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ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS
IN FRACTURED POROUS MEDIA

Philippe Angot1, Franck Boyer1 and Florence Hubert1

Abstract. This study concerns some asymptotic models used to compute the flow outside and inside
fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the
fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures
are supposed to have a small thickness with respect to the macroscopic length scale, so that we can
asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in
a coupling between a 2D elliptic problem and a 1D equation on the sharp interfaces modelling the
fractures. A cell-centered finite volume scheme on general polygonal meshes fitting the interfaces is
derived to solve the set of equations with the additional differential transmission conditions linking both
pressure and normal velocity jumps through the interfaces. We prove the convergence of the FV scheme
for any set of data and parameters of the models and derive existence and uniqueness of the solution to
the asymptotic models proposed. The models are then numerically experimented for highly or partially
immersed fractures. Some numerical results are reported showing different kinds of flows in the case
of impermeable or partially/highly permeable fractures. The influence of the variation of the aperture
of the fractures is also investigated. The numerical solutions of the asymptotic models are validated
by comparing them to the solutions of the global Darcy model or to some analytic solutions.
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1. Introduction

The present work addresses the numerical modelling of monophasic flows in saturated fractured porous
media by means of finite volume methods. The flow in the fracture domain Ωf , in general fully immersed in
the porous medium Ω, is assumed to be governed by the Darcy law, as is the flow in the porous matrix, with
an anisotropic permeability tensor Kf . Our objective is to study asymptotic “double-permeability” models of
fracture flow interacting with the matrix flow where the fractures are reduced to sharp interfaces Σ when the
fracture aperture bf goes to zero. More precisely, if lm and lp denote respectively the macroscopic and pore
length scales, we have: lp � bf � lm. The models involve some algebraic or differential immersed transmission
conditions on the mean fracture surface Σ which combine the jumps of both pressure and normal velocity
through the fault interface. The fractures may be “impermeable” (no jump of normal velocity with jumps of
pressure on Σ), “highly permeable” (jumps of normal velocity with no jump of pressure on Σ), or characteristic
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of intermediate cases according to some physical phenomena altering their properties with time: mechanical
effects (erosion, sedimentation, clogging, thermomechanical stress), chemical effects... [6,18].

The global Darcy simulations of such problems, typically requiring refined meshes inside the fracture do-
main Ωf , can be very expensive. Thus, asymptotic models where the fractures are reduced to immersed
polygonal fault interfaces, are useful to provide a good approximation of the global flow at a lower cost.

There is a very large literature on the problem of modelling flows in fractured porous media both in the
monophasic and multiphasic cases. Reviews on such problems can be found in [1,6,7,18], for instance. Some
authors neglect the flow in the porous matrix and only concentrate on the study of the flow in fracture net-
works (see [1,7] and references therein), others propose to treat the specific geometry of the fractures by a
specific numerical method (see for instance [12,13] where joint elements are used). In the diphasic case, where
a convection-diffusion-dispersion equation has also to be taken into account, we can refer to the recent refer-
ence [24] in which the authors solve their model by using a cell-centered finite volume method.

In the single-phase case we are interested in, our approach follows for instance [17,21,22] and consists in
writing an asymptotic model directly on the continuous problem and then to propose an adapted numerical
method to treat the obtained simplified system of equations. More precisely, a similar model than the one we
propose in Section 2 was studied in [17,22] only in the particular case in which the fracture interface Σ is not
immersed inside the domain Ω̃, but separates it into disjoint subdomains. We propose in this paper the extension
of this model to the case of fully immersed fractures and we propose and analyse a corresponding numerical
scheme. Our analysis will also be valid for a more general range of values for a quadrature parameter ξ which
appears in the model (see Sect. 2.2.5 for a detailed discussion on this point).

Outline

The paper is organized as follows. Section 2 is devoted to the presentation of the asymptotic models for
flow in 2D fractured porous media we are interested in. The permeability anisotropy along the curvilinear
coordinates associated with a fracture Σ is taken into account. The models depend on some quadrature rules
used to approximate the mean of the variables calculated transversely to the fracture and are characterized by
a real parameter ξ ≥ 1

2 .
We state and prove in Section 3 the global solvability of the asymptotic models in the case of a fully immersed

fracture inside the porous matrix and for any value of the parameter ξ in the range [1/2,+∞[. In Section 4,
a cell-centered finite volume scheme is proposed to approximate the solution of this problem. We prove the
convergence of the finite volume approximate solution towards the unique solution of the asymptotic model
under study, for any value of the parameter ξ ≥ 1/2.

Numerical investigations of the validity of the asymptotic models are proposed in Section 5. All the numerical
results obtained through the asymptotic models are compared to the solutions of the global double-permeability
Darcy system. In order to obtain these reference solutions we use a modified Discrete Duality Finite Volume
scheme on meshes which are locally refined in the neighborhood of the fractures. Such m-DDFV schemes were
proved to be first-order in the discrete H1-norm in [11], for any kind of anisotropy and heterogeneity of the
permeability tensor.

We first illustrate the various typical flows we can expect depending on the physical properties of the fracture
(impermeable, permeable, ...) in the case of a single fracture and we study the influence of the choice of the
quadrature parameter ξ.

Then, the behavior of the model and some of its limits are illustrated for more complex situations: a fracture
network and a non-constant aperture fracture. Finally, we compare our results with analytical solutions obtained
in [23] in the particular case of a lens-shaped fracture in an infinite porous matrix.

2. Global and asymptotic models for flows in 2D fractured porous media

In the whole paper we consider an open bi-dimensional polygonal bounded domain Ω̃ ⊂ R
2 representing the

porous medium under study. We are interested in the saturated flow of a single incompressible fluid in such
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a porous medium described by the mass conservation equation and the Darcy law. Hence, the main unknowns
of the problem are the pressure field p and the related filtration velocity vp.

The boundary Γ def= ∂Ω̃ is divided into two disjoint subsets Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, corresponding to
Dirichlet boundary conditions (the pressure is prescribed on ΓD) and to Neumann boundary condition (mass
flux is imposed to be 0 on ΓN). It is of course possible to consider more general boundary conditions on ΓN like
non-homogeneous Fourier boundary conditions for instance but we focus our attention here on homogeneous
Neumann conditions.

2.1. The global Darcy model and its geometry

We first recall the standard global Darcy model in the case where Ω̃ is a fractured porous medium. Without
any loss of generality we will assume in the analysis that:

• there is a unique fracture in the porous medium. Multiple disjoint fractures can be treated in the very
same way. The case of multiple crossing fractures would require some natural supplementary conditions
(continuity of the pressure and mass flux balance equation) at the crossing points that we do not tackle
in this work;

• the fracture is fully immersed in Ω̃. As we will see in the numerical results (see Sect. 5), the case where
some part of the fracture is in contact with the boundary of the domain can also be considered without
additional difficulties.

The geometry is represented in the left part of Figure 1. The porous medium Ω̃ is split into two subdomains:
the porous matrix Ωm and the fracture Ωf . We assume that the fracture domain Ωf has the following form

Ωf =
{
s+ tν(s) / s ∈ Σ, t ∈

]
−bf(s)

2
,
bf (s)

2

[}
, (2.1)

where Σ is a 1D polygonal broken line without self-intersection. For any s ∈ Σ, ν(s) denotes a unit normal
vector to Σ at the point s (its orientation has no importance at that point and will be precised later), and bf(s)
denotes the fracture aperture at the point s. Throughout the paper we will assume that

bf ∈ C1(Σ), inf
Σ
bf > 0. (2.2)

The main physical assumptions we consider are:

• The permeability tensor Km in the porous matrix Ωm is constant and isotropic. Since it is isotropic we
will often consider Km as a positive real number.

• The permeability tensor Kf is constant and anisotropic in the fracture. More precisely, we assume that,
in the curvilinear frame (τ ,ν) linked to Σ, we have

Kf =
[
Kf,τ 0

0 Kf,ν

]
, (2.3)

that is (Kfτ , τ ) = Kf,τ , (Kfν,ν) = Kf,ν . Without any additional work it is possible to take into
account smooth variations of Kf,τ and Kf,ν with respect to the tangential variable s in Ωf , but we will
assume here for simplicity that Kf is constant.

Note that we assume that Kf is diagonal in the curvilinear frame, that is (Kfτ ,ν) = 0. This corre-
sponds to many physical situations since the fracture orientation is very likely to be also a characteristic
direction of the pore structures inside Ωf . Nevertheless, it is possible to write down a model for general
permeabilities such that (Kfτ ,ν) 
= 0 but its analysis is then much more intricate. Notice that, in
practice, the coefficients Kf,τ and Kf,ν can be estimated by specific studies of flows inside different
kinds of fractures (see [1]).
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Figure 1. Configuration for “double-permeability” models.

With these assumptions at hand, the pressure distribution in the medium is solution to the following global
Darcy problem

∇ · vp = Q in Ω̃, (PG-a)

vp = − 1
μ
K(x) · ∇p in Ω̃, (PG-b)

p = pD on ΓD, (PG-c)

vp · n = 0 on ΓN , (PG-d)

where K(x) = Km for x ∈ Ωm and K(x) = Kf for x ∈ Ωf , μ > 0 is the viscosity of the fluid, Q a mass source
term and pD the Dirichlet boundary data for the pressure. Notice that, without any loss of generality, we do
not take into account the gravity terms in this problem which leads us to simplified notation throughout the
paper.

From now on, we assume that the fracture aperture bf is small compared to the length scale of the fracture,
that is bf � |Σ|. Furthermore, we emphasize the fact that the permeability coefficients inside Ωf can be very
different from the porous matrix permeability Km. These properties imply that problem (PG) may be difficult
to solve numerically. Our objective is to propose in the sequel an asymptotic model in a simplified geometry
aiming at providing a good approximation of the flow in the fractured medium in the considered situation.

2.2. The asymptotic model and its geometry

We recall here a possible formal derivation of the asymptotic model for flows in such a fractured porous
medium we are interested in.

The main idea is to reduce the 2D fracture domain Ωf inside Ω̃ by the 1D polygonal broken line Σ. As a
consequence, the porous matrix domain Ωm will be formally replaced by the (larger) open set Ω = Ω̃\Σ. Notice
that Ω̃ = Ω ∪Σ and that ∂Ω = Γ ∪Σ. Note that Ω is a domain with cuts. In particular, does not lie locally on
one side of its boundary near the fracture, which will introduce some technical difficulties (see Sect. 3.1.1).

Let us now give the main notation we will use in the sequel.
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2.2.1. Notation

• We first embed Σ within a larger polygonal broken line Σ̃ ⊃ Σ which divides the domain Ω̃ into two
open disjoint subdomains Ω− and Ω+ such that Ω̃ = Ω−∪ Σ̃∪Ω+, see the right part of Figure 1. Notice
that the sets Σ̃, Ω+ and Ω− will never appear either in the final set of equations or in the numerical
scheme we will propose. They are only needed to fix an orientation and to let us give a precise meaning
of some trace operators on Σ in Section 3.1.1.

• Let n be the outward unit normal vector on the boundary Γ of the computational domain, and ν the
unit normal vector on Σ oriented from Ω− to Ω+. The outward unit normal to ∂Ω+ on Σ is then
n+ = −ν and the outward unit normal to ∂Ω− on Σ is n− = ν. Let τ be a unit tangential vector
on Σ so that (τ ,ν) is positively oriented, and s a normalized curvilinear coordinate parameterizing Σ in
the direction given by τ . In our bidimensional situation, the boundary of Σ is composed of two points
∂Σ = {∂Σ+, ∂Σ−} defined in such a way that s = 0 in ∂Σ− and s = |Σ| in ∂Σ+.

• For any function ψ in H1(Ω), let γ+ψ and γ−ψ be the traces of ψ on each side of Σ (see Sect. 3.1.1
for precise definitions), ψ = 1

2 (γ+ψ + γ−ψ) be their arithmetic mean, and [[ψ]] = (γ+ψ − γ−ψ) be their
jump across Σ oriented by ν. Let ∇τ and ∇τ · denote the tangential gradient and divergence operators
along Σ.

