameter of K. Let Xh be the finite element subspace

of H1(Ω) furnished by globally continuous, piecewise linear functions, that is,

Xh = {xh ∈ C0(Ω): xh|K ∈ P1(K), ∀K ∈ Th, }·

A first idea to approximate equation (1.1)1 is⎧⎪⎪⎨⎪⎪⎩
α

(
φn+1

h − φn
h

k
, xh

)
+
(
∇φn+1

h ,∇xh

)
+

1
2ε2
(
(φn+1

h )3, xh

)
=

1
2ε2
(
φn

h, xh

)
+
β

ε2

(
θn

h − θAc
n
h − θB(1− cnh), xh

)
, ∀xh ∈ Xh.

But, we add
(
φn+1

h , xh

)
to the left-hand side and

(
φn

h , xh

)
to the right-hand side which will cancel each other

in the limit as (h, k) go to zero. The reason why we introduce these terms is to get stability constants only of
polynomial order with respect to ε avoiding exponential dependence. Concretely, since β = O(ε), we will get
stability constants depending on 1/ε (see Rem. 3.2 below).

Then we propose the following scheme to approximate problem (1.1)–(1.3):
Initialization : Let (φ0

h, θ
0
h, c

0
h) ∈ Xh ×Xh ×Xh be suitable approximations of (φ0, θ0, c0).

Step n+ 1: Given (φn
h , θ

n
h , c

n
h) ∈ Xh ×Xh ×Xh.

Find φn+1
h ∈ Xh as a solution of the problem:⎧⎪⎪⎨⎪⎪⎩

α

(
φn+1

h − φn
h

k
, xh

)
+
(
∇φn+1

h ,∇xh

)
+
(
φn+1

h , xh

)
+

1
2ε2
(
(φn+1

h )3, xh

)
=
( 1

2ε2
+ 1
)(
φn

h, xh

)
+
β

ε2

(
θn

h − θAc
n
h − θB(1− cnh), xh

)
, ∀xh ∈ Xh.

(2.1)

Find θn+1
h ∈ Xh and cn+1

h ∈ Xh as solutions of the decoupled variational problems:

CV

(
θn+1

h − θn
h

k
, xh

)
+
(
Kh

1 (φn+1
h )∇θn+1

h ,∇xh

)
= − l

2

(
φn+1

h − φn
h

k
, xh

)
, ∀xh ∈ Xh, (2.2)

⎧⎪⎨⎪⎩
(
cn+1
h − cnh

k
, xh

)
+
(
Kh

2 (φn+1
h )∇cn+1

h ,∇xh

)
= −M

(
Kh

2 (φn+1
h )[P0c

n
h]T (1− [P0c

n
h ]T )∇φn

h ,∇xh

)
, ∀xh ∈ Xh.

(2.3)
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Here Kh
1 = K1 + g1(h), Kh

2 = K2 + g2(h), where gi are positive functions to be chosen later, and P0 is the
L2 orthogonal projector onto X0

h, where X0
h is the finite element space of piecewise constant functions, and [·]T

is a truncation operator defined from X0
h into X0

h as follows: Given xh ∈ X0
h, then [xh]T ∈ X0

h such that

∀K ∈ Th, [xh]T |K =

⎧⎨⎩
xh|K if xh|K ∈ [0, 1],
0 if xh|K < 0,
1 if xh|K > 1.

Since (2.2) and (2.3) are quadratic linear systems, it is easy to check the existence and uniqueness of solutions.
On the other hand, (2.1) is a discrete nonlinear variational problem and its existence and uniqueness can be
proved as follows: We define

J(φh) =
α

2 k

∫
Ω

|φh|2 +
1
2

∫
Ω

(
|∇φh|2 + |φh|2

)
+

1
8ε2

∫
Ω

|φh|4 −
∫

Ω

g φh, (2.4)

where g =
α

k
φn

h +
( 1

2ε2
+ 1
)
φn

h +
β

ε2

(
θn

h − θAc
n
h − θB(1− cnh)

)
. Clearly, J is a strictly convex functional on Xh,

then the minimum problem min
φh∈Xh

J(φh) has a unique solution characterized by its Euler equation (2.1).

We will denote by C generic positive constants always independent of the discretization parameters h and k.

3. A PRIORI estimates and weak convergences

Let us add and subtract the term
1

2ε2
(
φn+1

h , xh

)
to the left-hand side of (2.1) in order to rewrite (2.1)

with respect to the so-called Ginzburg-Landau function f(φ) =
1

2ε2
(
φ2 − 1

)
φ which has the potential function

F (φ) =
1

8ε2
(
φ2 − 1

)2

, that is, f(φ) = ∇φF (φ). Then, (2.1) is rewritten as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α

(
φn+1

h − φn
h

k
, xh

)
+
(
∇φn+1

h ,∇xh

)
+
(
φn+1

h , xh

)
+
(
f(φn+1

h ), xh

)
+

1
2ε2
(
φn+1

h − φn
h, xh

)
=
(
φn

h , xh

)
+
β

ε2

(
θn

h − θAc
n
h − θB(1− cnh), xh

)
∀xh ∈ Xh.

(3.1)

It is easy to check that if we select φ0
h = Ihφ0, θ0h = Ihθ0 and c0h = Ihc0 as initial approximations, where Ih

is an interpolation operator into Xh satisfying stability properties in the L2, L4 and H1 norms, it follows that
there exists a constant C2 > 0 (independent of ε) such that

2CV β

lε2
|θ0h|2 + |c0h|2 + 1 + ‖φ0

h‖2H1(Ω) +
1

4ε2

∫
Ω

(|φ0
h|2 − 1)2 ≤ C2

ε2
· (3.2)

For instance, this is true when Ih is the L2-projector onto Xh, or Ih is the Clément or Scott-Zhang regularization
operator.

Let us denote by | · | the L2(Ω)-norm and by ‖ · ‖H1(Ω) the H1(Ω)-norm. With such a notation we establish
the following stability result.
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Lemma 3.1. Assume φ0 ∈ H1(Ω), θ0 ∈ L2(Ω) and c0 ∈ L2(Ω) such that 0 ≤ c0 ≤ 1 a.e. in Ω. Then, for each k

such that
βk

ε2
is sufficiently small, the discrete solution of scheme (2.1)–(2.3) satisfies the following estimates:

(i) max
0≤n≤N

‖φn
h‖2H1(Ω) ≤ C, (ii)

N−1∑
n=0

‖φn+1
h − φn

h‖2H1(Ω) ≤ C, (iii) k

N−1∑
n=0

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 ≤ C,
(iv) max

0≤n≤N
|θn

h |2 ≤ C, (v)
N−1∑
n=0

|θn+1
h − θn

h |2 ≤ C, (vi) k
N−1∑
n=0

|
√
Kh

1 (φn+1
h )∇θn+1

h |2 ≤ C,

(vii) max
0≤n≤N

|cnh |2 ≤ C, (viii)
N−1∑
n=0

|cn+1
h − cnh|2 ≤ C, (ix) k

N−1∑
n=0

|
√
Kh

2 (φn+1
h )∇cn+1

h |2 ≤ C,

where C > 0 depends on ε and the data (φ0, θ0, c0) but is independent of (h, k).

Proof. Let xh =
4β
l ε2

kθn+1
h and xh = 2 k cn+1

h be test functions in (2.2) and (2.3), respectively. Now by using

the identity (a− b, 2a) = |a|2 − |b|2 + |a− b|2 and bounding adequately the right-hand side, we have

2CV β

lε2

(
|θn+1

h |2 − |θn
h |2 + |θn+1

h − θn
h |2
)

+
4β
lε2

k|
√
Kh

1 (φn+1
h )∇θn+1

h |2

= −2β
ε2
k

(
φn+1

h − φn
h

k
, θn

h + (θn+1
h − θn

h)
)

≤ −2β
ε2
k

(
φn+1

h − φn
h

k
, θn

h

)
+
α

2
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
2β2

αε4
k|θn+1

h − θn
h |2,

(3.3)

|cn+1
h |2 − |cnh|2 + |cn+1

h − cnh|2 + k|
√
Kh

2 (φn+1
h )∇cn+1

h |2 ≤ C k|∇φn
h|2. (3.4)

By choosing
βk

ε2
sufficiently small to control the last term on the right-hand side of (3.3), this inequality

reduces to

2CV β

lε2

(
|θn+1

h |2 − |θn
h |2 +

1
2
|θn+1

h − θn
h |2
)

+
4β
lε2

k|
√
Kh

1 (φn+1
h )∇θn+1

h |2 ≤

− 2β
ε2
k

(
φn+1

h − φn
h

k
, θn

h

)
+
α

2
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 · (3.5)

Next, take xh = 2 k
φn+1

h − φn
h

k
as a test function in (2.1), it follows that

αk

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2
(
f(φn+1

h ), φn+1
h − φn

h

)
+

1
ε2
|φn+1

h − φn
h |2 ≤

2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+ Ck|φn

h |2 + C
β2

αε4
k(|cnh|2 + 1), (3.6)

where C is a constant independent of ε.
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Now, using again the identity (a− b, a) =
1
2
(|a|2 − |b|2 + |a− b|2) twice, we can rewrite

2
(
f(φn+1

h ), φn+1
h − φn

h

)
=

1
2ε2

∫
Ω

(
(φn+1

h )2 − 1
)(

(φn+1
h )2 − (φn

h)2 + (φn+1
h − φn

h)2
)

= 2
∫

Ω

(
F (φn+1

h )− F (φn
h) +

1
8ε2

((φn+1
h )2 − (φn

h)2)2
)

+
1

2ε2

∫
Ω

(
(φn+1

h )2 − 1
)
|φn+1

h − φn
h|2. (3.7)

Note that the negative term on the right-hand side of (3.7) can be absorbed by the last term on the left-hand
side of (3.6). This property can be summarized as

1
2ε2
(
(φn+1

h )3 − φn
h

)(
φn+1

h − φn
h

)
≥ F (φn+1

h )− F (φn
h) (3.8)

which is an appropriate discrete version of the equality f(φ)φt = F (φ)t.
Next, if we add up (3.4), (3.5) and (3.6), the first term on the right hand side of (3.5) and (3.6) disappears,

and we get

2CV β

lε2

(
|θn+1

h |2 − |θn
h |2 +

1
2
|θn+1

h − θn
h |2
)

+
4β
lε2

k|
√
Kh

1 (φn+1
h )∇θn+1

h |2

+ (|cn+1
h |2 + 1)− (|cnh|2 + 1) + |cn+1

h − cnh|2 + k|
√
Kh

2 (φn+1
h )∇cn+1

h |2

+
α

2
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2

∫
Ω

(
F (φn+1

h )− F (φn
h)
)
≤ C k‖φn

h‖2H1(Ω) + C
β2

αε4
k(|cnh |2 + 1).

