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AN AUTOMATA-THEORETIC APPROACH
TO THE STUDY OF THE INTERSECTION

OF TWO SUBMONOIDS OF A FREE MONOID

Laura Giambruno1 and Antonio Restivo1

Abstract. We investigate the intersection of two finitely generated
submonoids of the free monoid on a finite alphabet. To this purpose,
we consider automata that recognize such submonoids and we study the
product automata recognizing their intersection. By using automata
methods we obtain a new proof of a result of Karhumäki on the cha-
racterization of the intersection of two submonoids of rank two, in the
case of prefix (or suffix) generators. In a more general setting, for an
arbitrary number of generators, we prove that if H and K are two
finitely generated submonoids generated by prefix sets such that the
product automaton associated to H ∩ K has a given special property

then r̃k(H ∩ K) ≤ r̃k(H)r̃k(K) where r̃k(L) = max(0, rk(L) − 1) for
any submonoid L.
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1. Introduction

The main purpose of this paper is to study the intersection of two submonoids
of a free monoid by using an automata approach. We are, in particular, interested
in submonoids of finite rank.

The study of the intersection of two submonoids of finite rank is not trivial at
all. In fact, by a result of Latteux and Leguy (cf. [8]), every language is regular
if and only if the submonoid generated by it is obtained as homomorphic image
of the intersection of two finitely generated monoids: Let A be an alphabet and
R a language of A∗. R is a regular language if and only if there exist two finite
languages F1, F2 and a morphism g such that R∗ = g(F1

∗ ∩ F2
∗).
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Moreover the study of the intersection of two submonoids has been developed
in many papers. It was first studied by Tilson in 1972 (cf. [12]) who proved that
the intersection of two free submonoids of A∗, the free monoid on a finite alphabet
A, is free too.

Karhumäki in 1984 (cf. [7]) deepened the study of the intersection of two sub-
monoids generated by two elements by giving a characterization of such an in-
tersection. In particular he proved that given two submonoids H and K of A∗,
where A is a finite alphabet, if both H and K are of rank two, then H ∩ K is a
submonoid either of rank at most two or it is generated by a regular language of
a special form. In particular if H and K are generated by prefix (or suffix) sets
of two words, and H ∩ K is not finitely generated, then this intersection has the
form (αβ∗γ)∗ where α, β, γ ∈ A∗.

Recently Bruyère et al. (cf. [2]) have studied the meet of two rational codes X
and Y , defined as the base of the free monoid X∗ ∩Y ∗. They concentrated on the
study of maximal rational codes such that their meet is yet a maximal rational
code, showing with many examples the complex behavior of the meet. Finally
they proved that any rational code is the meet of two rational maximal codes.

The starting motivation of this paper was the article of Karhumäki (cf. [7]) that
characterizes the intersection of two submonoids of the free monoid generated by
two elements. The proof given by Karhumäki is long and provides no intuition
on the real nature of the result. In this paper we prove, in particular, the result
of Karhumäki in the case of two submonoids generated by prefix (or suffix) sets
using a more intuitive approach based on automata.

When dealing with the intersection of two submonoids of finite rank it is natural
to relate it to a more general problem in the theory of free groups known as the
‘Hanna Neumann conjecture’. This conjecture deals with the problem of finding
an upper bound of the rank of the intersection of two finitely generated subgroups.

In 1956 Hanna Neumann (cf. [10]) proved that if H and K are two subgroups
of finite rank of a free group then r̃k(H ∩ K) ≤ 2r̃k(H)r̃k(K), where r̃k(T ) =
max(rk(T )− 1, 0) with rk(T ) denoting the rank of a subgroup T . Then she made
the following conjecture, known nowadays as the ‘Hanna Neumann conjecture’:

r̃k(H ∩ K) ≤ r̃k(H)r̃k(K).

In 1991 Walter Neumann (cf. [11]) formulated a stronger conjecture known as
“Strengthened Hanna Neumann conjecture” (in short SHN) and in 2002 Meakin
and Weil (cf. [9]) proved that SHN holds for the class of positively generated
subgroups of the free group F (A) on A, finite alphabet, that are generated by
words on A∗. This last result suggested us to propose the problem of Hanna
Neumann for finitely generated submonoids of a free monoid, in the case that
their intersection is finitely generated.

Some of the basic tools in dealing with the Hanna Neumann conjecture for
free groups makes use of the representation of subgroups of the free group by
graphs (or automata). The same tools are still available when dealing with the
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intersection of two submonoids of the free monoid. For this purpose we refer to
the correspondence (cf. [1]) between submonoids on the free monoid on a finite
alphabet A and automata on A.

Through the study of the product of two automata associated to two finitely
generated submonoids H and K, we prove that if H and K are submonoids ge-
nerated by prefix sets such that the product automaton associated to H ∩ K has
a given special property then r̃k(H ∩ K) ≤ r̃k(H)r̃k(K). In the general case we
find a family of examples such that rk(H ∩ K) = 2log2(rk(H)) log2(rk(K)).

Moreover if the two submonoids H and K are generated by prefix sets of two
elements, then their intersection H ∩ K either is of rank two, or it has the form
(αβ∗γ)∗ where α, β, γ ∈ A∗, that is the result of Karhumäki [7].