2.2.2. Governing equations for the flow in the porous matrix

The first part of this model consists in writing the isotropic homogeneous Darcy law inside the new larger
porous matrix domain Ω:

∇ · vp = Q in Ω (2.4)

vp = − 1
μ
Km · ∇p in Ω (2.5)

p = pD on ΓD (2.6)
vp · n = 0 on ΓN . (2.7)

We want to emphasize the fact that, contrary to the global Darcy model (PG), this system is posed on the
domain Ω, and that the permeability tensor Km is constant and isotropic. In this set of equations, the properties
of the fracture Σ are not yet taken into account and of course the system is not closed since we need to prescribe
the behavior of the solution on Σ. This will be done in the following section.

2.2.3. Averaging the Darcy law across the fracture

We describe in this section the way to formally derive a supplementary set of equations posed on the frac-
ture Σ which will complete the problem (2.4)–(2.7) leading to a well-posed problem which is supposed to be a
satisfactory approximation of the solution to the initial global Darcy model.

We recall that the flow inside the fracture domain Ωf (whose geometry is given in (2.1)) is described by the
Darcy law for a permeability tensor Kf given in the curvilinear frame by (2.3).

Transversely to Σ, we define the following mean quantities of the variables:

uf,τ (s) =
1

bf (s)

∫ bf (s)
2

− bf (s)
2

vp(s, t) · τ (s) dt, uf,ν(s) =
1

bf (s)

∫ bf (s)
2

− bf (s)
2

vp(s, t) · ν(s) dt,

Πfp(s) =
1

bf(s)

∫ bf (s)
2

− bf (s)
2

p(s, t) dt, Qf (s) =
1

bf(s)

∫ bf (s)
2

− bf (s)
2

Q(s, t) dt,

where p and vp are solutions to the global Darcy model (PG).
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First, we average the mass conservation equation (PG-a) and the Darcy law (PG-b) over the cross-section of
the fracture to obtain:

∇τ · (bfuf,τ ) + [[vp · ν]] = bfQf ,

uf,τ = − 1
μ
Kf,τ∇τ Πfp,

uf,ν = − 1
μ
Kf,ν

[[p]]
bf

·

Then, by using the trapezoidal quadrature rule to approximate the mean variables with an error of O(b2f/|Σ|2),
that is

Πfp  p, uf,ν  vp · ν, (2.8)

we get the first asymptotic model of flow along the fault interface Σ:

∇τ · (bfuf,τ ) = bfQf − [[vp · ν]] in Σ (2.9)

uf,τ = − 1
μ
Kf,τ∇τ Πfp, in Σ (2.10)

Πfp = p, in Σ, (2.11)

vp · ν = − 1
μ
Kf,ν

[[p]]
bf
, in Σ, (2.12)

where, in these equations the jumps and the mean-values of p and vp · ν are now the one obtained from the
solution of the asymptotic model of flow inside the approximate porous matrix Ω, that is system (2.4)–(2.7).

Finally, we need to close the system with a condition on the boundary ∂Σ of the fracture. We will consider
a Neumann boundary condition

uf,τ = 0 on ∂Σ.

This boundary condition states that, since the fracture aperture is small, the mass transfer across the extremities
of the fracture can be neglected in front of the transversal one. Other kinds of boundary conditions can of course
be considered: in the case where the fracture is touching the exterior boundary ΓD, it can be natural to impose
a Dirichlet boundary condition on the pressure on ∂Σ. We will see that these boundary conditions are not
always accurate and should be replaced by more physical conditions (see some numerical results in Sect. 5.4).

2.2.4. Generalization for other quadrature rules

Such models have already been proposed in [17,21]. In fact, in those references other quadrature rules are
used in place of the trapezoidal rule to approximate the cross-section mean values of the pressure Πfp and of
vp · ν in (2.8). Following the computations in the above references, we may replace (2.11) by

Πfp = p+
(2ξ − 1)μ

4Kf,ν
bf [[vp · ν]], on Σ,

where ξ ≥ 1/2 is a quadrature parameter.
For example, the trapezoidal rule (2.11) is recovered when ξ = 1/2 which appears to be the most natural

and simplest choice, whereas the use of the mid-point rule gives ξ = 3/4. We give a numerical comparison of
the models for various values of this parameter in Section 5.
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2.2.5. The final asymptotic model under study

Gathering the previous equations, we finally obtain the following system of equations that we will analyse in
the sequel of the paper:

∇ · vp = Q in Ω (PA-a)

vp = − 1
μ
Km · ∇p in Ω (PA-b)

p = pD on ΓD (PA-c)

vp · n = 0 on ΓN , (PA-d)

∇τ · (bfuf,τ ) = bfQf − [[vp · ν]] in Σ, (PA-e)

uf,τ = −Kf,τ

μ
∇τ Πfp in Σ, (PA-f)

uf,τ = 0, on ∂Σ, (PA-g)

vp · ν = −Kf,ν

μ

[[p]]
bf

in Σ, (PA-h)

Πfp = p+
(2ξ − 1)μ

4Kf,ν
bf [[vp · ν]] in Σ. (PA-i)

The quadrature parameter ξ ∈
[

1
2 ,+∞

[
appearing in (PA-i) is now fixed throughout the paper.

In [21,22] a similar model is studied in the case where Σ is not immersed inside the domain Ω̃. Furthermore,
their theoretical and numerical analysis are valid for values of the quadrature parameter ξ > 1/2 (typically
ξ = 3/4 or ξ = 1) so that, in this reference, the most natural model (that is when ξ = 1/2) is not taken into
account. This is due to the fact that the cases ξ = 1/2 and ξ > 1/2 have a very different mathematical structure
(we will see in the sequel that the proofs are often different in the two cases). Hence, the mixed formulation
used in these references did not allow to perform the analysis for ξ = 1/2. Note that the model for ξ = 3/4 is
also numerically studied in [17] in the case of an isotropic fracture permeability tensor Kf . For the case of a
fully immersed fracture, the asymptotic model is numerically investigated in [10] for ξ = 3/4.

In [3–5], it is also proposed (in the case ξ = 1/2) to replace the partial differential equation (PA-e)–(PA-g)
on the fracture by a simpler algebraic model. More precisely, in these references, equations (PA-a)–(PA-d) and
(PA-h)–(PA-i) are conserved whereas (PA-e)–(PA-g) are replaced by

[[vp · ν]] = −bfKf,τ

μ

(
1
s
(p− P )

)
+ bfQf on Σ,

where P is a given reference pressure at s = 0. This leads to a simpler but less precise model.

3. Well-posedness of the asymptotic models

3.1. Functional setting

We denote by ‖ · ‖0,Ω the L2-norm on Ω and by ‖ · ‖1,Ω the H1-norm on Ω. For any U ⊂ ∂Ω, let L2(U),
H

1
2 (U) and H1(U) be the standard Lebesgue and Sobolev spaces on U endowed with their respective standard

norms ‖ · ‖0,U , ‖ · ‖1/2,U and ‖ · ‖1,U .

3.1.1. Trace results for fractured domains

We define H1
Γ(Ω) = {p ∈ H1(Ω), p = 0 on Γ}. Let us state the trace results available for the fractured

domain Ω. We denote by γ0,D and γ0,N the trace operators from H1(Ω) onto H
1
2 (ΓD) and H

1
2 (ΓN ) respectively.



246 P. ANGOT ET AL.

Since the fracture Σ is supposed to be immersed in Ω, these operators are classically defined in the same way
than in the case of a smooth domain.

We concentrate now on the trace problem on the fracture Σ. First of all, we define the two linear and
continuous trace operators γ+ and γ− from H1(Ω) on H

1
2 (Σ), by restricting to Σ the values of the standard

trace operators γ+ and γ− defined for the two domains Ω+ and Ω−, respectively. This definition does not
depend on the way Ω+ and Ω− are constructed from the interface Σ.

The space H
1
2
00(Σ) is the set of the functions g ∈ H

1
2 (Σ) such that |g(s)|2

s(|Σ|−s) ∈ L1(Σ) and is endowed with the

norm defined by ‖g‖2
1/2,00,Σ = ‖g‖2

1/2,Σ +
∫ |Σ|
0

|g(s)|2
s(|Σ|−s) ds. We denote by H− 1

2 (Σ) the dual space of H
1
2 (Σ) and

by H̃− 1
2 (Σ) the dual space of H

1
2
00(Σ).

Following [19], Theorems 1.5.2.3, 1.5.1.3, the techniques in [19], Section 1.7, and also [8,9], applied to the
open set Ω (whose boundary is polygonal with some angles of 2π), we have the following result.

Proposition 3.1. The global trace operator γΣ on Σ defined by

γΣ : p ∈ H1(Ω) �→ γΣ(p) = (γ+(p), γ−(p)) ∈ H
1
2 (Σ) ×H

1
2 (Σ),

is continuous from H1(Ω) onto the space

TΣ =

{
(g+, g−) ∈

(
H

1
2 (Σ)

)2

,

∫ |Σ|

0

|g+(s) − g−(s)|2
s(|Σ| − s)

ds < +∞
}

=
{

(g+, g−) ∈
(
H

1
2 (Σ)

)2

, g+ − g− ∈ H
1
2
00(Σ)

}
,

endowed with the norm

‖(g+, g−)‖TΣ =

(
‖g+‖2

1/2,Σ + ‖g−‖2
1/2,Σ +

∫ |Σ|

0

|g+(s) − g−(s)|2
s(|Σ| − s)

ds

) 1
2

.

Furthermore, there exists a continuous linear operator RΣ : TΣ → H1
Γ(Ω) which is a right inverse of the global

trace operator, that is
γΣ ◦RΣ = IdTΣ .

Finally, C∞
c (Ω) is dense in ker γΣ ∩H1

Γ(Ω).

The proofs of the various statements of this proposition are contained in the references given above, except
for the final density statement. For sake of completeness, we provide a proof of this statement in Appendix A.

With this result at hand, one can define the normal traces on Σ of any vector field in v ∈ Hdiv(Ω) def= {u ∈
(L2(Ω))d, ∇ · u ∈ L2(Ω)} as an element of the dual space TΣ

′ as follows.

Proposition 3.2. For any v ∈ Hdiv(Ω), the map v · n ∈ TΣ
′ defined by

g = (g+, g−) ∈ TΣ �→ (v · n)(g) def=
∫

Ω

v · ∇RΣ(g) dx+
∫

Ω

(∇ · v)RΣ(g) dx,

is linear continuous and does not depend on the choice of the right inverse operator RΣ. Furthermore, there
exists a unique element [[v · ν]] in H− 1

2 (Σ) and a unique element v · ν in H̃− 1
2 (Σ) such that

〈v · n, g〉TΣ
′,TΣ = −

〈
[[v · ν]],

g+ + g−

2

〉
H− 1

2 (Σ),H
1
2 (Σ)

− 〈v · ν, (g+ − g−)〉
H̃− 1

2 (Σ),H
1
2
00(Σ)

.
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Proof. The continuity of the map v · n immediately follows from the continuity of the operator RΣ and the
definition of the norm in Hdiv(Ω).

By definition of ∇ · v, for any φ ∈ C∞
c (Ω) we have∫
Ω

v · ∇φdx +
∫

Ω

(∇ · v)φdx = 0.

This formula is still true for any φ ∈ kerγΣ ∩H1
Γ(Ω) by using the density property in Proposition 3.1. Hence,

the definition of v · n does not depend on the right inverse operator RΣ we choose.
We can now define [[v · ν]], and v · ν as follows

〈[[v · ν]], ψ〉
H− 1

2 (Σ),H
1
2 (Σ)

= 〈v · n, (−ψ,−ψ)〉TΣ
′,TΣ

, ∀ψ ∈ H
1
2 (Σ),

〈v · ν, ψ〉
H̃− 1

2 (Σ),H
1
2
00(Σ)

=
〈
v · n,

(
−ψ

2
,
ψ

2

)〉
TΣ

′,TΣ

, ∀ψ ∈ H
1
2
00(Σ).

It is straightforward to see that the required properties hold. �

When v is smooth enough (say v ∈ (H1(Ω))d), [[v · ν]] and v · ν are respectively equal to the jump and the
mean-value of v · ν across Σ.