Finally, by summing over n the discrete Gronwall lemma and the initial bound (3.2) provide the desired esti-
mates, and this completes the proof. �

Remark 3.2. Since the initial estimates have order O(ε−2), see (3.2), then the stability estimates obtained in
Lemma 3.1 are of order O(ε−2eCβ2ε−4

) for the variables (φ,
√

β
ε θ, c). As β is of order O(ε), the order reduces to

O(ε−2eCε−2
). In particular, these estimates would be independent of ε if β were of order O(ε2) and considering

an initial bound (3.2) independent of ε. Furthermore, if we truncate the discrete concentration cnh in (2.1) as

made in (2.3), that is replacing β
ε2

(
θn

h − θAc
n
h − θB(1− cnh), xh

)
by β

ε2

(
θn

h − θA[P0c
n
h]T − θB(1− [P0c

n
h]T ), xh

)
,

this modified scheme has stability estimates of order O(ε−2 + β2ε−4).

Remark 3.3. Observe that in this nonlinear scheme, we have used a first-order semi-implicit approximation of
the Ginzburg-Landau function f(φ), which provides a stationary problem to solve in each time step, identified
with the critical point of a convex functional (see (2.4)). Moreover, this approximation verifies the property (3.8).
For instance, if we use the first-order implicit approximation f(φn+1

h ), then the associated stationary problem
(of Allen-Cahn type) is related to the critical points of a non-convex functional and the property (3.8) in not
verified, because a negative term appears on the right-hand side. To be more concrete, it follows that

f(φn+1
h )

(
φn+1

h − φn
h

)
≥ F (φn+1

h )− F (φn
h)− 1

4ε2
(φn+1

h − φn
h)2.



STABILITY AND CONVERGENCE OF TWO DISCRETE SCHEMES 571

Consider the linear operator Lh : Xh → Xh defined as:

(
Lhφh, xh

)
=
(
∇φh,∇xh

)
+
(
φh, xh

)
∀xh ∈ Xh. (3.9)

Then, the discrete phase-field equation (2.1) can be rewritten as:

⎧⎪⎪⎨⎪⎪⎩
(
φn+1

h − φn
h

k
, xh

)
+

1
α

(
Lhφ

n+1
h , xh

)
+

1
2αε2

(
(φn+1

h )3, xh

)
=
( 1

2αε2
+

1
α

)(
φn

h, xh

)
+

β

αε2

(
θn

h − θAc
n
h − θB(1 − cnh), xh

)
, ∀xh ∈ Xh.

(3.10)

Taking xh = Lhφ
n+1
h as a test function in (3.10) and using the estimates of Lemma 3.1, the following result

can be established.

Corollary 3.4. Under the hypotheses of Lemma 3.1, it holds

k

N−1∑
n=0

|Lhφ
n+1
h |2 ≤ C.

On the other hand, since K1(·) ≤ b1 and K2(·) ≤ b2, from (vi) and (ix ) of Lemma 3.1 we also have

k

N−1∑
n=0

|Kh
1 (φn+1

h )∇θn+1
h |2 ≤ C, k

N−1∑
n=0

|Kh
2 (φn+1

h )∇cn+1
h |2 ≤ C.

Definition 3.5. We define φh,k (respectively φ̂h,k) as the piecewise constant functions in time taking values
φn+1

h on (tn, tn+1] (respectively φn
h). Analogously, we define θh,k, θ̂h,k, and ch,k, ĉh,k. Moreover, we define φ̃h,k,

θ̃h,k, c̃h,k ∈ C0([0, T ];Xh) as the piecewise linear functions in time such that φ̃h,k(tn) = φn
h , θ̃h,k(tn) = θn

h ,
c̃h,k(tn) = cnh, respectively.

An easy consequence of the previous definition, Lemma 3.1 and Corollary 3.4 is the following result.

Lemma 3.6. Under the hypotheses of Lemma 3.1, the following estimates hold:

{θh,k}h,k, {θ̂h,k}h,k, {θ̃h,k}h,k is bounded in L∞(0, T ;L2(Ω)), (3.11)

{ch,k}h,k, {ĉh,k}h,k, {c̃h,k}h,k is bounded in L∞(0, T ;L2(Ω)), (3.12)

{φh,k}h,k, {φ̂h,k}h,k, {φ̃h,k}h,k is bounded in L∞(0, T ;H1(Ω)), (3.13)

{Kh
1 (φh,k)∇θh,k}h,k is bounded in L2(0, T ;L2(Ω)), (3.14)

{Kh
2 (φh,k)∇ch,k}h,k is bounded in L2(0, T ;L2(Ω)), (3.15){

d
dt
φ̃h,k

}
h,k

is bounded in L2(0, T ;L2(Ω)). (3.16)

{Lhφh,k}h,k is bounded in L2(0, T ;L2(Ω)). (3.17)
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In addition, there exist a subsequence of (h, k) (denoted in the same way) and limit functions φ, θ, c, w, J1

and J2 verifying the following weak convergences as (h, k)→ 0:

θh,k → θ, θ̂h,k → θ, θ̃h,k → θ in L∞(0, T ;L2(Ω))-weak*,

ch,k → c, ĉh,k → c, c̃h,k → c in L∞(0, T ;L2(Ω))-weak*,

φh,k → φ, φ̂h,k → φ, φ̃h,k → φ in L∞(0, T ;H1(Ω))-weak*,
d
dt
φ̃h,k →

d
dt
φ in L2(0, T ;L2(Ω))-weak,

Lhφh,k → w in L2(0, T ;L2(Ω))-weak,
Kh

1 (φh,k)∇θh,k → J1 in L2(0, T ;L2(Ω))-weak,
Kh

2 (φh,k)∇ch,k → J2 in L2(0, T ;L2(Ω))-weak.

So far, neither the H2(Ω)-regularity for the Neumann problem (3.19) nor the quasi-uniform property of the
triangulation Th of Ω has not been necessary to impose. Now, imposing these hypotheses, the next corollary
provides a “discrete interpolation” inequality which plays an important role in getting a compactness result (see
the proof of Prop. 4.3) that we will use to pass to the limit in (2.3) (respectively, in (6.3) for the linear scheme).

Corollary 3.7. Under the hypotheses of Theorem 1.3, it follows that

‖φn+1
h ‖W 1,3(Ω) ≤ C|φn+1

h |1/2|Lhφ
n+1
h |1/2 (3.18)

where C > 0 is independent of h and k.

Proof. Let φ(h) ∈ H2(Ω) be the solution to the problem

−Δφ(h) + φ(h) = Lhφ
n+1
h in Ω,

∂φ(h)
∂n

= 0 on Γ. (3.19)

We now suppose that problem (3.19) has the regularity property ‖φ(h)‖H2(Ω) ≤ C|Lhφ
n+1
h | (such a condition

holds if, for instance, Ω is a convex polygon). From (3.9) and (3.19), we have(
∇φ(h) −∇φn+1

h ,∇xh

)
+
(
φ(h)− φn+1

h , xh

)
= 0 ∀xh ∈ Xh;

hence φn+1
h can be interpreted as the H1-projection of φ(h) onto Xh. Then, the estimate ‖φn+1

h ‖W 1,3(Ω) ≤
C‖φ(h)‖W 1,3(Ω) holds for a constant C > 0 independent of h (see [3], Chap. 8, and [11]). Thus,

‖φn+1
h ‖2W 1,3(Ω) ≤ C‖φ(h)‖H1(Ω)‖φ(h)‖H2(Ω) ≤ C‖φ(h)‖H1(Ω)|Lhφ

n+1
h |.

Therefore, it remains to bound ‖φ(h)‖H1(Ω) ≤ C‖φn+1
h ‖H1(Ω) in order to obtain (3.18). Indeed, we write

‖φ(h)‖H1(Ω) ≤ ‖φ(h)− φn+1
h ‖H1(Ω) + ‖φn+1

h ‖H1(Ω) ≤ C h|Lhφ
n+1
h |+ ‖φn+1

h ‖H1(Ω),

where in the last bound we have used that ‖φ(h) − φn+1
h ‖H1(Ω) ≤ C h‖φ(h)‖H2(Ω). Finally, the estimate

|Lhφ
n+1
h | ≤ C 1

h‖φ
n+1
h ‖H1(Ω) can be deduced by taking φh = φn+1

h and xh = Lhφ
n+1
h in (3.9) and using

the inverse inequality ‖Lhφ
n+1
h ‖H1(Ω) ≤ C 1

h |Lhφ
n+1
h | (here the quasi-uniform property of the triangulation is

used). �
A straightforward application of (3.18) shows that

{φh,k}h,k is bounded in L4(0, T ;W 1,3(Ω)). (3.20)
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4. Strong convergences

Let us show some compactness results in order to identify firstly w = −Δφ+φ, J1 = ∇(K1(φ)θ)− θ∇K1(φ)
and J2 = ∇(K2(φ)θ) − θ∇K2(φ) and then to pass to the limit as (h, k)→ 0.

