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A HIERARCHY OF AUTOMATIC ω-WORDS
HAVING A DECIDABLE MSO THEORY

Vince Bárány
1

Abstract. We investigate automatic presentations of ω-words. Start-
ing points of our study are the works of Rigo and Maes, Caucal,
and Carton and Thomas concerning lexicographic presentation, MSO-
interpretability in algebraic trees, and the decidability of the MSO
theory of morphic words. Refining their techniques we observe that
the lexicographic presentation of a (morphic) word is in a certain sense
canonical. We then generalize our techniques to a hierarchy of classes
of ω-words enjoying the above mentioned definability and decidabil-
ity properties. We introduce k-lexicographic presentations, and mor-
phisms of level k stacks and show that these are inter-translatable,
thus giving rise to the same classes of k-lexicographic or level k mor-
phic words. We prove that these presentations are also canonical, which
implies decidability of the MSO theory of every k-lexicographic word
as well as closure of these classes under MSO-definable recolorings,
e.g. closure under deterministic sequential mappings. The classes of
k-lexicographic words are shown to constitute an infinite hierarchy.

Mathematics Subject Classification. 03D05, 68Q42, 68Q45,
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1. Introduction

This paper is concerned with infinite words of type ω, which are finitely pre-
sentable using automata and have a decidable monadic second-order theory. As
such it is connected to two not so distant lines of research around the theme of
using automata to decide logical theories.
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The first of these approaches, initiated by Büchi, is limited to structures such as
infinite words, ranked or unranked trees, or certain linear orderings for which an
appropriate automaton model is definable, which has effective closure and decision
properties and is expressively equivalent to monadic second-order logic over these
structures. In this approach formulas are transformed into equivalent automata
operating on the structure itself. The second approach consists of using finite
automata to describe the operations and relations of a given structure with respect
to a chosen representation of elements by words (or by trees). One thus speaks
of an automatic presentation of the structure. Closure properties of automata
yield in this case a straightforward procedure for representing not only the atomic
relations but all first-order-definable relations of the represented structure. The
first-order theory of the represented structure is thus “automaton decidable” [29].
Note that in this case the automata do not operate on the structure but rather
encode it in a finite way.

In this paper we combine both of these approaches to decide the monadic
second-order theory of certain automatically presentable ω-words. We provide
a construction for transforming an automatic presentation of an ω-word w and a
deterministic Muller automaton A into an automatic presentation of the behavior
or run of A on w, which is itself an ω-word.

We define a hierarchy of classes of ω-words depending on the complexity of
the automatic presentation involved, investigate basic closure properties of these
classes, show how they generalize the notion of morphic words, and prove that
they indeed form an infinite hierarchy.

Monadic second-order logic (MSO) on ω-words. Büchi originated the use
of automata, ω-automata invented for this purpose, in deciding the MSO theory
of the naturals with successor (N, succ). The fundamental result underlying this
method is the convertibility of MSO formulas into Büchi automata and vice versa,
which are equivalent in a natural way [28,53]. The same correspondence holds
for extensions of (N, <) by unary predicates Pa (a ∈ Σ), which can be assumed
to partition N. Deciding the MSO theory of such extensions is, by the above,
equivalent to the problem of deciding acceptance of the corresponding ω-word by
any given Büchi automaton. Elgot and Rabin [25] have invented the method of
contractions to reduce this problem, for suitable ω-words, to the case of ultimately
periodic ones, for which it is trivially solvable. However, little is known as to the
applicability of the contraction method. Elgot and Rabin have illustrated their
technique by proving the MSO decidability of the characteristic sequences of the
factorial predicate, of k-th powers, and of powers of a fixed k. Fairly recently,
Carton and Thomas [17] have used a very similar technique to prove the MSO de-
cidability of morphic words. These results are elegantly rounded up in [43] and [44].

Morphic words. The study of morphic words, having applications in combi-
natorics of words, goes back to Thue. An ω-word is said to be morphic if it
is the homomorphic image of a fixed point of a morphism of finite words. It is
thus associated to an HD0L system in a natural way, namely, as the limit of the
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sequence of words generated by it, i.e. by iterated application of the latter mor-
phism (cf. [30,32,47]). Morphic words have been intensively studied in both of
these contexts.

In this paper we define morphisms of k-stacks (words of words of ... of words,
k-fold) and classes of ω-words arising in a similar way by iterating such a mor-
phism. We extend the result of Carton and Thomas to these classes of ω-words.
Additionally, we prove that for each k the class of k-morphic ω-words is closed
under MSO-definable re-colorings, e.g. under d.g.s.m. mappings. This result
generalizes that of Pansiot on various subclasses of morphic words (cf. [41]) and
underlines the robustness of these notions.

Automatic presentations. We use the formalism of automatic presentations
of ω-word structures. An (injective) automatic presentation of (N, <) consists
of a regular set D of names, a synchronized rational relation ≺, and a bijective
valuation function ν : D → N such that n < m iff ν−1(n) ≺ ν−1(m) for ev-
ery n,m ∈ N. In the otherwise rich field of generalized numeration systems (cf.
e.g. [12]) the length-lexicographic ordering is the only natural choice for ≺. We
consider automatic presentations of (N, <) where the ordering is a generalization
of the length-lexicographical one. Given an ordered alphabet, we define the k-
lexicographic ordering as a kind of k times nested length-lexicographical ordering.