Finally, for any φ ∈ H1(Ω) and any v ∈ Hdiv(Ω), we have the following Stokes-type formula∫
Ω

v · ∇φdx+
∫

Ω

(∇ · v)φdx = 〈v · n, γΓφ〉
H− 1

2 (Γ),H
1
2 (Γ)

− 〈[[v · ν]], φ〉
H− 1

2 (Σ),H
1
2 (Σ)

− 〈v · ν, [[φ]]〉
H̃− 1

2 (Σ),H
1
2
00(Σ)

.

(3.1)
We conclude this section by a density result which will be useful in the sequel, in order to show the convergence

of the numerical scheme. The idea is that the set of smooth functions in Ω, constant near the extremities of Σ
but not necessarily continuous across Σ is dense in H1(Ω).

Proposition 3.3. The space S defined by

S = {u ∈ C∞(Ω), s.t. u|Ω̄± ∈ C∞(Ω̄±), and u is constant near the extremities of Σ}, (3.2)

is dense in H1(Ω).

This result can be proved following similar lines than the proof of the density statement in Proposition 3.1
which is given in Appendix A.

3.1.2. Functional spaces

For any pressure field q ∈ H1(Ω) defined inside the porous matrix, let us associate the Darcy velocity
vq ∈ (L2(Ω))2 defined by

vq = −Km

μ
∇q, (3.3)

and, in the case where vq ∈ Hdiv(Ω), we define the fracture pressure Πfq on Σ by

Πf q = q +
(2ξ − 1)μ

4Kf,ν
bf [[vq · ν]] ∈ H− 1

2 (Σ). (3.4)

Notice that the product bf [[vq · ν]] is well defined since bf is supposed to be smooth (see (2.2)). We introduce
the space

W =
{
q ∈ H1(Ω) such that (2ξ − 1)vq ∈ Hdiv(Ω), (2ξ − 1)[[vq · ν]] ∈ L2(Σ),Πf q ∈ H1(Σ)

}
,
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endowed with the norm

‖q‖W =
(
‖q‖2

1,Ω + ‖Πfq‖2
1,Σ + (2ξ − 1)‖[[vq · ν]]‖2

0,Σ

) 1
2 .

Remark 3.4. When ξ = 1/2, this space reduces to W = {q ∈ H1(Ω),Πfq ∈ H1(Σ)} with the corresponding
norm and, in that case, W is an Hilbert space, which is not the case when ξ > 1/2.

3.2. Well-posedness of the problem (PA)

From now on, pD ∈ H
1
2 (ΓD) is a given boundary data for the pressure. We call a solution of the asymptotic

model, any function p ∈ W that satisfies

∇ · vp = Q in Ω, (3.5)

p = pD on ΓD, (3.6)
vp · n = 0 on ΓN, (3.7)

−∇τ ·
(
bf

Kf,τ

μ
∇τ Πfp

)
= bfQf − [[vp · ν]] in Σ, (3.8)

−Kf,τ

μ
∇τ Πfp = 0 on ∂Σ, (3.9)

vp · ν = −Kf,ν

μ

[[p]]
bf

on Σ, (3.10)

where vp and Πfp are defined in (3.3)–(3.4) above. Equations (3.8) and (3.9) are required to be satisfied in the
weak sense, that is in H−1(Σ) and H−1/2(∂Σ) respectively.

Our first result is the following.

Theorem 3.5. For any ξ ≥ 1
2 , the problem (3.5)–(3.10) admits a unique solution p ∈ W.

Proof.

• Existence: This will be proved in the following section by passing to the limit in the finite volume
scheme.

• Uniqueness: The problem being linear, it is enough to show that if p ∈ W is a solution to the
homogeneous problem

vp = −Km

μ
∇p, in Ω, (3.11)

∇ · vp = 0 in Ω, (3.12)
p = 0, on ΓD, (3.13)

vp · n = 0 on ΓN , (3.14)

−∇τ ·
(
bf

Kf,τ

μ
∇τ Πfp

)
= −[[vp · ν]] on Σ, (3.15)

−Kf,τ

μ
∇τ Πfp = 0 on ∂Σ, (3.16)

vp · ν = −Kf,ν

μ

[[p]]
bf

on Σ, (3.17)

then we have p = 0.
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To this end, we use p as a test function in (3.12), and using the Stokes formula (3.1), we get

0 =
∫

Ω

p∇ · vp dx

=
∫

Ω

Km

μ
|∇p|2 dx− 〈[[vp · ν]], p〉

H− 1
2 (Σ),H

1
2 (Σ)

− 〈vp · ν, [[p]]〉
H̃− 1

2 (Σ),H
1
2
00(Σ)

=
∫

Ω

Km

μ
|∇p|2 dx− 〈[[vp · ν]], p〉

H− 1
2 (Σ),H

1
2 (Σ)

+
∫

Σ

Kf,ν

μ

∣∣∣∣ [[p]]
bf (s)

∣∣∣∣2 bf (s) ds.

Since p ∈ W , we can use Πfp ∈ H1(Σ) as a test function in (3.15) with the boundary condition (3.16).
We get

0 =
∫

Σ

Kf,τ

μ
|∇τ Πfp|2bf ds+ 〈[[vp · ν]],Πfp〉

H− 1
2 (Σ),H

1
2 (Σ)

.

Adding the previous two equalities and using the definition (3.4) of Πfp, it follows∫
Ω

Km

μ
|∇p|2 dx+

∫
Σ

Kf,τ

μ
|∇τΠfp|2bf ds+

∫
Σ

Kf,ν

μ

∣∣∣∣ [[p]]bf
∣∣∣∣2 bf ds+

(2ξ − 1)μ
4Kf,ν

∫
Σ

[[vp · ν]]2bf ds = 0.

We conclude, since ξ ≥ 1
2 , and using (3.13), that the unique solution p ∈ W of (3.12)–(3.18) is p = 0,

which proves that problem (3.5)–(3.10) has at most one solution in W . �
Remark 3.6. Existence and uniqueness of a solution to problem (3.5)–(3.10) is proved for a non-immersed
fracture (that is when Ω̃\Σ is not connected) and in the case ξ > 1

2 in [22] by using a mixed formulation. They
obtained the result by showing an ellipticity property as well as an inf-sup inequality for this problem. This
ellipticity property is no longer satisfied in the case where ξ = 1

2 and their numerical results, based on the mixed
finite element method, show instabilities in the limit ξ → 1

2 .
Nevertheless, the existence result for this problem for ξ = 1

2 can be proved by using the standard variational
formulation satisfied by the pressure in the porous matrix. In the case where pD = 0 (if not one hase to consider
a lift of the Dirichlet data to the whole domain), the formulation reads:

Find p ∈ W0 such that a(p, q) = L(q) for all q ∈ W0,

where W0 = W ∩ γ0,D
−1({0}), and a is the bilinear form on W0 defined by

a(p, q) =
∫

Ω

Km

μ
∇p · ∇q dx+

∫
Σ

Kf,τ

μ
∇τ Πfp∇τ Πfq bf ds+

∫
Σ

Kf,ν

μ

[[p]]
bf

[[q]]
bf

bf ds

and L is the linear form
L(q) =

∫
Ω

Qq dx+
∫

Σ

bfQfΠfq ds.

Since ξ = 1/2, W0 is a Hilbert space (see Rem. 3.4). The bilinear form a is then continuous and coercive
on W0 and the linear form L is continuous on W0 so that the Lax-Milgram theorem applies. We can check that
the solution p to this variational formulation actually solves the problem under study (see the end of the proof
of Thm. 4.11).

4. Finite volume scheme for the asymptotic model (PA)

We recall that we consider in this paper the case where Km is isotropic. Under this assumption the framework
of cell-centered finite volume method on the so-called orthogonal meshes is well adapted.
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σ ∈ S

pσ+

pσ

pσ−

dK−
σ ,σ

pK−
σ

Σ

Se

σ′σ

dK+
σ ,σ

pK+
σ

K+
σ

K−
σ

xK−
σ

e = σ|σ′ ∈ V

nK+
σ,σ

xσ xσ′

xK+
σ

Figure 2. Geometry of the meshes along Σ.

4.1. Notation and assumptions for the polygonal mesh

Let us define the notation we will use to describe and analyze our finite volume scheme. Most of the notation
is inspired by that in [16], which is our reference for a general description and analysis of finite volume schemes
for standard elliptic equations.

A mesh of the fractured domain Ω ∪ Σ is denoted by T = (M,S) where M (resp. S) is a family of disjoint
2-dimensional control volumes K ⊂ Ω (resp. 1-dimensional control volumes σ ⊂ Σ).

• The control volumes K ∈ M are open convex polygons such that Ω = ∪K∈MK. For any (K, L) ∈ M2

with K 
= L, either K ∩ L = ∅, a vertex, or K ∩ L = σ for some edge σ ≡ K|L.
Let Eint denote the set of interior edges σ = K|L ⊂ Ω and ED

ext, EN
ext the sets of edges lying on the

boundary Γ with σ ⊂ ΓD or σ ⊂ ΓN respectively. The set E of all the edges can then be decomposed
into E = Eint ∪ ED

ext ∪ EN
ext ∪ S.

For each K ∈ M, a discretization point xK ∈ K is chosen such that the segment [xK, xL] is orthogonal at
the point xσ to each edge σ = K|L. This condition is very classical in the framework of cell-centered finite
volume schemes for elliptic problems (see [16]). Such meshes are called orthogonal admissible meshes.
For a mesh composed by triangles and satisfying the Delaunay condition, it is enough to choose xK to
be the circumcenter of K.
Let dK,σ > 0 be the distance from xK to σ, and dK,L = dK,σ + dL,σ the distance between xK and xL.
The set of edges of K is denoted by EK, nK is the outward unit normal of K, and for each edge σ ∈ EK we
will denote more precisely nK,σ the value of nK along σ. Finally for neighbor control volumes K and L,
nK,L is the unit normal of K oriented from K to L.

• We assume that the meshes M and S are compatible, that is for any control volume σ ∈ S there exists
(K+

σ ,K
−
σ ) ∈ M2 such that σ = K+

σ |K−
σ with K+

σ ⊂ Ω+ and K−
σ ⊂ Ω−.

We denote by V the set of the vertices e of the mesh S and by Vint the set of such vertices which are
not on the boundary ∂Σ (see Fig. 2), so that we have V = Vint ∪ {∂Σ+, ∂Σ−}. For each σ ∈ S, let Vσ

be the set of vertices in V belonging to ∂σ.
To each point e = σ|σ′ ∈ Vint we associate the segment Se = [xσ, xσ′ ] and the unit vector τ σ,σ′ pointing
from xσ towards xσ′ . For e ∈ {∂Σ−, ∂Σ+} we note Se = [xσ, e] where σ ∈ S is the unique element of S
such that e ∈ ∂σ. We note I = (Se)e∈V the set of such segments.

For each K ∈ M or σ ∈ S, m(K) and m(σ) denote the 2D-measure of K, resp. the 1D-measure of σ. The
mesh size is defined by: size(T ) = sup{diam(K), K ∈ M}.
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Finally, let rK > 0 be the largest number r such that the ball of radius r centered at xK is contained in K.
The regularity of the mesh is then measured by the quantity

reg(T ) = max
K∈M

diam(K)
rK

,

that we will require to be bounded when the size of the mesh tends to 0 in our convergence results.

4.2. The discrete spaces

4.2.1. The discrete unknowns

• The matrix pressure field and its traces:
We associate to the mesh T a set of discrete unknowns pT composed as follows

pT = (pM, γ0,Np
T , γ+pT , γ−pT ) ∈ E(T ) def= R

M × R
EN
ext × R

S × R
S.