2. Automata and submonoids

We consider finite state automata on a finite alphabet A. For the notation we
refer to [1]. Let A be a finite alphabet. Let us denote by ε the empty word of A∗ and
by A+ the set of nonempty words on A. An automaton over A, A = (Q, I, T,F),
consists of a finite set Q of states, of two subsets I and T of Q called sets of initial
and final states, respectively, and of a set F ⊂ Q × A × Q whose elements are
called edges. An edge e = (x, a, y) is also denoted by e : x

a−→ y. The letter a
is called the label of the edge. We will say that the edge e goes out from x and
comes in y.

Two edges e : x
a−→ y and f : x′ b−→ y′ are consecutive if y = x′. A path in A is

a finite sequence p = p1p2 . . . pn of consecutive edges pi : xi
ai−→ yi. We shall also

write p : x1
w−→ yn where w = a1a2 . . . an is the label of the path p. The path p is

said to start at x1 and end at yn. We indicate by i(p) = x1 the starting state and
by f(p) = yn the ending state. The length of a path is the number of edges that
compose it. For each state x ∈ Q it is defined the null path starting and ending
at x, denoted by 1x : x −→ x having as label ε. Given an automaton A, we will
say that a path p of A visits a vertex x of A if x is a vertex of p.

When two paths p and q are consecutive (i.e. f(p) = i(q)) then p and q can
be concatenated and we call the resulting path pq. A subpath of a path p is a
subsequence of consecutive edges. A subpath of a path p is a prefix of p if it starts
at the same starting state of p. Given two paths p and q starting at the same state
x, the longest prefix path in common between p and q is a path prefix of p and
prefix of q that is the longest with this property. Analogously it can be defined,
given two paths p and q ending at the same state x, the longest suffix path in
common between p and q.

A path p is a simple path if all states in the path are distinct. Given two states
x and y, if there exists a path from x to y then there exists also a simple path
from x to y. A path p is a cycle if it is not the null path and if it starts and ends
at the same state. We say that a path c is a cycle in x if it starts and ends at x.
A cycle c is a simple cycle if it has all the intermediate states distinct. Given a
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cycle c we say that c is simple in x if it is a cycle in x such that no intermediate
state is equal to x. We remark that a cycle that is simple in x is not in general a
simple cycle.

The language recognized by A, L(A), is the set of words that are labels of paths
from an initial state to a final one. A state x in A is accessible if there is a path
starting at an initial state and ending at x. A state x in A is coaccessible if there
is a path starting at x and ending at a final state. An automaton A is a trim
automaton if all the states of the automaton are accessible and coaccessible. An
automaton A = (Q, I, T,F) is unambiguous if, for each x, y ∈ Q, for each w ∈ A∗,
there exists at most one path starting at x and ending at y with label w.

An automaton A over A is a deterministic automaton if card(I) = 1 and if, for
each state x and for each a in A, there is at most one edge starting in x with label
a. If A = (Q, i, T,F) is a deterministic automaton it can be defined the function
δ : Q × A −→ Q such that δ(x, a) = y if x

a−→ y ∈ F and δ(x, a) = ∅ otherwise.
This function δ is extended to words in A∗ by setting, for all x ∈ Q, δ(x, ε) = x
and, for w ∈ A∗ and a ∈ A, δ(x, wa) = δ(δ(x, w), a).

This function is called the transition function. With this notation we have that
L(A) = {w ∈ A∗ | δ(i, w) ∈ T }.
From now on we will consider automata with non empty and non trivial languages.
We say that A is a monoidal automaton if it is a trim automaton with a unique
final state equal to a unique initial one. Such a special state is denoted by 1. Let
us note that in a monoidal automaton, for each state x, there exist a simple path
from 1 to x and a simple path from x to 1. It is easy to prove the following (cf. [1]):

Proposition 2.1. Let A = (Q, 1, 1,F) be a monoidal automaton. The automaton
A recognizes the submonoid generated by the set of labels of the cycles that are
simple in 1.

In general given a submonoid H of A∗ there exists a unique minimal set of
generators (cf. [1]). We define the rank of H as the cardinality of the minimal
set of generators. It is denoted by rk(H). We say that a submonoid H of A∗

is cyclic if rk(H) = 1. We also define the reduced rank of a submonoid H as
r̃k(H) = max(rk(H) − 1, 0).

A submonoid H ⊆ A∗ is free if there exists a set of generators X such that
every element in H can be factorized in a unique way in words of X . If H is free
the minimal set of generators of H is called the base of H .

Let A = (Q, 1, 1,F) be a monoidal automaton. Let us denote by CA the set
of cycles that are simple in 1 and by YA the set of their labels. In general if A is
monoidal then YA is not the minimal set of generators (see an example in Fig. 1).
If we suppose that A is unambiguous then YA is the minimal set of generators and
moreover the submonoid generated by A is free.

Proposition 2.2. Let A = (Q, 1, 1,F) be an unambiguous monoidal automaton.
The automaton A recognizes a free submonoid with base the set of labels of the
cycles that are simple in 1.
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Figure 1. A monoidal automaton with YA = {a, ba, aba} and
L(A) = {a, ba}∗.

Proof. Let A = (Q, 1, 1,F) be an unambiguous monoidal automaton. By Propo-
sition 2.1 the set of labels of cycles that are simple in 1, YA, is a set of generators
for L(A). Moreover, by the unambiguity of A, every element in L(A) can be fac-
torized in a unique way in words of YA, otherwise there would be a word in L(A)
label of two different cycles in 1. �

So to a monoidal automaton A it is associated the submonoid H = L(A) of A∗.
Conversely to each submonoid X∗ of A∗ generated by a finite set X it is associated
FX the flower automaton of X (cf. [1,3]). It is built in the following way. First we
build SX the solar automaton recognizing X in this way: we build, for each word
x ∈ X , an automaton with |x| + 1 states and merge all the initial states. Note
that this automaton is a tree with root the initial state 1. Then we merge all the
final states with the initial state 1. Doing this we obtain the flower automaton
of X . Such an automaton is a monoidal automaton recognizing X∗ such that all
the cycles visit the unique initial-final state 1, all the cycles that are simple in 1
intersect themselves only in 1 and have as labels the words of X . See an example
in Figure 2.

