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Abstract. In this article, we analyze the stability of various numerical schemes for differential models
of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free
energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for
the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations
based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-
Newtonian Fluid Mech. 123 (2004) 281–285], for which solutions in some benchmark problems have
been obtained beyond the limiting Weissenberg numbers for the standard scheme (see [Hulsen et al.
J. Non-Newtonian Fluid Mech. 127 (2005) 27–39]). Our analysis gives some tracks to understand these
numerical observations.
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1. Introduction

1.1. The stability issue in numerical schemes for viscoelastic fluids

An abundant literature has been discussing for over twenty years the stability of numerical schemes for
discretizing equations modelling viscoelastic fluids (see [16,27,28,32] for a small sample). Indeed, most numer-
ical schemes for macroscopic constitutive equations are known to suffer from instabilities in some benchmark
problems, especially when a parameter, the Weissenberg number, increases.

Many possible reasons of that so-called high Weissenberg number problem (HWNP) have been
identified [15,26,31,42]. However, these results have not led yet to a complete understanding of the numerical
instabilities [28], despite some progress [15,23]. Roughly speaking, we can distinguish between three possible
causes of the HWNP:

(1) Absence of stationary state: In many situations (flow past a cylinder, 4:1 contraction), the existence
of a stationary state for viscoelastic models is still under investigation. It may happen that the non-
convergence of the numerical scheme is simply due to the fact that, for the model under consideration,
there exists no stationary state while the numerical scheme implicitly assumes such a stationary state.
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Descartes, 77455 Marne-la-Vallée Cedex 2, France. boyaval@cermics.enpc.fr; lelievre@cermics.enpc.fr;

mangoubi@cermics.enpc.fr
2 MICMAC team-project, INRIA, Domaine de Voluceau, BP. 105, Rocquencourt, 78153 Le Chesnay Cedex, France.
3 Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel.

Article published by EDP Sciences c© EDP Sciences, SMAI 2009

http://dx.doi.org/10.1051/m2an/2009008
http://www.esaim-m2an.org
http://www.edpsciences.org


524 S. BOYAVAL ET AL.

(2) Instabilities for the exact solution: More generally, the instabilities observed for the numerical scheme
may originate at the continuous level, for the model under consideration, if the solution to the problem
indeed blows up in finite time, or if it is not sufficiently regular to be well approximated in the dis-
cretization spaces. Such situations are known to occur for the Oldroyd-B model in extensional flows,
for example (see [2,41,46]).

(3) Bad numerical scheme: It may also happen that the problem at the continuous level indeed admits a
regular solution, and the instabilities are only due to the discretization method.

In this paper, we focus on the third origin of instabilities, and we propose a criterion to test the stability of
numerical schemes. More precisely, we look under which conditions a numerical scheme does not bring spurious
free energy in the system. We concentrate on the Oldroyd-B model, for which a free energy dissipation is known
to hold at the continuous level (see Thm. 2.2 below and [20]) and we try to obtain a similar dissipation at
the discrete level. It is indeed particularly important that no spurious free energy is brought to the system in
long-time computations, since they are often used as a way to obtain the stationary state.

The Oldroyd-B system of equations is definitely not a good physical model for dilute polymer fluids. In partic-
ular, it can be derived from a kinetic theory, with dumbbells modeling polymer molecules that are unphysically
assumed to be infinitely extensible (and this indeed seems to be the cause of some instabilities for the flow of
an Oldroyd-B fluid past a cylinder, see [2,41,46]). But from the mathematical viewpoint, it is nevertheless a
good first step into the study of macroscopic constitutive equations for viscoelastic fluids. Indeed, it already
contains mathematical difficulties common to most of the viscoelastic models, while its strict equivalence with
a kinetic model allows for a deep understanding of this set of equations. Let us also emphasize that the free
energy dissipation we use and the numerical schemes we consider are not restricted to the Oldroyd-B model:
they can be generalized to many other models (like FENE-P for instance, see [20]), so that we believe that
our analysis can be used as a guideline to derive “good” numerical schemes for many macroscopic models for
viscoelastic fluids. In summary, our aim here is not to discuss the HWNP but to propose a new criterion to
assess the stability of numerical schemes for viscoelastic flows.

1.2. Mathematical setting of the problem

We consider the Oldroyd-B model for dilute polymeric fluids in d-dimensional flows (d = 2, 3). Confined to an
open bounded domain D ⊂ R

d, the fluid is governed by the following nondimensionalized system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re
(
∂u

∂t
+ u · ∇u

)
= −∇p+ (1 − ε)Δu+ div τ ,

divu = 0,
∂τ

∂t
+ (u · ∇)τ = (∇u)τ + τ (∇u)T − 1

Wi
τ +

ε

Wi

[
∇u+ ∇uT

]
,

(1.1)

where u : (t,x) ∈ [0, T ) × D → u(t,x) ∈ R
d is the velocity of the fluid, p : (t,x) ∈ [0, T ) × D → p(t,x) ∈ R is

the pressure and τ : (t,x) ∈ [0, T )×D → τ (t,x) ∈ R
d×d is the extra-stress tensor. The matrix ∇u is the d× d

matrix with components
(

∂ui

∂xj

)
i,j

. The following parameters are dimensionless: the Reynolds number Re ∈ R+

(where R+ = [0,+∞)), the Weissenberg number Wi ∈ R
∗
+ (where R

∗
+ = (0,+∞)) and the elastic viscosity to

total viscosity fraction ε ∈ (0, 1).
In what follows, we assume for the sake of simplicity that the system (1.1) is supplied with homogeneous

Dirichlet boundary conditions for the velocity u:

u = 0 on ∂D. (1.2)

Therefore, we study the energy dissipation of the equations (1.1) as time goes, that is, the way (u, τ ) converges
to the stationary state (0, 0) (equilibrium) in the long-time limit t → ∞. Let us mention that it is possible to
extend the analysis to non-zero boundary conditions (or more generally non-zero forcing) in the following way:
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it can be shown (see [24]) that if the stationary velocity is not too large, then exponential convergence to
the stationary state is achieved, at the continuous level. The schemes we propose are likely to exhibit similar
behaviour, but we have not checked all the details for such a situation.

Local-in-time existence results for the above problem have been proved in the bounded domain [0, T ) × D
when the system is supplied with sufficiently smooth initial conditions u(t = 0) and τ (t = 0) (see [17,19] for
instance). Moreover, global-in-time smooth solutions of the system (1.1) are known to converge exponentially
fast to equilibrium in the sense defined in [24]. Let us also mention the work of Lin et al. [34] where, for
Oldroyd-like models, local-in-time existence and uniqueness results are proven, but also global-in-time existence
and uniqueness results for small data. Notice that more general global-in-time results have been collected only
for a mollified version of the Oldroyd-B system (1.1) (see [5]), for another system close to (1.1) namely the co-
rotational Oldroyd-B system (see [35]), or in the form of a Beale-Kato-Majda criterion when D = R

3 (see [29]).
Even though the question of the global-in-time existence for some solutions of the Oldroyd-B system (1.1) is
still out-of-reach, it is possible to analyze global-in-time existence for solutions to discretizations of that system.
This will be one of the output of this article.

1.3. Outline of the paper and results

We will show that it is possible to build numerical (time and space discretizing) schemes for the Oldroyd-B
system (1.1)–(1.2) such that solutions to those discretizations satisfy a free energy estimate similar to that
established in [20,24] for smooth solutions to the continuous equations. Our approach bears similarity with [36],
where the authors also derive a discretization that preserves an energy estimate satisfied at the continuous level,
and with [32], where another discretization is proposed for the same energy estimate as in [36]. Yet, unlike the
estimates in [32,36], our estimate, the so-called free energy estimate derived in [20,24], ensures (free) energy
dissipation and exponential convergence of the solution to equilibrium. In particular, the long-time stability of
solutions is ensured. As mentioned above, long-time computations are indeed often used to obtain a stationary
state, so that such a property may be seen as an interesting feature of a numerical scheme.

We also analyze discretizations of the log-formulation presented in [14,15], where the authors suggest to
rewrite the set of equations (1.1) after mapping the (symmetric positive definite) conformation tensor :

σ = I +
Wi
ε
τ (1.3)

to its matrix logarithm:
ψ = lnσ.

In the following, we assume that:

σ(t = 0) is symmetric positive definite, (1.4)

and it can be shown that this property is propagated in time (see Lem. 2.1 below), so that ψ is indeed well
defined. The log-formulation ensures, by construction, that the conformation tensor always remains symmetric
positive definite, even after discretization. This is not only an important physical characteristic of the Oldroyd-B
model but also an essential feature in the free energy estimates derived beneath. Besides, in some benchmark
problems [15,23,30], discretizations of the log-formulation have indeed been reported to yield solutions beyond
the limiting Weissenberg number for standard discretizations of the usual formulation (for the Oldroyd-B and
the Giesekus models). It is thus interesting to investigate whether the numerical success of this log-formulation
may be related to a free energy dissipation property.

The main outputs of this work are:
(i) One crucial feature of the numerical scheme to obtain free energy estimates is the appropriate dis-

cretization of the advection term (u · ∇)τ (or (u · ∇)ψ in the log-formulation) in the equation on the
extra-stress tensor. We will analyze below two types of discretization: the characteristic method, and
the discontinuous Galerkin method (see Sect. 4, and Appendix D for higher-order schemes).
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(ii) To obtain free energy estimates, we will need the extra-stress tensor to be discretized in a (elementwise)
discontinuous finite element space (Sect. 4 and Appendix D).

(iii) The existence of a solution to the numerical schemes that satisfies a free energy estimate will be proved
whatever the time step for the log-formulation in terms of ψ, while it will be shown under a CFL-like
condition for the usual formulation in terms of τ (see Sect. 5). Moreover, any solution to the log-
formulation satisfies the free energy estimate (which is not the case for the usual formulation in terms
of τ . This may be related to the fact that the log-formulation has been reported to be more stable than
the formulation in terms of τ (see [23]).

We would like to mention the work in preparation [4] where the existence of a solution to a numerical
scheme which satisfies a free energy estimate is also obtained whatever the time step for the usual formulation
of the Oldroyd-B model in terms of σ, but only as the limit of a subsequence of regularized discretizations.
This means that, in the case where the CFL condition is not fulfilled hence uniqueness not ensured, there
may be many solutions to our numerical schemes for the usual formulation of the Oldroyd-B model in terms
of σ, one of which is actually shown to satisfy a free energy estimate; on the contrary, every solution to our
numerical schemes for the log-formulation necessarily satisfies a free energy estimate. Moreover, it is shown in
this work [4] that, using a particular discretization of the advection term, it is possible to use continuous finite
element spaces to obtain a discrete analogue of the free energy bound for a regularized Oldroyd-B model. In
addition, subsequence convergence, as the mesh parameters tend to zero, of such a scheme is proved, which
yields existence of global-in-time solutions to this modified Oldroyd-B system.

Notice that we here concentrate on stability issues. All the schemes we analyze are of course consistent, but
we do not study the order of consistency of these schemes, neither the convergence.

Let us now make precise how the paper is organized. In Section 2, we formally derive the free energy
estimates for the Oldroyd-B set of equations and for its logarithm formulation, in the spirit of [20]. Then,
Section 3 is devoted to the presentation of a finite element scheme (using piecewise constant approximations of
the conformation tensor and its log-formulation, and Scott-Vogelius finite elements for the velocity and pressure),
that is shown to satisfy a discrete free energy estimate in Section 4. Some variants of this discretization are also
studied, still for piecewise constant stress tensor, and a summary of the requirements on the discretizations to
satisfy a free energy estimate is provided in Tables 1 and 2 (we show in Appendix D how to use an interpolation
operator so as to adapt the previous results to piecewise linear approximations of the stress tensor). Finally, in
Section 5, we show how the previous stability results can be used to prove long-time existence results for the
discrete solutions. Some numerical studies are needed to illustrate this numerical analysis, and this is a work
in progress.

1.4. Notation and auxiliary results

In the following, we will make use of the usual notation: L2(D) = {f : D → R,
∫
D |f |2 < ∞}, H1(D) =

{f : D → R,
∫
D |f |2 + |∇f |2 < ∞}, H2(D) = {f : D → R,

∫
D |f |2 + |∇f |2 + |∇2f |2 < ∞}, C([0, T )) for

continuous functions on [0, T ) and C1([0, T )) for continuously differentiable functions on [0, T ).
We will denote by τ : σ the double contraction between rank-two tensors (matrices) τ , σ ∈ R

d×d:

τ : σ = tr(τσT ) = tr(τTσ) =
∑

1≤i,j≤d

τ ijσij .

Notice that if τ is antisymmetric and σ symmetric, τ : σ = 0.
The logarithm of a positive definite diagonal matrix is a diagonal matrix with, on its diagonal, the logarithm of

each entry. We define the logarithm of any symmetric positive definite matrix σ using a diagonal decomposition
σ = RT ΛR of σ with R an orthogonal matrix and Λ a positive definite diagonal matrix:

lnσ = RT (ln Λ)R. (1.5)
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Although the diagonal decomposition of σ is not unique, (1.5) uniquely defines lnσ. The matrix logarithm
bijectively maps the set of symmetric positive definite matrices with real entries S∗

+(Rd×d) to the vector subspace
S(Rd×d) of symmetric real matrices, where it is exactly the inverse function of the matrix exponential.

We will make use of the following simple algebraic formulae, which are proved in Appendices A.1 and A.2.

Lemma 1.1. Let σ and τ be two symmetric positive definite matrices. We have:

tr lnσ = ln detσ, (1.6)

σ − lnσ − I is symmetric positive semidefinite and thus tr(σ − lnσ − I) ≥ 0, (1.7)
σ + σ−1 − 2I is symmetric positive semidefinite and thus tr(σ + σ−1 − 2I) ≥ 0, (1.8)

tr(στ ) = tr(τσ) ≥ 0, (1.9)
tr
(
(σ − τ )τ−1

)
= tr(στ−1 − I) ≥ ln det(στ−1) = tr (lnσ − ln τ ) , (1.10)
tr ((lnσ − ln τ )σ) ≥ tr (σ − τ ) . (1.11)

We will also use the Jacobi’s formulae:

Lemma 1.2. For any symmetric positive definite matrix σ(t) ∈
(
C1 ([0, T ))

) d(d+1)
2 , we have ∀t ∈ [0, T ):

(
d
dt
σ

)
: σ−1 = tr

(
σ−1 d

dt
σ

)
=

d
dt

tr(lnσ), (1.12)

(
d
dt

lnσ
)

: σ = tr
(
σ

d
dt

lnσ
)

=
d
dt

trσ. (1.13)

2. Formal free energy estimates at the continuous level

We are going to derive free energy estimates for two formulations of the Oldroyd-B system in Theorems 2.2
and 2.4. An important corollary to these theorems is the exponential convergence of the solutions to equilibrium
in the long-time limit. Throughout this section, we assume that (u, p, τ ) is a sufficiently smooth solution of
problem (1.1) so that all the subsequent computations are valid. For example, the following regularity is
sufficient:

(u, p, τ ) ∈
(
C1
(
[0, T ), H2(D) ∩C0,1(D)

))d ×
(
C0
(
[0, T ), H1(D)

))
×
(
C1
(
[0, T ), C1(D)

))d×d
, (2.1)

where we denote, for instance by
(
C1(D)

)d a vector field of dimension d with C1(D) components.