4.1. Compactness for phase-field sequences

First of all, since {φ̃h,k}h,k is bounded in L∞(0, T,H1(Ω)) and
{

d
dt
φ̃h,k

}
h,k

is bounded in L2(0, T ;L2(Ω)),

a compactness theorem of Aubin-Lions type [13] provides

φ̃h,k → φ in C(0, T ;Lp(Ω)) strongly as (h, k)→ 0,

with p < 6. Moreover, owing to Lemma 3.1

‖φ̃h,k − φh,k‖2L2(0,T ;L2(Ω)) ≤ ‖φ̂h,k − φh,k‖2L2(0,T ;L2(Ω)) = k

N−1∑
n=0

|φn+1
h − φn

h |2 ≤ C k.

Therefore, φh,k → φ, φ̂h,k → φ in L2(0, T ;L2(Ω)) strongly as (h, k)→ 0. As {φ}h,k and {φ̂}h,k are bounded in
L∞(0, T ;H1(Ω)), Sobolev’s imbedding gives us the strong convergences

φh,k, φ̂h,k → φ in Lq(0, T ;Lp(Ω)) strongly as (h, k)→ 0,

with q <∞ and p < 6.
To prove the compactness of {φh,k}h,k in L2(0, T ;H1(Ω)) we firstly must identify w = −Δφ+ φ. Indeed, we

consider η ∈ C∞
c (Q) and choose ηn

h ∈ Xh a suitable approximation of η(tn) such that ηh,k → η in L2(0, T ;H1(Ω))
strongly as (h, k) → 0 (here ηh,k is defined by ηn

h as in Def. 3.5). Then, setting φh = φn+1
h and xh = ηn+1

h in
the definition of Lh (3.9), multiplying by k and summing over n and tending (h, k)→ 0, one sees that∫

Q

(
∇φ,∇η

)
+
(
φ, η
)
←
∫

Q

(
∇φh,k,∇ηh,k

)
+
(
φh,k, ηh,k

)
=
∫

Q

(
Lhφh,k, ηh,k

)
→
∫

Q

(
w, η

)
.

Therefore, it is clear that w = −Δφ+φ in L2(Ω). Next, taking η ∈ C∞(Q) and proceeding in the same manner,

we recover the boundary condition
∂φ

∂n
= 0 on Σ.

Now, we continue to get the compactness of {φh,k}h,k in L2(0, T ;H1(Ω)). Considering φh = φn+1
h and

xh = φn+1
h in (3.9), multiplying by k and summing over n, this results

∫ T

0

‖φh,k‖2H1(Ω) =
∫ T

0

(
Lhφh,k, φh,k

)
−→

∫ T

0

(
−Δφ+ φ, φ

)
=
∫ T

0

‖φ‖2H1(Ω) as (h, k)→ 0,

because of φh,k → φ strongly in L2(0, T ;L2(Ω)) and {Lhφh,k}h,k → −Δφ+ φ weakly in L2(0, T ;L2(Ω).
Therefore, one can obtain the convergence ‖φh,k‖L2(0,T ;H1(Ω)) → ‖φ‖L2(0,T ;H1(Ω)) as (h, k) → 0. Conse-

quently, since φh,k → φ weakly* in L2(0, T ;H1(Ω)), one has

‖φh,k − φ‖L2(0,T ;H1(Ω)) → 0 as (h, k)→ 0.
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4.2. Compactness for temperature and concentration sequences

Lemma 4.1. The following estimates hold∫ T

0

∥∥∥∥ d
dt
θ̃h,k(t)

∥∥∥∥2

H1(Ω)′
dt ≤ C, (4.1)

∫ T

0

∥∥∥∥ d
dt
c̃h,k(t)

∥∥∥∥2

H1(Ω)′
dt ≤ C, (4.2)

where C > 0 is independent of (h, k).

Proof. Let Ph be the orthogonal projector from L2(Ω) onto Xh. Let x ∈ H1(Ω). Then, by taking xh = Phx as
a test function in (2.2), we obtain

CV

(
θn+1

h − θn
h

k
, x

)
≤ C|Kh

1 (φn+1
h )∇θn+1

h | ‖x‖H1(Ω) +
l

2

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣ |x|, (4.3)

where we have used the following stability properties of the L2-projector, |Phx| ≤ |x| and ‖Phx‖H1 ≤ C ‖x‖H1

(the stability in the H1-norm can be obtained by means of a duality argument and comparing with the

H1-projector). Taking into account that
d
dt
θ̃h,k(t) =

θn+1
h − θn

h

k
for each t ∈ (tn, tn+1), multiplying (4.3)

by k, and adding up over n, estimate (4.1) is proved.
In a analogous way, one can be proved estimate (4.2). �
As a consequence of Lemmas 3.6 and 4.1, one can use a compactness result [13] obtaining the following strong

convergences as (h, k)→ 0:
θ̃h,k → θ strongly in L2(0, T ;H1(Ω)′),

c̃h,k → c strongly in L2(0, T ;H1(Ω)′). (4.4)

In fact, due to Lemma 3.1, we also have that θ̂h,k, θh,k → θ strongly in L2(0, T ;H1(Ω)′) (analogously
ĉh,k, c̃h,k → c strongly in L2(0, T ;H1(Ω)′) as (h, k)→ 0), since

‖θ̃h,k − θh,k‖2L2(0,T ;H1(Ω)′) ≤ ‖θh,k − θ̂h,k‖2L2(0,T ;H1(Ω)′)

≤ C ‖θ̂h,k − θk,h‖2L2(0,T ;L2(Ω)) = C k

N−1∑
n=0

|θn+1
h − θn

h |2 ≤ C k.

To be able to pass to the limit in the nonlinear term of (2.3) we have to prove that the sequence
{Kh

2 (φh,k)[P0ch,k]T (1− [P0ch,k]T )}h,k is weakly convergent to a certain limit which has to be identified later on.
First of all, we prove that P0ch,k − ch,k tends to zero as (h, k) tend to zero under a certain condition for the

auxiliary function g2(h) which defines Kh
2 .

Proposition 4.2. If the function g2(h) given in Section 2 satisfies the condition h/
√
g2(h)→ 0 as h→ 0, then

the following convergence holds

‖P0ĉh,k − ĉh,k‖L2(0,T ;L2(Ω)) → 0 as (h, k)→ 0. (4.5)

Proof. By using the fact that Kh
2 (·) ≥ g2(h) and estimate (ix ) of Lemma 3.1, we get

k

N−1∑
n=0

|∇cn+1
h |2 ≤ C

g2(h)
· (4.6)
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By combining (4.6) and the error interpolation |P0c
n
h − cnh| ≤ C h|∇cnh| applied for each n ≥ 1, we see that

‖P0ĉh,k − ĉh,k‖2L2(0,T ;L2(Ω)) ≤ k|P0c
0
h − c0h|2 + C h2 ‖∇ch,k‖2L2(0,T ;L2(Ω))

≤ k|P0c
0
h − c0h|2 + C

h2

g2(h)
,

hence ‖P0ĉh,k − ĉh,k‖2L2(0,T ;L2(Ω)) → 0 as (h, k)→ 0. �

Finally, the following compactness result is established for the coefficients Kh
2 (φh,k)[P0ĉh,k]T (1 − [P0ĉh,k]T )

which will achieve by using the fact that [P0ĉh,k(x, t)]T = T 1
0 (P0ĉh,k(x, t)) a.e. (x, t) ∈ Q owing to P0ch,k is a

piecewise constant function, where T 1
0 is the pointwise truncation operator defined as

T 1
0 c(x, t) =

⎧⎨⎩
c(x, t) if c(x, t) ∈ [0, 1],
0 if c(x, t) < 0,
1 if c(x, t) > 1.

This compactness is not clear if we truncate ch,k by nodes, as was made in [8] for a nondegenerate mass diffusion
Navier-Stokes model.

Proposition 4.3. The following convergence as (h, k)→ 0 holds, for each p <∞:

Kh
2 (φh,k)[P0ĉh,k]T (1− [P0ĉh,k]T )→ K2(φ)T 1

0 c(1− T 1
0 c) in Lp(Q)-strong. (4.7)

Proof. First of all, we prove that Kh
2 (φh,k)ch,k → K2(φ)c strongly in L2(0, T ;L3/2(Ω)) as (h, k) → 0. To this

end, we define ϕ̃h,k as the piecewise linear, globally continuous in time function taking the value Kh
2 (φn+1

h )cn+1
h

at the time t = tn+1. Our task now is to obtain an estimate in the (W 1,s)′-norm for the time derivative of ϕ̃h,k,
with s > 3. Indeed, for t ∈ (tn, tn+1),

d
dt
ϕ̃h,k(t) =

Kh
2 (φn+1

h )cn+1
h −Kh

2 (φn
h)cnh

k
= Kh

2 (φn+1
h )

cn+1
h − cnh

k
+ cnh

Kh
2 (φn+1

h )−Kh
2 (φn

h)
k

·

By the mean value theorem, the last term can be written as

cnh
Kh

2 (φn+1
h )−Kh

2 (φn
h)

k
= cnh (Kh

2 )′(ξn+1
h )

φn+1
h − φn

h

k
,

where ξn+1
h ∈ (min{φn

h, φ
n+1
h },max{φn

h, φ
n+1
h }). Therefore,

d
dt
ϕ̃h,k = Kh

2 (φh,k)
d
dt
c̃h,k + (Kh

2 )′(ξh,k)ĉh,k
d
dt
φ̃h,k.