Let us define now a class of monoidal automata recognizing finitely generated
submonoids: the class of semi-flower automata.

Definition 2.3. Let A be an automaton. A is a semi-flower automaton if it is a
monoidal automaton such that all the cycles visit the unique initial-final state.

Hence in a semi-flower automaton the cycles that are simple in 1 intersect
themselves not necessarily only in 1. In particular given a finite set X ⊆ A∗

the flower automaton associated to X is a semi-flower automaton in which all
the cycles that are simple in 1 intersect themselves only in 1. It is interesting
to observe that in a semi-flower automaton every cycle that is simple in 1 is in
particular a simple cycle. It is easy to prove the following proposition.
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Figure 2. S(X), F (X) for X = {b, ba, aaa}.
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Figure 3. A semi-flower automaton, L(A) = {a, ab, aab, bb}∗.

Proposition 2.4. Let A = (Q, 1, 1,F) be a semi-flower automaton, then A reco-
gnizes a finitely generated submonoid.

An example of a semi-flower automaton is shown in Figure 3. The converse of
Proposition 2.4 is not true in general as it is shown in the example of Figure 4.

However, with the supplementary hypothesis of unambiguity we get also the
converse as stated in the following proposition.

Proposition 2.5. Let A be an unambiguous monoidal automaton such that L(A) =
H. The submonoid H is finitely generated if, and only if A is a semi-flower au-
tomaton.

Proof. Let A be an unambiguous monoidal automaton that recognizes H finitely
generated submonoid. By Proposition 2.2, H is free with base YA, the set of labels
of the cycles that are simple in 1. By hypothesis, |YA| = rk(H) < ∞.
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Figure 4. A not semi-flower automaton, L(A) = {ab, aaa}∗.

Let us suppose, by contradiction, that there exists a cycle c not visiting 1. In
particular c is a cycle in a state x 
= 1. Let v be the label of c. Let p1 be a
simple path from 1 to x, u1 its label. Let p2 be a simple path from x to 1, u2

its label. We have that ∀i ≥ 0, u1v
iu2 is the label of p1c

ip2 cycle that is simple
in 1. Let Y ′ = {u1v

iu2, ∀ i ≥ 0}. Finally we get Y ′ ⊆ YA, contradiction since
∞ = |Y ′| ≤ |YA| < ∞. The other implication is proved in Proposition 2.4. �

We will recall now some definitions on graphs with the purpose of studying
semi-flower automata with some graph’s properties.

A directed graph Γ = (V, E) (cf. [4]) is a pair (V, E) where V is a finite set and
E ⊆ V × V is a binary relation on V . A directed multigraph is like a graph but
it can have more than one edge between two vertices and self-loops (edges from a
vertex to itself). More formally a directed multigraph is a 4-uple (V, E, i, f) where
V and E are two disjoint sets and i, f : V −→ E are maps.

Given a directed multigraph Γ = (V, E) we say that a vertex x ∈ V is a branch
point (in short bp) if the degree of x (i.e. the number of edges incident to x) is
greater than two. We say that a vertex x ∈ V is a branch point going out (in short
bpo) if x is a branch point and if the number of edges going out from x is at least
two and we say that x ∈ V is a branch point going in (in short bpi) if x is a branch
point and if the number of edges coming in x is at least two.

Let A be an automaton. We can think of A as a labelled multigraph whose set
of vertices is the set of states Q and the set of labelled edges is F .

Let now A be a monoidal automaton. Let BPI(A) be the set of vertices of A
that are bpi’s and let BPO(A) be the set of vertices of A that are bpo’s. We have
the following proposition that links the existence of bpi’s with the existence of
bpo’s.
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Proposition 2.6. Let A be a monoidal automaton. BPI(A) = ∅ if and only if
BPO(A) = ∅.
Proof. Let A = (Q, 1, 1,F) be a monoidal automaton with BPO(A) 
= ∅. Let so
x ∈ Q be a bpo. Let e1 and e2 be two edges starting at x and let us consider p a
simple path from f(e1) to 1 and q a simple path from f(e2) to 1. Let us consider
r the longest suffix path in common between e1p and e2q. Let us distinguish two
cases: when x = 1 and when x 
= 1.

Let x = 1. If p, q are null paths then 1 is a bpi. If p is not null and q is the null
path then e2 is not a suffix of e1p since p is simple and so i(r) is a bpi. If p is null
and q is not null we find analogously a bpi. Finally if p and q are not null paths
then e1p and e2q are not suffixes each other since p and q are simple paths ending
at 1. As before i(r) is a bpi and so in all cases it results BPI(A) 
= ∅.

Let x 
= 1. Let us prove that e1p and e2q are not suffixes each other. If, by
contradiction, e1p is a proper suffix of e2q then e2q = q′e1p, with q′ not null and
f(q′) = x. Let s be the simple path from 1 to x. The path s is not a suffix path
of q′ since q is simple and x 
= 1. Analogously q′ is not a suffix path of s since s
is simple. So if r is the longest suffix path in common between s and q′ then i(r)
is a bpi and so BPI(A) 
= ∅.
The converse is proved in an analogue way. �

In the following theorem we have a characterization of unambiguous monoidal
automata with no bpi’s. In particular, such automata recognize cyclic submonoids.