2.1. Free energy estimate for the Oldroyd-B system

2.1.1. Conformation-tensor formulation of the Oldroyd-B system

Recall that the conformation tensor σ is defined from the extra-stress tensor τ through the following bijective
mapping:

τ =
ε

Wi
(σ − I) .

With this mapping, it is straightforward to bijectively map the solutions of system (1.1) with those of the
following system: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Re
(
∂u

∂t
+ u · ∇u

)
= −∇p+ (1 − ε)Δu+

ε

Wi
divσ,

divu = 0,
∂σ

∂t
+ (u · ∇)σ = (∇u)σ + σ(∇u)T − 1

Wi
(σ − I).

(2.2)
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Notice that with such an affine mapping, the solution σ to system (2.2) has the same regularity as τ solution
to system (1.1), which is that assumed in (2.1) for the following manipulations.

2.1.2. A free energy estimate

Let us first recall a free energy estimate derived in [20,24]. The free energy of the fluid is defined as the sum
of two terms as follows:

F (u,σ) =
Re
2

∫
D
|u|2 +

ε

2Wi

∫
D

tr(σ − lnσ − I). (2.3)

The kinetic term
∫
D
|u|2 is always non negative. Besides, we have the following lemma (see Appendix B

or [22] for a proof):

Lemma 2.1. Let σ ∈
(
C1
(
[0, T ), C1(D)

))d×d be a smooth solution to the system (2.2). Then, if the initial
condition σ(t = 0) is symmetric positive definite (everywhere in D), the solution σ(t) remains so at all times
t ∈ [0, T ) and for all x ∈ D. In particular, the matrix σ(t) is invertible.

From Lemma 2.1 and the equation (1.7), the entropic term
∫
D

tr(σ − lnσ − I) is thus well defined and non

negative, provided σ(t = 0) is symmetric positive definite.
The free energy is an interesting quantity to characterize the long-time asymptotics of the solutions, and

thus the stability of the system (2.2). A priori estimates using the free energy are presented in [24] for micro-
macro models (such as the Hookean or the FENE dumbbell models) and in [20] for macroscopic models (such
as the Oldroyd-B or the FENE-P models). Similar considerations can be found in the physics literature about
thermodynamic theory for viscoelastic models (see [6,33,39,47]).

For the sake of consistency, we recall results from [20]:

Theorem 2.2. Let (u, p,σ) be a smooth solution to system (2.2) supplied with homogeneous Dirichlet boundary
conditions for u, and with symmetric positive definite initial condition σ(t = 0). The free energy satisfies:

d
dt
F (u,σ) + (1 − ε)

∫
D
|∇u|2 +

ε

2Wi2

∫
D

tr
(
σ + σ−1 − 2I

)
= 0. (2.4)

From this estimate, we get that F (u,σ) decreases exponentially fast in time to zero.

Proof of Theorem (2.2). Let (u, p,σ) be a smooth solution to system (2.2), with symmetric positive definite
initial condition σ(t = 0). We first compute the inner product of the Navier-Stokes equation with the velocity:

Re
2

d
dt

∫
D
|u|2 = −(1 − ε)

∫
D
|∇u|2 − ε

Wi

∫
D

∇u : σ. (2.5)

Then, taking the trace of the evolution equation for the conformation tensor, we obtain:

d
dt

∫
D

trσ = 2
∫
D

∇u : σ − 1
Wi

∫
D

tr(σ − I). (2.6)

Last, remember that smooth solutions σ are invertible matrices (Lem. 2.1). Thus, contracting the evolution
equation for σ with σ−1, we get:∫

D

(
∂

∂t
σ + (u · ∇)σ

)
: σ−1 = 2

∫
D

tr(∇u) − 1
Wi

∫
D

tr
(
I − σ−1

)
. (2.7)

Using (1.12) with σ ∈ C1
(
D × [0, T ),S�

+(Rd×d)
)
, we find:∫

D

(
∂

∂t
σ + (u · ∇)σ

)
: σ−1 =

∫
D

(
∂

∂t
+ u · ∇

)
tr(lnσ),
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which can be combined with (2.7) to get, using tr(∇u) = divu = 0 and u = 0 on ∂D:

d
dt

∫
D

tr lnσ =
1

Wi

∫
D

tr
(
σ−1 − I

)
. (2.8)

We now combine (2.5) + ε
2Wi× (2.6) − ε

2Wi× (2.8) to obtain (2.4):

d
dt

[
Re
2

∫
D
|u|2 +

ε

2Wi

∫
D

tr(σ − lnσ − I)
]

+ (1 − ε)
∫
D
|∇u|2 +

ε

2Wi2

∫
D

tr
(
σ + σ−1 − 2I

)
= 0.

Since, by (1.8), we have tr(σ + σ−1 − 2I) ≥ 0, then F (u,σ) decreases in time. Moreover, by (1.7) applied
to σ−1, we have tr(σ− lnσ− I) ≤ tr(σ+σ−1 − 2I). So, using the Poincaré inequality which states that there
exists a constant CP depending only on D such that, for all u ∈ H1

0 (D),∫
D
|u|2 ≤ CP

∫
D
|∇u|2,

we finally obtain that F (u,σ) goes exponentially fast to 0. Indeed, we have from (2.4):

d
dt
F (u,σ) ≤ −1 − ε

CP

∫
D
|u|2 − ε

2Wi2

∫
D

tr
(
σ + σ−1 − 2I

)
≤ −min

(
2(1 − ε)
Re CP

,
1

Wi

)
F (u,σ),

so that, by a direct application of Gronwall’s lemma, we get:

F (u,σ) ≤ F (u(t = 0),σ(t = 0)) exp
(
−min

(
2(1 − ε)
Re CP

,
1

Wi

)
t

)
. �

2.2. Free energy estimate for the log-formulation of the Oldroyd-B system

2.2.1. Log-formulation of the Oldroyd-B system

Let us now introduce the log-formulation proposed in [14]. We want to map solutions of the system (2.2)
with solutions of another system of equations where a partial differential equation for the logarithm of the
conformation tensor is substituted to the Oldroyd-B partial differential equation for the conformation tensor σ.

In order to obtain a constitutive equation in terms of ψ = lnσ, following [14], we make use of the following
decomposition of the deformation tensor ∇u ∈ R

d×d (see Appendix C for a proof):

Lemma 2.3. For any matrix ∇u and any symmetric positive definite matrix σ in R
d×d, there exist in R

d×d

two antisymmetric matrices Ω, N and a symmetric matrix B that commutes with σ, such that:

∇u = Ω +B +Nσ−1. (2.9)

Moreover, we have tr∇u = trB.

We now proceed to the change of variable ψ = lnσ. The system (2.2) then rewrites (see [14] for a proof):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re
(
∂u

∂t
+ u · ∇u

)
= −∇p+ (1 − ε)Δu +

ε

Wi
div eψ,

divu = 0,
∂ψ

∂t
+ (u · ∇)ψ = Ωψ −ψΩ + 2B +

1
Wi
(
e−ψ − I

)
.

(2.10)

It is supplied with unchanged initial and boundary conditions for u, plus the initial condition ψ(t = 0) =
lnσ(t = 0) for the log-conformation tensor.
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2.2.2. Reformulation of the free energy estimate

A result similar to Theorem 2.2 can be obtained for system (2.10), where the free energy is written in terms
of ψ as:

F (u, eψ) =
Re
2

∫
D
|u|2 +

ε

2Wi

∫
D

tr(eψ −ψ − I). (2.11)

The following theorem then holds:

Theorem 2.4. Let (u, p,ψ) be a smooth solution to system (2.10) supplied with homogeneous Dirichlet boundary
conditions for u. The free energy satisfies:

d
dt
F (u, eψ) + (1 − ε)

∫
D
|∇u|2 +

ε

2Wi2

∫
D

tr(eψ + e−ψ − 2I) = 0. (2.12)

From this estimate, we get that F (u, eψ) decreases exponentially fast in time to zero.

Proof of Theorem (2.4). The proof of this theorem mimics the proof of Theorem 2.2. We go over the steps of
the proof, and point out the differences with the previous case. Let (u, p,ψ) be a smooth solution to (2.10).

From the inner product of the momentum conservation equation in (2.10) with the velocity u, we obtain:

Re
2

d
dt

∫
D
|u|2 = −(1 − ε)

∫
D
|∇u|2 − ε

Wi

∫
D

∇u : eψ, (2.13)

which is equivalent to (2.5). Taking the trace of the evolution equation for the conformation tensor, we get:

d
dt

∫
D

trψ =
1

Wi

∫
D

tr(e−ψ − I), (2.14)

which is equivalent to (2.8). Contracting the evolution equation for ψ with eψ and using (1.13) with ψ = lnσ,
we rewrite the first term of this inner product:(

∂ψ

∂t
+ u · ∇ψ

)
: eψ =

(
∂

∂t
+ u · ∇

)
tr eψ.

Recall that the decomposition (2.9) of ∇u allows to rewrite the second term:

∇u : eψ = Ω : eψ +B : eψ + (Ne−ψ) : eψ = B : eψ, (2.15)

where we have used the symmetry of eψ and the antisymmetry of Ω and N . Then, notice that, since ψ and
eψ commute, we have:

(Ωψ −ψΩ) : eψ = tr(Ωψeψ) − tr(ψΩeψ) = tr(Ωψeψ) − tr(Ωψeψ) = 0, (2.16)

we finally obtain an equation equivalent to (2.6):

d
dt

∫
D

tr eψ = 2
∫
D

∇u : eψ − 1
Wi

∫
D

tr(eψ − I). (2.17)

It is noticeable that in this proof, we made no use of the positivity of σ = eψ, in contrast to the proof of
Theorem 2.2.

The combination (2.13) − ε
2Wi× (2.14) + ε

2Wi× (2.17) gives (2.12):

d
dt

[
Re
2

∫
D
|u|2 +

ε

2Wi

∫
D

tr
(
eψ −ψ − I

)]
+ (1 − ε)

∫
D
|∇u|2 +

ε

2Wi2

∫
D

tr
(
eψ + e−ψ − 2I

)
= 0. (2.18)



FREE-ENERGY-DISSIPATIVE SCHEMES FOR THE OLDROYD-B MODEL 531

This is exactly equivalent to (2.4). As in the proof of Theorem 2.2, we then obtain that F (u, eψ) decreases
exponentially fast in time to zero. �

3. Construction of numerical schemes with Scott-Vogelius finite elements

for the velocity-pressure field (uh, ph)

We would now like to build numerical schemes for both systems of equations (2.2) and (2.10) that respectively
preserve the dissipation properties of Theorems 2.2 and 2.4 for discrete free energies similar to (2.3) and (2.11).
We first present discretizations that allow for a simple and complete exposition of our reasoning in order to
derive discrete free energy estimates. Possible extensions will be discussed in Section 4.3 (other discretizations
for the velocity-pressure field) and in Appendix D (higher-order discretizations for the stress field).

3.1. Variational formulations of the problems

To discretize (2.2) and (2.10) in space using a finite element method, we first write variational formulations
for (2.2) and (2.10) that are satisfied by smooth solutions of the previous systems. Smooth solutions (u, p,σ)
and (u, p,ψ) to system (2.2) and (2.10) respectively satisfy the variational formulations:

0 =
∫
D

(
Re
(
∂u

∂t
+ u · ∇u

)
· v + (1 − ε)∇u : ∇v +

ε

Wi
σ : ∇v − p divv + q divu

+
(
∂σ

∂t
+ u · ∇σ

)
: φ−

(
(∇u)σ + σ(∇u)T

)
: φ+

1
Wi

(σ − I) : φ

)
, (3.1)

and

0 =
∫
D

(
Re
(
∂u

∂t
+ u · ∇u

)
· v + (1 − ε)∇u : ∇v +

ε

Wi
eψ : ∇v − p divv + q divu

+
(
∂ψ

∂t
+ u · ∇ψ

)
: φ− (Ωψ −ψΩ) : φ− 2B : φ− 1

Wi
(e−ψ − I) : φ

)
, (3.2)

for all sufficiently regular test functions (v, q,φ).
In this variational framework, we recover the free energy estimates (2.4) (respectively (2.12)) using the test

functions
(
u, p, ε

2Wi (I − σ−1)
)

(respectively
(
u, p, ε

2Wi(e
ψ − I)

)
) in (3.1) (respectively (3.2)).

3.2. Numerical schemes with Scott-Vogelius finite elements for (uh, ph)

Using the Galerkin discretization method, we now want to build variational numerical integration schemes
that are based on the variational formulations (3.1) and (3.2) using finite-dimensional approximations of the
solution/test spaces. We will then show in the next Section 4 that solutions to these schemes satisfy discrete
free energy estimates which are equivalent to those in Theorems 2.2 and 2.4.

First, the time interval [0, T ) is split into NT intervals [tn, tn+1) of constant size Δt = T
NT

, with tn = nΔt for
n = 0, . . . , NT . For all n = 0, . . . , NT − 1, we denote by (un

h, p
n
h,σ

n
h) (resp. (un

h, p
n
h,ψ

n
h)), the value at time tn

of the discrete solutions (uh, ph,σh) (resp. (uh, ph,ψh)) in finite element spaces.
In all the following sections, we will assume that the domain D is polyhedral. We define a conformal mesh Th

built from a tessellation of the domain D,

Th =
NK∪
k=1

Kk,

made of NK simplicial elements Kk and ND nodes at the internal vertices. We denote by hKk
the diameter of

the element Kk and assume that the mesh is uniformly regular, with maximal diameter h ≥ max1≤k≤NK hKk
.
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For each element Kk of the mesh Th, we denote by nKk
the outward unitary normal vector to element Kk,

defined on its boundary ∂Kk. We also denote by {Ej |j = 1, . . . , NE} the internal edges of the mesh Th when
d = 2, or the faces of volume elements when d = 3 (also termed as “edges” for the sake of simplicity in the
following).

For the velocity-pressure field (uh, ph), we choose the mixed finite element space (P2)d × P1,disc of Scott-
Vogelius [43], where:

• by uh ∈ (P2)d we mean that uh is a vector field with entries over D that are continuous polynomials of
maximal degree 2;

• and by ph ∈ P1,disc we mean that ph is a scalar field with entries over Th that are piecewise continuous
polynomials of maximal degree 1 (thus discontinuous over D).

This choice is very convenient to establish the free-energy estimates at the discrete level. As mentioned earlier,
other choices will be discussed in Section 4.3. For general meshes, this finite element does not satisfy the
Babuška-Brezzi inf-sup condition. However, for meshes built using a particular process based on a first mesh of
macro-elements, this mixed finite element space is known to satisfy the Babuška-Brezzi inf-sup condition (this
is detailed in [1] for instance). The interest of this finite element is that the velocity field is divergence-free:

divuh(x) = 0, ∀x ∈ D, (3.3)

because divuh ∈ P1,disc can be used as a test function for the pressure field in the weak formulation of the
incompressibility constraint

∫
D(divuh)qh = 0.

For the approximation of σh and ψh, we use discontinuous finite elements to derive the free energy estimates.
For simplicity, we first consider piecewise constant approximations of σh and ψh in Sections 3 and 4. In
Appendix D, we will come back to this assumption and discuss the use of higher-order finite element spaces for
σh and ψh. All along this work, we denote by σh ∈ (P0)

d(d+1)
2 the fact that the symmetric-tensor field σh is

discretized using a d(d+1)
2 -dimensional so-called stress field, which stands for the entries in P0 of a symmetric

(d× d)-dimensional tensor field, thus enforcing the symmetry in the discretization.
The advection terms u · ∇σ and u · ∇ψ will be discretized either through a characteristic method in the

spirit of [3,40,48], or with the discontinuous Galerkin (DG) method in the spirit of [23]. Notice already that the
characteristic method requires the velocity field to be more regular than the discontinuous Galerkin method in
order to define the flow associated with the vector field uh.