We know that {Kh
2 (φh,k) d

dt c̃h,k}h,k is bounded in L2(0, T ; (W 1,s(Ω))′) with s > 3 (owing to {Kh
2 (φh,k)}h,k is

bounded in L∞(0, T ;H1(Ω)) and (4.2)) and {(Kh
2 )′(ξh,k)ĉh,k

d
dt φ̃h,k}h,k is bounded in L2(0, T ;L1(Ω)) (owing to

{(Kh
2 )′(ξh,k)}h,k is bounded in L∞(Q), (3.12) and (3.16)); hence { d

dt ϕ̃h,k}h,k is bounded in L1(0, T ; (W 1,s(Ω))′),
with s > 3. On the other hand, by using (3.12), (3.15) and the estimate of {φh,k}h,k in L4(0, T ;W 1,4) given
in (3.20), it is not hard to check that {ϕ̃h,k}h,k is bounded in L2(0, T ;W 1,6/5(Ω)) (by assuming K2(φ0

h)c0h is
bounded in W 1,6/5(Ω), which can be obtained as a consequence of inverse estimates and a constraint between
h and k).

Therefore, by a compactness result [13], there exists χ ∈ L2(0, T ;Lp(Ω)) with p < 2, such that

ϕ̃h,k → χ in L2(0, T ;Lp(Ω)), as (h, k)→ 0. (4.8)
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In turn, ϕh,k := Kh
2 (φh,k)ch,k tends strongly to χ in L2(0, T ;L3/2(Ω)), since the difference Rh,k := ϕ̃h,k(t) −

ϕh,k(t) tends to zero strongly in L2(0, T ;L3/2(Ω)). Indeed, we may write for t ∈ (tn, tn+1)

Rh,k(t) :=
t− tn+1

k

(
(Kh

2 )′(ξn+1
h )(φn+1

h − φn
h)cn+1

h +Kh
2 (φn

h)(cn+1
h − cnh)

)
,

with ξn+1
h being as before. It thus follows that

‖Rh,k‖L2(0,T ;L3/2(Ω)) ≤
(
C k

N−1∑
n=0

‖cn+1
h − cnh‖2L2(Ω)

)1/2

+

(
C k

N−1∑
n=0

‖φn+1
h − φn+1

h ‖2H1(Ω)

)1/2

≤ C k1/2 → 0,

due to estimates (ii) and (viii) of Lemma 3.1. Then, as announced we have

ϕh,k → χ in L2(0, T ;L3/2(Ω)), as (h, k)→ 0. (4.9)

To identify χ = K2(φ)c, we see that since K2 is a globally Lipschitz continuous function on R and φh,k

converges to φ in L2(0;T ;H1(Ω)), then (see [9], Thm. 16.7)

K2(φh,k)→ K2(φ) strongly in L2(0, T ;H1(Ω)). (4.10)

Thus, Kh
2 (φh,k)ch,k converges weakly to K2(φ)c in L2(0, T ;L3/2(Ω)) by taking into account that g2(h)ch,k

converges strongly to 0 in L∞(0, T ;L2(Ω)) as (h, k)→ 0. Therefore, we can identify χ = K2(φ)c and

ϕh,k = Kh
2 (φh,k)ch,k → K2(φ)c strongly in L2(0, T ;L3/2(Ω)) as (h, k)→ 0.

As a consequence, by using estimate (viii) of Lemma 3.1, we have

Kh
2 (φh,k)ĉh,k → K2(φ)c strongly in L2(0, T ;L3/2(Ω)), as (h, k)→ 0. (4.11)

From (4.10), we get K2(φh,k(x, t))→ K2(φ(x, t)) a.e. (x, t) ∈ Q. In particular, one has

Kh
2 (φh,k(x, t))→ K2(φ(x, t)) a.e. (x, t) ∈ Q. (4.12)

If we define Q̃ = {(x, t) ∈ Q: K2(φ(x, t)) > 0}, since Kh
2 (φh,k(x, t)) > 0 for all (x, t), it is easy to prove that

ĉh,k(x, t)→ c(x, t) a.e. (x, t) ∈ Q̃ (4.13)

from (4.11) and the pointwise convergence (4.12).
Once we have achieved the pointwise convergence of ĉh,k to the limit c, let us see the pointwise convergence

[P0ĉh,k(x, t)]T → T 1
0 c(x, t) a.e. (x, t) ∈ Q̃. (4.14)

Indeed, this convergence follows from the inequality

|[P0ĉh,k(x, t)]T − T 1
0 c(x, t)| = |T 1

0 (P0ĉh,k(x, t))− T 1
0 c(x, t)| ≤ |P0ĉh,k(x, t)− c(x, t)| a.e. (x, t) ∈ Q,

the triangular inequality and the pointwise convergence as a consequence of (4.5).
Finally,

Kh
2 (φh,k(x, t))[P0ĉh,k]T → K2(φ(x, t))T 1

0 c(x, t) a.e. (x, t) ∈ Q
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holds from (4.12), (4.14), and Kh
2 (φh,k(x, t)) converges to 0 a.e. in Q\Q̃. In particular,

Kh
2 (φh,k(x, t))[P0ĉh,k]2T → K2(φ(x, t))T 1

0 c(x, t)
2 a.e. (x, t) ∈ Q.

Then, (4.7) holds as a consequence of the dominated convergence theorem, and the proof of Proposition 4.3 is
finished. �

Remark 4.4. In the case of a nondegenerate solute diffusivity K2 we may prove firstly that ĉh,k → c strongly
in L2(0, T ;L2(Ω)) by a compactness result, then this convergence is extended to P0ĉh,k → c strongly in
L2(0, T ;L2(Ω)) from Proposition 4.3, and finally we may establish [P̂0ch,k]T → T 1

0 c strongly in L2(0, T ;L2(Ω))
as an application of the dominated convergence theorem.

Now, we want to identify J1 = ∇(K1(φ)θ) − θ∇K1(φ) (and J2 = ∇(K2(φ)c) − c∇K2(φ)). Indeed, analogue
to (4.10) we have

K1(φh,k)→ K1(φ) strongly in L2(0, T ;H1(Ω)). (4.15)

On the other hand, using the fact that θh,k → θ weakly* in L∞(0, T ;L2(Ω)) and (4.15), the following weak
convergences hold:

θh,k∇K1(φh,k)→ θ∇K1(φ) weakly in L2(0;T ;L1(Ω)), (4.16)

θh,kK1(φh,k)→ θK1(φ) weakly in L2(0;T ;L3/2(Ω)). (4.17)

Now, using the regularity K1(φh,k) ∈ L∞(0, T ;H1(Ω)) and θh,k ∈ L2(0, T ;H1(Ω)) (because of 0 < g1(h) ≤
Kh

1 (·)) and the Sobolev product ‖ϕψ‖W 1,3/2(Ω) ≤ C‖ϕ‖H1(Ω)‖ψ‖H1(Ω) for all ϕ, ψ ∈ H1(Ω), we get

K1(φh,k)θh,k ∈ L2(0, T ;W 1,3/2(Ω))

and, in particular,

∇(K1(φh,k)θh,k) = K1(φh,k)∇θh,k + θh,k∇K1(φh,k). (4.18)

Therefore, in view of the convergences (4.16), (4.17) and the identity (4.18), one arrives at

K1(φh,k)∇θh,k → ∇(K1(φ)θ) − θ∇K1(φ) in L2(0, T ;W−1,3/2−ε(Ω)) (4.19)

with 1/2 > ε > 0.
Next, recalling the definition of Kh

1 = g1(h) +K1, we write

Kh
1 (φh,k)∇θh,k = g1(h)∇θh,k +K1(φh,k)∇θh,k. (4.20)

Now, taking into account that ‖g1(h)1/2∇θh,k‖L2(Q) ≤ ‖
√
Kh

1 (φh,k)∇θh,k‖L2(Q) ≤ C with C > 0 independent
of (k, h), one obtains

g1(h)∇θh,k → 0 in L2(Q)

that jointly with (4.19) and (4.20) gives us

Kh
1 (φh,k)∇θh,k → ∇(K1(φ)θ) − θ∇K1(φ) in L2(0, T ;W−1,3/2−ε(Ω)).

Finally, this convergence and the weak convergence to J1 given in Lemma 3.6 conclude the identification
J1 = ∇(K1(φ)θ) − θ∇K1(φ).
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5. Passing to the limit

In order to pass to the limit in the discrete concentration equation, we will use the following result, which is
easy to prove because equation (5.1) satisfies the maximum principle:

Lemma 5.1. The following two systems are equivalent:

ct = ∇ · (K2(φ)[∇c +M T 1
0 c(1 − T 1

0 c)∇φ]) in Q, (5.1)

and
0 ≤ c ≤ 1, ct = ∇ · (K2(φ)[∇c +M c(1− c)∇φ]) in Q.