Theorem 2.7. Let A be a monoidal automaton. If BPI(A) = ∅ then L(A) is
cyclic. Moreover, if A is unambiguous then, if L(A) is cyclic then BPI(A) = ∅.
Proof. Let A = (Q, 1, 1,F) be a monoidal automaton such that BPI(A) = ∅. If
|Q| = 1 then trivially L(A) is cyclic. Let |Q| > 1 and let x ∈ Q, x 
= 1. Let p be a
simple path from 1 to x and q a simple path from x to 1 then the cycle pq is, in
particular, simple in 1. It is the unique cycle that is simple in 1. In fact if there is
another cycle that is simple in 1, let it be c, then considering r the longest suffix
path in common between pq and c we get that the initial state of r is a bpi, that
is a contradiction. So if u is the label of pq then L(A) = {u}∗.

Conversely let A = (Q, 1, 1,F) be an unambiguous monoidal automaton such
that L(A) is cyclic. Then A is semi-flower. If BPI(A) 
= ∅ then there exists
x ∈ BPO(A). It follows that there exist two different cycles that are simple
in 1 and so, by the unambiguity of A, two free generators for L(A), that is a
contradiction. �

The semi-flower automata with a unique bpi have also interesting properties
as we will see. The automaton in Figure 3 is a semi-flower automaton such that
BPI(A) = {1, 3}. The automaton in Figure 5 is a semi-flower automaton such
that BPI(A) = {1}.

It is interesting to note that if A is a monoidal automaton with initial-final
state 1 such that BPI(A) = {1} then A is a semi-flower automaton, as explained
in the following proposition.
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Figure 5. A semi-flower automaton, |BPI(A)| = 1.
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Figure 6. A monoidal automaton with a unique bpi that is not
a semi-flower automaton.

Proposition 2.8. Let A = (Q, 1, 1,F) be a monoidal automaton such that
BPI(A) = {1}. It follows that A is a semi-flower automaton.

Proof. Let A = (Q, 1, 1,F) be a monoidal automaton having BPI(A) = {1}. Let
us suppose that there exists a cycle c in x not visiting 1. Let p be the simple path
from 1 to x and let us consider r the longest suffix path in common between p and
c. The path p is not a suffix of c since c does not visit 1. Moreover c is not a suffix
of p since p is simple. So the initial vertex of r is a bpi different from 1 and we
get the thesis. �

In general if A is a monoidal automaton such that |BPI(A)| = 1 then A is not
necessarily a semi-flower automaton as we can see in the example in Figure 6.

Let us see now, given a semi-flower automaton with exactly one bpi, how to
link the rank of the submonoid generated by it with the characteristics of the
automaton. Let us give before some definitions and propositions.

Let us consider now a graph Γ = (V, E). We recall that an undirected graph Γ is
a tree if it is connected and acyclic. Given x, z ∈ V we say that x is reachable from
z if there exists a path in Γ from z to x. There exist different algorithms for visiting
a graph. One of such algorithms is the breadth-first search (BFS in shorts). Given a
graph Γ = (V, E) and a distinguished source vertex s, BFS systematically explores
the edges of Γ to “discover” every vertex that is reachable from s. Moreover it
discovers every vertex reachable from s only once. It also produces a tree T called
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Figure 7. A semi-flower automaton. T BFS tree in 1.

breadth-first tree with root s that contains all such reachable vertices. For the
procedure of breadth-first search and breadth-first tree we recall [4].

In Figure 7 we see an example of a semi-flower automaton with pointed out the
edges of the breadth-first tree in 1.

Remark 2.9. The BFS procedure applied to automata chooses only one edge
among multiples edges between two same states. Moreover it produces a tree.

Let us give now a theorem that links the rank of the submonoid recognized by a
semi-flower automaton with a unique bpi to the characteristics of the automaton.

Theorem 2.10. Let A = (Q, 1, 1,F) be a semi-flower automaton.
If |BPI(A)| = 1 then rk(L(A)) ≤ |F| − |Q| + 1.

Proof. Let A = (Q, 1, 1,F) be a semi-flower automaton with a unique bpi. Let
BPI(A) = {x}. By Proposition 2.1 , a set of generators for L(A) is YA, the finite
set of labels of the cycles that are simple in 1. So, we have to count the number of
cycles that are simple in 1. Let us prove that there is a bijection between CA, the
set of cycles that are simple in 1, and F(x), the set of edges ending at x. Then
we will have rk(L(A)) ≤ |YA| ≤ |CA| = |F(x)|. For this purpose let us prove the
following three points:

1. If c ∈ CA then c visits x.
If x = 1 it is done. Let so x 
= 1 and let q be a simple path in A from x to 1.

If we consider the longest suffix path in common between q and c we get that if c
does not visit x then there exists a bpi different from x (the proof is analogous of
that one of Prop. 2.8).
2. There is a unique simple path q in A from x to 1.

If x = 1 then the unique simple path from 1 to 1 is the null path. Let so x 
= 1.
If, by contradiction, there exists q′ simple path from x to 1, q′ 
= q, then q and
q′ cannot be suffix each other since they are simple paths with the same initial
vertex. So if we consider t the longest suffix path in common between q and q′ we
have that i(r) is a bpi different from x.
3. For each edge e ending at x there exists a unique simple path pe : 1 −→ i(e).