The unknown vector pM = (pK)K∈M ∈ R
M contains the cell-centered unknowns on the mesh M, the

vector γ0,Np
T = (pσ)σ∈EN

ext
represents the boundary values of the pressure on the part of the boundary

where Neumann boundary conditions will be imposed. Since we are going to consider possible jumps of
the pressure across the fracture Σ, we need to consider two different discrete traces of the pressure on Σ
denoted by γ+pT

def= (pσ+)σ∈S ∈ R
S and γ−pT

def= (pσ−)σ∈S ∈ R
S. The jumps and the mean-value

across Σ of pT is defined by [[pT ]] = γ+pT − γ−pT and pT = (γ+pT + γ−pT )/2. We can finally define,
the boundary value on Γ of any given pM ∈ R

T by γ0p
M = (pKσ

)σ∈Eext ∈ R
Eext , and its restriction on ΓD

by γ0,Dp
M = (pKσ

)σ∈ED
ext

∈ R
ED
ext , where Kσ is the unique control volume in M such that σ ⊂ ∂Kσ.

As usual, in order to state our convergence results, discrete functions are identified as piecewise
constant functions as follows

pM =
∑
K∈M

�KpK, γ+pT =
∑
σ∈S

�σpσ+ , γ−pT =
∑
σ∈S

�σpσ− ,

γ0,Dp
M =

∑
σ∈ED

ext

�σpKσ , γ0,Np
T =

∑
σ∈EN

ext

�σpσ.

• The fracture pressure:
We associate to the mesh S on Σ, a fracture pressure unknown

pS = ((pσ)σ∈S, p∂Σ− , p∂Σ+) ∈ E(S) def= R
S × R × R,

where pσ is a value at the center xσ of the edge σ and p∂Σ− , p∂Σ+ the boundary values at the two
extremities ∂Σ− and ∂Σ+ of Σ. We associate to pS a piecewise constant function on Σ still denoted
by pS and defined pS def=

∑
σ∈S �σpσ. Notice that the boundary values p∂Σ− and p∂Σ+ do not enter

this definition. Figure 2 sums up the different unknowns introduced near the fracture.

4.2.2. Discrete gradient

Let us define the diamond cells Dσ for σ ∈ Eint ∪ Eext and Dσ+ ,Dσ− for σ ∈ S as shown in Figure 3. For
σ = K|L ∈ Eint, Dσ is the quadrangle whose diagonals are σ and [xK, xL]. The set of such diamond cells is
called Dint. For σ = Eext ∩ EK, Dσ is the triangle defined by the point xK and the edge σ. The set of such
diamond cells is called Dext. Finally, for σ ∈ S, Dσ+ and Dσ− are the two triangles defined by the edge σ
and by the points xK+

σ
and xK−

σ
respectively. We note DΣ+ = {Dσ+ , σ ∈ S}, DΣ− = {Dσ− , σ ∈ S} and

D = Dint ∪ Dext ∪ DΣ+ ∪ DΣ− .
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σ = K|L ∈ Eint

σ ∈ Eext

Figure 3. The diamond cells.

Definition 4.1 (discrete gradient on M). For any pT ∈ E(T ), we define the vector-valued function ∇M,pD

pT

by

∇M,pD

pT
def= 2

( ∑
Dσ∈Dint

σ=K|L

�Dσ

pL − pK

dK,L
nK,L +

∑
Dσ∈Dext

σ⊂ΓD

�Dσ

pD
σ − pKσ

dK,σ
nKσ +

∑
Dσ∈Dext

σ⊂ΓN

�Dσ

pσ − pKσ

dK,σ
nK,σ

+
∑

Dσ+∈DΣ+

�Dσ+

pσ+ − pK+
σ

dK+
σ ,σ

nK+
σ

+
∑

Dσ−∈DΣ−

�Dσ−

pσ− − pK−
σ

dK−
σ ,σ

nK−
σ

)
, (4.1)

where pD
σ = 1

m(σ)

∫
σ p

D(s) ds.

The definition of such a discrete gradient was first proposed in [15] in order to study some links between
homogenisation and numerical schemes. Notice that the coefficient 2 in front of the formula (4.1) is in fact
the dimension d = 2 of the problem we are studying. Its presence is due to the fact that only the part of the
gradient along the normal nσ is approximated on each diamond cell. As we will see in the proof of Lemma 4.9,
this coefficient 2 actually appears to be necessary to reach the weak convergence of the discrete gradient toward
the continuous one.

Definition 4.2 (fluxes across Σ). For any pT ∈ E(T ), we introduce the two mass fluxes across each edge σ
in S by

vpT

σ+ · n+ def= −Km

μ

(
pσ+ − pK+

σ

dK+
σ ,σ

)
, vpT

σ− · n− def= −Km

μ

(
pσ− − pK−

σ

dK−
σ ,σ

)
·

Finally, the jump and the mean-value of these fluxes are defined by⎧⎪⎨⎪⎩
[[vpT

σ · ν]] def= −(vpT

σ+ · n+ + vpT

σ− · n−),

vpT
σ · ν def= −

vpT

σ+ · n+ − vpT

σ− · n−

2
·

(4.2)

Definition 4.3 (discrete fracture pressure). For any matrix pressure field pT ∈ E(T ), following (3.4), we define
the discrete fracture pressure ΠSpT ∈ E(S) associated to pT by

ΠSpT =
1
2
(
γ+pT + γ−pT

)
+

(2ξ − 1)μ
4Kf,ν

bf,σ[[vpT · ν]],

where bf,σ is the mean value of bf on σ.
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Definition 4.4 (discrete gradient on S). For any fracture pressure field pS ∈ E(S), we define the real-valued
function ∇SpS ∈ L2(Σ) by

∇SpS =
∑

e∈Vint
e=σ|σ′

�Se

pσ′ − pσ

m(Se)
(τσ,σ′ · τ ) + �S

∂Σ+

p∂Σ+ − pσ+

m(S∂Σ+)
− �S

∂Σ−

p∂Σ− − pσ−

m(S∂Σ−)
·

4.2.3. The discrete norms

We define on E(T ) the discrete H1(Ω) norm

‖pT ‖1,T =
(
‖pM‖2

0,Ω + ‖∇M,pD

pT ‖2
0,Ω

) 1
2
,

and on E(S), the discrete H1(Σ) norm

‖pS‖1,S =
(
‖pS‖2

0,Σ + ‖∇SpS‖2
0,Σ

) 1
2 .

Finally, we define on E(T ) the discrete W norm by

‖pT ‖WT ,pD =
(
‖pT ‖2

1,T + ‖ΠSpT ‖2
1,S + (2ξ − 1)‖[[vpT

· ν]]‖2
0,Σ

) 1
2
. (4.3)

Lemma 4.5 (discrete trace inequality). There exists C > 0 depending on reg(T ) such that for all pT ∈ E(T ),
we have

‖γ0p
M‖0,Γ + ‖γ+pT ‖0,Σ + ‖γ−pT ‖0,Σ ≤ C‖pT ‖1,T .

Lemma 4.6 (discrete Poincaré lemma). There exists C = C(Ω) such that for all pT ∈ E(T ), we have

‖pM‖0,Ω ≤ C
(
‖∇M,pD

pT ‖0,Ω + ‖pD‖ 1
2 ,ΓD

)
.

The proofs of Lemmas 4.5 and 4.6 are direct adaptations of those for the analogous classical results given
in [16].

4.3. The cell-centered numerical scheme for problem (PA)

4.3.1. Description of the scheme

• Flow in the porous matrix Ω. Integrating equation (3.5) over each control volumes K ∈ M, the
classical cell-centered FV method reads∑

σ∈EK

FK,σ = m(K)QK, ∀K ∈ M, (4.4)

where QK is the mean value of Q on K, and FK,σ is the numerical flux approximating
∫

σ
vp ·nK ds. This

numerical flux is defined by

FK,σ
def= −m(σ)

Km

μ

(
pK,σ − pK

dK,σ

)
,

where pK,σ is an approximate value of the pressure on the side of σ touching the control volume K. Let
us see how to determine pK,σ.
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– For σ = K|L ∈ Eint, the pressure is continuous across σ, that is pK,σ = pL,σ, and we have conservation
of the fluxes, that is FK,σ = −FL,σ. It follows in that case that pK,σ = pL,σ can be eliminated and
we get

FK,L
def= FK,σ = −FL,σ = −m(σ)

Km

μ

(
pL − pK

dK,L

)
· (4.5)

– For σ ∈ EN
ext, then pK,σ is the corresponding value pσ of γ0,Np

T and the Neumann boundary
condition reads FKσ ,σ = 0, which determines in fact pσ. We do not really need its value since the
important point is that the numerical flux is zero.

– For σ ∈ ED
ext, then pK,σ is given by the mean value pD

σ of the Dirichlet data pD on σ, then

FKσ ,σ = −m(σ)
Km

μ

(
pD

σ − pKσ

dKσ,σ

)
· (4.6)

– For σ ∈ S, then the pressure is not continuous across σ, and is defined by γ±pT on each side of σ.
More precisely, we have

FK+
σ ,σ = −m(σ)

Km

μ

(
pσ+ − pK+

σ

dK+
σ ,σ

)
,

and

FK−
σ ,σ = −m(σ)

Km

μ

(
pσ− − pK−

σ

dK−
σ ,σ

)
·

In this case, we do not have conservation of the fluxes and the values of pσ+ and pσ− will be
determined through the coupling with the discretization of the 1D elliptic equation (3.8) on Σ.
Note that, using Definition 4.2, we have

FK+
σ ,σ = m(σ)vpT

σ+ · n+, FK−
σ ,σ = m(σ)vpT

σ− · n−. (4.7)

• The discrete fracture pressure. The discrete fracture pressure is now defined by pS def= ΠSpT . In
light of Definition 4.3, this yields

pσ =
1
2
(pσ+ + pσ−) +

(2ξ − 1)μ
4Kf,ν

bf,σ[[vpT

σ · ν]], ∀σ ∈ S. (4.8)

• Flow along the fracture Σ. The 1D finite volume discretization of problem (3.8)–(3.9) reads∑
e∈Vσ

Gσ,e = m(σ)bf,σQf,σ −m(σ)[[vpT

σ · ν]], ∀σ ∈ S, (4.9)

where Qf,σ = 1
bf,σm(σ)

∫
σ
Qf (s)bf (s) ds. The numerical flux Gσ,e approximates −Kf,τ

μ bf (∇τ Πfp) at the
vertex e. This flux is defined by

Gσ,e = −Kf,τ

μ
bf,e

(
pσ,e − pσ

dσ,e

)
,

where bf,e is the mean value of bf on the segment [xσ, xσ′ ] and pσ,e is an approximate value of the
fracture pressure at the vertex e.
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– For e = σ|σ ∈ Vint, we use the conservation of the fluxes Gσ,e = −Gσ′,e and the continuity of the
pressure pσ,e = pσ′,e, so that the fluxes finally reads

Gσ,σ′
def= Gσ,e = −Gσ′,e = −Kf,τ

μ
bf,e

(
pσ′ − pσ

dσ,σ′

)
· (4.10)

– For e ∈ ∂Σ = {∂Σ+, ∂Σ−}, the value pσ,e is given by p∂Σ− or p∂Σ+ and the Neumann boundary
condition (3.9) implies that Gσ,e = 0. This uniquely defines the two boundary values p∂Σ− and
p∂Σ+ .

• Transmission conditions on Σ. The discretization of equation (3.10) for all σ = K+
σ |K−

σ ∈ S gives:

vpT
σ · ν = −Kf,ν

μ

(
pσ+ − pσ−

bf,σ

)
= −Kf,ν

μ

(
[[pT ]]σ
bf,σ

)
· (4.11)

If we sum up the above considerations, the finite volume scheme under study consists of the flux balance
equations (4.4) and (4.9), together with the flux definitions (4.5), (4.6), (4.7) and (4.10), the definition (4.8) of
the fracture pressure and the transmission condition (4.11).

4.3.2. A priori estimates

By using the various definitions given above of the discrete gradient operators, we can give a “variational
formulation” of the finite volume scheme under study. Notice that, in the finite volume framework, the approx-
imate solutions are piecewise constant and, in particular, are not conformal approximations of the solution in
the energy space like for finite element methods.