To pass to the limit in scheme (2.1)–(2.3), we rewrite the scheme as follows: Taking xh = ηn+1
h ∈ Xh a

suitable approximation at time tn+1 of any function η ∈ C0([0, T ];C∞
c (Ω)) such that η(T ) = 0 (clearly ηN

h = 0)
as a test function in (2.1), (2.2) and (2.3), multiplying by k, summing over n and denoting the function ηh,k

similarly to Definition 3.5, one arrives at⎧⎪⎪⎨⎪⎪⎩
αε2

∫ T

0

(
d
dt
φ̃h,k, ηh,k

)
+ ε2

∫ T

0

(
∇φh,k,∇ηh,k

)
+ ε2

∫ T

0

(
φh,k − φ̂h,k, ηh,k

)
+

1
2

∫ T

0

(
(φh,k)3 − φ̂h,k, ηh,k

)
− β

∫ T

0

(
θ̂h,k − θAĉh,k − θB(1− ĉh,k), ηh,k

)
= 0,

CV

∫ T

0

(
d
dt
θ̃h,k, ηh,k

)
+
l

2

∫ T

0

(
d
dt
φ̃h,k, ηh,k

)
+
∫ T

0

(
Kh

1 (φh,k)∇θh,k,∇ηh,k

)
= 0,⎧⎪⎪⎨⎪⎪⎩

∫ T

0

(
d
dt
c̃h,k, ηh,k

)
+
∫ T

0

(
Kh

2 (φh,k)∇ch,k,∇ηh,k

)
+ M

∫ T

0

(
Kh

2 (φh,k)[P0ĉh,k]T (1 − [P0ĉh,k]T )∇φ̂h,k,∇ηh,k

)
= 0.

(5.2)

By applying all the convergences already obtained, there are no additional difficulties in passing to the limit
obtaining that (φ, θ, c) is a weak solution of (1.1). In particular, taking (h, k) → 0 in the discrete equation for
the concentration c and using (4.7), we arrive at the limit equation (5.1); hence 0 ≤ c ≤ 1 and T 1

0 c = c. Finally,
the discrete phase-field equation is verified pointwise in Q thanks to the strong regularity of φ. The proof of
Theorem 1.3 is finished.

Remark 5.2. As mentioned in Remark 3.2, taking [P0c
n
h] instead of cnh in the discrete equation for the phase

field variable (2.1) provides better stability estimates with respect to ε. Nevertheless we find that there is a limit
function ϑ ∈ L∞(0, T ;L2(Ω)) such that [P0c

n
h] tends to ϑ weakly* in L∞(0, T ;L2(Ω)), but it is not clear how to

identify ϑ with the limit function c. By using (4.14) and that 0 ≤ c ≤ 1 a.e. Q (owing to the limit in (5.2) can
be taken as before), we can only deduce that ϑ = c a.e. in Q̃, Q̃ being defined in the proof of Proposition 4.3.

6. A conditionally stable, convergent linear scheme

In this section we study a more explicit scheme, where the nonlinear discrete approximation (2.1) of (1.1)1
is considered completely in the previous step time, resulting a linear (and decoupled) scheme. Contrary to the
previous nonlinear scheme, now to obtain stability we will impose a constraint on the discrete parameters.

Recall the definition of the Ginzburg-Landau function f(φ) =
1

2ε2
(φ2 − 1)φ associated to the potential

function F (φ) =
1

8ε2
(φ2 − 1)2. We propose the following linear scheme:

Initialization : Let (φ0
h, θ

0
h, c

0
h) ∈ Xh ×Xh ×Xh be suitable approximations of (φ0, θ0, c0).

Step n+ 1: Given (φn
h , θ

n
h , c

n
h) ∈ Xh ×Xh ×Xh.
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Find φn+1
h ∈ Xh as a solution of the problem:

α

(
φn+1

h − φn
h

k
, xh

)
+
(
∇φn+1

h ,∇xh

)
+
(
φn+1

h , xh

)
= −

(
f(φn

h), xh

)
+
(
φn

h , xh

)
+
β

ε2

(
θn

h − θAc
n
h − θB(1− cnh), xh

)
, ∀xh ∈ Xh. (6.1)

Find θn+1
h ∈ Xh and cn+1

h ∈ Xh as solutions of the decoupled variational problems:

CV

(
θn+1

h − θn
h

k
, xh

)
+
(
Kh

1 (φn+1
h )∇θn+1

h ,∇xh

)
= − l

2

(
φn+1

h − φn
h

k
, xh

)
, ∀xh ∈ Xh, (6.2)

⎧⎪⎨⎪⎩
(
cn+1
h − cnh

k
, xh

)
+
(
Kh

2 (φn+1
h )∇cn+1

h ,∇xh

)
= −M

(
Kh

2 (φn+1
h )[P0c

n
h]T (1− [P0c

n
h ]T )∇φn

h ,∇xh

)
, ∀xh ∈ Xh.

(6.3)

The conditional stability of scheme (6.1)–(6.3) will be obtained by induction on the time step n. First of all,
we establish the following result which provides a basic recursive inequality.

Lemma 6.1. Assume the constraint:

(S) lim
(h,k)→0

k/h = 0.

If there exists a constant Cd > 0 (independent of h, k and n, but dependent on ε) such that

‖φn
h‖2H1(Ω) +

2CV β

lε2
|θn

h |2 + |cnh|2 + 1 ≤ Cd, (6.4)

then the following inequalities hold for (h, k) sufficiently small (independent of n),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+

2CV β

lε2

(
|θn+1

h |2 − |θn
h |2 +

1
2
|θn+1

h − θn
h |2
)

+ 2
∫

Ω

(
F (φn+1

h )− F (φn
h) +

1
8ε2

((φn+1
h )2 − (φn

h)2)2
)

+
α

2
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
2β
lε2

k|
√
Kh

1 (φn+1
h )∇θn+1

h |2

≤ R1 k|φn
h |2 +R2

β2

ε4
k(|cnh|2 + 1),

(6.5)

|cn+1
h |2 − |cnh |2 + |cn+1

h − cnh|2 + k|
√
Kh

2 (φn+1
h )∇cn+1

h |2 ≤ R1 k|∇φn
h |2, (6.6)

where R1 and R2 are positive constants independent of h, k, n, and ε.

Proof. Firstly, we consider xh = 2k
φn+1

h − φn
h

k
in (6.1) and bound the right-hand side

3
2
αk

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2
(
f(φn

h), φn+1
h − φn

h

)
≤ 2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+
C

α
k|φn

h |2 + C
β2

αε4
k(|cnh|2 + 1). (6.7)
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Now, we handle the last term on the left-hand side of (6.7) as follows:

2
(
φn+1

h − φn
h , f(φn

h)
)

=
1
ε2

(
φn+1

h − φn
h, ((φ

n+1
h )2 − 1)φn

h

)
+

1
ε2

(
φn+1

h − φn
h, ((φ

n
h)2 − (φn+1

h )2)φn
h

)
:= I1 − I2.

Next, we continue rewriting I1 as follows:

I1 =
1

2ε2

∫
Ω

((φn+1
h )2 − 1)((φn+1

h )2 − (φn
h)2 − (φn+1

h − φn
h)2)

=
1

4ε2

∫
Ω

(
((φn+1

h )2 − 1)2 − ((φn
h)2 − 1)2 + ((φn+1

h )2 − (φn
h)2)2

)
+

k2

2ε2

∫
Ω

(1− (φn+1
h )2)

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 · (6.8)

The term I2 is bounded as

I2 ≤ C
1
ε2
k2‖φn

h‖2L∞(Ω)

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
1

8ε2

∫
Ω

((φn+1
h )2 − (φn

h)2)2.

Therefore, we get from (6.7) and the previous computations

3
2
α k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2

∫
Ω

(
F (φn+1

h )− F (φn
h) +

1
8ε2

((φn+1
h )2 − (φn

h)2)2
)

+
k2

2ε2

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2
≤ 2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+
C

α
k|φn

h|2 + C
β2

ε4α
k(|cnh|2 + 1)

+ C
1
ε2α

k
(
‖φn

h‖2L∞(Ω) + ‖φn+1
h ‖2L∞(Ω)

)
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2
≤ 2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+
C

α
k|φn

h|2 + C
β2

ε4
k(|cnh|2 + 1)

+ C
1
ε2
k

h

(
‖φn

h‖2H1(Ω) + ‖φn+1
h ‖2H1(Ω)

)
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 ,

(6.9)

where in the last line the inverse estimate ‖xh‖L∞(Ω) ≤ C h−1/2‖xh‖H1(Ω) has been used.
Now we are looking for the bound ‖φn+1

h ‖H1(Ω) ≤ C1 where C1 > 0 depends on the constant Cd of hypothe-
sis (6.4) but it will be independent of n. It will be carried out by bounding ‖φn+1

h ‖H1(Ω) in terms of ‖φn
h‖H1(Ω),

|θn
h | and |cnh| and using hypothesis (6.4). Indeed, taking again xh = 2k

φn+1
h − φn

h

k
as a test function in (6.1),
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but now bounding directly the term depending on f(φn
h) on the right-hand side, we get

αk

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
≤ C β2

ε4α
k|θn

h |2

+
C

α
k|φn

h|2 + C
β2

ε4α
k(|cnh|2 + 1) + C k |f(φn

h)|2

≤ C β2

ε4α
k|θn

h |2 +
C

α
k|φn

h|2 + C
β2

ε4α
k(|cnh |2 + 1)

+ C
1
ε4
k‖φn

h‖6H1(Ω) + C
1
ε4
k‖φn

h‖2H1(Ω).