For the discontinuous Galerkin method, we will need the following notation. Let Ej be some internal edge
in the mesh Th. To each edge Ej , we associate a unitary orthogonal vector n ≡ nEj , whose orientation will
not matter in the following. Then, for a given velocity field uh in D that is well defined on the edges, for any
variable φ in D and any interior point x to the edge Ej , we respectively define the downstream and upstream
values of φ by:

φ+(x) = lim
δ→0+

φ(x+ δ uh(x)) and φ−(x) = lim
δ→0−

φ(x+ δuh(x)). (3.4)

We denote by �φ� (x) = φ+(x) − φ−(x) the jump of φ over the edge Ej and by {φ} (x) = φ+(x)+φ−(x)
2 the

mean value over the edge. Then, one can easily check the following formula for any function φ:

∑
Ej

∫
Ej

|uh · n| �φ� = −
∑
Kk

∫
∂Kk

(uh · nKk
)φ. (3.5)

Let us now present in the next section the discrete variational formulations we will consider.

Remark 3.1. In what follows, we do not consider the possible instabilities occurring when advection dominates
diffusion in the Navier-Stokes equation for the velocity field uh. Indeed, in practice, one typically considers small
Reynolds number flows for polymeric fluids, so that we are in a regime where such instabilities are not observed.
Moreover, we also assume that 0 ≤ ε < 1 so that there is no problem of compatibilities between the discretization
space for the velocity and for the stress (see [7] for more details).
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3.3. Numerical schemes with σh piecewise constant

Variational formulations of the discrete problem write, for all n = 0, . . . , NT − 1, as follows:
With the characteristic method: For a given (un

h, p
n
h,σ

n
h), find (un+1

h , pn+1
h ,σn+1

h ) ∈ (P2)d × P1,disc × (P0)
d(d+1)

2

such that, for any test function (v, q,φ) ∈ (P2)d × P1,disc × (P0)
d(d+1)

2 ,

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h + (1 − ε)∇un+1

h : ∇v +
ε

Wi
σn+1

h : ∇v

+
(
σn+1

h − σn
h ◦Xn(tn)

Δt

)
: φ−

((
∇un+1

h

)
σn+1

h + σn+1
h

(
∇un+1

h

)T
)

: φ+
1

Wi

(
σn+1

h − I
)

: φ. (3.6)

This problem is supplied with an initial condition (u0
h, p

0
h,σ

0
h) ∈ (P2)d × P1,disc × (P0)

d(d+1)
2 .

The function Xn(t) : x ∈ D �→ Xn(t, x) ∈ D is the “backward” flow associated with the velocity field un
h and

satisfies, for all x ∈ D: ⎧⎨
⎩

d
dtX

n(t, x) = un
h(Xn(t, x)), ∀t ∈ [tn, tn+1],

Xn(tn+1, x) = x.
(3.7)

With the discontinuous Galerkin method: For a given (un
h, p

n
h,σ

n
h), find (un+1

h , pn+1
h ,σn+1

h ) ∈ (P2)d × P1,disc ×
(P0)

d(d+1)
2 such that, for any test function (v, q,φ) ∈ (P2)d × P1,disc × (P0)

d(d+1)
2 ,

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
·v−pn+1

h div v+ q divun+1
h +(1− ε)∇un+1

h : ∇v+
ε

Wi
σn+1

h : ∇v

+
(
σn+1

h − σn
h

Δt

)
: φ−

((
∇un+1

h

)
σn+1

h + σn+1
h

(
∇un+1

h

)T
)

: φ+
1

Wi

(
σn+1

h − I
)

: φ

+
NE∑
j=1

∫
Ej

|un
h · n|

�
σn+1

h

�
: φ+. (3.8)

Since σh ∈ (P0)
d(d+1)

2 is discontinuous, we have discretized the advection term for σh with a sum of jumps
similar to the usual upwind technique, where φ+ =

(
1
2 �φ� + {φ}

)
(see [13,23]).

Remark 3.2. In all the following, we assume that, when using the characteristic method:
• the characteristics are exactly integrated;
• and the integrals involving the backward flow Xn are exactly computed.

We are aware of the fact that these assumptions are strong, and that numerical instabilities may be induced by
bad integration schemes [38,44]. Hence, considering the lack for an analysis of those integration schemes for the
characteristics in the present study, our analysis of discontinuous Galerkin discretizations of the advection terms
may seem closer to the real implementation than that of the discretizations using the characteristic method.

3.4. Numerical schemes with ψh piecewise constant

We now show how to discretize the variational log-formulation similarly as above. For this, we will need the
following elementwise decomposition of the velocity gradient (see Lem. 2.3 above):

∇un+1
h = Ωn+1

h +Bn+1
h +Nn+1

h e−ψ
n+1
h . (3.9)

Moreover, for the decomposition (3.9) with u ∈ (P2)d, we will need the following Lemma 3.3 for k = 1, which
is proved in Appendix C:
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Lemma 3.3. Let ∇un+1
h ∈ (Pk,disc)d×d for some k ∈ N. Then, for any symmetric positive definite matrix

eψ
n+1
h ∈ (P0)

d(d+1)
2 , there exist two antisymmetric matrices Ωn+1

h ,Nn+1
h ∈ (Pk,disc)

d(d−1)
2 and a symmetric

matrix Bn+1
h ∈ (Pk,disc)

d(d+1)
2 that commutes with eψ

n+1
h , such that the matrix-valued function ∇un+1

h can be
decomposed pointwise as: ∇un+1

h = Ωn+1
h +Bn+1

h +Nn+1
h e−ψ

n+1
h .

Variational formulations of the discrete problem write, for all n = 0, . . . , NT − 1, as follows:
With the characteristic method: For a given (un

h, p
n
h,ψ

n
h), find (un+1

h , pn+1
h ,ψn+1

h ) ∈ (P2)d ×P1,disc × (P0)
d(d+1)

2

such that, for any test function (v, q,φ) ∈ (P2)d × P1,disc × (P0)
d(d+1)

2 ,

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h + (1 − ε)∇un+1

h : ∇v +
ε

Wi
eψ

n+1
h : ∇v

+
(
ψn+1

h −ψn
h ◦Xn(tn)

Δt

)
: φ−

(
Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h

)
: φ− 2Bn+1

h : φ− 1
Wi

(
e−ψ

n+1
h − I

)
: φ, (3.10)

where the initial condition (u0
h, p

0
h,ψ

0
h) ∈ (P2)d × P1,disc × (P0)

d(d+1)
2 is given and where Xn(t) is again defined

by (3.7).
With the discontinuous Galerkin method: For a given (un

h, p
n
h,ψ

n
h), find (un+1

h , pn+1
h ,ψn+1

h ) ∈ (P2)d×P1,disc×
(P0)

d(d+1)
2 such that, for any test function (v, q,φ) ∈ (P2)d × P1,disc × (P0)

d(d+1)
2 ,

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
·v−pn+1

h div v+ q divun+1
h +(1−ε)∇un+1

h : ∇v+
ε

Wi
eψ

n+1
h : ∇v

+
(
ψn+1

h −ψn
h

Δt

)
: φ−

(
Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h

)
: φ− 2Bn+1

h : φ− 1
Wi

(
e−ψ

n+1
h − I

)
: φ

+
NE∑
j=1

∫
Ej

|un
h · n|

�
ψn+1

h

�
: φ+. (3.11)

Remark 3.4. Notice that the numerical schemes we propose are nonlinear due to the implicit terms corre-
sponding to the discretization of the upper-convective derivative (∇u)σ + σ(∇u)T (resp. Ωψ − ψΩ). In
practice, this nonlinear system can be solved by fixed point procedures, either using the values at the previous
time step as an initial guess, or using a predictor obtained by solving another scheme where the nonlinear terms
are explicited.

3.5. Local existence and uniqueness of the discrete solutions

Before we show how to recover free energy estimates at the discrete level, let us now deal with the local-in-time
existence and uniqueness of solutions to the discrete problems presented above.

First, since the mixed finite element space of Scott-Vogelius chosen in the systems above for the velocity-
pressure field satisfies the Babuška-Brezzi inf-sup condition, notice that the system (3.6) is equivalent to the
following for all n = 0, . . . , NT − 1: For a given (un

h,σ
n
h), find (un+1

h ,σn+1
h ) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 such that,
for any test function (v,φ) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 ,

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v + (1 − ε)∇un+1

h : ∇v +
ε

Wi
σn+1

h : ∇v

+
(
σn+1

h − σn
h ◦Xn(tn)

Δt

)
: φ−

((
∇un+1

h

)
σn+1

h + σn+1
h

(
∇un+1

h

)T
)

: φ+
1

Wi

(
σn+1

h − I
)

: φ, (3.12)
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where the flow Xn(t) is defined by (3.7) and where we have used the following notation:

(P2)d
div=0 =

{
v ∈ (P2)d,

∫
D
q div v = 0, ∀q ∈ P1,disc

}
· (3.13)

Notice that it is also straightforward to rewrite the systems (3.8), (3.10) and (3.11) using uh ∈ (P2)d
div=0

instead of (uh, ph) ∈ (P2)d ×P1,disc. For instance, the system (3.10) is equivalent to: For a given (un
h,ψ

n
h), find

(un+1
h ,ψn+1

h ) ∈ (P2)d
div=0 × (P0)

d(d+1)
2 such that, for all (v,φ) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 ,

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v + (1 − ε)∇un+1

h : ∇v +
ε

Wi
eψ

n+1
h : ∇v

+
(
ψn+1

h −ψn
h ◦Xn(tn)

Δt

)
: φ−

(
Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h

)
: φ− 2Bn+1

h : φ− 1
Wi

(
e−ψ

n+1
h − I

)
: φ. (3.14)

Then, we have the:

Proposition 3.5. Assume Scott-Vogelius finite elements are used for velocity-pressure, and piecewise constant
discretization for the stress. For any couple (un

h,σ
n
h) with σn

h symmetric positive definite, there exists c0 ≡
c0 (un

h,σ
n
h) > 0 such that, for all 0 ≤ Δt < c0, there exists a unique solution (un+1

h ,σn+1
h ) to the system (3.6)

(resp. (3.8)) with σn+1
h symmetric positive definite.

Proof of Proposition 3.5. The proofs for systems (3.6) and (3.8) are similar, so we will proceed with the proof
for system (3.6) only, using its restatement as system (3.12).

For a given mesh Th, let us denote by Y n+1 ∈ R
2ND+3NK the vector whose entries are respectively the nodal

and elementwise values of (un+1
h ,σn+1

h ), solution to the system (3.12). The system of equations (3.12) rewrites
in terms of the vector Y n+1 ∈ R

2ND+3NK as: for a given Y n and Δt, find a zero Y n+1 of the function Q defined
by

Q
(
Δt, Y n+1

)
= ΔtA

(
Y n+1

)
Y n+1 + ΔtB(Y n)Y n+1 + Y n+1 − C(Y n,Δt), (3.15)

where A and B are linear continuous matrix-valued functions in R
(2ND+3NK)×(2ND+3NK), and where C is a

vector-valued function in R
2ND+3NK (notice that the dependence of the function C on Δt is only related to the

computation of the backward flow during a time step Δt, so that C(Y n, 0) = Y n, and with the DG method
it simplifies as C(Y n,Δt) = Y n). The functions A, B and C also implicitly depend on Th, as well as on the
parameters Re,Wi, ε.

Now, Q(Δt, Y ) is continuously differentiable with respect to (Δt, Y ) and we have, with I the identity matrix
in R

(2ND+3NK)×(2ND+3NK):

∇Y Q(Δt, Y ) = I + Δt
(
B(Y n) +A(Y ) + (∇Y A)Y

)
. (3.16)

Then, for given vectors Y n and Y , the matrix ∇Y Q(Δt, Y ) is invertible for all Δt such that:

0 ≤ Δt ≤ ‖B(Y n) +A(Y ) + (∇Y A)Y ‖−1

(with convention ‖B(Y n) +A(Y ) + (∇Y A)Y ‖−1 = ∞ if B(Y n) + A(Y ) + (∇Y A)Y = 0), and then defines an
isomorphism in R

2ND+3NK .
Let us denote by S∗

+ the subset of R
2ND+3NK that only contains vectors corresponding to elementwise values

of positive definite matrix-valued functions σh in D. Since S∗
+(Rd×d) is an open (convex) domain of R

d×d, S∗
+

is clearly an open (convex) domain of R
2ND+3NK .

Since Q(0, Y n) = 0 and ∇Y Q(0, Y n) is invertible, by virtue of the implicit function theorem, there exist a
neighborhood [0, c0)×V (Y n) of (0, Y n) in R+∩S∗

+ and a continuously differentiable functionR : [0, c0) → V (Y n),
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such that, for all 0 ≤ Δt < c0:

Y = R(Δt) ⇐⇒ Q(Δt, Y ) = 0.

For a given time step Δt ∈ [0, c0) and a given symmetric positive definite tensor field σn
h, R(Δt) ∈ V (Y n) is

the vector of values Y n+1 for a solution (un+1
h ,σn+1

h ) to the system (3.12) with a symmetric positive definite
matrix σn+1

h . Notice that, up to this point, c0 = c0(Y n) is function of Y n, as well as Re,Wi, ε and Th. �

For solutions (un
h,σ

n
h) to the systems (3.10) and (3.11), we similarly have:

Proposition 3.6. Assume Scott-Vogelius finite elements are used for velocity-pressure, and piecewise constant
discretization for the stress. Then, for any couple (un

h,ψ
n
h), there exists a constant c0 ≡ c0(un

h,ψ
n
h) > 0 such

that, for all 0 ≤ Δt < c0, there exists a unique solution (un+1
h ,ψn+1

h ) to the system (3.10) (resp. (3.11)).

The proof of Proposition 3.6 is similar to that of the Proposition 3.5, but for the expressions of Q(Δt, Y ) with
respect to Y . An additional term ΔtD(Y ) appears in Q due to eψ

n+1
h . This term is continuously differentiable

with respect to Y , and the derivative ∇Y Q(0, Y n) is still invertible. Thus, the proof can be completed using
similar arguments.

Anticipating the results of Section 5, we would like to mention that the above results will be extended in two
directions, using the discrete free energy estimates which will be proved in the following.

• We will show that the constant c0 in Proposition 3.5 (resp. Prop. 3.6) can be chosen independently of
(un

h ,σ
n
h) (resp. (un

h,ψ
n
h)), which yields a long-time existence and uniqueness result for the solutions to

the discrete problems (see Props. 5.2 and 5.3 below). Of course, the limiting timestep will still depend
on the parameters Re,Wi, ε and on the mesh Th.

• We will also show, but for the log-formulation only, that it is possible to prove a long-time existence
result without any restriction on the time step Δt (see Prop. 5.4 below).

4. Discrete free energy estimates with piecewise constant discretization

of the stress fields σh and ψh

In this section, we prove that various numerical schemes with piecewise constant σh or ψh satisfy a discrete
free energy estimate. We first concentrate on Scott-Vogelius finite element spaces for (uh, ph) (introduced in
Sect. 3) and then address the case of other mixed finite element spaces in Section 4.3.