Lemma 4.7 (Finite Volume variational formulation). Suppose we are given a solution pT ∈ E(T ) to the scheme
(4.4)–(4.11). Then, we have

1
2

∫
Ω

Km

μ
∇M,pD

pT · ∇M,0φT dx+
∫

Σ

Kf,ν

μ

[[pT ]]
bf,σ

[[φT ]]
bf,σ

bf (s) ds

−
∫

Σ

φT [[vpT · ν]] ds =
∫

Ω

QφT dx, ∀φT ∈ E(T ), (4.12)

and ∫
Σ

Kf,τ

μ
∇SΠSpT ∇SφSbf(s) ds =

∫
Σ

Qfφ
Sbf ds−

∫
Σ

[[vpT · ν]]φS ds, ∀φS ∈ E(S). (4.13)

Proof. Let us multiply equation (4.4) by φK for all K ∈ M and sum over M. It follows that

∑
K∈M

∑
σ∈EK

FK,σφK =
∑
K∈M

m(K)QKφK.

We transform now the left-hand side as a sum over the set of edges. For edges σ ∈ Eint we use the conservation
of the fluxes and (4.5). For edges σ ∈ ED

ext we use definition (4.6) of the flux, and for edges σ ∈ S, we use
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the two definitions (4.7). We get

∑
K∈M

m(K)QKφK =
∑

σ∈Eint
σ=K|L

m(σ)
Km

μ

(
pL − pK

dK,L

)
(φL − φK) +

∑
σ∈ED

ext

m(σ)
Km

μ

(
pKσ

− pD
σ

dKσ ,σ

)
(φKσ

− 0)

+
∑
σ∈S

m(σ)
Km

μ

(
pσ+ − pK+

σ

dK+
σ ,σ

)
(φσ+ − φK+

σ
)

+
∑
σ∈S

m(σ)
Km

μ

(
pσ− − pK−

σ

dK−
σ ,σ

)
(φσ− − φK−

σ
)

+
∑
σ∈S

m(σ)
(
φσ+(vpT

σ+ · n+) + φσ−(vpT

σ− · n−)
)
.

Using (4.2), let us rewrite this expression as follows∑
K∈M

m(K)QKφK =
∑

σ∈Eint
σ=K|L

m(σ)dK,L
Km

μ

(
pL − pK

dK,L
nK,L

)
·
(
φL − φK

dK,L
nK,L

)

+
∑

σ∈ED
ext

m(σ)dK,σ
Km

μ

(
pK − pD

σ

dK,σ
nK

)
·
(
φK − 0
dK,σ

nK

)

+
∑
σ∈S

m(σ)dK+
σ ,σ

Km

μ

(
pσ+ − pK+

σ

dK+
σ ,σ

n+

)
·
(
φσ+ − φK+

σ

dK+
σ ,σ

n+

)

+
∑
σ∈S

m(σ)dK−
σ ,σ

Km

μ

(
pσ− − pK−

σ

dK−
σ ,σ

n−

)
·
(
φσ− − φK−

σ

dK−
σ ,σ

n−

)

−
∑
σ∈S

m(σ)
(
[[φT ]]σvpT

σ · ν + φTσ [[vpT

σ · ν]]
)
.

Since the mesh is conforming, notice that on any interior diamond cell Dσ ∈ Dint with σ = K|L, we have
m(σ)dK,L = 2m(Dσ), and for any boundary diamond cell Dσ ∈ Dext, we have m(σ)dKσ,σ = 2m(Dσ). Using
now the transmission condition (4.11) and Definition 4.1 of the discrete gradient, (4.12) follows.

By similar, and in fact simpler, computations we obtain (4.13). �
Corollary 4.8.

(1) Any solution pT ∈ E(T ) to the scheme (4.4)–(4.11) satisfies∫
Ω

QφT dx+
∫

Σ

QfbfΠSφT ds =
1
2

∫
Ω

Km

μ
∇M,pD

pT · ∇M,0φT dx

+
∫

Σ

Kf,τ

μ
(∇SΠSpT )(∇SΠSφT )bf ds+

∫
Σ

Kf,ν

μ

[[pT ]]
bf,σ

[[φT ]]
bf,σ

bf ds

+
(2ξ − 1)μ

4Kf,ν

∫
Σ

bf [[vpT · ν]][[vφT · ν]] ds, ∀φT ∈ E(T ). (4.14)

(2) Let α > 0 such that reg(T ) ≤ α. For any set of data, there exists a unique such solution pT ∈ E(T )
and there exists C > 0 which only depends only on the data μ,Km,Kf,τ ,Kf,ν ,Ω, bf and α such that
we have

‖pT ‖WT ,pD ≤ C
(
‖Q‖0,Ω + ‖Qf‖0,Σ + ‖pD‖ 1

2 ,ΓD
+ |g|

)
. (4.15)
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Proof. We obtain (4.14) by taking φS = ΠSφT in (4.13) and adding it to (4.12).
There exists R ∈ H1(Ω) an extension of pD compactly supported in Ω \ Σ, and such that ‖R‖1,Ω ≤

C(Ω)‖pD‖ 1
2 ,ΓD

. We introduce the projection RT = (RM, γ0,NR
T , γ+RT , γ−RT ) ∈ E(T ) of R on the mesh T ,

with RM = (RK)K∈M the mean value projection of R on the mesh M that is RK is the mean-value of R on the
ball B(xK, rK) defined in Section 4.1. We naturally choose to take γ+RT = γ−RT = 0 since R vanishes in the
neighborhood of the fracture Σ, and we take Rσ = 1

m(σ)

∫
σ R ds for any σ ∈ EN

ext.
We can prove as in [2,16] that

‖∇M,pD

RT ‖0,Ω ≤ C(Ω, reg(T ))‖R‖1,Ω ≤ C‖pD‖ 1
2 ,ΓD

.

We remark that, if size(T ) is small enough, then [[vRT ·ν]] = ΠSRM = 0. Hence, taking φT = pT −RT in (4.14),
we obtain

1
2

∫
Ω

Km

μ
∇T ,pD

pT · (∇M,pD

pT −∇M,pD

RT ) dx+
∫

Σ

Kf,τ

μ
∇SΠSpT · ∇SΠSpT bf (s) ds

+
∫

Σ

Kf,ν

μ

[[pT ]]
bf,σ

[[pT ]]
bf,σ

bf (s) ds+
(2ξ − 1)μ

4Kf,ν

∫
Σ

[[vpT · ν]]2bf (s) ds =∫
Ω

Q(x)(pM −RM)(x) dx +
∫

Σ

Qf (s)ΠSpT (s)bf (s) ds.

We deduce by using Cauchy-Schwarz’s and Young’s inequalities that

‖pT ‖2
WT ,pD ≤ C

(
‖Q‖0,Ω‖pM −RM‖0,Ω + ‖RT ‖2

1,T + ‖Qf‖0,Σ‖ΠSpT ‖0,Σ

)
.

The estimate (4.15) follows immediately using the trace Lemma 4.5 and the Poincaré inequality (Lem. 4.6).
Finally, applying (4.15) for pD = 0, Q = 0 and Qf = 0, we find, using Poincaré lemma 4.6, that this implies

pT = 0. Since the discrete system is a square linear system we obtain existence and uniqueness of the solution
for any data. �

4.4. Convergence of the numerical scheme

4.4.1. Compactness properties

Lemma 4.9 (compactness lemma in Ω). Let (Tn)n be a family of meshes such that size(Tn) −→
n→∞

0 and

(reg(Tn))n is bounded.
Suppose now given a family of discrete pressure fields pTn = (pMn , γ0,Np

Tn , γ±pTn) ∈ E(Tn) such that
(‖pTn‖1,Tn)n is bounded. Then there exists p ∈ H1(Ω) with γ0,Dp = pD and such that, for a subsequence
still denoted by (pTn)n, we have

pMn −−−−→
n→∞

p strongly in L2(Ω) (4.16)

∇Mn,pD

pTn −−−−⇀
n→∞

∇p weakly in (L2(Ω))2 (4.17)

γ±pTn −−−−⇀
n→∞

γ±p weakly in L2(Σ) (4.18)

[[pTn ]] −−−−⇀
n→∞

[[p]] weakly in L2(Σ) (4.19)

γ0,Dp
Mn −−−−→

n→∞
pD strongly in L2(ΓD) (4.20)

γ0,Np
Mn −−−−⇀

n→∞
γ0,Np weakly in L2(ΓN ). (4.21)
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Proof.
• First step.

We first prove that the family (pMn)n is relatively compact in L2(Ω) using Kolmogoroff’s theorem.
To this end, we introduce, as in the classical theory, p̃Mn , the extension by 0 of pMn on R

2\Ω. It is
clear that the assumption implies that (p̃Mn)n is bounded in L2(R2).

We now prove, using methods similar to those in [16], that there exists C > 0 such that for all |η| < 1,
we have ‖p̃Mn(· + η) − p̃Mn(·)‖2

0,R2 ≤ C|η|. To this end, we define for all σ ∈ E , the function χσ from

R
2 ×R

2 to {0, 1} by χσ(x, y) = 1 if [x, y] ∩ σ 
= ∅ and χσ(x, y) = 0 otherwise. Denote by cσ =
∣∣∣nσ · η

|η|

∣∣∣
for any edge σ. Finally, notice that if cσ = 0 then χσ(x, x + η) = 0 for almost every x ∈ Ω.

Hence, for almost every x ∈ Ω we have

|p̃Mn(x+ η) − p̃Mn(x)| ≤
∑

σ∈Eint
σ=K|L

χσ(x, x+ η)|pK − pL| +
∑

σ∈Eext

χσ(x, x+ η)|pKσ |

+
∑
σ∈S

χσ(x, x + η)
(
|pK+

σ
− pσ+ | + |pK−

σ
− pσ− | + |pσ+ − pσ− |

)
.

Using the Cauchy-Schwarz inequality, it follows that

|p̃Mn(x+ η) − p̃Mn(x)|2 ≤ C

⎛⎜⎝ ∑
σ∈Eint
σ=K|L

χσ(x, x+ η)
|pK − pL|2
cσdσ

⎞⎟⎠×
( ∑

σ∈Eint

χσ(x, x+ η)cσdσ

)

+ C

( ∑
σ∈Eext

χσ(x, x+ η)
|pKσ |2
cσ

)
×
( ∑

σ∈Eext

χσ(x, x + η)cσ

)

+ C

(∑
σ∈S

χσ(x, x+ η)
|pK+

σ
− pσ+ |2

cσdK+
σ

)
×
(∑

σ∈S

χσ(x, x + η)cσdK+
σ

)

+ C

(∑
σ∈S

χσ(x, x+ η)
|pK−

σ
− pσ− |2

cσdK−
σ

)
×
(∑

σ∈S

χσ(x, x + η)cσdK−
σ

)

+ C

(∑
σ∈S

χσ(x, x+ η)
|pσ+ − pσ− |2

cσbf,σ
2

)
×
(∑

σ∈S

χσ(x, x+ η)cσbf,σ
2

)
. (4.22)

It is proved in [16] that, there exists C > 0 such that for any x ∈ Ω we have∑
σ∈Eint

χσ(x, x + η)cσdσ ≤ |η| + C size(Tn),
∑

σ∈Eext

χσ(x, x + η)cσdσ ≤ C.

By exactly the same computations it follows that for any x ∈ Ω we have∑
σ∈EΣ

χσ(x, x + η)dK+
σ ,σcσ +

∑
σ∈EΣ

χσ(x, x + η)dK−
σ ,σcσ ≤ |η| + C size(Tn),

and moreover, since we assumed here that Σ is a segment (or even a finite number NΣ of connected
straight lines) we have for any x ∈ Ω∑

σ∈EΣ

χσ(x, x + η)b2fcσ ≤ NΣ‖bf‖2
∞,Σ.
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We use now these bounds in (4.22), then we integrate the inequality with respect to x ∈ Ω. Noting that∫
R2
χσ(x, x+ η) dx ≤ m(σ)cσ|η|, ∀σ, ∀η,

we get, using in particular the trace Lemma 4.5, the estimate

‖p̃Mn(· + η) − p̃Mn(·)‖2
0,R2 ≤ C(|η| + size(Tn))|η|

⎛⎜⎝ ∑
σ∈Eint
σ=K|L

m(Dσ)
∣∣∣∣pK − pL

dK,L

∣∣∣∣2
⎞⎟⎠

+ C(|η| + size(Tn))|η|

⎛⎝∑
σ∈S

m(Dσ± )

∣∣∣∣∣pK±
σ
− pσ±

dK±
σ

∣∣∣∣∣
2
⎞⎠

+ C|η|
( ∑

σ∈Eext

m(σ)|pKσ
|2
)

+ C|η|
(∑

σ∈S

m(σ)
∣∣∣∣pσ+ − pσ−

bf,σ

∣∣∣∣2
)

≤ C|η|‖pTn‖2
1,Tn

≤ C′|η|.