If i(e) = 1 then the unique simple path from 1 to 1 is the null path. If by
contradiction there exists another simple path qe from 1 to i(e) then we get as
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before another bpi considering the longest suffix path in common between pe and
qe.
Let us define now a map from CA to F(x). Let

ϕ : CA −→ F(x)

be such that
for each c ∈ CA, ϕ(c) = ec

where ec ∈ F is the unique edge in c ending at x.
• ϕ is well defined since c is a simple cycle so it visits x only once;
• ϕ is injective. Let c1, c2 ∈ CA such that ϕ(c1) = ϕ(c2) = ec. Then

c1 = c2 = pececq;
• ϕ is surjective. For each e ∈ F(x), let p be the simple path from 1 to i(e)

then peq ∈ CA and ϕ(peq) = e.
Since ϕ is a bijection then |CA| = |F(x)|.
Let us consider T = (Q(T ),F(T )) the BFS tree associated to the BFS procedure
applied to A with root the state x. Since every state of A is reachable from 1 then
the BFS tree is a spanning tree. In the following we prove that the edges of A that
are not contained in T are all the edges ending at x, that is F \ F(T ) = F(x).

• Let us prove that F \ F(T ) ⊆ F(x). Let e ∈ F \ F(T ). Then either
the edge e ends at x or f(e), the final vertex of e, is visited by the BFS
procedure by another edge of A ending at f(e), let us call it g. Since g 
= e
then f(e) is a bpi and e ∈ F(x).

• F(x) ⊆ F \ F(T ) since the BFS procedure is applied in x.
So we have that

|F \ F(T )| = |F(x)| = |CA|
and by the properties of trees we have

|F(T )| = |Q(T )| − 1 = |Q| − 1

and so
|CA| = |F \ F(T )| = |F| − |Q| + 1.

Finally by Proposition 2.4

rk(H) ≤ |CA| = |F| − |Q| + 1. �

Let us note that the statement of Theorem 2.10 is not true without the hypothesis
of |BPI(A)| = 1 as we can see in Figure 8.

It follows from the proof of Theorem 2.10 and Proposition 2.2 that in the
unambiguous case the following holds:

Proposition 2.11. If A = (Q, 1, 1,F) is an unambiguous semi-flower automaton
such that |BPI(A)| = 1 then rk(L(A)) = |F| − |Q| + 1.
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Figure 8. A semi-flower automaton, BPI(A) = {1, 2, 3}, L(A) =
{aab, aaa, bab, baa, bb, ba}∗ and rk(L(A)) = 6 > |F|− |Q|+1 = 4.

We remark that a similar result holds for free groups (cf. [9]): if A = (Q, 1, 1,F)
is an inverse automaton associated to a subgroup H then rk(H) = |F| − |Q| + 1.
From now on let us consider A an alphabet of cardinality n.

We have defined a bpo of an automaton as a vertex in which there are at least
two different edges going out from it. Let us consider now, for each i ≥ 0, the bpo’s
of an automaton in which there are i different edges going out from them. Let
A = (Q, I, T,F) be an automaton over A . For each vertex x of A, let mx be the
number of edges going out from x. It is easy to see that |F|−|Q| =

∑
x∈Q(mx−1).

For each i ≥ 0, let us consider the set

BPOi(A) = {x ∈ Q | mx = i}.

When no confusion arises we will write BPOi = BPOi(A).
One has Q = ∪i≥0BPOi and, for each i 
= j, BPOi ∩ BPOj = ∅.
Let mA = maxx∈Q{mx}. It follows that

|F| − |Q| =
∑

i=0,...,mA

( ∑
x∈BPOi

(mx − 1)

)
.

For each i = 0, . . .mA, if x ∈ BPOi then mx − 1 = i − 1 and we get

|F| − |Q| =
∑

i=0,...,mA

|BPOi|(i − 1).

If A is a monoidal automaton we get in particular the following:

Proposition 2.12. Let A = (Q, 1, 1,F) be a monoidal automaton. One has
|F| − |Q| =

∑
i=2,...,mA |BPOi|(i − 1).

Proof. Since L(A) 
= ∅, L(A) 
= {ε} and A is trim with a unique final state equal
to the initial one then 1 ≤ mx ≤ mA. �

If, moreover, A is a deterministic monoidal automaton on the alphabet A of
cardinality n it trivially follows that:
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Corollary 2.13. Let A be an alphabet of cardinality n. Let A = (Q, 1, 1,F) be a
deterministic monoidal automaton. One has |F| − |Q| =

∑
i=2,...,n |BPOi|(i − 1).

Let us give now a theorem that links the rank of the submonoid generated by a
given a semi-flower automaton with a unique bpi with the cardinality of the sets
of BPOi.

Theorem 2.14. Let A be an alphabet of cardinality n. Let A be a semi-flower
automaton on A with a unique bpi then

rk(L(A)) ≤
∑

i=2,...,mA

(i − 1)|BPOi| + 1.

Moreover if A is unambiguous then it follows the equality and if A is deterministic
then

rk(L(A)) =
∑

i=2,...,n

(i − 1)|BPOi| + 1.

Let us consider now deterministic semi-flower automata. The submonoids recog-
nized by these automata are generated by finite prefix sets.

Proposition 2.15. Let A = (Q, 1, 1,F) be a deterministic semi-flower automa-
ton. Then A recognizes a free submonoid generated by a finite prefix set.