In particular, by using hypothesis (6.4), the previous inequality says us

‖φn+1
h ‖2H1(Ω) ≤ ‖φn

h‖2H1(Ω) + C k
(Cdβ

ε2
+ Cd +

Cdβ
2

ε4
+
C3

d

ε4
+
Cd

ε4

)
≤ ‖φn

h‖2H1(Ω) + C1(ε) k

with C1(ε) independent of h, k and n.
Thus, by using the previous estimate in (6.9) and again hypothesis (6.4), we get

3
2
αk

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2

∫
Ω

(
F (φn+1

h )− F (φn
h) +

1
8ε2

((φn+1
h )2 − (φn

h)2)2
)

≤ 2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+
C

α
k|φn

h |2 + C
β2

αε4
k(|cnh|2 + 1) + C

k

h

1
ε2

(
Cd + C1(ε) k

)
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 ·
By taking into account the constraint (S), in particular lim

(h,k)→0

k

h

1
ε2

(
Cd +C1(ε) k

)
= 0, so for any (h, k) small

enough such that C
k

h

1
ε2

(
Cd+C1(ε) k

)
≤ 1

2
α, the last term on the right-hand side can be absorbed, and remains

αk

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 +
(
‖φn+1

h ‖2H1(Ω) − ‖φn
h‖2H1(Ω) + ‖φn+1

h − φn
h‖2H1(Ω)

)
+ 2

∫
Ω

(
F (φn+1

h )− F (φn
h)

+
1

8ε2
((φn+1

h )2 − (φn
h)2)2

)
≤ 2β
ε2
k

(
θn

h ,
φn+1

h − φn
h

k

)
+
C

α
k|φn

h|2 + C
β2

αε4
k(|cnh|2 + 1). (6.10)

On the other hand, take xh =
4β
lε2

kθn+1
h in (6.2) to arrive at inequality (3.5), that is

2CV β

lε2

(
|θn+1

h |2 − |θn
h |2 +

1
2
|θn+1

h − θn
h |2
)

+
4β
lε2

k|
√
Kh

1 (φn+1
h )∇θn+1

h |2 ≤

− 2β
ε2
k

(
φn+1

h − φn
h

k
, θn

h

)
+
α

2
k

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 · (6.11)

Consequently, it suffices to add up (6.11) and (6.10) to get (6.5).
Finally, inequality (6.6) is easily obtained by testing (6.3) by cn+1

h and bounding adequately as in the proof
of Lemma 3.1. �
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On the other hand, we turn our attention to the initial bound (3.2) which in particular verifies hypothesis (6.4)
imposed in Lemma 6.1. It is very important in order to guarantee a correct induction argument.

Now, we are in position to give the following stability result.

Lemma 6.2. Under the hypotheses of Lemma 6.1, the discrete solution of scheme (6.1)–(6.3) satisfies the
following estimates:

(i) max
0≤n≤N

‖φn
h‖2H1(Ω) ≤ C, (ii)

N−1∑
n=0

‖φn+1
h − φn

h‖2H1(Ω) ≤ C, (iii) k
N−1∑
n=0

∣∣∣∣φn+1
h − φn

h

k

∣∣∣∣2 ≤ C,
(iv) max

0≤n≤N
|θn

h |2 ≤ C, (v)
N−1∑
n=0

|θn+1
h − θn

h |2 ≤ C, (vi) k
N−1∑
n=0

|
√
Kh

1 (φn+1
h )∇θn+1

h |2 ≤ C,

(vii) max
0≤n≤N

|cnh |2 ≤ C, (viii)
N−1∑
n=0

|cn+1
h − cnh|2 ≤ C, (ix) k

N−1∑
n=0

|
√
Kh

2 (φn+1
h )∇cn+1

h |2 ≤ C,

where C > 0 is independent of (h, k) and depends on the data (φ0, θ0, c0), α, β and ε.

Proof. Obviously, if we let (6.5) and (6.6) hold for n = 0, ..., N − 1, we get all the statements of this lemma
by adding (6.5) and (6.6) and applying the discrete Gronwall lemma. Therefore, it suffices to prove that (6.5)
and (6.6) hold for n = 0, ..., N − 1.

Let us consider Cd = e(R1+
β2

ε4 R2) TC2/ε
2 with C2 > 0 given in (3.2) and R1, R2 given in Lemma 6.1. As the

initial approximations hold hypothesis (6.4) for n = 0, inequalities (6.5) and (6.6) are satisfied for n = 0.
The final induction step can be easily seen by assuming that inequalities (6.5) and (6.6) hold for l = 0, ..., n−1.

Then, adding up (6.5) and (6.6) from 0 to n− 1, one has

2CV β

lε2
|θn

h |2 + |cnh|2 + 1 + ‖φn
h‖2H1(Ω) + 2

∫
Ω

F (φn
h) ≤ 2CV β

lε2
|θ0h|2 + |c0h|2 + 1 + ‖φ0

h‖2H1(Ω)

+ 2
∫

Ω

F (φ0
h) + k

n−1∑
l=0

(
R1‖φl

h‖2H1 + R2
β2

ε4
(|clh|2 + 1)

)
.

Now, the discrete Gronwall lemma and (3.2) yield

2CV β

lε2
|θn

h |2 + |cnh|2 + 1 + ‖φn
h‖2H1(Ω) + 2

∫
Ω

F (φn
h) ≤ e(R1+ β2

ε4 R2)(n−1) k
(2CV β

lε2
|θ0h|2 + |c0h|2

+ 1 + ‖φ0
h‖2H1(Ω) + 2

∫
Ω

F (φ0
h)
)
≤ e(R1+

β2

ε4 R2) TC2/ε
2 := Cd.

Then, we find that hypothesis (6.4) is satisfied. Therefore, in view of Lemma 6.1, inequalities (6.5) and (6.6)
hold. �

Note that the stability estimates obtained in Lemma 6.2 are of order O((1/ε2)e(β2/ε4)) for the variable
(φ,

√
β

ε θ, c) as in the nonlinear scheme, but now an adequate constraint for (h, k) small enough (depending
exponentially on 1/ε) is necessary (recall that in the nonlinear scheme, only βk

ε2 small enough was imposed).
To finish the proof of Theorem 1.4 it is necessary to prove the convergence of the linear scheme (6.1)–(6.3).

But, as the argument for this is similar to that developed for the nonlinear scheme (2.1)–(2.3), it is left to the
reader. �
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7. Error estimates for the non-degenerate case

In this section we deal with the error analysis of both linear and nonlinear scheme. The presence of the
truncation operator applied to the piecewise constant operator P0 makes nonstandard this error analysis and
this particular truncation is responsible of order O(h) in error estimates, although higher-order finite elements
were considered.

In order to be able to guarantee a sufficient regular solution of problem (1.1)–(1.3) we assume the non-
degenerate case. For simplicity, we assume that K1 and K2 are positive constants, providing in particular
standard Neumann boundary conditions in (1.2).

Let {Th}, 0 < h ≤ 1, be a regular, quasi-uniform family of subdivisions of a polyhedral domain Ω ⊂ R
m,

m = 2 or 3, whose boundary Γ is such that the problem

−Δu+ u = f in Ω,
∂u

∂n
= 0 on Γ (7.1)

holds the stability property ‖u‖H2(Ω) ≤ |f |, for each f ∈ L2(Ω). Recall that, both previous hypotheses are also
assumed in Theorem 1.3 to prove the convergence.

Define the global error en
φ = φn

h − φ(tn), en
θ = θn

h − θ(tn), and en
c = cnh − c(tn). These errors are decomposed

into a discrete error e·,d, and an interpolation error e·,i as follows

en
φ,d = φn

h − P 1
hφ(tn), en

φ,i = P 1
hφ(tn)− φ(tn),

en
θ,d = θn

h − P 0
hθ(tn), en

θ,i = P 0
hθ(tn)− θ(tn),

en
c,d = cnh − P 0

h c(tn), en
c,i = P 0

hc(tn)− c(tn),

where P 1
h : H1 → Xh is the H1-projection operator defined as(

ψ − P 1
hψ, xh

)
+
(
∇ψ −∇P 1

hψ,∇xh

)
= 0 ∀xh ∈ Xh,

and P 0
h : L2 → Xh is the L2-projection operator defined as(

ψ − P 0
hψ, xh

)
= 0 ∀xh ∈ Xh.

Finally, let us recall some approximation properties of P 1
h and P 0

h to be used later on (see [6], Prop. 1.134,
p. 73):

‖ψ − P 0
hψ‖H1(Ω) ≤ C h‖ψ‖H2(Ω), ‖ψ − P 1

hψ‖H1(Ω) ≤ C h‖ψ‖H2(Ω),

|ψ − P0ψ| ≤ C h‖ψ‖H1(Ω), |ψ − P 1
hψ| ≤ C h‖ψ‖H1(Ω).

In particular, from the last inequality, one has

k |δtψ(tn+1)− δtP 1
hψ(tn+1)|2 ≤ Ch2

∫ tn+1

tn

‖ψt‖2H1(Ω),

where we use δt to denote the discrete backward Euler time derivative, that is

δtψ(tn+1) =
ψ(tn+1)− ψ(tn)

k
·

Note that, for the H1-interpolation error of P 0
h , a quasi-uniform family of finite elements must be assumed

and, for the L2-interpolation error of P 1
h , a duality argument is required where the elliptic H2-regularity for the

Elliptic-Neumann problem (7.1) is imposed.
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Throughout the section we assume a regular solution of (1.1)–(1.3). Concretely, one assumes

φ ∈ L∞(0, T ;W 1,∞(Ω)) ∩ L2(0, T ;H2(Ω)), φt ∈ L2(0, T ;H1(Ω), φtt ∈ L2(0, T ;L2(Ω)),
θ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T,H2(Ω)), θt ∈ L2(0, T ;L2(Ω)), θtt ∈ L2(0, T ;H1(Ω)′),
c ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T,H2(Ω)), ct ∈ L2(0, T ;L2(Ω)), ctt ∈ L2(0, T ;H1(Ω)′).