Hence, by the Kolmogoroff’s theorem, the sequence (pMn)n is compact, and then has a convergent
subsequence in L2(Ω). Let us denote by p its limit.

• Second step. We have

‖γ0,Dp
Mn − pD‖2

0,ΓD
≤ 2

∑
σ∈ED

ext

m(σ)|pKσ
− pD

σ |2 + 2
∑

σ∈ED
ext

∫
σ

|pD(s) − pD
σ |2 ds

≤ C
∑

σ∈ED
ext

dKσ,σm(Dσ)
∣∣∣∣pKσ

− pD
σ

dKσ,σ

∣∣∣∣2 + C
∑

σ∈ED
ext

m(σ)
∫

σ

∫
σ

∣∣∣∣pD(s) − pD(t)
|s− t|

∣∣∣∣2 ds dt

≤ C size(Tn)
(
‖pTn‖2

1,Tn
+ ‖pD‖2

1
2 ,ΓD

)
.

Hence we obtain the strong L2 convergence of the trace γ0,Dp
Mn to the boundary data pD.

• Third step. The bound ‖pTn‖1,T ≤ C and the trace Lemma 4.5 give that there exists G ∈ (L2(Ω))2,
q+ ∈ L2(Σ), q− ∈ L2(Σ), qN ∈ L2(ΓN ), qD ∈ L2(ΓD) such that, for a subsequence, we have

∇Mn,pD

pTn −−−−⇀
n→∞

G weakly in L2(Ω),

γ±pTn −−−−⇀
n→∞

q± weakly in L2(Σ),

γ0,Np
Mn −−−−⇀

n→∞
qN weakly in L2(ΓN ).

Let us now identify the functions G, q± and qN . To this end, for any Φ ∈ S2 (S being defined in (3.2)),
let us write∫

Ω

pM∇ · Φ dx+
∫

Ω

∇M,pD

pT · Φ dx =
∑
K∈T

pK

∑
σ∈EK

∫
σ

Φ|K · nK,σ ds+
∑
D∈D

∇M,pD

pT ·
(∫

D
Φ dx

)
.

Noting that ∇M,pD

pTn is parallel to nK,σ on each diamond cell, it follows that

∇M,pD

pTn ·
(∫

D
Φ dx

)
= ∇M,pD

pTn ·
(∫

D
Φ · nK,σ

)
nK,σ.



260 P. ANGOT ET AL.

Hence, reordering the first sum above as a sum over the diamond cells we derive that∫
Ω

pMn∇ · Φ dx+
∫

Ω

∇Mn,pD

pTn · Φ dx

=
∑
D∈D

m(D)∇Mn,pD

pTn ·
(

1
m(D)

∫
D

Φ · nK,σ dx− 1
m(σ)

∫
σ

Φ · nK,σ ds
)

nK,σ

+
∑

σ∈ED
ext

pD
σ

∫
σ

Φ · n ds+
∑

σ∈EN
ext

∫
σ

γ0,Np
MnΦ · n ds

+
∑
σ∈S

∫
σ

(
γ+pTn (γ+Φ) · n+ + γ−pTn (γ−Φ) · n−) ds.

(4.23)

By using Taylor expansions, we easily see that for each diamond cell in the domain we have∣∣∣∣ 1
m(D)

∫
D

Φ dx− 1
m(σ)

∫
σ

Φ ds
∣∣∣∣ ≤ C size(Tn)‖Φ‖S2 . (4.24)

Note that this formula is still true, for n large enough, for diamond cells touching the extremities of Σ
since Φ is assumed to be constant near ∂Σ, so that the left-hand side term in (4.24) is equal to zero
for such diamond cells. It follows that the first term in the right-hand side of (4.23) tends to 0 when
n→ ∞. Passing to the limit when n goes to infinity in the other terms, it follows that∫

Ω

p∇ · Φ dx+
∫

Ω

G · Φ dx =
∫

ΓD

pDΦ · n ds+
∫

ΓN

qNΦ · n ds+
∫

Σ

(
q+ (γ+Φ) · n+ + q− (γ−Φ) · n−) ds.

This formula holds for any Φ ∈ S2, and then for any Φ ∈ H1(Ω)2 thanks to Proposition 3.3. We
conclude that p ∈ H1(Ω) and G = ∇p, γ0,Dp = pD, qN = γ0,Np, q± = γ±p and the claim is proved. �

We can also obtain by similar and simpler arguments a 1D compactness result on the fracture Σ that we
state here.

Lemma 4.10 (compactness lemma in Σ). Let (Tn)n be a family of meshes such that size(Tn) −→
n→∞

0 and

(reg(Tn))n is bounded. Let now pSn ∈ E(Sn) be a family of fracture pressure fields such that (‖pSn‖1,Sn)n is
bounded. Then, there exists pf ∈ H1(Σ) such that, for a subsequence still denoted by pSn , we have

pSn −−−−→
n→∞

pf strongly in L2(Σ),

∇SnpSn −−−−⇀
n→∞

∇τ pf weakly in L2(Σ).

4.4.2. Convergence theorem

We are now in position to prove the main result of this paper, which shows the convergence of the finite
volume scheme to a solution of our asymptotic model of flows in fractured porous media.

This result does not give an error estimate since it would require regularity results for the solution of the
asymptotic problem (3.5)–(3.10). This problem should be addressed in a further work. Nevertheless, the scheme
under study is expected to be first order convergent in the discrete H1 norms, like in the classical situation of
the Darcy problem in a non-fractured porous medium (see [16]).

Theorem 4.11. Let (Tn)n be a family of meshes such that size(Tn) −−−−→
n→∞

0 and (reg(Tn))n is bounded. Then,

the unique solution pTn to the scheme (4.4)–(4.11) for the mesh Tn converges to the unique solution p ∈ W of
problem (3.5)–(3.10).
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More precisely, (pMn)n converges strongly to p in L2(Ω), (∇Mn,pD

pMn)n converges weakly to ∇p in (L2(Ω))2,
(ΠSnpTn)n converges strongly to Πfp in L2(Σ) and (∇SnΠSnpTn)n converges weakly to ∇SΠfp in L2(Σ).

Proof. Notice that we are going to show the convergence of a subsequence which is enough to prove the claim
since we already know that the solution to (3.5)–(3.10) is unique.

• From the a priori estimate obtained in Lemma 4.8, and the compactness Lemmas 4.9 and 4.10, we
obtain that there exists p ∈ H1(Ω) and pf ∈ H1(Σ) such that (4.16)–(4.21) hold and moreover

ΠSnpTn −−−−→
n→∞

pf strongly in L2(Σ) (4.25)

∇SnΠSnpTn −−−−⇀
n→∞

∇τ pf weakly in L2(Σ). (4.26)

We want now to show that pf = Πfp, that p ∈ W and that it is a solution to (3.5)–(3.10).
• From equations (4.11) and (4.19) we derive that

vpTn · ν −−−−−⇀
n→+∞

−Kf,ν

μ

(
[[p]]
bf

)
weakly in L2(Σ).

From now on, we need to perform a separate analysis for the two cases ξ > 1
2 and ξ = 1

2 , since in the
first case we have an additional a priori estimate and we have to pass to the limit, as n goes to infinity,
independently in the problem in the porous matrix and in the fracture, whereas in the second case we
must treat simultaneously the two equations.

• The case ξ > 1
2

– Thanks to the a priori estimate (4.15) and definition (4.3) of the norm ‖ · ‖WT ,pD , we see that for
ξ > 1

2 , the quantity [[vpTn · ν]] is bounded in L2(Σ). Hence, there exists Ψ ∈ L2(Σ) such that, for
a subsequence,

[[vpTn · ν]] −−−−⇀
n→∞

Ψ weakly in L2(Σ). (4.27)

Notice that, thanks to assumptions (2.2), it is easily seen that
∑

σ∈Sn
�σbf,σ converges strongly

to bf in L2(Σ) for instance. Hence, we can take the limit as n goes to infinity in equation (4.8)
and find

pf =
1
2
(γ+p+ γ−p) +

(2ξ − 1)μ
4Kf,ν

bfΨ. (4.28)

– Let now φf be a function in C2(Σ), which is constant near the two ends ∂Σ+ and ∂Σ− of Σ. Let
us take φS = ((φf (xσ))σ, φf (∂Σ−), φf (∂Σ+)) ∈ E(S) in (4.13). It follows that, for n large enough
(so that φf is constant on the two edges σ touching the boundary of Σ) we have∫
Σ

Kf,τ

μ
(∇SnΠSnpTn)(∇τφf (s) +Rn(s))bf (s) ds =

∫
Σ

Qf (s)(φf (s) + rn(s))bf (s) ds

−
∫

Σ

[[vpTn · ν]](φf (s) + rn(s)) ds, (4.29)

where

Rn(s) =
φf (xσ′ ) − φf (xσ)

dσ,σ′
(τσ,σ′ · τ ) −∇τφf (s), ∀s ∈ Se, ∀e = σ|σ′ ∈ Vint,

Rn(s) = 0, ∀s ∈ Se, ∀e ∈ {∂Σ−, ∂Σ+},
and

rn(s) = φf (xσ) − φf (s), ∀s ∈ σ, ∀σ ∈ Sn.
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Since φf is smooth, we easily see that ‖Rn‖∞,Σ + ‖rn‖∞,Σ ≤ size(Tn)‖φf‖C2 . Hence, we can pass
to the limit as n goes to infinity in (4.29) by using (4.26) and (4.27). We find that pf satisfies

−∇τ

(
bf (s)

Kf,τ

μ
(∇τpf )

)
= bfQf − Ψ on Σ, (4.30)

as well as the Neumann boundary condition on ∂Σ.
– Let φ ∈ S (see definition (3.2)) such that φ = 0 on ΓD. We use here the center-valued projection

ΠTn,cφ = (ΠMn,cφ, γ0,NΠTn,cφ, γ±ΠTn,cφ) of φ on the mesh Tn defined by⎧⎪⎪⎨⎪⎪⎩
ΠMn,cφ = (φK)K∈Mn , φK = φ(xK),

γ±ΠTn,cφ = (φσ± )σ∈Sn , φσ± = γ±φ(xσ),

γ0,NΠTn,cφ = (φN
σ )σ∈EN

ext
, φN

σ = γ0,Nφ(xσ).

It follows from (4.12) that∑
D∈D

∫
D

Km

μ

(
∇Mn,pD

pTn

)
·
(
(∇φ(x) · nσ + R̃n(x))nσ

)
dx−

∫
Σ

(
φ+

r+n + r−n
2

)
[[vpTn · ν]] ds

+
∫

Σ

Kf,ν

μ

[[pTn ]]
bf,σ

(
[[φ]] + r+n − r−n

bf,σ

)
bf ds =

∫
Ω

Q(x)ΠMn,cφdx, (4.31)

where
R̃n(x) = ∇φ(x) · nσ −∇Mn,0ΠTn,cφ · nσ, ∀x ∈ Dσ, ∀Dσ ∈ D,

r±n (s) = γ±φ(xσ) − γ±φ(s), ∀s ∈ σ ∈ Sn.

Since φ is smooth and vanishes on ΓD, we easily get that

‖R̃n‖∞,Ω + ‖r±n ‖∞,Σ ≤ C size(Tn)‖φ‖S .