4.1. Free energy estimates with piecewise constant discretization of σh

4.1.1. The characteristic method

Proposition 4.1. Let (un
h, p

n
h,σ

n
h)0≤n≤NT be a solution to (3.6), such that σn

h is positive definite. Then, the
free energy of the solution (un

h , p
n
h,σ

n
h):

Fn
h = F (un

h,σ
n
h) =

Re
2

∫
D

∣∣∣un
h

∣∣∣2 +
ε

2Wi

∫
D

tr(σn
h − lnσn

h − I), (4.1)

satisfies:

Fn+1
h − Fn

h +
∫
D

Re
2

∣∣∣un+1
h − un

h

∣∣∣2 + Δt
∫
D

(1 − ε)
∣∣∣∇un+1

h

∣∣∣2 +
ε

2Wi2
tr
(
σn+1

h +
(
σn+1

h

)−1

− 2I
)

≤ 0. (4.2)

In particular, the sequence (Fn
h )0≤n≤NT is non-increasing.
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Proof of Proposition 4.1. Let (un+1
h , pn+1

h ,σn+1
h ) be a solution to system (3.6). Notice that (σn+1

h )−1 is still
in (P0)

d(d+1)
2 . We can thus use (un+1

h , pn+1
h , ε

2Wi

(
I − (σn+1

h )−1)
)

as a test function in the system (3.6), which
yields:

0 =
∫
D

Re

(
|un+1

h |2 − |un
h|2

2Δt
+

|un+1
h − un

h |2
2Δt

+ un
h · ∇ |un+1

h |2
2

)

+ (1 − ε)
∣∣∣∇un+1

h

∣∣∣2 +
ε

Wi
σn+1

h : ∇un+1
h +

ε

2Wi

[(
σn+1

h − σn
h ◦Xn(tn)

Δt

)
:
(
I −

(
σn+1

h

)−1)

− 2
(
∇un+1

h

)
σn+1

h :
(
I −

(
σn+1

h

)−1)
+

1
Wi

(
σn+1

h − I
)

:
(
I −

(
σn+1

h

)−1)]
.

We first examine the terms associated with momentum conservation and incompressibility. We recall that
un+1

h satisfies (3.3) since we use Scott-Vogelius finite elements. By the Stokes theorem (using the no-slip
boundary condition), we immediately obtain:∫

D
un

h · ∇
∣∣∣un+1

h

∣∣∣2 = −
∫
D

(divun
h)
∣∣∣un+1

h

∣∣∣2 = 0.

The terms involving pn+1
h also cancel. We now consider the terms involving σn+1

h . The upper-convective term
in the tensor derivative rewrites:(

∇un+1
h

)
σn+1

h :
(
I −

(
σn+1

h

)−1)
= σn+1

h : ∇un+1
h − divun+1

h ,

which vanishes after combination with the extra-stress term σn+1
h : ∇un+1

h in the momentum conservation
equation, and using the incompressibility property. The last term rewrites:

(
σn+1

h − I
)

:
(
I −

(
σn+1

h

)−1)
= tr

(
σn+1

h +
(
σn+1

h

)−1

− 2I
)
.

The remaining term writes:∫
D

(
σn+1

h − σn
h ◦Xn(tn)

)
:
(
I −

(
σn+1

h

)−1)
=
∫
D

tr
(
σn+1

h

)
− tr

(
σn

h ◦Xn(tn)
)

+ tr
([
σn

h ◦Xn(tn)
][
σn+1

h

]−1

− I
)
.

We first make use of (1.10) with σ = σn
h ◦Xn(tn) and τ = σn+1

h :

tr
(
[σn

h ◦Xn(tn)][σn+1
h ]−1 − I

)
≥ tr ln

(
σn

h ◦Xn(tn)
)
− tr ln

(
σn+1

h

)
.

Then, we have: ∫
D
− tr(σn

h ◦Xn(tn) + ln(σn
h ◦Xn(tn))) =

∫
D
− tr (σn

h + lnσn
h) ,

since the strong incompressibility property (divun
h = 0) implies that the flow Xn(t) defines a mapping with

constant Jacobian equal to 1 for all t ∈ [tn, tn+1]. Finally, we get the following lower bound:∫
D

(
σn+1

h − σn
h ◦Xn(tn)

)
:
(
I −

(
σn+1

h

)−1)
≥
∫
D

tr
(
σn+1

h − lnσn+1
h

)
− tr

(
σn

h − lnσn
h

)
,

hence the result (4.2).
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Notice that tr
(
σn+1

h + (σn+1
h )−1 − 2I

)
≥ 0 by virtue of the equation (1.8), which shows that the sequence

(Fn
h )0≤n≤NT is non-increasing. �

4.1.2. The discontinuous Galerkin method

Proposition 4.2. Let (un
h, p

n
h,σ

n
h)0≤n≤NT be a solution to (3.8), such that σn

h is positive definite. Then, the
free energy Fn

h defined by (4.1) satisfies the free energy estimate (4.2). In particular, the sequence (Fn
h )0≤n≤NT

is non-increasing.

Proof of Proposition 4.2. We only point out the differences with the proof of Proposition 4.1. They consist in
the treatment of the discretization of the advection terms for σh. We recall that the test function in stress is
φ = ε

2Wi(I − (σn+1
h )−1), so that we have:

NE∑
j=1

∫
Ej

∣∣∣un
h · n

∣∣∣ �σn+1
h

�
:
(
I −

(
σn+1

h

)−1)+

=
NE∑
j=1

∫
Ej

|un
h · n|

�
tr
(
σn+1

h

)�

+ |un
h · n| tr

(
σn+1,−

h

(
σn+1,+

h

)−1

− I
)
.

Again, we make use of (1.10), with σ = σn+1,−
h and τ = σn+1,+

h :

tr
(
σn+1,−

h

(
σn+1,+

h

)−1

− I
)

≥ tr
(
lnσn+1,−

h − lnσn+1,+
h

)
.

We get, by formula (3.5), the fact that σn+1
h ∈ (P0)

d(d+1)
2 , the Stokes theorem and the incompressibility

property (3.3):

NE∑
j=1

∫
Ej

|un
h · n|

�
σn+1

h

�
:
(
I −

(
σn+1

h

)−1)+

≥
NE∑
j=1

∫
Ej

|un
h · n|

�
tr
(
σn+1

h − lnσn+1
h

)�

= −
NK∑
k=1

∫
∂Kk

(un
h · nKk

) tr
(
σn+1

h − lnσn+1
h

)

= −
NK∑
k=1

(
tr
(
σn+1

h − lnσn+1
h

)) ∣∣∣
Kk

∫
∂Kk

un
h · nKk

= −
NK∑
k=1

(
tr
(
σn+1

h − lnσn+1
h

)) ∣∣∣
Kk

∫
Kk

div(un
h)

= 0. (4.3)

Moreover, it is easy to prove the following, using the same technique as in the proof of Proposition 4.1:
∫
D

(
σn+1

h − σn
h

)
:
(
I −

(
σn+1

h

)−1)
≥
∫
D

tr
(
σn+1

h − lnσn+1
h

)
− tr

(
σn

h − lnσn
h

)
.

This concludes the proof. �

4.2. Free energy estimates with piecewise constant discretization of ψh
This section is the equivalent of the previous section for the log-formulation.
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4.2.1. The characteristic method

Proposition 4.3. Let (un
h, p

n
h,ψ

n
h)0≤n≤NT be a solution to (3.10). Then, the free energy of the solution

(un
h, p

n
h,ψ

n
h):

Fn
h = F

(
un

h, e
ψn

h

)
=

Re
2

∫
D
|un

h |2 +
ε

2Wi

∫
D

tr
(
eψ

n
h −ψn

h − I
)
, (4.4)

satisfies:

Fn+1
h − Fn

h +
∫
D

Re
2

∣∣∣un+1
h − un

h

∣∣∣2 + Δt
∫
D

(1 − ε)
∣∣∣∇un+1

h

∣∣∣2 +
ε

2Wi2
tr
(
eψ

n+1
h + e−ψ

n+1
h − 2I

)
≤ 0. (4.5)

In particular, the sequence (Fn
h )0≤n≤NT is non-increasing.

Proof of Proposition 4.3. We shall use as test functions
(
un+1

h , pn+1
h , ε

2Wi (e
ψn+1

h − I)
)

in (3.10). We emphasize

that, as long as the solution (un+1
h , pn+1

h ,ψn+1
h ) exists (see Prop. 3.6), eψ

n+1
h is well-defined, symmetric positive

definite and piecewise constant.
The terms are treated similarly as in the proof of Proposition 4.1. For the material derivative of ψh, we have:∫
D

(
ψn+1

h −ψn
h ◦Xn(tn)

)
:
(
eψ

n+1
h − I

)
=
∫
D

(
ψn+1

h −ψn
h ◦Xn(tn)

)
: eψ

n+1
h − tr

(
ψn+1

h −ψn
h ◦Xn(tn)

)
.

Using the equation (1.11) with σ = eψ
n+1
h and τ = eψ

n
h◦Xn(tn), we obtain:(

ψn+1
h −ψn

h ◦Xn(tn)
)

: eψ
n+1
h ≥ tr

(
eψ

n+1
h − eψ

n
h◦Xn(tn)

)
,

and thus:∫
D

(
ψn+1

h −ψn
h ◦Xn(tn)

)
:
(
eψ

n+1
h − I

)
≥
∫
D

tr
(
eψ

n+1
h −ψn+1

h

)
−
∫
D

tr
(
eψ

n
h −ψn

h

)
◦Xn(tn)

=
∫
D

tr
(
eψ

n+1
h −ψn+1

h

)
−
∫
D

tr(eψ
n
h −ψn

h),

where the fact that the Jacobian of the flow Xn is constant equal to one (because un
h is divergence-free) has

been used in the change of variable in the last equality.
Besides, using the equation (2.16), we have:∫

D

(
Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h

)
:
(
eψ

n+1
h − I

)
=
∫
D

(
Ωn+1

h ψn+1
h −ψn+1

h Ωn+1
h

)
: eψ

n+1
h = 0.

Last, using (2.15):∫
D
Bn+1

h :
(
eψ

n+1
h − I

)
=
∫
D
Bn+1

h : eψ
n+1
h −

∫
D

tr
(
Bn+1

h

)

=
∫
D

∇un+1
h : eψ

n+1
h −

∫
D

div
(
un+1

h

)
=
∫
D

∇un+1
h : eψ

n+1
h ,

which cancels out with the same term
∫
D eψ

n+1
h : ∇un+1

h in the momentum equation. �
4.2.2. The discontinuous Galerkin method

Proposition 4.4. Let (un
h, p

n
h,ψ

n
h)0≤n≤NT be a solution to (3.11). Then, the free energy Fn

h defined by (4.4)
satisfies the free energy estimate (4.5). In particular, the sequence (Fn

h )0≤n≤NT is non-increasing.

The proof is straightforward using elements of the proofs of Propositions 4.3 and 4.2.
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Table 1. Summary of the arguments with (uh, ph,σh) or (uh, ph,ψh) in (P2)d × P1,disc × (P0)
d(d+1)

2 .

Advection discretized by Characteristics DG
Requirements for uh divuh = 0

(⇒ det(∇xXn) ≡ 1)
(⇒ (uh · n) |Ej well defined)

∫
D q divuh = 0, ∀q ∈ P0

and
(uh · n) |Ej well defined

4.3. Other finite elements for (uh, ph)

In this section, we review some finite element spaces for (uh, ph) other than Scott-Vogelius for which the
results of the last two sections still hold.

First, let us stress the key arguments we used in the proofs above. If the advection terms u ·∇σ and u ·∇ψ
are discretized by the characteristic method, we need the velocity field un

h to be divergence-free:

divun
h = 0, (4.6)

in order for the flow Xn satisfying (3.7) to be with Jacobian one. When un
h is only piecewise smooth (consider

below the case of P1,disc velocity fields), the divergence in the left-hand side of (4.6) should be understood in
the sense of distributions. By the way, the equation (4.6) ensures that the trace of the normal component un

h ·n
on the edges of the mesh is uniquely defined, which is a sufficient condition to define the flow associated with an
elementwise-Lipschitz-continuous vector field un

h through (3.7), and which is necessary to treat the advection
term in the Navier-Stokes equation (see [40]).

If the advection terms are discretized by the discontinuous Galerkin method, it is necessary that the trace
of the normal component of uh be uniquely defined on the edges of the mesh since it appears in the jump
terms

∑NE

j=1

∫
Ej

|un
h · n|

�
σn+1

h

�
: φ+ or

∑NE

j=1

∫
Ej

|un
h · n|

�
ψn+1

h

�
: φ+ in the variational formulations. But to

obtain (4.3), and contrary to the characteristic method, only the following weak incompressibility property is
needed:

∀k = 1, . . . , NK ,

∫
Kk

divun
h = 0,

which is equivalent to writing:

∀q ∈ P0,

∫
D

div(un
h)q = 0. (4.7)

The properties needed to obtain the discrete free energy estimates are summarized in Table 1.
Below, we consider the following alternative choices of the finite elements space for (uh, ph):

• the Taylor-Hood finite element space: (uh, ph) ∈ (P2)d × P1, which satisfies the Babuška-Brezzi inf-sup
condition, whatever the mesh;

• the mixed Crouzeix-Raviart finite element space (see [12]): (uh, ph) ∈ (PCR
1 )d × P0, where

P
CR
1 =

{
v ∈ P1,disc

∣∣∣∣ ∀Ej ,

∫
Ej

�v� = 0

}
, (4.8)

which also satisfies the Babuška-Brezzi inf-sup condition, whatever the mesh;
• stabilized formulations for (uh, ph) ∈ (P1)d × P1 or (uh, ph) ∈ (P1)d × P0.

This is not exhaustive, but it is sufficient to highlight which modifications are needed in the variational formu-
lations, compared to the Scott-Vogelius mixed finite element, for the discrete free energy estimates to hold. In
particular, some projection of the velocity field is needed in the discretization of the advection terms u · ∇σ
and u · ∇ψ in order to satisfy the requirements of Table 1. These projection operators are introduced in the
next Section 4.3.1. The results of Section 4.3 are summarized in Table 2.
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Remark 4.5. For all the finite element spaces introduced here, similar existence results as those stated in
Section 3.5 hold. For the sake of conciseness, we do not restate these results, but rather concentrate on
establishing the free energy estimates.

4.3.1. Some useful projection operators for the velocity field

Let us introduce three projection operators for the velocity field.
Following [40], we first define the orthogonal projection P rot

h onto the piecewise constant solenoidal vector
fields built from affine continuous scalar fields:

{∇× ζh|ζh ∈ (P1)d, ζh × n = 0 on ∂D}·

We suppose here that d = 3, but the extension to the case d = 2 is straightforward. We set P rot
h (uh) = ∇×ψh

where ψh ∈ (P1)d, such that ψh × n|∂D = 0, satisfies:

∫
D

(∇ψh) : (∇ζh) =
∫
D
uh · (∇× ζh), ∀ζh ∈ (P1)d, ζh × n|∂D = 0.

Because P rot
h (uh) is solenoidal, we always have the strong incompressibility property (4.6):

divP rot
h (uh) = 0,

for any velocity field uh. Of course, this operator is consistent only for divergence-free velocity fields uh (or
velocity field uh with vanishing divergence when h goes to zero). See [40] for consistency results.