(7.2)

7.1. Error estimates for the nonlinear scheme

We now state our error estimates for the fully discrete nonlinear scheme (2.1)–(2.3). If we compare the exact
problem with the scheme and use the equality a3 − b3 = (a − b)3 + 3 a b(a − b), then the error equations are
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(
δte

n+1
φ,d , xh

)
+
(
∇en+1

φ,d ,∇xh

)
+
(
en+1

φ,d , xh

)
+

1
2ε2
(
(en+1

φ,d )3, xh

)
= −α

(
δte

n+1
φ,i , xh

)
− 1

2ε2
(
(en+1

φ,i )3, xh

)
− 3

2ε2
(
P 1

h (φ(tn+1))φ(tn+1)en+1
φ,i , xh

)
− 3

2ε2
(
φn+1

h P 1
h (φ(tn+1))en+1

φ,d , xh

)
+

1
2ε2
(
en

φ,d + en
φ,i, xh

)
+
(
en

φ,d + en
φ,i, xh

)
+
β

ε2

(
en

θ,d, xh

)
− β

ε2
(θA + θB)

(
en

c,d, xh

)
+
(
Rn+1

φ , xh

)
,

(7.3)

⎧⎪⎨⎪⎩
CV

(
δte

n+1
θ,d , xh

)
+K1

(
∇en+1

θ,d ,∇xh

)
= −K1

(
∇en+1

θ,i ,∇xh

)
− l

2

(
δte

n+1
φ , xh

)
+
(
Rn+1

θ , xh

)
,

(7.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
δte

n+1
c,d , xh

)
+K2

(
∇en+1

c,d ,∇xh

)
= −K2

(
∇en+1

c,i ,∇xh

)
−MK2

(
[P0c

n
h ]T (1− [P0c

n
h]T )∇en

φ,∇xh

)
−MK2

(
(1− [P0c

n
h]T )en

cT
∇φ(tn),∇xh

)
+ MK2

(
c(tn)en

cT
∇φ(tn),∇xh

)
+
(
Rn+1

c , xh

)
,

(7.5)

where δten+1 = (en+1 − en)/k, en
cT

= [P0c
n
h]T − c(tn) and

Rn+1
φ =

α

k

∫ tn+1

tn

(tn − t)φtt(t)dt+
( 1

2ε2
+ 1
)∫ tn+1

tn

φt(t)dt

+
β

ε2

∫ tn+1

tn

θt(t)dt+
β

ε2
(θA + θB)

∫ tn+1

tn

ct(t)dt, (7.6)

Rn+1
θ =

CV

k

∫ tn

tn

(tn − t)θtt(t)dt−
l

2k

∫ tn+1

tn

(tn − t)φtt(t)dt,

Rn+1
c =

1
k

∫ tn+1

tn

(tn − t)ctt(t)dt+∇ ·
((

1− c(tn+1)
)
c(tn+1)

(∫ tn+1

tn

∇φt(t)
)

+
(
1− (c(tn) + c(tn+1)

)(∫ tn+1

tn

ct(t)
)
∇φ(tn)

)
.

Theorem 7.1. Under the assumptions of Theorem 1.3, if the solution (φ, θ, c) of (1.1)–(1.3) satisfies that
(φ(t), θ(t), c(t)) ∈ H2(Ω)3 for all t ∈ [0, T ] and the regularity given in (7.2), then the following error estimates
hold for k small enough:

max
0≤n≤N

(
‖en+1

φ ‖2H1(Ω) + |en+1
θ |2 + |en+1

c |2
)

+ k

N−1∑
n=0

(
|δten+1

φ |2 + |∇en+1
θ |2 + |∇en+1

c |2
)
≤ C

(
h2 + k2

)
, (7.7)
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where the constant C > 0 depends on the exact solution, but is independent of (h, k).

Proof. Set xh = 2kδten+1
φ,d ∈ Xh as a test function in (7.3), and using the equalities

a3(a− b) =
1
2
a2(a2 − b2 + (a− b)2) =

1
4
(a4 − b4 + (a2 − b2)2) +

1
2
a2(a− b)2

for a = en+1
φ and b = en

φ, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2k
∣∣∣δten+1

φ,d

∣∣∣2 +
(
‖en+1

φ,d ‖2H1(Ω) − ‖en
φ,d‖2H1(Ω) + ‖en+1

φ,d − en
φ,d‖2H1(Ω)

)
+

1
4ε2
(
‖en+1

φ,d ‖
4
L4(Ω) − ‖en

φ,d‖4L4(Ω) + |(en+1
φ,d )2 − (en

φ,d)
2|2 + 2|(en+1

φ,d )(en+1
φ,d − e

n
φ,d)|2

)
= − α2k

(
δte

n+1
φ,i , δte

n+1
φ,d

)
− 1
ε2
k
(
(en+1

φ,i )3, δten+1
φ,d

)
− 3
ε2
k
(
P 1

h (φ(tn+1))φ(tn+1)en+1
φ,i , δte

n+1
φ,d

)
− 3
ε2
k
(
φn+1

h P 1
h (φ(tn+1))en+1

φ,d , δte
n+1
φ,d

)
+

1
ε2
k
(
en

φ,d + en
φ,i, δte

n+1
φ,d

)
+ 2k

(
en

φ,d + en
φ,i, δte

n+1
φ,d

)
+ 2

β

ε2
k
(
en

θ,d, δte
n+1
φ,d

)
− 2

β

ε2
(θA + θB)k

(
en

c,d, δte
n+1
φ,d

)
+ 2k

(
Rn+1

φ , δte
n+1
φ,d

)
:=

9∑
i=1

Ii.

(7.8)

Now, we must bound each term on the right-hand side of (7.8). We just focus on the terms I2, I3 and I4:

I2 ≤ Cλ
1

ε4αk‖e
n+1
φ,i ‖6L6(Ω) + λk α|δten+1

φ,d |2 ≤ Cλ
1

ε4α k h
6‖φ(tn+1)‖6H2(Ω) + λk α|δten+1

φ,d |2,

I3 ≤ 3
ε2
k‖P 1

h(φ(tn+1))‖L6(Ω)‖φ(tn+1)‖L6(Ω)‖en+1
φ,i ‖L6(Ω)|δten+1

φ,d |

≤ Cλ
1
ε4α

k‖φ(tn+1)‖4H1(Ω)‖en+1
φ,i ‖

2
H1(Ω) + λk α|δten+1

φ,d |
2

≤ Cλ
1
ε4α

k h2‖φ(tn+1)‖4H1(Ω)‖φ(tn+1)‖2H2(Ω) + λk α|δten+1
φ,d |2,

I4 ≤ 3
ε2
k‖φn+1

h ‖L6(Ω)‖P 1
h (φ(tn+1))‖L6(Ω)‖en+1

φ,d ‖L6(Ω)|δten+1
φ,d |

≤ Cλ
1
ε4α

k‖φ(tn+1)‖2H1(Ω)‖en+1
φ,d ‖2H1(Ω) + λk α|δten+1

φ,d |2.

In the last line, the stability estimate ‖φn+1
h ‖L6(Ω) ≤ C given in Lemma 3.1 has been applied. Note that the

previous inequalities hold for any λ > 0 and Cλ > 0 are different constants of order O(1/λ). Finally, the
constants Cλ bounding I2 and I3 are independent of ε, but the constant Cλ related to I4 depends on ε via the
bound of Lemma 3.1.

The remainder of the terms can be bounded more easily. Thus, by choosing λ small enough, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α k
∣∣∣δten+1

φ,d

∣∣∣2 +
(
‖en+1

φ,d ‖2H1(Ω) − ‖en
φ,d‖2H1(Ω) + ‖en+1

φ,d − en
φ,d‖2H1(Ω)

)
+

1
4ε2
(
‖en+1

φ,d ‖
4
L4(Ω) − ‖en

φ,d‖4L4(Ω) + |(en+1
φ,d )2 − (en

φ,d)
2|2 + 2|en+1

φ,d (en+1
φ,d − e

n
φ,d)|2

)
≤ C k h2

(
h4‖φ(tn+1)‖6H2(Ω) + ‖φ(tn+1)‖4H1(Ω)‖φ(tn+1)‖2H2(Ω) + ‖φ(tn)‖2H1(Ω)

)
+ C k

1
ε4α

(
β2|en

c,d|2 + β2CV |en
θ,d|2 + ‖en

φ,d‖2H1(Ω) + ‖φ(tn+1)‖2H1(Ω)‖en+1
φ,d ‖2H1(Ω)

)
+ C h2

∫ tn+1

tn

‖φt(s)‖2H1(Ω) + C k2

∫ tn+1

tn

(
|φt(s)|2 + |θt(s)|2 + |ct(s)|2 + |φtt(s)|2

)
ds,

(7.9)

where C > 0 are different constants independent of (h, k) and independent of the exact solution (φ, θ, c).
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We now test (7.4) with 2ken+1
θ,d and bound the right-hand side

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CV

(
|en+1

θ,d |2 − |en
θ,d|2 + |en+1

θ,d − en
θ,d|2

)
+ 2K1 k|∇en+1

θ,d |2

= −2K1 k
(
∇en+1

θ,i ,∇en+1
θ,d

)
− l k

(
δte

n+1
φ,d + δte

n+1
φ,i , e

n+1
θ,d

)
+ 2 k

(
Rn+1

θ , en+1
θ,d

)
≤ C k h2‖θ(tn+1)‖2H2(Ω) +K1k|∇en+1

θ,d |2 + C h2

∫ tn+1

tn

‖φt(s)‖2H1(Ω)ds

+
α

2
k|δten+1

φ,d |2 + C CV k |en+1
θ,d |2 + C k2

∫ tn+1

tn

(‖θtt(s)‖2H1(Ω)′ + ‖φtt(s)‖2H1(Ω)′)ds.