Furthermore, on each diamond cell the vector ∇Mn,pD

pTn is parallel to nσ. Hence we get∫
D

Km

μ
∇Mn,pD

pTn ·
(

(∇φ(x) · nσ)nσ

)
dx =

∫
D

Km

μ
∇Mn,pD

pTn · ∇φ(x) dx,

so that finally, we can pass to the limit when n goes to infinity in (4.31) and obtain∫
Ω

Km

μ
∇p · ∇φdx+

∫
Σ

Kf,ν

μ

(
[[p]]
bf

)
[[φ]]
bf

bf ds−
∫

Σ

φΨ ds =
∫

Ω

Qφdx. (4.32)

Taking φ ∈ C∞
c (Ω) in this formulation, we first get that p satisfies

∇ · vp = Q in Ω,

with vp = −Km

μ (∇p) and thus vp ∈ Hdiv(Ω).
Since S is dense in H1(Ω) (Prop. 3.3), we get that (4.32) holds for any φ ∈ H1(Ω) so that,
comparing to the Stokes formula (3.1), we finally obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

vp · n = 0, on Γ,

Ψ = [[vp · ν]], on Σ,

vp · ν = −Kf,τ

μ

(
[[p]]
bf

)
, on Σ,
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and then by (4.28), we find that the fracture pressure satisfies

pf = p− (2ξ − 1)μ
4Kf,ν

bf [[vp · ν]],

that is pf = Πfp. Finally, replacing the above value for Ψ in (4.30), we recover the Darcy equation
in the fracture and the claim is proved.

• The case ξ = 1
2

Note that, in that case, we can easily pass to the limit when n goes to infinity in (4.8) to find that

pf =
1
2
(γ+p+ γ−p) = Πfp. (4.33)

Unfortunately we do not have now any a priori bound on [[vpTn · ν]]. Hence, we are not able to pass to
the limit independently in (4.12) and (4.13) as n goes to infinity as before. That is the reason why we
are going to treat simultaneously the continuity equation in the porous matrix and in the fracture by
passing to the limit in the global formulation (4.14) (the last term being 0 since ξ = 1

2 ).
Taking here also φTn = ΠTn,cφ for any φ ∈ S in this formula, we get

∑
D∈D

∫
D

Km

μ

(
∇Mn,pD

pTn

)
·
(
(∇φ(x) · nσ + R̃n(x))nσ

)
dx +

∫
Σ

Kf,ν

μ

(
[[pTn ]]
bf,σ

)(
[[φ]] + r+n − r−n

bf,σ

)
bf ds+

∫
Σ

Kf,τ

μ
(∇SnΠSnpTn)(∇τφ(s) +Rn(s))bf (s) ds =∫

Ω

Q(x)ΠMn,cφdx +
∫

Σ

Qf (s)(φ(s) + rn(s))bf (s) ds.

By the same arguments as that used above, we can pass to the limit when n goes to infinity in this
formula and obtain∫

Ω

Km

μ
∇p · ∇φdx +

∫
Σ

Kf,τ

μ
(∇τ Πfp)∇τφ(s)bf (s) ds+

∫
Σ

Kf,ν

μ

(
[[p]]
bf

)
[[φ]]
bf
bf ds

=
∫

Ω

Qφdx+
∫

Σ

Qfφbf ds. (4.34)

Taking first φ ∈ C∞(Ω) vanishing in a neighborhood of the fracture Σ, we see that ∇ ·vp = Q in Ω and
that the Neumann boundary condition (3.7) is satisfied.

Furthermore, we know from the compactness Lemma 4.10 that Πfp ∈ H1(Σ), that is to say
Πfp = p ∈ H1(Σ) by (4.33). It follows that p lies in the space W defined in Section 3.1.2.

We use now the Stokes formula (3.1) for vp and any φ ∈ S and we compare to (4.34). It follows that〈
[[vp · ν]], φ

〉
H− 1

2 (Σ),H
1
2 (Σ)

+ 〈vp · ν, [[φ]]〉
H̃− 1

2 (Σ),H
1
2
00(Σ)

+
∫

Σ

Kf,τ

μ
(∇τ p)∇τφ bf (s) ds+

∫
Σ

Kf,ν

μ

(
[[p]]
bf

)
[[φ]]
bf
bf ds =

∫
Σ

Qfφbf ds. (4.35)

– For any ψ ∈ C∞
c (Σ), we easily build a function φ ∈ S such that γ+φ = ψ/2 and γ−φ = −ψ/2, so

that φ = 0 and [[φ]] = ψ. Using this particular test function in (4.35) for any such ψ, we deduce
that

vp · ν = −Kf,ν

μ

(
[[p]]
bf

)
·
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– Consider now the space SΣ = {ψ ∈ C∞(Σ), ψ is constant near ∂Σ− and ∂Σ+}. For any ψ ∈ SΣ,
we can easily build φ ∈ S such that [[φ]] = 0 and φ = ψ, so that we get

〈[[vp · ν]], ψ〉
H− 1

2 (Σ),H
1
2 (Σ)

+
∫

Σ

Kf,τ

μ
(∇τ p)∇τψ bf(s) ds =

∫
Σ

Qfψbf ds.

The set SΣ being dense in H1(Σ), we finally find that the continuity equation (3.8) and the
boundary condition (3.9) are satisfied in the fracture Σ.

• Conclusion
We proved the existence of a solution of the problem (3.5)–(3.9) for all ξ ≥ 1

2 . Furthermore, this
problem admits at most one solution as shown in the previous section. Hence, we conclude that the
whole sequence (pTn)n converges to the unique solution of problem (3.5)–(3.9) in the sense given in the
statement of the theorem. �

5. Numerical results for some partially and fully immersed fractures

We present numerical results for a computational domain Ω = [0, 1]2. Let us recall that the permeability
tensor is isotropic in the porous matrix – we choose Km = Id – and diagonal in the curvilinear frame of the
fractures. We have taken in this section μ = 1 and Q = 0, Qf = 0, so that the flow is only generated by the
boundary conditions.

We always take the quadrature parameter ξ equal to 1
2 , except in Section 5.3 where the influence of this

parameter is investigated.
We first describe in Section 5.1, in a few words, the way we obtained the reference solutions that we will use

in order to discuss the validity of the asymptotic models under study. All the numerical results for both the
asymptotic and the global Darcy models are presented when the mesh convergence is reached, that is when the
magnitude of the difference between the two solutions do not vary when the meshes are refined. We represent
the distribution of the pressure field inside the domain from dark (high pressure values) to light (low pressure
values). We also represent some of the streamlines of each flow.

5.1. Computing reference solutions of the global model (PG)

The difficulties in approximating by finite volume methods the two-permeabilities global Darcy model (PG)
are twofold. The first one comes from the very different scales in the flow (the small aperture of the fractures,
the high permeability ratios, ...). The second one comes from the anisotropy of the equation inside the fracture
which requires a “gradient reconstruction” method to approximate fluxes across the edges. To this end, we
choose a Discrete Duality Finite Volume approach (see [2,14]) which consists in approximating the solution
simultaneously on a primal and a dual mesh. In the presence of strong discontinuities of the permeability
tensor, these classical DDFV schemes still converge but slowly (at rate 1/2). To recover a first order scheme,
a modified DDFV scheme is proposed and analysed in [11,20]. This m-DDFV scheme is proved to be of first
order in the discrete H1-norm, even in the presence of high permeability jumps.

5.2. Results for a straight half-fracture with constant aperture

We consider the half fracture Σ × [−bf/2, bf/2], with Σ = {(x, y) such that x = 0.5, y ≥ 0.5} and bf is
constant and equal to 0.01. Let us describe the various configurations and boundary conditions we propose
to illustrate various typical flows and the behavior of the model under study in each case. We use in this
section rectangular meshes for both global model (65 536 control volumes) and asymptotic model (16 364 control
volumes), in order to obtain a precise comparison of the two models along the line y = 0.75.
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Figure 4. Configurations and boundary conditions for a straight half fracture.

• Highly permeable fracture, see Figure 4 (left).

The quantities bfKf,τ and
Kf,ν

bf
are of the same order e.g. Kf,τ = 106, Kf,ν = 100. We impose

Dirichlet boundary conditions on ∂Ω: p(·, 0) = 0, p(·, 1) = 0, p(0, ·) = 1, p(1, ·) = 2.

• Impermeable fracture, see Figure 4 (center).

The quantity bfKf,τ is close to zero and
Kf,ν

bf
remains small e.g. Kf,τ = 10−7, Kf,ν = 10−7. We

impose mixed boundary conditions on ∂Ω: vp · n(·, 0) = 0, vp · n(·, 1) = 0, p(0, y) = 0, p(1, ·) = 1.

• Fracture with intermediate properties, see Figure 4 (right).
In this test, previously performed for the corresponding non-immersed fracture in [21,22], the ra-

tio between Kf,ν/bf and Km is high whereas bfKf,τ and Km are of same order e.g. Kf,τ = 100,
Kf,ν = 100.

We impose mixed boundary conditions on ∂Ω: p(0, ·) = 0, p(1, ·) = 1, vp ·n(·, 0) = 0, vp ·n(x, 1) = 0
for any x 
= 1

2 , and p(1
2 , 1) = 1.

In Figure 5, the results obtained by the resolution of the global Darcy two-permeabilities model (PG) by
the m-DDFV methods and the resolution of the asymptotic model (PA) are compared. At the top part of the
figure, we show the pressure field and some streamlines indicating the shape of the flow we are looking at in
each case. In the middle part of the figure, we show the pressure on the horizontal cutline y = 0.75 whereas
in the bottom part we show the pressure field along the fracture. In any case, the curves for the global Darcy
model and the asymptotic models are nearly identical.

These results show the ability of the asymptotic model to simulate efficiently all kinds of flows in fractured
porous media, from impermeable fractures (where the pressure is not continuous across the fracture) to highly
permeable ones (where the mass flux is not continuous across the fracture). The gain in using the asymptotic
model is especially obvious for large permeability ratios or very anisotropic fracture permeabilities: the resolution
of the global Darcy model typically requires six times more degrees of freedom than the asymptotic one in order
to achieve mesh convergence of the numerical solutions for a given tolerance.

5.3. Influence of the quadrature parameter ξ

In many situations, we observed that the influence of the quadrature parameter ξ is almost negligible and
any value in the interval [1/2, 1] gives satisfactory results. Nevertheless, the influence of the parameter ξ can
be observed in some cases. We choose here for instance a fracture with a very high anisotropy Kf,τ = 100,
Kf,ν = 10−4. We consider two different Dirichlet boundary conditions for the pressure (see Fig. 6), the first
one leading to a symmetric flow, and the second one leading to a non-symmetric flow.
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Figure 5. Pressure field and streamlines (top), pressure along the cutline y = 0.75 (middle),
pressure along the fracture (bottom).

In Figures 7 and 8, we show the pressure field obtained with the global Darcy model computed on a mesh
containing 65 560 rectangular control volumes (that is the reference solution) and the solutions obtained for
various values of ξ for the asymptotic model on a mesh with square 16 384 control volumes. We first point out
that for ξ < 1/2, the asymptotic model may become ill-posed or unstable (in the present situation, negative
values of the pressure appear).

In Figures 9 and 10, we go further in the comparisons by showing, on the left part of the figure, the pressure
distribution obtained along the fracture in each case. More precisely, we plot Πfp(s) for the two models ξ = 1/2
and ξ = 3/4, as well as the quantity p̄(s) = (γ+p(s) + γ−p(s))/2 for ξ = 3

4 . We recall that when ξ = 1/2, we
have Πfp = p̄ that is the reason why there is only one curve in that case.
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Figure 6. Boundary condition for a partially permeable fracture. Symmetric flow (left), non
symmetric flow (right).

Reference global
Darcy solution

Asymptotic model
for ξ = 1/2

Asymptotic model
for ξ = 3/4

Asymptotic model
for ξ = 0.498

Figure 7. Comparison between the pressure field obtained with the global Darcy model and
the asymptotic model for various values of ξ for the symmetric flow.

Reference global
Darcy solution

Asymptotic model
for ξ = 1/2

Asymptotic model
for ξ = 3/4

Asymptotic model
for ξ = 0.498

Figure 8. Comparison between the pressure field obtained with the global Darcy model and
the asymptotic model for various values of ξ for the non symmetric flow.