Second, following [13], we define the Raviart-Thomas interpolator PRT0
h onto the vector subspace of (P1,disc)d

made of the vector fields in (P0)d + xP0 with continuous normal component across the edges Ej (whose trace
on Ej is then uniquely defined). The projection PRT0

h (un
h) clearly satisfies, for any element Kk:

∫
Kk

divuh =
∫

∂Kk

un
h · nKk

=
∫

∂Kk

PRT0
h (un

h) · nKk
=
∫

Kk

divPRT0
h (un

h) . (4.9)

Thus, it satisfies the weak incompressibility property (4.7):

∀q ∈ P0,

∫
D

div
(
PRT0

h (un
h)
)
q = 0,

if, and only if, the velocity field un
h also satisfies it.

Third, we define PBDM
h as the Brezzi-Douglas-Marini projection operator [9,10]. It is with value in (P1)d.

This projection operator satisfies the same divergence preservation property (4.9) than PRT0
h , but is of better

accuracy.
Note that PBDM

h and PRT0
h are local interpolating operators in the sense that all the computations can be

made elementwise. This is not the case for P rot
h . In addition, we will need the following lemma:

Lemma 4.6. For any velocity field un
h such that the previously defined interpolating operators are well defined,

the normal components of the interpolated vector field, P rot
h (un

h) · n, PRT0
h (un

h) · n and PBDM
h (un

h) · n are
also well defined on any internal edges Ej . Moreover, if un

h ∈ (P1,disc)d is a velocity field such that, for all
k = 1, . . . , NK: ∫

Kk

div(un
h) = 0,

then div(PRT0
h (un

h)) = div(PBDM
h (un

h)) = 0 (in the sense of distributions).



542 S. BOYAVAL ET AL.

Proof. By construction, PRT0
h and PBDM

h take their values in the set of velocity fields whose normal components
are continuous across the edges. This is also the case for P rot

h since P rot
h takes its value in the set of divergence-

free velocity fields. Then, from the equation (4.9), we have
∫

Kk
div(PRT0

h (un
h)) = 0. Since div(PRT0

h (un
h)) is

in (P0)d, this shows that div(PRT0
h (un

h)) is zero in any element Kk. Finally, PRT0
h (un

h) has continuous normal
components across the edges of the mesh. This shows that div(PRT0

h (un
h)) = 0 in the sense of distributions.

The same proof holds for the projection operator PBDM
h . �

4.3.2. Alternative mixed finite element space for (uh, ph) with inf-sup condition

In this section, we show how to derive discrete free energy estimates with mixed finite element spaces for
the velocity and pressure fields which satisfy the inf-sup condition, but which are not the Scott-Vogelius finite
elements.

Let us first consider the Taylor-Hood element for (uh, ph), that is (P2)d × P1. In this case, since the velocity
field uh is not divergence-free either in the weak form (4.7), or in the strong form (4.6), a projection of the
velocity field is required in the discretization of the advection terms u · ∇σ and u · ∇ψ. More precisely, we
need to use the projection velocity P rot

h un
h (and, among the three projection operators we introduced above,

this is the only one which is such that the strong or weak incompressibility is satisfied). For the characteristic
method, one uses the flow Xn(t) satisfying:

⎧⎨
⎩

d
dtX

n(t, x) = P rot
h un

h(Xn(t, x)), ∀t ∈ [tn, tn+1],

Xn(tn+1, x) = x.
(4.10)

For the discontinuous Galerkin method, the advection term in the conformation-tensor formulations writes (see
the last line in (3.8)):

+
NE∑
j=1

∫
Ej

∣∣∣P rot
h (un

h) · n
∣∣∣ �σn+1

h

�
: φ+.

Notice that in the terms
�
σn+1

h

�
: φ+, the projected velocity P rot

h un
h is used to define the upstream and

downstream values following (3.4). Another modification, which is specific to the Navier-Stokes equation, is
needed to treat the advection term on the velocity. Namely, one needs to add to the weak formulation the
so-called Temam correction term (see [45]):

+
Re
2

∫
D

div (un
h)
(
v · un+1

h

)
(4.11)

in such a way that, when un+1
h is used as a test function:

Re
∫
D

(
un

h · ∇un+1
h

)
· un+1

h +
Re
2

∫
D

div (un
h) |un+1

h |2 = 0.

With these modifications (projection of the velocity field in the advection terms, and Temam correction term),
the free energy estimate (4.2) is satisfied by the scheme. Similar results (discrete free energy estimates for
(uh, ph,ψh) in (P2)d × P1 × (P0)

d(d+1)
2 ) can be proved on the log-formulation.

Let us now discuss the use of Crouzeix-Raviart finite elements for velocity: (uh, ph,σh) in (PCR
1 )d × P0 ×

(P0)
d(d+1)

2 (see (4.8)). In this case, the Navier-Stokes equations can be discretized using a characteristic method:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h ◦Xn(tn)

Δt

)
·v−pn+1

h div v+q divun+1
h +(1−ε)∇un+1

h : ∇v+
ε

Wi
σn+1

h : ∇v, (4.12)
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where Xn is obtained from the projected velocity field Phu
n
h as:

⎧⎨
⎩

d
dtX

n(t) = Phu
n
h(Xn(t)), ∀t ∈ [tn, tn+1],

Xn(tn+1) = x.
(4.13)

The projected velocity Phu
n
h is defined using any of the three projectors presented above, that is P rot

h un
h , PRT0

h un
h

or PBDM
h un

h. The Navier-Stokes equations can also be discretized using a discontinuous Galerkin formulation:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ Ph (un

h) · ∇un+1
h

)
· v + Re

NE∑
j=1

∫
Ej

|Ph (un
h) · n|

�
un+1

h

�
· {v}

+
NK∑
k=1

∫
Kk

−pn+1
h div v + q divun+1

h + (1 − ε)∇un+1
h : ∇v +

ε

Wi
σn+1

h : ∇v. (4.14)

Here again, Phu
n
h is any of the three projectors presented above. We would like to mention that we are not

aware that the projector P rot
h has ever been used with discontinuous Galerkin methods, so that the consistency

of the discontinuous Galerkin approach combined with this projector still needs to be investigated. Likewise,
the advection term u · ∇σ in the equation on the stress can be treated by the characteristic method or the
discontinuous Galerkin method, as above for the advection term in the Navier-Stokes equations. Notice that
whatever the projecting operator used, div(Phu

n
h) = 0 holds (see Lem. 4.6 above). With this property, it is

easy to check that Propositions 4.1 and 4.2 still hold for this finite element. For example, the advection term
in the Navier-Stokes equations is treated as follows (using the fact that div(Ph (un

h)) = 0 and (3.5)):

NK∑
k=1

∫
Kk

(
Ph (un

h) · ∇un+1
h

)
· un+1

h +
NE∑
j=1

∫
Ej

|Ph (un
h) · n|

�
un+1

h

�
·
{
un+1

h

}

=
NK∑
k=1

∫
Kk

div

⎛
⎜⎝Ph (un

h)

∣∣∣un+1
h

∣∣∣2
2

⎞
⎟⎠+

NE∑
j=1

∫
Ej

|Ph (un
h) · n| 1

2

� ∣∣∣un+1
h

∣∣∣2 	

=
NK∑
k=1

∫
Kk

div

⎛
⎜⎝Ph (un

h)

∣∣∣un+1
h

∣∣∣2
2

⎞
⎟⎠−

NK∑
k=1

∫
∂Kk

(Ph (un
h) · nKk

)

∣∣∣un+1
h

∣∣∣2
2

= 0.

Discrete free energy estimates for (uh, ph,ψh) in (PCR
1 )d × P0 × (P0)

d(d+1)
2 can be similarly proven on the

log-formulation.

4.3.3. Alternative mixed finite element space for (uh, ph) without inf-sup

It is also possible to choose a mixed finite elements space for (uh, ph) that does not satisfy the Babuška-Brezzi
inf-sup condition, like (P1)d × P0 or (P1)d × P1. The loss of stability due to the incompatibility of the spaces
can then be alleviated through a stabilization procedure, like Streamline Upwind Petrov Galerkin, Galerkin
Least Square or Subgrid Scale Method (see [11,18,21]). In the following, we consider very simple stabilization
procedures, for which only one simple quadratic term is added to the variational finite element formulation in
order to restore stability of the discrete numerical scheme.
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Let us first consider the mixed finite element space (P1)d × P0 for (uh, ph). If the term u · ∇σ is discretized
with the characteristic method, the system then writes:

0 =
NK∑
k=1

∫
Kk

Re
(un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v +

Re
2

divun
h(v · un+1

h ) + (1 − ε)∇un+1
h : ∇v +

ε

Wi
σn+1

h : ∇v

− pn+1
h div v + q divun+1

h +
(
σn+1

h − σn
h ◦Xn(tn)

Δt

)
: φ−

((
∇un+1

h

)
σn+1

h + σn+1
h

(
∇un+1

h

)T)
: φ

+
1

Wi

(
σn+1

h − I
)

: φ+
NE∑
j=1

|Ej |
∫

Ej

�ph� �q� , (4.15)

with a flow Xn computed with the projected field P rot
h (un

h) through (4.10). The projection operator P rot
h is the

only one we can use among the three projectors we introduced in Section 4.3.1 because the weak incompressibility
property (4.7) is not satisfied by un

h.
The stabilization procedure used in (4.15) has been studied in [25]. Proposition 4.1 holds for system (4.15),

its proof being similar to the case of Taylor-Hood finite element (see Sect. 4.3.2), since the additional term∑NE

j=1 |Ej |
∫

Ej
�ph� �q� is non negative with the test function used in the proof. All this also holds mutatis mu-

tandis for discretization of the advection terms by a discontinuous Galerkin method, and for the log-formulation.
Let us finally consider the mixed finite elements space (P1)d×P1 for (uh, ph). If the term u ·∇σ is discretized

with the characteristic method, the system then writes:

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v +

Re
2

divun
h

(
v · un+1

h

)
+ (1 − ε)∇un+1

h : ∇v +
ε

Wi
σn+1

h : ∇v

− pn+1
h div v + q divun+1

h +
(
σn+1

h − σn
h ◦Xn(tn)

Δt

)
: φ−

((
∇un+1

h

)
σn+1

h + σn+1
h

(
∇un+1

h

)T )
: φ

+
1

Wi
(σn+1

h − I) : φ+
NK∑
k=1

h2
Kk

∫
Kk

∇ph · ∇q, (4.16)

with a flowXn again computed with the projected field P rot
h (un

h) through (4.10). Again, we are led to choose the
projection operator P rot

h because the weak incompressibility property (4.7) is not satisfied by un
h. The stabiliza-

tion procedure used in (4.16) has been studied in [8]. Proposition 4.1 holds for system (4.16), its proof being sim-
ilar to the case of Taylor-Hood finite element (see Sect. 4.3.2), since the additional term

∑NK

k=1 h
2
Kk

∫
Kk

∇ph ·∇q
is non negative with the test function used in the proof. Again, all this also holds mutadis mutandis for
discretization of the advection terms by a discontinuous Galerkin method, and for the log-formulation.

5. Positivity, free energy estimate and the long-time issue

Notice that both Propositions 3.5 and 3.6 impose a limitation on the time step which depends on the time
iteration: 0 < Δt < c0, where c0 ≡ c0(un

h ,σ
n
h) is function of a time-dependent data. Thus, these existence results

are weak insofar as the long-time existence of the discrete solutions is not ensured, i.e. if
∑∞

n=0 c0(u
n
h ,σ

n
h) <∞.

Yet, for the discretizations introduced above, we have also shown that at each time step, the solutions of
those discretizations satisfy free energy estimates. This will now allow us to prove the long-time existence of
the discrete solutions.

Remark 5.1. In this section, we concentrate for simplicity on the discretization using Scott-Vogelius finite
elements for velocity-pressure, and piecewise constant approximations for the stress. However, similar results
can be proven for the other discretization methods introduced in Section 4.3 and Appendix D, since the solutions
satisfy a free energy estimate.
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Table 2. Summary of some possible finite elements for (uh, ph,σh/ψh) when σh/ψh ∈
(P0)

d(d+1)
2 , with some possible projections for the velocity field (see Sect. 4.3).

• Advection discretized by
• (uh, ph) in . . .

Characteristics or DG
⇒ equations modified

Scott-Vogelius
(P2)d × P1,disc

(nothing)

Taylor-Hood
(P2)d × P1

+ P rot
h

+ Temam term
Crouzeix-Raviart
(PCR

1 )d × P0

+ PBDM
h , PRT0

h or P rot
h

+ Ph (un
h) for Navier term

stabilized (P1)d × P1 + P rot
h

+ Temam term
stabilized (P1)d × P0 + P rot

h

+ Temam term

Proposition 5.2. For any initial condition (u0
h,σ

0
h) with σ0

h symmetric positive definite, there exists a constant
c1 ≡ c1

(
u0

h,σ
0
h

)
> 0 such that, for any time step 0 ≤ Δt < c1, there exists, for all iterations n ∈ N, (un+1

h ,σn+1
h )

which is the unique solution to the system (3.6) (resp. (3.8)) with σn+1
h symmetric positive definite.

Proof of Proposition 5.2. Like in the proof of Proposition 3.5, we will proceed with the proof for system (3.6)
only, using its restatement as system (3.12).

The proof is by induction on the time index n. With the notation of the proof of Proposition 3.5, for a fixed
n = 0, . . . , NT − 1 and for a fixed vector Y n of values in the subset S∗

+ of R
2ND+3NK (standing for the nodal

and elementwise values of a field (un
h,σ

n
h) with σn

h symmetric positive definite), we define like in the proof of
Proposition 3.5 (using the implicit function theorem) a function R : Δt ∈ [0, c0) → R(Δt) ∈ R

2ND+3NK (where
c0 = c0(un

h,σ
n
h)) such that:

∀Δt ∈ [0, c0), Q(Δt, R(Δt)) = 0,

where Q is defined by (3.15). For any Δt ∈ [0, c0), R(Δt) ∈ R
2ND+3NK stands for the nodal and elementwise

values of a field (uh(Δt),σh(Δt)) (with σh(Δt) symmetric positive definite) that is solution to the system (3.12).
Then, by Proposition 4.1, the solution (uh(Δt),σh(Δt)) satisfies a free energy estimate:

F (uh(Δt),σh(Δt)) ≤ F (un
h,σ

n
h). (5.1)

Using the fact that all norms are equivalent in the finite-dimensional vector space R
2ND+3NK , and that, for

0 < ν ≤ 1 − 1
e , we have ν x ≤ x − ln(x), ∀x > 0, we obtain that there exists two constants α > 0 and β > 0

(independent of Δt), such that:

α‖R(Δt)‖ ≤ F (uh(Δt),σh(Δt)) + β. (5.2)

Let us define the function D:

D : Δt ∈ [0, c0) −→ B(Y n) +A(R(Δt)) + (∇Y A)R(Δt) ∈ R
2ND+3NK .
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We recall that (see (3.16)), with the new notations: ∇YQ(Δt, R(Δt)) = I + ΔtD(Δt). Using (5.1), (5.2) and
the fact that the discrete free energy is non-increasing, the function D satisfies:

‖D(Δt)‖ ≤ ‖B‖‖Y n‖ + (‖A‖ + ‖∇YA‖)‖R(Δt)‖

≤ (‖B‖ + ‖A‖ + ‖∇YA‖)
1
α

(F (un
h,σ

n
h) + β)

≤ (‖B‖ + ‖A‖ + ‖∇YA‖)
1
α

(
F (u0

h,σ
0
h) + β

)
.