An ω-word structure is an extension (N, <, {Pa}a∈Σ) of the above by a unary
predicate for each letter according to the positions in the word where each letter
occurs. We generalize the result of Rigo and Maes [45] by showing that ω-words
representable using the k-lexicographic ordering are precisely those generated by it-
erated applications of a morphism of k-stacks followed by a homomorphic mapping.
Thus, we obtain a hierarchy of k-lexicographic or k-morphic ω-words. Indeed, we
show that these classes form a strictly increasing infinite hierarchy.

Automatic structures are known to have a decidable first-order theory and to
be closed under first-order interpretations via straightforward application of basic
automata techniques [10,29,33]. We use “higher-order” automata constructions
to extend these properties to monadic second-order logic over ω-word structures
having a k-lexicographic presentation. The construction follows the factorization
of the ω-word provided by the k-lexicographic presentation. The key step consists
of showing that the contraction of an ω-word (defined with respect to a given
(k + 1)-lexicographic presentation and a given finite monoid – cf. Sect. 5.2) is
itself k-lexicographic. In other words, the automatic presentation guides us in ap-
plying the contraction method. This allows us to argue inductively, or, conversely
and more intuitively, to reduce the MSO theory of a k-lexicographic ω-word in k
contraction steps to questions about ultimately periodic words.

Related work. Given our still unsatisfactory understanding of the pushdown
hierarchy of graphs having decidable MSO theories [20,54] it is natural to ask,
which ω-words inhabit the individual levels of this hierarchy. Caucal has shown
that morphic words are found on the second level [20] and it is suspected that they
in fact exhaust the second level. More generally, Theorem 8.1 below states that
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k-lexicographic words are on the 2kth level of the pushdown hierarchy. However,
already on the third level one will find words, which, for reasons of growth, are
not automatic [36]. An extension of the notion of morphic words based on simply
typed derivation rules has been introduced in order to capture words on respective
levels of the pushdown hierarchy [11].

Also related to our work, though more in spirit and in terms of some techniques
involved and less as far as the actual classes of sequences are concerned, is the
recent work of Fratani and Sénizergues on sequences of integers, rationals and
transductions computed by higher-order pushdown automata [26,50].

Outline of the paper. The rest of the paper is structured as follows.
In Section 2 we recall the most fundamental notions of finite synchronous multi-

tape automata, primarily in connection with first-order and monadic second-order
logic and in order to fix notation. We also introduce here the less widely known
concept of automatic presentations, the central objects of our investigation, and
summarize the most fundamental facts concerning first-order logic on structures
allowing an automatic presentation.

Section 3 is a continuation of the Preliminaries section focusing on ω-words. We
recall the classical notion of morphic ω-words, define what we mean by a canonical
automatic presentation of an ω-word and in preparation for the main result we
discuss some general properties of such canonical presentations.

Section 4 introduces the hierarchy of classes of k-lexicographic ω-words as ad-
vertised in the title. The definition requires the existence of a specific kind of
automatic presentation of the ω-word involving the k-fold nested lexicographic
ordering as introduced in the beginning of the section. We identify some of the
basic properties of these presentations and the corresponding classes of ω-words.
In particular, we highlight the fact that 0-lexicographic ω-words are the ultimately
periodic ones whereas the 1-lexicographic ones are precisely those morphic.

Section 5 is devoted to establishing the Main Theorem 5.3 stating that all
relations definable in monadic second-order logic over a k-lexicographic word are in
the given presentation recognizable by finite automata. This is surprising because
in general only first-order definable relations have this property. A number of
consequences of the main result are stated as corollaries.

In Section 6 we prove that the classes of k-lexicographic ω-words actually do
form a proper hierarchy parametrized by k. We give concrete examples of ω-words
separating consecutive levels of this hierarchy.

Section 7 introduces a generalization of the notion of morphic ω-words based
on morphisms of higher-order stacks, a very limited form of higher-order parallel
rewriting. In Theorem 7.5 we prove that ω-words that can be generated via mor-
phisms of level k stacks are precisely those allowing a k-lexicographic automatic
presentation.

In Section 8 we recall the pushdown hierarchy of graphs and trees defined in
terms of alternating applications of tree unfolding and monadic second-order inter-
pretations [20,54], and we demonstrate that for each k the k-lexicographic ω-words
can be constructed on the 2kth level of the pushdown hierarchy.
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Section 9 closes our discussion with a handful of remarks and open questions.