Proof. Let A = (Q, 1, 1,F) be a deterministic semi-flower automaton. By Propo-
sitions 2.2 and 2.4, L(A) is a free finitely generated submonoid with base the set
of labels of the simple cycles in 1. Let us prove that this is a prefix set. By
contradiction, let u, v be labels of cu and cv, simple cycles in 1, such that v = uw
with w not empty word. The automaton A is deterministic so cv = cucw with cw

the cycle with label w. This is a contradiction because cv is simple in 1. �
In general given a submonoid X∗ of A∗ generated by a finite prefix set X we

can easily construct an automaton recognizing X∗: the literal automaton of X∗

(cf. [1]). It is the automaton

AX = (Q, ε, ε, δ)

where Q = X(A+)−1 is the set of the proper prefixes of X and where

δ(u, a) =

⎧⎪⎨⎪⎩
ua if ua ∈ X(A+)−1

ε if ua ∈ X

∅ otherwise.

It is immediate that L(AX) = X∗.

Proposition 2.16. Let X be a finite prefix set then AX is a deterministic semi-
flower automaton with at most the state ε as bpi.

Proof. Let AX = (Q, ε, ε, δ). By construction AX is a deterministic monoidal
automaton. Since L(AX) = X∗ and X is finite then, by Proposition 2.5, AX is
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Figure 9. AX with X = {bb, aba, abb, aab}.

a semi-flower automaton. If it has not bpi’s then it is done. Let us suppose that
there exists at least one bpi.

Let us suppose, by contradiction, that there exists x ∈ Q bpi for AX and
u 
= ε. So in AX there exist two different edges ending at x, e1 : y1

a−→ x and
e2 : y2

b−→ x. Since x 
= ε it is x = y1a = y2b. Since a, b are letters in A it follows
that a = b then y1 = y2 and so e1 = e2, contradiction since e1 
= e2. �

So we have that if A is a deterministic semi-flower automaton with at most
one bpi then L(A) is a submonoid generated by a finite prefix set and conversely
given a finite prefix set X there exists a deterministic semi-flower automaton with
at most the initial vertex as bpi recognizing X∗. So the class of deterministic
semi-flower automata with at most the initial vertex as bpi recognizes the class of
submonoids generated by finite prefix sets.

In the example in Figure 9 AX is a deterministic semi-flower automaton with a
unique bpi (the vertex ε), with three bpo’s (the vertices ε, a and ab) and one has
that rk(X∗) = 4 = |BPO2| + 1.

Let us note that in all figures every edge with label a, b has to be understood
as two edges with labels a and b, respectively.

3. Intersection of two submonoids

In this section we investigate the intersection of two submonoids of A∗ finitely
generated by prefix sets by studying the product of two deterministic semi-flower
automata recognizing the two given submonoids.

For the definitions and the properties of the product automaton we recall [5]. It
is well known that the product of two automata recognizing submonoids recognizes
the intersection of the two submonoids.

Some properties of two given automata A1 and A2 are saved in the product
A1 ×A2 as shown in the following proposition.
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Proposition 3.1. Let A1 and A2 be two automata.
(1) If A1 and A2 are automata with a unique final state equal to a unique

initial state then A1 ×A2 is an automaton with a unique final state equal
to a unique initial state.

(2) If A1 and A2 are unambiguous automata then A1 ×A2 is a unambiguous
automaton.

(3) If A1 and A2 are deterministic automata then A1 ×A2 is a deterministic
automaton.

On the other hand the product of two trim automata is not necessarily a trim
automaton. Moreover the product of two semi-flower automata is not necessarily
a semi-flower automaton (see example in Fig. 10). This is in agreement with the
fact that the intersection of two finitely generated submonoids is not necessarily
finitely generated. Further, if the product of two semi-flower automata with a
unique bpi is a semi-flower automaton, then it is not necessarily a semi-flower
automaton with a unique bpi (see example in Fig. 11).
Let now A1 and A2 be two deterministic automata on A

A1 = (Q1, q1, F1, δ1), A2 = (Q2, q2, F2, δ2).

The product automaton is defined as

A1 ×A2 = (Q1 × Q2, (q1, q2), F1 × F2, δ)

with for each (x, y) ∈ Q1 × Q2, for each a ∈ A

δ((x, y), a) = (δ1(x, a), δ2(y, a)).

Let us now give a lemma that links the bpo’s in the product of two deterministic
automata with the bpo’s of the respective automata:

Lemma 3.2. Let A1 and A2 be two deterministic automata on A, alphabet of
cardinality n. One has BPOt(A1 ×A2) ⊆ ∪t≤r,s≤n(BPOr(A1) × BPOs(A2)).

Proof. Let A1 and A2 be two deterministic automata on A = {α1, . . . , αn}, A1 =
(Q1, q1, F1, δ1) and A2 = (Q2, q2, F2, δ2).

If (x, y) ∈ BPOt(A1 × A2) then there exist t different edges going out from
(x, y). So, for each i = 1, . . . , t, there exists (xi, yi) ∈ Q1 × Q2, αi ∈ A such that

δ((x, y), αi) = (xi, yi)

and, since A1 ×A2 is deterministic, for i 
= j αi 
= αj .
By definition, for each i = 1, . . . , t

δ((x, y), αi) = (δ(x, αi), δ(y, αi)) = (xi, yi).
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Figure 10. AH , AK and AH × AK with H = {aab, aba}∗ and
K = {a, baaba}∗.

Then for each i = 1, . . . , t,

δ(x, αi) = xi, δ(y, αi) = yi.