This shows that there exists a constant c1 ≡ c1
(
u0

h,σ
0
h

)
> 0 such that, for any time step 0 ≤ Δt < c1, the

matrix ∇YQ(Δt, R(Δt)) is invertible. Using the implicit function theorem, this implies that, for any time step
0 ≤ Δt < c1, the system (3.12) admits a solution (un+1

h ,σn+1
h ) with σn+1

h symmetric positive definite at all
iterations n ∈ N. �

A similar result can be proven for the log-formulations (3.10) and (3.11):

Proposition 5.3. For any initial condition (u0
h,ψ

0
h), there exists a constant c1 ≡ c1

(
u0

h,ψ
0
h

)
> 0 such that,

for any time step 0 ≤ Δt < c1, there exists, for all iterations n ∈ N, (un+1
h ,ψn+1

h ) which is the unique solution
to the system (3.10) (resp. (3.11)).

Proof of Proposition 5.3. The proof of Proposition 5.3 is similar to that of Proposition 5.2 using for Q(Δt, Y )
and D(Δt) slightly modified expressions as explained for the proof of Proposition 3.6. The entropic term in the
free energy still helps in bounding the norm of the vector of nodal-elementwise values for (uh,ψh) like in (5.2)
using the following scalar inequality, which is true for any fixed ν ∈ (0, 1]: ∀x ∈ R, ex − x+ 1 ≥ ν|x|. �

From Propositions 5.2 and 5.3, we have the global-in-time existence of solutions to those discretizations of
the Oldroyd-B system presented above which satisfy a discrete free energy estimate.

The log-formulation actually also satisfies the following long-time existence result, using the fact that the
a priori estimates can be obtained without requiring the stress tensor field to be positive definite:

Proposition 5.4. For any initial condition (u0
h,ψ

0
h), and for any constant time step Δt > 0, there exists, for

all iterations n ∈ N, (un+1
h ,ψn+1

h ) which is a solution to the system (3.10) (resp. (3.11)).

Proof of Proposition 5.4. We will proceed with the proof for system (3.10) only, using its restatement as sys-
tem (3.14). Note already that, since the derivation of discrete free energy estimates for the system (3.10) does
not require the solution ψn+1

h and the test function to be non-negative like in the derivation of discrete free
energy estimates for the system (3.6), then the manipulations used to derive the free energy estimate (4.5) can
also be done a priori for any function in the finite element space.

Let us consider a fixed time index n and a given couple (un
h,ψ

n
h) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 . We equip the
Hilbert space (P2)d

div=0 × (P0)
d(d+1)

2 with the following inner product:

((v1,φ1); (v2,φ2)) =
∫
D
v1 · v2 + φ1 : φ2,

for all (v1,φ1), (v2,φ2) ∈ (P2)d
div=0 × (P0)

d(d+1)
2 , and denote by ‖ · ‖ the associated norm. Let us introduce

the mapping F : (P2)d
div=0 × (P0)

d(d+1)
2 → (P2)d

div=0 × (P0)
d(d+1)

2 defined by duality for all (u,ψ) ∈ (P2)d
div=0 ×

(P0)
d(d+1)

2 through the form:

(F(u,ψ); (v,φ)) =
∫
D

Re
(
u− un

h

Δt
+ un

h · ∇u
)
· v + (1 − ε)∇u : ∇v +

ε

Wi
eψ : ∇v

+
(
ψ −ψn

h ◦Xn(tn)
Δt

)
: φ− (Ωψ −ψΩ) : φ− 2B : φ− 1

Wi
(e−ψ − I) : φ,



FREE-ENERGY-DISSIPATIVE SCHEMES FOR THE OLDROYD-B MODEL 547

for any test function (v,φ) ∈ (P2)d
div=0 × (P0)

d(d+1)
2 , where we have used the decomposition of the velocity

gradient ∇u as explained in Lemma 2.3:

∇u = Ω +B +Ne−ψ,

with Ω and B continuous with respect to ∇u, so that F is a continuous mapping on finite balls of radius α > 0:

Bα =
{

(v,φ) ∈ (P2)d
div=0 × (P0)

d(d+1)
2 , ‖(v,φ)‖ ≤ α

}
·

Note that if (un+1
h ,ψn+1

h ) is a solution to (3.14), then we have: for all (v,φ) ∈ (P2)d
div=0 × (P0)

d(d+1)
2 ,

(
F
(
un+1

h ,ψn+1
h

)
; (v,φ)

)
= 0. (5.3)

Let us now assume that the mapping F has no zero (un+1
h ,ψn+1

h ) satisfying (5.3) in the ball Bα. Then, we
define the following continuous mapping from Bα onto itself (F is continuous on the finite-dimensional compact,
convex ball Bα):

G(v,φ) = −α F(v,φ)
‖F(v,φ)‖ , ∀(v,φ) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 .

By the Brouwer fixed point theorem, G has a fixed point in Bα. Let us still denote that fixed point (v,φ) for
the sake of simplicity. By definition, it satisfies:

G(v,φ) = (v,φ) ∈ Bα and ‖G(v,φ)‖ = α. (5.4)

Considering F(v,φ) and using
(
v, ε

2Wi (e
φ − I)

)
as a test function, we get the following inequality after

similar manipulations to those in the proof of Proposition 4.3:

(
F(v,φ);

(
v,

ε

2Wi
(eφ − I)

))
≥ Re

2

∫
D
|v|2 +

ε

2Wi

∫
D

tr(eφ − φ) − Re
2

∫
D
|un

h|2 −
ε

2Wi

∫
D

tr(eψ
n
h −ψn

h)

+
∫
D

Re
2
|v − un

h|2 + Δt
∫
D

(1 − ε)|∇un+1
h |2 +

ε

2Wi2
tr
(
eφ + e−φ − 2I

)
. (5.5)

Then, using the scalar inequality ex − x ≥ |x|, ∀x ∈ R, we have:

∫
D

tr(eφ − φ+ I) ≥
d∑

i=1

∫
D
|λi|, ∀φ ∈ (P0)

d(d+1)
2 , (5.6)

where (λi)1≤i≤d are functions depending on φ such that, for all x ∈ D, (λi(x))1≤i≤d are the d (non-necessarily
distinct) real eigenvalues of the symmetric matrix φ(x). Now, since (P2)d

div=0 × (P0)
d(d+1)

2 is finite-dimensional,
all norms are equivalent. So there exist γ1, γ2 > 0 such that, for all (v,φ) ∈ (P2)d

div=0 × (P0)
d(d+1)

2 :

γ1‖(v,φ)‖ ≤
(∫

D
|v|2
) 1

2

+ ‖ max
1≤i≤d

|λi(x)|‖∞ ≤ γ2‖(v,φ)‖, (5.7)
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where it is easy to prove that ‖max1≤i≤d |λi(x)|‖∞ defines a norm in the vector space L∞ (D,S(Rd×d)
)
. Using

the equation (5.6) with the norm equivalence (5.7), we obtain:

Re
2

∫
D
|v|2 +

ε

2Wi

∫
D

tr(eφ − φ+ I)

≥ min

(
Re
2
,
ε

2Wi
1

‖max1≤i≤d |λi(x)|‖∞

)(∫
D
|v|2 + ‖ max

1≤i≤d
|λi(x)|‖∞

d∑
i=1

∫
D
|λi|
)

≥ min

(
Re
2
,
ε

2Wi
1

‖max1≤i≤d |λi(x)|‖∞

)(∫
D
|v|2 +

d∑
i=1

∫
D
|λi|2

)
.

Last, since the fixed-point (v,φ) ∈ Bα satisfies ‖(v,φ)‖ = α because of (5.4), we can choose α large enough so
that:

min

(
Re
2
,

ε

2Wiγ2α

)
‖(v,φ)‖2 >

Re
2

∫
D
|un

h|2 +
ε

2Wi

∫
D

tr(eψ
n
h −ψn

h + I),

and we get:

Re
2

∫
D
|v|2 +

ε

2Wi

∫
D

tr(eφ − φ+ I) − Re
2

∫
D
|un

h|2 −
ε

2Wi

∫
D

tr(eψ
n
h −ψn

h + I)

+
∫
D

Re
2
|v − un

h |2 + Δt
∫
D

(1 − ε)|∇un+1
h |2 +

ε

2Wi2
tr
(
eφ + e−φ − 2I

)
> 0,

that is: (
F(v,φ);

(
v,

ε

2Wi
(eφ − I)

))
> 0 . (5.8)

Now, using the equation (5.4) we have:

(
F(v,φ);

(
v,

ε

2Wi
(eφ − I)

))
= −‖F(v,φ)‖

α

(∫
D
|v|2 +

ε

2Wi
tr
(
φ eφ − φ

))
≤ 0 (5.9)

which is obviously in contradiction with (5.8) since, for all φ ∈ (P0)
d(d+1)

2 , we have tr(φeφ − φ) ≥ 0 by virtue
of the scalar inequality x(ex − 1) ≥ 0, ∀x ∈ R.

Thus, for any Δt > 0, if we choose α sufficiently large, the mapping F has a zero (un+1
h ,ψn+1

h ) satisfying (5.3)
in the ball Bα, which concludes the proof. �

Notice that Proposition 5.4 does not ensure the uniqueness of solutions. There may be bifurcations, hence
many possible solutions to the log-formulation, in the case where the CFL condition is not fulfilled. Though,
all those solutions will satisfy a free energy estimate, which is not the case for the usual formulation in terms
of τ . The fact that we are able to prove such a stability result without any assumption on the timestep for
the log-formulation, and not for the classical formulation, may be related to the fact that discretizations of the
log-formulation have been reported to yield solutions beyond the limiting Weissenberg number for standard
discretizations (see [23]).

Remark 5.5 (other positivity preserving schemes). There exist other means than using the log-formulation to
preserve the non-negativity of the conformation tensor. A very natural way of preserving the non-negativity is
to reformulate the constitutive equation with the deformation gradient instead of the stress or the conformation
tensor, using a Lie-derivative like in [32]. It is also possible to build free-energy-dissipative schemes for a Lie-
formulation, as shown in Appendix E. But discretizations of a Lie-formulation seem to necessitate the numerical
integration of ordinary differential equations like (3.7) for the characteristic flow, which may introduce new
instabilities (see Rem. 3.2).
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Appendix A. Some properties of symmetric positive definite matrices

A.1. Proof of Lemma 1.1

Formula (1.6), (1.7) and (1.8) are simply obtained by diagonalizing the symmetric positive definite matrix σ,
and using the inequalities: ∀x, y > 0, ln(xy) = lnx+ ln y, x− 1 ≥ lnx and x+ 1/x ≥ 2.

Let us now prove formula (1.9). By diagonalization, we have σ = ΩTDΩ with Ω orthogonal and D diagonal
positive, which gives:

tr(στ−1) = tr(ΩT
√
D
√
DΩτ−1) = tr(

√
DΩτ−1ΩT

√
D) ≥ 0,

because A =
√
DΩτ−1ΩT

√
D is clearly a symmetric positive definite matrix. Likewise, we have:

det(στ−1) = det(ΩTDΩτ−1) = det(
√
DΩτ−1ΩT

√
D).

The proof of (1.10) is then equivalent to show:

ln(det(A)) ≤ tr(A− I),

for any symmetric positive definite matrix A, which simply derives from (1.6) and (1.7).
It remains to prove formula (1.11). By diagonalization, we write σ = OTDO and τ = RT ΛR with O and

R orthogonal, and D and Λ diagonal positive. Let us introduce the orthogonal matrix Ω = ORT . We denote
by Di (resp. Λi) the (i, i)-th entry of D (resp. of Λ). We have:

tr ((lnσ − ln τ )σ − (σ − τ )) =
∑

i

Di lnDi −Di + Λi −
∑
i,j

(Ωij)2Di ln Λj

=
∑

i

⎛
⎝Λi −Di −

∑
j

(Ωij)2Di(ln Λj − lnDi)

⎞
⎠ ,

since Ω is an orthogonal matrix (
∑

j(Ωij)2 = 1 for all i). Using the convexity inequality x − y ≤ x(ln x− ln y)
for all x, y > 0, we thus obtain tr ((lnσ − ln τ )σ − (σ − τ )) ≥ 0 which concludes the proof of (1.11).

A.2. Proof of Lemma 1.2

First, since σ ∈
(
C1([0, T ))

)d(d+1)
2 is symmetric positive definite, det(σ) is positive and C1([0, T )). So we

immediately get the classical Jacobi formula (1.12):

d
dt

ln(det(σ)) = (1/ det(σ))
d
dt

det(σ) = tr
(
σ−1 d

dt
σ
)
,

on noting that ln(det(σ)) = tr(ln(σ)).
Then, for the proof of (1.13), first note that the matrix exponential is a C∞-diffeomorphism from the set

of symmetric matrices onto the set of symmetric positive definite matrices by virtue of the local inversion
theorem (see [37], Cor. 3.8.5, for instance), whose inverse mapping coincides with the matrix logarithm defined

in (1.5). Then, there exists τ ∈
(
C1([0, T ))

)d(d+1)
2 such that σ = eτ , and on noting that σ and τ commute, we

immediately get (1.13):

tr
(
σ

d lnσ
dt

)
= tr

(
eτ

dτ
dt

)
= tr

(
deτ

dt

)
=

d
dt

trσ.
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Appendix B. Proof of Lemma 2.1

Let us introduce t0 = inf{t > 0|σ(t) is not symmetric positive definite}, with convention t0 = ∞ if
{t > 0, σ is not symmetric positive definite} = ∅. Since σ(t = 0) is symmetric positive definite, it remains
so at least for small times 0 ≤ t < Δt, by continuity of det(σ) with respect to the time variable t. Thus,
t0 ≥ Δt > 0.

Let us assume that t0 <∞. First, one can define the logarithm lnσ of σ, which satisfies the equation for ψ
in system (2.10) for t ∈ [0, t0). Taking the trace of the equation for ψ in system (2.10), we get for lnσ:

D
Dt

ln detσ =
1

Wi
tr(σ−1 − I), (B.1)

where we have introduced the convective derivative D
Dt =

(
d
dt + (u · ∇)

)
(the next formulae (B.3) and (B.4)

thus hold along the characteristics, which are well defined because u ∈ C1
(
[0, T ), C0,1(D)

)
). Besides, for any

positive definite matrix σ−1, we have:
tr(σ−1)

d
≥ (detσ−1)1/d, (B.2)

which follows from the convex inequality between geometrical and arithmetical means. Thus, combining (B.1)
and (B.2), we get, on the time interval [0, t0):

D
Dt

(detσ)1/d =
1
d
(detσ)1/d D

Dt
ln detσ ≥ 1

Wi

(
1 − (detσ)1/d

)
. (B.3)

Now, by continuity of det(σ) with respect to t, one eigenvalue at least converges to zero as t → t−0 , which
implies detσ → 0+. Then, there exists η > 0 such that, for times t0 − η < t < t0, we have:

0 < detσ < 1,

and by (B.3):
D
Dt

(detσ)1/d > 0. (B.4)

But then, t0 cannot be the first time when detσ = 0, otherwise one should have D
Dt (detσ)1/d(t−0 ) ≤ 0, which

contradicts (B.4). Thus t0 = ∞ which ends the proof of Lemma 2.1.