The reference mean-pressure s �→ 1
bf

∫ bf /2

−bf /2
p(t, s) dt computed by the resolution of the global Darcy model

on the fine grid is also given for reference. These results confirm that the model for ξ = 1
2 leads to more

precise results. The other two parts (center and right) of Figures 9 and 10 show the pressure along two cutlines
y = 0.5625 and y = 0.75.
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Figure 9. Comparison of pressure along and across the fracture between the global Darcy
model and the asymptotic model for ξ = 0.5 and ξ = 0.75.
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Figure 10. Comparison of pressure along and across the fracture between the global Darcy
model and the asymptotic model for ξ = 0.5 and ξ = 0.75.

We are not able to draw any definitive conclusion on what should be a good choice for the parameter ξ.
Nevertheless, it seems that the pressure along the fracture (left-hand side part of Figs. 9 and 10) is more
accurately computed by using the simplest model, that is the one with ξ = 1/2. It is also confirmed in these
figures that the choice of the no-flux boundary conditions at the extremities of the fracture is an important
issue that should be further analysed to improve accuracy of the models.

Finally, we observe that both choices (ξ = 1/2 and ξ = 3/4) lead to quite accurate pressure computations
outside the fracture, at least far enough from the extremities of Σ immersed in Ω̃.

From now on, in the remaining of this paper, we systematically use the value ξ = 1/2 in our computations.

5.4. Results for a network of half straight fractures

We consider here a set of four horizontal fractures of aperture bf = 0.01 defined by Fi = Σi ×
[
− bf

2 ,
bf

2

]
,

with Σ1 = {(x, y) such that x ≥ 0.3, y = 0.2}, Σ2 = {(x, y) such that x ≤ 0.7, y = 0.4}, Σ3 = {(x, y) such that
x ≥ 0.3, y = 0.6}, Σ4 = {(x, y) such that x ≤ 0.7, y = 0.8}. The fractures F2 and F4 are impermeable
Kf,τ = Kf,ν = 10−2, whereas F1 and F3 present intermediate properties Kf,τ ∈ {1, 10} and Kf,ν = 10−2.
For the boundary conditions described in Figure 11, we compare in Figure 12 the solution (solid line) of
the global Darcy model using a mesh with 201 704 square control volumes, and the solution (dashed line)
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Figure 11. Configuration and boundary conditions for a network of half straight fractures.

of the asymptotic model, using a mesh with 25 600 square control volumes, along the four fractures Σi and
along the cutline {x = 0.65}.

We observe a perfect agreement of the two solutions in the first two cases since the curves are almost
indistinguishable. In the third case, where Kf,τ is larger, we can see that we approach the validity limit of the
model. It appears here also that the Neuman condition at the boundary of the fracture is not perfectly suitable
in this case. A more precise modelling of the asymptotic boundary condition on ∂Σ seems to really be necessary
in this kind of situations.

5.5. Fracture with variable aperture

We now investigate the ability of the asymptotic model to simulate flows in fractures with variable aperture.
We consider (see Fig. 13) a vertical conic-shaped fracture at x = 1

2 where bf varies linearly from 0.001 (bottom)
to 0.019 (top). We consider an isotropic case Kf,τ = Kf,ν = 100.

In Figure 14, we compare the results obtained by the global Darcy model (left part of the figure) and by the
asymptotic model (center part of the figure). We can see a quite good agreement. Notice that the mesh used to
compute the global Darcy solution has to be very fine near the bottom of the fracture since its aperture is equal
to 10−3 in this area. More precisely, the asymptotic results presented here have been obtained for a rectangular
mesh with 16 364 control volumes, whereas the global Darcy computation has been performed on a triangular
mesh with 96 764 control volumes, suitably refined in the neighbourhood of the fracture.

We also give for comparison, the result obtained with the asymptotic model if we replace the variable (linear)
aperture bf(s) with a constant mean-value bf (s) ≡ 10−2, which amounts to approximating the conic-shaped
fracture with an “equivalent” constant aperture fracture. We clearly see that the result is less satisfactory which
demonstrates the need to suitably take into account the geometry of the fracture in the asymptotic model.

5.6. Comparison with an analytic solution

We finally test the model in the case of a permeable lens-shaped fracture, using the analytic behaviour of
the flow obtained in [23] in the neighbourhood of the extremities of the lens embedded in an infinite porous
medium. This lens, centered at (0.5, 0.5) and whose length is 0.2, is limited by the arcs of two circles of the same
radius meeting at a right angle. We refer to Figure 15 which also presents the boundary conditions used for
the numerical simulations. We consider the isotropic case where Kf,τ = Kf,ν = Kf = 12. For a flow parallel
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Figure 12. Pressure field and streamlines (top), pressure along the four fractures (middle),
pressure along the cross section Σ⊥ (bottom).

to the main symmetry axis of the lens, the analytic solution derived in [23] in the neighbourhood of the extremity
(0.5, 0.6), is equivalent up to a constant to

panal(y) ∼

⎧⎨⎩
4

(Kf+1)Δ

(
0.6−y
y−0.4

)γ1

, y < 0.6,

2
Δ

(
cos(πγ1) − Kf−1

Kf+1 cos
(

πγ1
2

))(
y−0.6
y−0.4

)γ1

, y ≥ 0.6,

with Δ = cos(πγ1) − 1
2

Kf−1
Kf+1 cos

(
πγ1
2

)
, γ1 = 2

π acos
(

1
2

Kf−1
Kf +1

)
.
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Figure 13. Configuration and boundary conditions for the conic-shaped fracture.
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Figure 14. Influence of the shape of the fracture.

The right part of Figure 15 shows the good agreement near the extremity between this analytic solution and
the global Darcy solution, computed on a triangular mesh with 19 848 cells. Note that we chose for the additive
constant the pressure value given by the global Darcy solution at the angular point (0.5, 0.6). The solution
given by the asymptotic model on a mesh composed of 13 448 triangles is globally close to the global Darcy
solution, except in the very neighbourhood of the extremity of the lens, where the aperture vanishes. Since the
aperture (s) vanishes at the two extremities of the fracture, this test case does not exactly enter the analysis
proposed in this paper. Nevertheless, the model seems to give satisfactory results even in this situation.

5.7. Extension to more general geometries

We conclude this section by showing some results in more general geometric situations. Figure 16 shows
the pressure fields obtained in the case of a circular fracture and in the case of a polygonal fracture. We
observe a good qualitative agreement between the solution computed by the asymptotic model under study and
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Figure 15. The lens-shaped fracture: Configuration and boundary conditions (left), pressure
field along the symmetry axis x = 0.5 of the fracture near one of its extremity (right).

the one obtained by solving the reference global Darcy model. Note that, in the case of the circular fracture,
the influence of the curvature of Σ has to be taken into account in the derivation of the model. Here, since
this curvature is constant, it only amounts to add a constant multiplicative factor in front of the tangential
divergence operator in equation (PA-e).

6. Conclusion and perspectives

In this study, some asymptotic models of flow in 2D fractured porous media are formally derived in the
case where the fracture domains, whose aperture is supposed to be small, are reduced to polygonal interfaces
immersed inside the porous matrix. It is then needed to solve an adequate 1D Darcy-type equation along these
immersed interfaces, coupled with an usual 2D Darcy equation in the porous matrix.

A cell-centered finite volume scheme is investigated to solve this coupled problem. The existence of solutions
to the asymptotic models is proved by first showing existence of the solution of the finite volume approximation
schemes and then showing convergence of these solutions to the solution of the continuous problem when the
mesh size tends to 0. Uniqueness of such a solution is ensured by energy estimates. The convergence proof of
the scheme is quite intricate due to the fact that, because of the immersed interfaces, the domain under study
has cuts, and then is not located on a unique side of its boundary.

Using the proposed numerical scheme, the behavior and the validity of the asymptotic models are then
investigated for a large variety of situations. For these examples, we obtain a good agreement with the solutions
computed analytically or obtained by using appropriate numerical schemes for the global Darcy problem on
locally refined meshes. In our experiments, the number of required degrees of freedom saved with the use of the
asymptotic models proves to be all the more important when the permeability jumps are large.

In a further work we should investigate the rigorous justification of the asymptotic model, by showing that
the solutions of the global Darcy problem and of the asymptotic model are close enough (say O(b2f/|Σ|2)) in
a relevant functional space. The models and the numerical methods studied here could be generalised to 3D
fractured porous media, at least for simple fracture geometries like planar polygonal ones.

It would be interesting to investigate the coupling of such models with a time dependent advection-diffusion
equation for the solutal transport in order to study solutal dispersion phenomena in fractured porous media.
Another perspective could be to consider fractures in which the flow is governed by the Stokes equation instead
of the Darcy one.
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Circular fracture
Kf,τ = Kf,ν = 10−4

Polygonal fracture
Kf,τ = 104, Kf,ν = 10−4

Global Darcy model

Asymptotic model

Figure 16. Pressure fields for a circular fracture and a polygonal fracture. Comparison be-
tween the reference solution (global Darcy model) and the solution of the asymptotic model.

A. Appendix: Proof of a technical result

Proof of the density result in Proposition 3.1. Let us give a proof in the simple case where Ω̃ = R
2, Σ = [0, 1]×

{0}, and Ω = Ω̃ \ Σ. We choose Ω+ = R × R
+ and Ω− = R ×R

−. Let v ∈ H1(Ω) such that γΣv = 0, that is to
say γ+v = γ−v = 0 on Σ.

First of all, since we have the equality γ+v = γ−v on the whole real line R × {0} we see that v ∈ H1(R2).
Let ε > 0. Recall that single point sets have a zero H1-capacity in R

2. In particular, there exists η > 0
and w ∈ H1(R2) such that ‖v − w‖H1(R2) ≤ ε and w = 0 identically on the two balls B((0, 0), η), B((1, 0), η)
centered at the two extremities of Σ. Furthermore, we can choose w in such a way that γ+w = γ−w = 0 on Σ.
Hence, we have γ+w = γ−w = 0 on [−η, 1 + η] × {0}. Let now x ∈ R �→ φ1(x) be a smooth function with
support in ]− η, 1 + η[ and such that φ1(x) = 1 for x ∈ [−η/2, 1 + η/2], and let y ∈ R �→ φ2(y) be another
smooth function with support in ]− 1, 1[ and such that φ2(y) = 1 for y ∈ [−1/2, 1/2].

For any δ > 0 we define vδ(x, y) = w(x, y)×(1−φ1(x)φ2(y/δ)) and we claim that vδ converges to w in H1(R2)
when δ goes to 0. The convergence of vδ and ∂xvδ in L2(R2) towards w and ∂xw respectively is straightforward
by using the Lebesgue theorem. Let us now show the convergence of ∂yvδ when δ goes to 0. To this end,
the only non trivial term to estimate is

Tδ =
∫ 1+η

−η

∫ δ

−δ

|w(x, y)φ1(x)|2
1
δ2

|φ′2(y/δ)|2 dxdy.
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Since φ1 and φ′2 are bounded we have

Tδ ≤ C

∫ 1+η

−η

∫ δ

−δ

1
δ2

|w(x, y)|2 dxdy ≤ C

∫ 1+η

−η

∫ δ

−δ

1
y2

|w(x, y)|2 dxdy.

Since γ+w = γ−w = 0 for any x ∈ [−η, 1 + η], we can use the Hardy inequality and obtain

Tδ ≤ C

∫ 1+η

−η

∫ δ

−δ

|∂yw(x, y)|2 dxdy,

and we finally find that Tδ → 0 when δ → 0 by the Lebesgue theorem.
As a conclusion, we can find δ small enough such that ‖vδ − w‖H1(R2) ≤ ε. Gathering the previous results

we have
‖v − vδ‖H1(R2) ≤ ‖v − w‖H1(R2) + ‖w − vδ‖H1(R2) ≤ 2ε.

By construction, we see that vδ is identically zero on [−η/2, 1+ η/2]× [−δ/2, δ/2], hence by convolution with a
suitable regularization kernel with compact support we may find a smooth function φε which is identically zero
on [−η/4, 1 + η/4] × [−δ/4, δ/4] and such that ‖vδ − φε‖H1(R2) ≤ ε.

We finally found a function φε ∈ C∞
c (Ω) (since Σ does not intersect the support of φε) and such that

‖v − φε‖H1(Ω) ≤ 3ε, and then the claim is proved. �
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