(7.10)

Let us now take xh = 2ken+1
c,d as a test function into (7.5),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|en+1
c,d |2 − |en

c,d|2 + |en+1
c,d − en

c,d|2 + 2K2 k|∇en+1
c,d |2

= − 2K2k
(
∇en+1

c,i ,∇en+1
c,d

)
− 2MK2k

(
[P0c

n
h]T (1− [P0c

n
h]T )∇(en

φ,d + en
φ,i),∇en+1

c,d

)
− 2MK2k

(
(1− [P0c

n
h]T )en

cT
∇φ(tn),∇en+1

c,d

)
+ 2MK2k

(
c(tn)en

cT
∇φ(tn),∇en+1

c,d

)
+ 2k

(
Rn+1

c , en+1
c,d

)
.

We firstly bound the truncated error

|en
cT
|2 = |[P0c

n
h]T − P0c(tn) + P0c(tn)− c(tn)|2

≤ C
(
|[P0c

n
h]T − P0c(tn)|2 + |P0c(tn)− c(tn)|2

)
≤ C

(
|P0c

n
h − P0c(tn)|2 + h2|∇c(tn)|2

)
≤ C

(
|en

c,d|2 + |en
c,i|2 + h2|∇c(tn)|2

)
≤ C

(
|en

c,d|2 + h2‖c(tn)‖2H1(Ω)

)
,

(7.11)

where in the last line we have used the stability property |P0ψ| ≤ |ψ|. Note that the interpolation error
|P0c(tn)− c(tn)| appearing in (7.11) is only of order O(h), independent of the finite element approximation.

By virtue of (7.11), we bound

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|en+1
c,d |

2 − |en
c,d|2 + |en+1

c,d − e
n
c,d|2 +K2 k|∇en+1

c,d |
2

≤ C k h2‖c(tn+1)‖2H2(Ω) + C k|∇en
φ,d|2 + C k h2‖∇φ(tn)‖2L∞(Ω)‖c(tn)‖2H1(Ω)

+ C k h2‖φ(tn)‖2H2(Ω) + C k‖∇φ(tn)‖2L∞(Ω)|en
c,d|2

+ C k2

∫ tn+1

tn

|∇φt(s)|2ds

+ C k2‖∇φ(tn+1)‖2L∞

∫ tn+1

tn

|ct(s)|2ds+ C k2

∫ tn+1

tn

‖ctt(s)‖2H1(Ω)′ds.

(7.12)

Again, C > 0 are different constants independent of (h, k) and independent of the exact solution (φ, θ, c).
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By adding (7.9), (7.10) and (7.12) and applying the generalized discrete Gronwall lemma, we establish the
following estimate for all n < N and for k small enough:

‖en+1
φ,d ‖2H1(Ω) +

1
4ε2
‖en+1

φ,d ‖4L4(Ω) + CV |en+1
θ,d |2 + |en+1

c,d |2 + αk

n∑
l=0

∣∣∣δtel+1
φ,d

∣∣∣2
+K1 k

n∑
l=0

|∇el+1
θ,d |

2 +K2k

n∑
l=0

|∇el+1
c,d |

2 ≤ exp(C1T )
(
C2h

2 + C3k
2
)
, (7.13)

where

C1 =
C
(
1 + ‖φ‖2L2(0,T ;W 1,∞(Ω))

)
1− C k max{1, ‖φ‖2L∞(0,T ;H1(Ω))}

C2 = C
(
‖φ‖4L∞(0,T ;H1(Ω))‖φ‖2L2(0,T ;H2(Ω)) + ‖φ‖2L2(0,T ;H2(Ω))

+ ‖φt‖2L2(0,T ;H1(Ω)) + ‖θ‖2L2(0,T ;H2(Ω))

+ ‖φ‖2L2(0,T ;W 1,∞(Ω))‖c‖2L∞(0,T ;H1(Ω)) + ‖c‖2L2(0,T ;H2(Ω))

)
,

and
C3 = C

(
‖φt‖2L2(0,T ;L2(Ω)) + ‖θt‖2L2(0,T ;L2(Ω)) + ‖ct‖2L2(0,T ;L2(Ω)) + ‖φtt‖2L2(0,T ;L2(Ω))

+ ‖θtt‖2L2(0;T ;H1(Ω)′) + ‖φtt‖2L2(0,T ;H1(Ω)′) + ‖φt‖2L2(0,T ;H1(Ω))

+ ‖φ‖2L∞(0,T ;W 1,∞(Ω))‖ct‖2L2(0,T ;L2(Ω))ds+ ‖ctt‖2L2(0,T ;H1(Ω)′)

)
,

with C > 0 independent of (h, k) and independent of the exact solution (φ, θ, c).
The same estimates are obtained for the total errors by using the interpolation errors; hence (7.7) can be

deduced. �

Remark 7.2. Observe that, to obtain error estimates in the previous theorem, the monotony property (anal-
ogous to (3.8))

1
2ε2

((en+1
φ,d )3 − en

φ,d)(e
n+1
φ,d − e

n
φ,d) ≥ F (en+1

φ,d )− F (en
φ,d)

is not used, because the corresponding initial term is∫
Ω

F (e0φ,d) =
1

8ε2

∫
Ω

((e0φ,d)
2 − 1)2 = O

(
1
ε2

)
·

Therefore, by using this property, the error estimates of order O(k + h) does not hold, because in this case the
final bound remains of order O(k + h+ 1/ε2).

7.2. Error estimates for the linear scheme

As the derivation of the error equations for θn+1
h and cn+1

h is exactly the same as in the previous nonlinear
scheme, we only treat in this section the error equation for φn+1

h , which is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(
δte

n+1
φ,d , xh

)
+
(
∇en+1

φ,d ,∇xh

)
+
(
en+1

φ,d , xh

)
+

1
2ε2
(
(en

φ,d)
3, xh

)
= − α

(
δte

n+1
φ,i , xh

)
− 1

2ε2
(
(en

φ,i)
3, xh

)
− 3

2ε2
(
P 1

h (φ(tn))φ(tn)en
φ,i, xh

)
− 3

2ε2
(
φn

hP
1
h (φ(tn))en

φ,d, xh

)
+

1
2ε2
(
en

φ,d + en
φ,i, xh

)
+
(
en

φ,d + en
φ,i, xh

)
+
β

ε2

(
en

θ,d − (θA + θB)en
c,d, xh

)
+
(
Rn+1

φ + Sn+1
φ , xh

)
(7.14)
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where Rn+1
φ is as above and

Sn+1
φ = − 1

2ε2
(φ(tn+1)3 − φ(tn)3) = − 3

2ε2

∫ tn+1

tn

φ(s)2φt(s) ds.

Again, we take xh = 2kδten+1
φ,d as a test function in (7.14), and all computations work as for the nonlinear

scheme, except the explicit term. Now, by using the equalities

b3(a− b) = [ba2 + b(b2 − a2)](a− b) =
1
2
a2(a2 − b2 − (a− b)2) + b(b2 − a2)(a− b)

=
1
4
(a4 − b4 + (a2 − b2)2)− 1

2
a2(a− b)2 + b(b2 − a2)(a− b)

for a = en+1
φ,d and b = en

φ,d, we get

k

ε2

(
(en

φ,d)
3, δte

n+1
φ,d

)
=

1
4ε2
(
‖en+1

φ,d ‖4L4(Ω) − ‖en
φ,d‖4L4(Ω) + |(en+1

φ,d )2 − (en
φ,d)

2|2
)

− 1
2ε2
|en+1

φ,d (en+1
φ,d − en

φ,d)|2 +
k

ε2

(
en

φ,d[(e
n
φ,d)

2 − (en+1
φ,d )2], δten+1

φ,d

)
.

Applying the inverse inequality ‖en+1
φ,d ‖2L∞(Ω) ≤ (C/h)‖en+1

φ,d ‖2H1(Ω) and the stability estimates of the (linear)
scheme ‖φn

h‖H1(Ω) ≤ C given in Lemma 6.2, we can bound the last two terms as follows

1
2ε2
|en+1

φ,d (en+1
φ,d − en

φ,d)|2 ≤ 1
2ε2

k2‖en+1
φ,d ‖2L∞(Ω)|δten+1

φ,d |2

≤ Cε
k2

h
‖en+1

φ,d ‖2H1(Ω)|δten+1
φ,d |2 ≤ Cε

k

h
k|δten+1

φ,d |2,

k

ε2

(
en

φ,d[(e
n
φ,d)

2 − (en+1
φ,d )2], δten+1

φ,d

)
≤ Cε k

2‖en
φ,d‖2L∞(Ω)

∣∣∣δten+1
φ,d

∣∣∣2 +
1

8ε2
|(en

φ,d)
2 − (en+1

φ,d )2|2

≤ Cε
k

h
k|δten+1

φ,d |
2 +

1
8ε2
|(en

φ,d)
2 − (en+1

φ,d )2|2.
Therefore, proceeding as in the nonlinear scheme, we get the same error estimates (7.7) by using the constraint
(S) k/h→ 0. Notice that this time we need not make an induction argument thanks to the stability estimates
provided by Lemma 6.2.

Remark 7.3. All the above error estimates hold for the modified scheme where the term cnh in (2.1) (respectively,
in (6.1)) is replaced by [P0c

n
h]T . To this end, we have to take into account estimate (7.11). We have already

seen in Remark 3.2 that this type of more truncated schemes has stability constants depending on 1/ε only of
polynomial form.
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