Appendix C. Proof of Lemmas 2.3 and 3.3

Lemmas 2.3 and 3.3 are consequences of the following result, which is a slight modification of a result proved
in [14].

Lemma C.1. Let M be a d× d matrix and σ be a symmetric positive definite d× d matrix. Then, there exists
three d× d matrices Ω, B and N such that

M = Ω +B +Nσ−1

and B is a symmetric matrix which commutes with σ, Ω and N are antisymmetric. Moreover, the entries
of Ω, B and N are linear with respect to the entries of M .

Proof. First, it is easy to check by diagonalization that it is sufficient to prove the result for a diagonal matrix σ
(more precisely, by rewriting everything in a diagonalizing basis for σ). In the following, we thus assume that
σ = diag(Λ1, . . . ,Λd), where (Λi)1≤i≤d are positive numbers. Moreover, we restrict ourselves to the physical
case d = 3, but the arguments can be generalized to any dimension.
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Let us first consider the case Λi �= Λj for i �= j. In this case, we set:
• Bi,i = Mi,i and Bi,j = 0 for i �= j;
• Ni,i = 0 and Ni,j = Mi,j+Mj,i

Λ−1
j −Λ−1

i

for i �= j;

• Ωi,i = 0 and Ωi,j = −Mi,jΛ
−1
i +Mj,iΛ

−1
j

Λ−1
j −Λ−1

i

for i �= j.

It is easy to check that these matrices satisfy the requirements of the lemma.
Let us now consider the case Λ1 = Λ2 = Λ3. In this case, we simply set N = 0, B = M+MT

2 and
Ω = M−MT

2 . It is again straightforward to check that these matrices satisfy the requirements of the lemma.
Finally, let us consider the case when only two Λi’s are equal. Without loss of generality, we can suppose

Λ1 = Λ2 �= Λ3. In this case, we set:
• B3,3 = M3,3, Bi,j = Mi,j+Mj,i

2 for 1 ≤ i, j ≤ 2 and Bi,j = 0 otherwise;
• Ni,j = 0 for 1 ≤ i, j ≤ 2, N3,3 = 0 and Ni,j = Mi,j+Mj,i

Λ−1
j −Λ−1

i

otherwise;

• Ωi,j = Mi,j−Mj,i

2 for 1 ≤ i, j ≤ 2, Ω3,3 = 0 and Ωi,j = −Mi,jΛ
−1
i +Mj,iΛ

−1
j

Λ−1
j −Λ−1

i

otherwise.

This case is a combination of the two previous cases, and one can check that these matrices satisfy the require-
ments of the lemma. �

Notice in particular that the linear dependence of the entries of the matrices Ω, B and N with respect to the
entries of M implies that if σ is piecewise constant (with respect to the space variable) and M is (Pk,disc)d×d,
then Ω, B and N are also (Pk,disc)d×d (which is the result of Lem. 3.3).

Appendix D. Higher order discretization of the stress fields σh and ψh

We now show how to build numerical schemes with higher order discretization spaces for the stress that still
satisfy a discrete free energy estimate. We typically have in mind piecewise linear spaces for σh and ψh.

From the previous proofs establishing discrete free energy estimates at low order in P0, it is clear that we
need to use nonlinear functionals of σh and ψh as test functions, namely σ−1

h and eψh . Finite element spaces
other than P0 are typically not invariant under such nonlinear functionals, and this brings us to introduce
projections of these nonlinear terms on P0, and finite element spaces to discretize the stress that contain P0,
thus discontinuous.

We will use a P0-Lagrange interpolation operator πh which is convenient because it commutes with nonlinear
functionals (see Lem. D.4 below). Moreover, we will need that this interpolation operator coincides with an
L2 orthogonal projection onto P0 (see Lem. D.3 below). The need for πh to coincide with an L2 orthogonal
projection onto P0 limits the maximum regularity of the discretization of the stress, essentially to piecewise P1

finite elements. Therefore, we consider σh and ψh in either of the following finite element spaces1:

(P1 + P0)
d(d+1)

2 or (P1,disc)
d(d+1)

2 .

In Section D.1, we introduce the interpolation operator πh. Then we prove that, for a Scott-Vogelius dis-
cretization of the velocity-pressure field, a free energy estimate can be obtained for discretization schemes close
to those considered in Section 4, when σh (respectively ψh) is in (P0)

d(d+1)
2 . This is the purpose of the Sec-

tion D.2 (respectively Sect. D.3). Finally, we show in Section D.4 how these results can be extended to other
finite element discretizations of the velocity-pressure field.

Remark D.1. In this appendix, we concentrate on establishing free energy estimates, and do not prove existence
results as those stated in Sections 3.5 and 5. It is easy to extend these existence results to the numerical schemes
considered here.

1Note that, clearly, (P1 + P0)
d(d+1)

2 is only a subspace of (P1,disc)
d(d+1)

2 .
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D.1. The interpolation operator πh
Let us introduce the projection operator πh as the P0 Lagrange interpolation at barycenter θKk

for each
Kk ∈ Th.

Definition D.2. For k = 1, . . . , NK , we denote by θKk
the barycenter of the triangle Kk. For any φ such that

∀k = 1, . . . , NK , φ(θKk
) is well-defined (for example φ is a tensor-valued function, continuous at points θKk

),
we define its piecewise constant interpolation by:

∀k = 1, . . . , NK , πh (φ) |Kk
= φ(θKk

).

Notice that this definition also makes sense for the case in which φ is matrix-valued. And this interpolation
operator πh coincides with the L2 orthogonal projection from (P1,disc)

d(d+1)
2 onto (P0)

d(d+1)
2 :

Lemma D.3. Let πh be the interpolation operator introduced in Definition D.2. Then, for any φh∈(P1,disc)
d(d+1)

2 ,
we have: ∫

D
φh : φ̃h =

∫
D
πh (φh) : φ̃h, ∀φ̃h ∈ (P0)

d(d+1)
2 .

Proof. It is enough to prove Lemma D.3 on each simplex Kk ∈ Th and in the scalar case. Let (xi)1≤i≤3 be the
vertices of the simplex Kk and (ψi)1≤i≤3 the corresponding (linear) basis functions in P1. Then, the function
φh|Kk

∈ P1 reads φh|Kk
(x) = φh(x1)ψ1(x) + φh(x2)ψ2(x) + φh(x3)ψ3(x), ∀x ∈ Kk. For every φ̃h ∈ P0,

∫
Kk

φhφ̃h = φ̃h

(∫
Kk

φh

)
= φ̃h

|Kk|
3

(φh(x1) + φh(x2) + φh(x3))

because
∫

Kk
ψi = |Kk|

3 . Moreover, φh|Kk
∈ P1, hence

1
3

(φh(x1) + φh(x2) + φh(x3)) = φh

(
x1 + x2 + x3

3

)
= φh(θKk

)

which means ∫
Kk

φhφ̃h =
∫

Kk

φ̃hφh(θKk
) =
∫

Kk

πh (φ) φ̃h. �

In addition, the following property holds, which is important in the choice of this particular interpolation:

Lemma D.4. Let πh be the interpolation operator introduced in Definition D.2. The interpolation operator πh

commutes with any function f : for any functions f and φh such that φh and f(φh) are well-defined at the
barycenters θk,

πh (f(φh)) = f(πh (φh)).

The proof of Lemma D.4 is straightforward since, by Definition D.2, the interpolation πh only uses specific
values at fixed points in the spatial domain D.

D.2. Free energy estimates with discontinuous piecewise linear σh

In this section, we consider the following finite element discretization: Scott-Vogelius (P2)d × P1,disc for
(uh, ph) and (P1,disc)

d(d+1)
2 or (P1 + P0)

d(d+1)
2 for σh.
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D.2.1. The characteristic method

If the advection term u · ∇σ is discretized by the characteristic method, the system writes:

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h

+ (1 − ε)∇un+1
h : ∇v +

ε

Wi
πh

(
σn+1

h

)
: ∇v

+
(
σn+1

h − πh (σn
h) ◦Xn(tn)

Δt

)
: φ− (∇un+1

h πh

(
σn+1

h

)
+ πh

(
σn+1

h

)
(∇un+1

h )T ) : φ+
1

Wi
(σn+1

h − I) : φ,

(D.1)

where Xn is defined as in (3.7). Notice that we have used the projection operator πh in four terms. It will
become clearer from the proof of the free energy estimate below why those projections are needed.

Proposition D.5. Let (un
h, p

n
h,σ

n
h)0≤n≤NT be a solution to (D.1), such that πh (σn

h) is positive definite. Then,
the free energy of the solution (un

h, p
n
h,σ

n
h):

Fn
h = F (un

h, πh (σn
h)) =

Re
2

∫
D
|un

h|2 +
ε

2Wi

∫
D

tr (πh (σn
h) − lnπh (σn

h) − I) , (D.2)

satisfies:

Fn+1
h −Fn

h +
∫
D

Re
2

∣∣∣un+1
h −un

h

∣∣∣2+Δt
∫
D

(1−ε)
∣∣∣∇un+1

h

∣∣∣2+ ε

2Wi2
tr
(
πh

(
σn+1

h

)
+ πh

(
σn+1

h

)−1 − 2I
)
≤ 0. (D.3)

In particular, the sequence (Fn
h )0≤n≤NT is non-increasing.

Remark D.6. The ensemble of symmetric positive definite matrices is convex. This implies that a piecewise
linear tensor field is symmetric positive definite as soon as it is symmetric positive definite at the nodes of the
mesh. Moreover, this also implies that πh (σh) is symmetric positive definite as soon as σh is a piecewise linear
(possibly discontinuous) symmetric positive definite tensor field.

Proof of Proposition D.5. The test functions we choose are
(
un+1

h , pn+1
h , ε

2Wi (I − πh

(
σn+1

h

)−1
)
)
. Recall that

by Lemma D.4,
(
πh

(
σn+1

h

))−1
= πh

(
(σn+1

h )−1
)
. The proof is similar to the one of Proposition 4.1 except in

the treatment of the constitutive equation. The upper-convective term in the tensor derivative writes (using
Lem. D.3 and the incompressibility property (3.3)):∫

D
∇un+1

h πh

(
σn+1

h

)
: (I − πh

(
σn+1

h

)−1
) =
∫
D
πh

(
σn+1

h

)
: ∇un+1

h −
∫
D

∇un+1
h πh

(
σn+1

h

)
: πh

(
σn+1

h

)−1

=
∫
D
πh

(
σn+1

h

)
: ∇un+1

h −
∫
D

∇un+1
h : I

=
∫
D
πh

(
σn+1

h

)
: ∇un+1

h −
∫
D

divun+1
h

=
∫
D
πh

(
σn+1

h

)
: ∇un+1

h ,

which vanishes after combination with the extra-stress term in the momentum equation.
The last term rewrites (using again Lem. D.3):∫

D

(
σn+1

h − I
)

:
(
I − πh

(
σn+1

h

)−1
)

=
∫
D

tr
(
πh

(
σn+1

h

)
+ πh

(
σn+1

h

)−1 − 2I
)
.
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The remaining term writes (using Lem. D.3, Eq. (1.10) with σ = πh (σn
h) ◦Xn(tn) and τ = πh

(
σn+1

h

)
, and

the fact that the Jacobian of Xn remains equal to one due to the incompressibility property (3.3)):

∫
D

(
σn+1

h − πh (σn
h) ◦Xn(tn)

)
:
(
I − πh

(
σn+1

h

)−1
)

=
∫
D

trσn+1
h − tr πh (σn

h) ◦Xn(tn)

+ tr
(
πh (σn

h) ◦Xn(tn)πh

(
σn+1

h

)−1 − I
)

≥
∫
D

trσn+1
h − trπh (σn

h) ◦Xn(tn) + tr lnπh (σn
h) ◦Xn(tn) − tr lnπh

(
σn+1

h

)
=
∫
D

tr πh

(
σn+1

h

)
− tr πh (σn

h) + tr lnπh (σn
h) − tr lnπh

(
σn+1

h

)
.

This completes the proof. �

D.2.2. The discontinuous Galerkin method

If the advection term u · ∇σ is discretized by the discontinuous Galerkin method, the system writes:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h

+ (1 − ε)∇un+1
h : ∇v +

ε

Wi
πh

(
σn+1

h

)
: ∇v

+
(
σn+1

h − σn
h

Δt

)
: φ−

(∇un+1
h πh

(
σn+1

h

)
+ πh

(
σn+1

h

)
(∇un+1

h )T
)

: φ+
1

Wi
(σn+1

h − I) : φ

+
NE∑
j=1

∫
Ej

|un
h · n|

�
πh

(
σn+1

h

)�
: φ+. (D.4)

As for the characteristic method, the projection operator πh is used in four terms. Besides, like in the case where
σh ∈ (P0)

d(d+1)
2 , the advection term u · ∇σ is discretized using a jump term only. Indeed, in order to derive

discrete free energy estimates, we treat the discrete advection term using the projection πh (σh) ∈ (P0)
d(d+1)

2 of
the stress field σh, the derivative of which is zero.

Proposition D.5 still holds for the system (D.4). The proof is straightforward using all the arguments of the
previous sections, except for the treatment of the discrete advection term for u · ∇σ. Using equations (1.10),
(3.5), the fact that πh

(
σn+1

h

)
∈ (P0)

d(d+1)
2 and the weak incompressibility property (4.7), we have:

NE∑
j=1

∫
Ej

|un
h · n|

�
πh

(
σn+1

h

)�(
I − πh

(
σn+1

h

)−1
)+

=

NE∑
j=1

∫
Ej

|un
h · n|

�
trπh

(
σn+1

h

)�
+ |un

h · n| tr
(
πh

(
σn+1,−

h

)
πh

(
σn+1,+

h

)−1

− I
)

≥
NE∑
j=1

∫
Ej

|un
h · n|

�
trπh

(
σn+1

h

)�
+ |un

h · n| tr
(
lnπh

(
σn+1,−

h

)
− lnπh

(
σn+1,+

h

))
.
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Now, the right-hand-side vanishes since it is equal to

NE∑
j=1

∫
Ej

|un
h · n|

�
tr
(
πh

(
σn+1

h

)
− lnπh

(
σn+1

h

))�
=

NK∑
k=1

−
∫

∂Kk

(un
h · nKk

) tr
(
πh

(
σn+1

h

)
− lnπh

(
σn+1

h

) )

=
NK∑
k=1

− tr
(
πh

(
σn+1

h

)
− lnπh

(
σn+1

h

) )∣∣∣
Kk

∫
Kk

div(un
h) = 0.

D.3. Free energy estimates with discontinuous piecewise linear ψh
In the following section, we write free-energy-dissipative schemes using the log-formulation with ψh piecewise

linear. For this, we again need the projection operator πh introduced in Definition D.2. We consider the Scott-
Vogelius finite element space for (uh, ph) and the following decomposition of the velocity gradient ∇uh ∈
(P1,disc)

d(d+1)
2 :

∇uh = Ωh +Bh +Nhπh

(
eψh
)−1

. (D.5)

Notice that since πh

(
eψh

)−1 = e−πh(ψh) is in (P0)
d(d+1)

2 , we have Ωh,Bh,Nh ∈ (P1,disc)
d(d+1)

2 by virtue of
Lemma 3.3 with k = 1.