Since αi 
= αj , for each i, j with i 
= j, then there are at least t different edges
going out from x and so x ∈ BPOr(A1) with r ≥ t. Analogously y ∈ BPOs(A2)
with s ≥ t and so the thesis follows. �

Let A1 and A2 be deterministic automata on A alphabet of cardinality n. Let
ai := |BPOi(A1)| and bi := |BPOi(A2)| for each i = 1, . . . , n. In terms of
cardinality of the sets of bpo’s Lemma 3.2 becomes:
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Figure 11. AH , AK and AH × AK with H = {b, aa, ab}∗ and
K = {a, bb, baa, bab}∗.

Corollary 3.3. |BPOt(A1 ×A2)| ≤
∑

t≤r,s≤n arbs.

Let A be an automaton. We denote by AT the automaton obtained from A
taking only the accessible and coaccessible states.

Let us give now a lemma that will allow us to prove the inequality of Hanna
Neumann for submonoids recognized by deterministic semi-flower automata with
a unique bpi. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be two multisets of the
set of the natural numbers N.
Let

PAB =
∑

t=2,...,n

(t − 1)

⎛⎝ ∑
t≤r≤n

ar

∑
t≤s≤n

bs

⎞⎠
and

QAB =

⎛⎝ ∑
i=2,...,n

(i − 1)ai

⎞⎠⎛⎝ ∑
j=2,...,n

(j − 1)bj

⎞⎠ .

Lemma 3.4. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be multisets of N. One
has PAB ≤ QAB. Moreover if there exist k, l > 2 such that ak 
= 0 and bl 
= 0 then
PAB < QAB.
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Proof. Developing PAB and QAB we get

PAB =
∑

2≤k,l≤n

αklakbl and QAB =
∑

2≤k,l≤n

βklakbl.

Our thesis is that αkl ≤ βkl, for each k, l. From the definitions of PAB and QAB

it follows that

αkl = 1 + 2 + . . . + (k − 1) and βkl = (k − 1)(l − 1)

with k = min(k, l).
One has the inequality 1 + 2 + . . . + (k − 1) < (k − 1)(k − 1) for k > 2 and the

equality 1 + 2 + . . . + (k − 1) = (k − 1)(k − 1) for k = 2.
So αkl ≤ βkl, for each k, l ≥ 2. Moreover αkl < βkl for k > 2. So we get that

PAB ≤ QAB.

Let us suppose that there exists k > 2 such that ak 
= 0 and there exists l > 2
such that bl 
= 0. Since αkl < βkl and akbl 
= 0 we get PAB < QAB. �

Let now H and K be submonoids finitely generated by prefix sets. Let AH

and AK be deterministic semi-flower automata with a unique bpi recognizing H
and K, respectively. Since AH and AK are deterministic monoidal automata then
(AH ×AK)T is still a deterministic monoidal automaton.

Remark 3.5. If (AH ×AK)T is a semi-flower automaton that has not bpi’s then
r̃k(H ∩K) ≤ r̃k(H)r̃k(K). In fact, if H ∩K = {ε} then r̃k(H ∩K) = 0 otherwise
by Theorem 2.7, H ∩ K is cyclic and so r̃k(H ∩ K) = 0.

If (AH ×AK)T is a semi-flower automaton with a unique bpi we get the Hanna
Neumann inequality as it is stated in the following theorem:

Theorem 3.6. If (AH × AK)T is a semi-flower automaton with a unique bpi
then r̃k(H ∩K) ≤ r̃k(H)r̃k(K). Moreover the strict inequality holds if there exist
i, j > 2 such that BPOi(AH) 
= ∅ and BPOj(AK) 
= ∅.
Proof. Let (AH ×AK)T be a deterministic semi-flower automaton with a unique
bpi. Since BPOt((AH×AK)T ) ⊆ BPOt(AH×AK), for each t = 1, . . . , n, applying
Corollary 3.3 and Theorem 2.14 we get:

r̃k(H ∩ K) ≤
∑

t=2...n

(t − 1)

⎛⎝ ∑
t≤r≤n

ar

∑
t≤s≤n

bs

⎞⎠ .

On the other hand by Theorem 2.14 it is

r̃k(H)r̃k(K) =

⎛⎝ ∑
i=2,...n

(i − 1)ai

⎞⎠⎛⎝ ∑
j=2,...n

(j − 1)bj

⎞⎠ .
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Figure 12. AA2 , AA3 with A2 the set of words in A = {a, b} of
length 2 and A3 the set of words in A = {a, b} of length 3.

Applying Lemma 3.4 to the multisets A = {a1, . . . , an} and B = {b1, . . . , bn} we
get that r̃k(H ∩ K) ≤ r̃k(H)r̃k(K).

Let us suppose that there exist two indexes i, j > 2 such that BPOi(AH) 
= ∅
and BPOj(AK) 
= ∅. Then |BPOi(AH)| = ai 
= 0, i > 2 and |BPOj(AH)| = bj 
=
0, j > 2. And by Lemma 3.4 we get that r̃k(H ∩ K) < r̃k(H)r̃k(K). �

If H and K are submonoids finitely generated by prefix sets such that (AH ×
AK)T is a deterministic semi-flower automaton with more than one bpi then it is
not more true that r̃k(H ∩ K) ≤ r̃k(H)r̃k(K).