D.3.1. The characteristic method

If the advection term u · ∇σ is discretized by the characteristic method, the system writes:

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
·v−pn+1

h div v+q divun+1
h +(1−ε)∇un+1

h : ∇v+
ε

Wi
πh

(
eψ

n+1
h

)
: ∇v

+
(
ψn+1

h − πh (ψn
h) ◦Xn(tn)

Δt

)
:φ−

(
Ωn+1

h πh

(
ψn+1

h

)
− πh

(
ψn+1

h

)
Ωn+1

h

)
:φ

− 2Bn+1
h :φ− 1

Wi

(
πh

(
e−ψ

n+1
h

)
−I
)

:φ. (D.6)

In the system above, we have used the projection operator πh to treat the same terms as in the system (D.1).
But in addition to these, we have also used the projection operator for the exponential term e−ψ

n+1
h in the

Oldroyd-B equation.

Proposition D.7. Let (un
h, p

n
h,ψ

n
h)0≤n≤NT be a solution to (D.6). Then, the free energy of the solution

(un
h, p

n
h,ψ

n
h):

Fn
h = F

(
un

h , e
πh(ψn

h)
)

=
Re
2

∫
D
|uh|2 +

ε

2Wi

∫
D

tr
(
eπh(ψn

h) − πh (ψn
h) − I

)
, (D.7)

satisfies:

Fn+1
h − Fn

h +
∫
D

Re
2
|un+1

h − un
h|2 + Δt

∫
D

(1 − ε)|∇un+1
h |2 +

ε

2Wi2
tr
(
eπh(ψn

h) + e−πh(ψn
h) − 2I

)
≤ 0. (D.8)

In particular, the sequence (Fn
h )0≤n≤NT is non-increasing.

Proof of Proposition D.7. The proof is similar to that of Proposition 4.3 except for the terms using the inter-
polation operator πh. We shall use as test functions

(
un+1

h , pn+1
h , ε

2Wi

(
πh

(
eψ

n+1
h

)
− I
))

in (3.10). Also, we

will make use of the following property throughout the proof (see Lem. D.4): πh

(
eψ

n+1
h

)
= eπh(ψn+1

h ).
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For the material derivative of ψh, using Lemma D.3, equation (1.11) with σ = eψ
n+1
h and τ = eψ

n
h◦Xn(tn),

and the fact that the Jacobian of the flow Xn is one for divergence-free velocity field un
h, we have:∫

D

(
ψn+1

h − πh (ψn
h) ◦Xn(tn)

)
: (πh

(
eψ

n+1
h

)
− I) =

∫
D

(
πh

(
ψn+1

h

)
− πh (ψn

h) ◦Xn(tn)
)

: eπh(ψn+1
h )

− tr
(
πh

(
ψn+1

h

)
− πh (ψn

h) ◦Xn(tn)
)

≥
∫
D

tr
(
eπh(ψn+1

h ) − πh

(
ψn+1

h

))
−
∫
D

tr
(
eπh(ψn

h) − πh (ψn
h)
)
◦Xn(tn)

=
∫
D

tr
(
eπh(ψn+1

h ) − πh

(
ψn+1

h

))
−
∫
D

tr
(
eπh(ψn

h) − πh (ψn
h)
)
.

Besides, using equation (2.16), we have:

∫
D

(
Ωn+1

h πh

(
ψn+1

h

)
− πh

(
ψn+1

h

)
Ωn+1

h

)
:
(
eπh(ψn+1

h ) − I
)

=∫
D

(
Ωn+1

h πh

(
ψn+1

h

)
− πh

(
ψn+1

h

)
Ωn+1

h

)
: eπh(ψn+1

h ) = 0,

and using equations (2.15) and (3.3):∫
D
Bn+1

h :
(
πh

(
eψ

n+1
h

)
− I
)

=
∫
D
Bn+1

h : eπh(ψn+1
h ) −

∫
D

div(un+1
h ) =

∫
D

∇un+1
h : eπh(ψn+1

h ),

which cancels out with the same term
∫
D eπh(ψn+1

h ) : ∇un+1
h in the momentum equation. �

D.3.2. The discontinuous Galerkin method

If the advection term u · ∇σ is discretized by the discontinuous Galerkin method, the system writes:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h + (1 − ε)∇un+1

h : ∇v

+
ε

Wi
πh

(
eψ

n+1
h

)
: ∇v

(
ψn+1

h − πh (ψn
h)

Δt

)
: φ−

(
Ωn+1

h πh

(
ψn+1

h

)
− πh

(
ψn+1

h

)
Ωn+1

h

)
: φ− 2Bn+1

h : φ

− 1
Wi

(πh

(
e−ψ

n+1
h

)
− I) : φ+

NE∑
j=1

∫
Ej

|un
h · n|

�
πh

(
ψn+1

h

)�
: φ+. (D.9)

Proposition D.7 still holds for solutions of the system (D.9). The proof follows that of the previous Sec-
tion D.3.1 except for the treatment of the jump term, which follows that of Section 4.1.2 (see also Sect. 4.2.2),
because πh

(
ψn+1

h

)
∈ (P0)

d(d+1)
2 and πh

(
eψ

n+1
h

)
= eπh(ψn+1

h ) is also in (P0)
d(d+1)

2 .

D.4. Other finite elements for (uh, ph)

In this section, we review the modifications that apply to the systems in the two previous Sections D.2
and D.3 when the different mixed finite element spaces for (uh, ph) proposed in Section 4.3 are used instead of
Scott-Vogelius. Notice that the conclusions of Table 1 about the conditions that the velocity field has to satisfy
still hold for the two previous Sections D.2 and D.3 with piecewise linear approximations of σh,ψh.

Other finite elements space for (uh, ph) than Scott-Vogelius and adequate projections of the velocity field
(see summary in Tab. 2) have to be combined with interpolations of the stress field σh,ψh using πh (see the
two previous Sects. D.2 and D.3 above). We give a summary of the projections that are required in Table 3.
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D.4.1. Alternative mixed finite element space for (uh, ph) with inf-sup condition

The situation is very similar to that in Section 4.3.2. Among the mixed finite element space that satisfy
the inf-sup condition, let us first choose the Taylor-Hood (P2)d × P1. Again, because the velocity is not even
weakly incompressible in the sense of equation (4.7), we need to use the projection of the velocity field onto the
solenoidal vector fields for the treatment of some terms in the variational formulations. When the advection
terms u ·∇σ and u ·∇ψ are discretized using the characteristic method, we define the flow with P rot

h (un
h) like

in (4.10) and use the same systems (D.1) and (D.6) as above. When the advection terms u ·∇σ and u ·∇ψ are
discretized using the discontinuous Galerkin method, we use systems similar to (D.1) and (D.6) above, where
the jump term rewrites (in the conformation-tensor formulation):

+
NE∑
j=1

∫
Ej

|P rot
h (un

h) · n|
�
πh

(
σn+1

h

)�
: φ+.

Also, one still needs to add the so-called Temam correction term (4.11) to the weak formulation.
We can also use the Crouzeix-Raviart finite elements for velocity (see (4.8)): (uh, ph,σh) in (PCR

1 )d × P0 ×
(P1,disc)

d(d+1)
2 . Similarly to the advection terms u · ∇σ and u · ∇ψ, the advection term u · ∇u in the Navier-

Stokes equations should then be discretized either using a characteristic method with the flow defined in (4.13)
with any of the projections Ph introduced above for the velocity field, or using the discontinuous Galerkin
method formulated in equation (4.14).

It is noticeable that choosing the mixed finite elements of Crouzeix-Raviart simplifies all the variational
formulations presented above in the present Section D. Indeed, since ∇u ∈ (P0)d×d and we have the Lemma D.3,
it is then unnecessary to project the velocity except in the advection terms. For instance, for the conformation-
tensor formulation using the discontinuous Galerkin method, the formulation writes:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ Ph (un

h) · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h + (1 − ε)∇un+1

h : ∇v

+
ε

Wi
σn+1

h : ∇v +
(
σn+1

h − πh (σn
h)

Δt

)
: φ−

(
(∇un+1

h )σn+1
h + σn+1

h (∇un+1
h )T

)
: φ

+
1

Wi

(
σn+1

h − I
)

: φ+
NE∑
j=1

∫
Ej

|Ph (un
h) · n|

�
πh

(
σn+1

h

)�
: φ+ + Re |Ph (un

h) · n|
�
un+1

h

�
· {v} · (D.10)

Note that the second term in the sum of integrals over edges Ej is due to the use of the Crouzeix-Raviart
element, and is uncorrelated to the treatment of the advection by a discontinuous Galerkin method.

The discrete free energy estimate (D.3) holds. Its proof combines arguments of the proofs above, except for
the treatment of the upper-convective term in (D.10). This term writes, on any element Kk of the mesh (using
Lem. D.3, the fact that ∇u ∈ (P0)d×d and the incompressibility (3.3)):

∫
Kk

∇un+1
h σn+1

h : (I − πh

(
σn+1

h

)−1
) =
∫

Kk

σn+1
h : ∇un+1

h −
∫
D
σn+1

h : πh

(
σn+1

h

)−1 ∇un+1
h

=
∫

Kk

πh

(
σn+1

h

)
: ∇un+1

h −
∫
D
πh

(
σn+1

h

)
: πh

(
σn+1

h

)−1 ∇un+1
h

=
∫

Kk

πh

(
σn+1

h

)
: ∇un+1

h −
∫
D

divun+1
h

=
∫

Kk

πh

(
σn+1

h

)
: ∇un+1

h ,
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which vanishes after combination with the extra-stress term in the momentum equation, the latter satisfying:

∫
Kk

σn+1
h : ∇un+1

h =
∫

Kk

πh

(
σn+1

h

)
: ∇un+1

h ,

because of the fact that ∇u ∈ (P0)d×d and using Lemma D.3.

D.4.2. Alternative mixed finite element space for (uh, ph) without inf-sup

It is also possible to use finite element spaces for (uh, ph) that do not satisfy the inf-sup condition like in
Section 4.3.3, while the stress field is discretized using discontinuous piecewise linear approximations. The
construction of systems of equations and the derivation of discrete free energy estimates then directly follow
from the combination of results from Section 4.3.3 with those used above in Section D, after upgrading the
degree of the polynomial approximations for the stress field.

If we consider the mixed finite element space (P1)d × P0 for (uh, ph), and if the term u · ∇σ is discretized
with the characteristic method, the system then writes:

0 =
NK∑
k=1

∫
Kk

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v +

Re
2

divun
h(v · un+1

h ) + (1 − ε)∇un+1
h : ∇v

− pn+1
h div v + q divun+1

h +
ε

Wi
σn+1

h : ∇v +
(
σn+1

h − πh (σn
h) ◦Xn(tn)

Δt

)
: φ

−
((∇un+1

h

)
σn+1

h + σn+1
h

(∇un+1
h

)T)
: φ+

1
Wi

(σn+1
h − I) : φ+

NE∑
j=1

|Ej |
∫

Ej

�ph� �q� , (D.11)

with a flow Xn computed with the projected field P rot
h (un

h) through (4.10). It is noteworthy that, for the
same reason as above in equation (D.10), the projection operator πh is needed only for the discretization of the
advection term u · ∇σ.

If we consider the mixed finite element space (P1)d × P1 for (uh, ph), it is straightforward to rewrite the
system (4.16) where the stress field was only piecewise constant, while using the same argument as above to see
that only the advection term for the stress field needs a projected velocity.

Remark D.8. We were not able to establish discrete free energy estimates without interpolating some terms in
the formulations above thanks to the operator πh. This operator projects the stress σh (or ψh) onto (P0)

d(d+1)
2 .

Thus, for the formulations we have considered in this section, the interest of using larger dimensional spaces for
σh (or ψh) than (P0)

d(d+1)
2 is not clear. Our aim in this section is simply to exhibit discrete formulations with

piecewise linear approximations of the stress, for which we are able to derive a free energy estimate.

Appendix E. Free-energy-dissipative discretization of a Lie-formulation

We discuss here some discretization of the Oldroyd-B system where the equation for the stress tensor is
reformulated using a Lie derivative along the deformation gradient (see Rem. 5.5 and [32]). We want to show
that some discretizations of the Lie-formulation could also satisfy a discrete free energy inequality.
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Table 3. Summary of projected terms in the Navier-Stokes (NS) and Oldroyd-B (OB) equa-
tions for σh/ψh in (P1,disc)

d(d+1)
2 .

∇u . . . σh ∈ (P1,disc)
d(d+1)

2 ψh ∈ (P1,disc)
d(d+1)

2

In (P0)d2
πh (σn

h) in time derivative
(incl. flux term in DG)

πh (ψn
h) in time derivative

(incl. flux term in DG)
+ implicit source term πh

(
e−ψ

n+1
h

)
in OB

+ implicit coupling term πh

(
eψ

n+1
h

)
in NS

Not in (P0)d2
πh (σn

h) in time derivative
(incl. flux term in DG)

+ implicit coupling terms
(πh

(
σn+1

h

)
in NS, OB)

πh (ψn
h) in time derivative

(incl. flux term in DG)
+ implicit source term πh

(
e−ψ

n+1
h

)
in OB

+ implicit coupling terms
(πh

(
eψ

n+1
h

)
in NS, πh

(
ψn+1

h

)
in OB)

Using Scott-Vogelius elements for (uh, ph) and piecewise constant approximations for σh, one possible (low-
order) discretization of a Lie-formulation from [32] writes:

0 =
∫
D

Re
(
un+1

h − un
h

Δt
+ un

h · ∇un+1
h

)
· v − pn+1

h div v + q divun+1
h + (1 − ε)∇un+1

h : ∇v +
ε

Wi
σn+1

h : ∇v

+

⎛
⎜⎝σ

n+1
h −

(
I − Δtπh

(∇un+1
h

) )−1(
σn

h ◦Xn(tn)
)(
I − Δtπh

(∇un+1
h

) )−T

Δt

⎞
⎟⎠ : φ+

1
Wi

(
σn+1

h − I
)

: φ,

(E.1)

where the characteristic flow Xn(t) is defined like in (3.7). The system (E.1) admits a solution such that
(I−Δtπh

(∇un+1
h

)
)−1 is well-defined, provided Δt is sufficiently small (but possible very small when

∥∥∇un+1
h

∥∥
is large). Besides, taking φ as the characteristic function of some element Kk, we have the following equality
inside Kk:

(
1 +

Δt
Wi

)
σn+1

h =
(
I − Δtπh

(∇un+1
h

) )−1(
σn

h ◦Xn(tn)
)(
I − Δtπh

(∇un+1
h

) )−T

+
Δt
Wi
I. (E.2)

Then it is clear that the system (E.1) preserves the non-negativity of σn
h. Moreover, it is possible to derive the

free energy estimate (4.2) for the system (E.1). It suffices to take as a test function for the stress:

φ =
ε

2Wi

(
I − Δtπh

(∇un+1
h

) )T(
I − (σn+1

h )−1
)(
I − Δtπh

(∇un+1
h

) )
,

and to proceed to the derivation of a free energy estimate using both ideas of the present work and of the
work [32], after noting that:

tr
(
πh

(∇un+1
h

)T (
I − (σn+1

h )−1
)
πh

(∇un+1
h

) ((
1 +

Δt
Wi

)
σn+1

h − Δt
Wi
I
))

≥ 0, (E.3)
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the proof of which is completely similar to the proof of (1.9), using the fact that
(
1 + Δt

Wi

)
σn+1

h − Δt
WiI is

symmetric positive definite (provided Δt is sufficiently small) and πh

(∇un+1
h

)T (
I − (σn+1

h )−1
)
πh

(∇un+1
h

)
is

symmetric positive semi-definite.
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