There is a family of examples such that rk(H ∩ K) = 2log2(rk(H)) log2(rk(K)):

Example 3.7. Let p and q be two positive coprime integers. Let A be a binary
alphabet and let H = (Ap)∗ and K = (Aq)∗, the submonoids generated by the
sets of words of length p and q respectively.
One has rk(H) = 2p and so p = log2(rk(H)). It is H ∩ K = (Apq)∗ and rk(H ∩
K) = 2pq = 2log2(rk(H)) log2(rk(K)).

See examples in Figures 12 and 13.

4. Prefix case with two generators

If H and K are submonoids generated by prefix sets of two elements of A∗ we
get the result of Karhumäki (cf. [7]).

Let H be a submonoid of A∗ generated by a finite prefix set of two elements X .
Let AX be the literal automaton of X∗, let us call it AH for simplicity of notation.
In the beginning we prove that AH has a unique bpo with two edges starting at
it and all the other vertices have just one edge starting at them.
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Figure 13. AA2 ×AA3 .

Proposition 4.1. Let H be a submonoid generated by a prefix set of two elements.
Let AH = (Q, 1, 1, δ) be the literal automaton of H.

For each x ∈ Q, it is 1 ≤ mx ≤ 2. Moreover there is at most one x such that
mx = 2.

Proof. Let H be a submonoid finitely generated by a prefix set of two elements
X = {u, v}. Let AH = (Q, 1, 1, δ) be the literal automaton of H . Since AH is
monoidal then 1 ≤ mx. Moreover each state has at more two edges going out
from it otherwise, since AH is deterministic semi-flower, there would be three free
generators for H . Finally there is at most one state such that mx = 2 otherwise
there would be four free generators for H . �

For the product automaton of two literal automata, associated to submonoids
generated by prefix sets of two elements, it holds the following:

Lemma 4.2. Let H and K be submonoids generated by prefix sets of two elements
such that H ∩ K 
= {ε}. Let (AH ×AK)T = (Q, 1, 1, δ).

For each w ∈ Q, it is 1 ≤ mw ≤ 2. Moreover there is at most one vertex z ∈ Q
such that mz = 2.
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Proof. Since (AH ×AK)T is monoidal and H ∩ K 
= {ε} then, for each x ∈ Q, it
is mx ≥ 1. Let A = (AH ×AK)T . Let ai := |BPOi(AH)| and bi := |BPOi(AK)|
for each i = 1, . . . , n.
By Corollary 3.3 we have that for each t ≥ 0

|BPOt(AT )| ≤
∑

t≤r,s≤n

arbs.

By Proposition 4.1 we get a2 = 1, b2 = 1 and for each s > 2 as = 0 and bs = 0.
For each t > 2 we obtain |BPOt(AT )| ≤ 0 and so, for each x ∈ Q, mx ≤ 2. For

t = 2 we get |BPO2(AT )| ≤ a2b2 = 1 and so there is only one x ∈ Q such that
mx = 2. �
We can now prove the result of Karhumäki (cf. [7]):

Theorem 4.3. Let H and K be submonoids generated by prefix sets of two ele-
ments. Then either H ∩ K is generated by at most two elements or by a regular
language of the form (α(β)∗γ)∗, for some α, β, γ ∈ A∗.

Proof. Let H and K be submonoids generated by prefix sets of two elements. Let
us denote by A the product automaton (AH ×AK)T = (Q, 1, 1,F).

By Lemma 4.2 there is at most one state in A with two edges going out from
it and all the others states have only one edge going out from them.

If A has not bpo’s then, by Proposition 2.6 and since A is a monoidal automaton,
A has not bpi’s. So either H ∩ K = {ε} or, by Proposition 2.7, H ∩ K is a cyclic
submonoid. In all cases rk(H ∩ K) is at most one.

Let us suppose now that A has one bpo and let us denote it by x. Let p be the
unique simple path from 1 to x. There is a simple path starting at x and ending
at 1 since x is coaccessible, let us call it q.

By Lemma 4.2, since A is trim, it follows that there is only one simple path,
different from q, starting at x and ending at a state y of pq.

If y is a state of q different from x then A is a semi-flower automaton and y is
the unique bpi. Applying Theorem 3.6 we get that the intersection is generated
by at most two elements.

If y is a state of p different from 1 then A is not a semi-flower automaton since
there is a cycle in y not visiting 1. So H ∩ K is infinitely generated. Let us call
p1 the prefix subpath of p ending at y and p2 the suffix subpath of p starting at
y. We have that:

p1 : 1 α1−→ y, p2 : y
α2−→ x, q : x

γ−→ 1, r : x
β−→ y.

Let α = α1α2. We have that p(rp2)nq, for each n ≥ 0, are the only cycles that are
simple in 1. So, by Proposition 2.2, one has that H ∩K is generated by α(βα2)nγ,
for each n ≥ 0, that is the thesis. �

It follows trivially the same result for H and K submonoids finitely generated
by suffix sets of two elements.
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5. conclusions

The results reported in the present paper show that the automata-theoretic tools
we have introduced are useful for studying the intersection of two submonoids of
a free monoid. We think that such methods could be extended to more general
cases than the ones considered in this paper, in order to discover upper bounds
on the rank of the intersection, when it is finite, depending on the ranks of the
submonoids.

Two directions of research appear of particular interest. A first direction is to
relate properties of the product of non deterministic automata to the study of
the intersection of two submonoids generated by finite non prefix sets of words.
Another possible direction is to consider, even in the prefix case, the semi-flower
automata with a fixed number of bpi’s greater than one.

As a more general problem, one could study the intersection of a finite number
of submonoids of rank two trying to discover in the case of finite rank of the
intersection a result analogous of that one of Karhumäki (cf. [7]).
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