2. Preliminaries

Words. Let Σ be a finite alphabet. Σ∗ denotes the set of finite words over Σ. The
length of a word w ∈ Σ∗ is written |w|, the empty word is ε, for every 0 ≤ i < |w|
the ith symbol of w is written as w[i], and when I denotes some interval of posi-
tions then wI (e.g. w[n,m)) is the factor of w on these positions. Note that we
start indexing with 0. Accordingly, for every n ∈ N, we let [n] = {0, . . . , n− 1}.
Morphisms. We denote by Hom(M,N) the set of homomorphisms from the
monoid M to N . Each ϕ ∈ Hom(Σ∗,Σ∗) can be specified by the images ϕ(a) of
individual symbols a ∈ Σ. The length of ϕ, denoted |ϕ|, is the maximum of all
the |ϕ(a)|, and ϕ is uniform, when |ϕ(a)| = |ϕ| for every a ∈ Σ.

Automata. A finite labelled transition system (TS) is a tuple T = (Q,Σ,Δ),
where Q is a finite, nonempty set of states, Σ is a finite set of labels, and Δ ⊆
Q×Σ×Q is the transition relation. T is deterministic (DTS), when Δ is a function
of type Q × Σ → Q, in this case we write δ instead of Δ, and δ∗ for the unique
homomorphic extension of δ to all words over Σ. Alternatively, each deterministic
transition system can be represented as a pair (ϕ,M) where M = (Q → Q, ◦, id)
is the monoid of (partial) functions from Q to Q with composition as product
and ϕ ∈ Hom(Σ∗,M) is such that ϕ(a)(q) = δ(q, a) for every a ∈ Σ and q ∈ Q.
From (ϕ,M) one can again obtain the presentation (Q,Σ, δ). A finite automa-
ton (FA) is a finite transition system together with sets of initial and final states
A = (T , I, F ) = (Q,Σ,Δ, I, F ). A is deterministic (DFA) when T is and when
I contains a single initial state q0. The unfolding of a DFA A from its initial
state is a Σ-branching Q-labelled regular tree, i.e. one having only finitely many
subtrees up to isomorphism. Conversely, each such regular tree determines a DFA
having the subtree-types as its states. The completion of a DFA A is the DFA A
obtained by introducing a new state ⊥ and setting it the target of all yet undefined
transitions. Thus, the transition function δ of A is defined for all pairs (q, a) with
q ∈ Q ∪ {⊥}.

Multi-tape automata. Let Σ be a finite alphabet. We consider relations on
words, i.e. subsets of (Σ∗)n for some n > 0. Asynchronous n-tape automata
accept precisely the rational relations, i.e., rational subsets of the product monoid
(Σ∗)n. Finite transducers, recognizing rational transductions [5], are asynchro-
nous 2-tape automata. A relation R ⊆ (Σ∗)n is synchronized rational [27] or reg-
ular [34] if it is accepted by a synchronous n-tape automaton. Finally, R ⊆ (Σ∗)n

is semi-synchronous rational [3] if it is accepted by an n-tape automaton reading
each of its tapes at a fixed speed. A deterministic generalized sequential machine
(d.g.s.m.) S = (T , q0,O) consists of a DTS, an initial state, and an output func-
tion O : Q×Σ → Γ∗ and computes, in a natural way, a function S : Σ∗ → Γ∗ that
also extends to ω-words.
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Automatic structures. The idea to use automata to represent structures goes
back to Büchi. The general notion was first introduced and studied by Hodgson [29]
and was then rediscovered by Khoussainov and Nerode [33]. Since then it has
been subject of some theses and numerous publications, see e.g. [4,8,10,34,48,49]
for an overview. Note that a great deal of attention has been given to natural
automatic presentations of specific structure classes including Cayley-graphs of
groups [14] and semigroups, as well as automatic sequences [1,12,13]. We shall
take all structures to be relational with functions represented by their graphs.

Definition 2.1 (Automatic structures [33]). An automatic presentation of a
structure A = (A, {Ri}i) consists of a collection of synchronous automata d =
(AD,A≈, {ARi}i) and a naming, or coordinate function ν : L(AD) → A, such
that ≈= L(A≈) is the equivalence relation {(x, y) | ν(x) = ν(y)} and ν is a homo-
morphism from (L(AD), {L(ARi)}i) onto A, hence A ∼= (L(AD), {L(ARi)}i)/≈.
AutStr designates the class of automatic structures.

One effectively obtains an injective presentation from any given automatic pre-
sentation by restricting L(AD) to a set of unique (e.g. length-lexicographically
least) representants of each ≈-class. In this paper we will only consider injective
presentations, omitting ≈, and quite often tacitly consider a tuple of regular rela-
tions (D, {Ri}i) as an automatic presentation.

Logics. We use the abbreviation FO and MSO for first-order and for monadic
second-order logic, respectively, and FO∞,mod for the extension of FO by infin-
ity (∃∞) and modulo-counting quantifiers (∃(r,m)). The meaning of the formulas
∃∞x θ and ∃(r,m)x θ is that there are infinitely many elements x, respectively r
many elements x modulo m, such that θ holds. We shall make extensive use, often
without direct reference, of the well-known relationships of automata and logics
(cf. [28,53]) as well as of the following facts.

Theorem 2.2 (Consult [8,10] and [35,48]).
i) Let (d, ν) be an automatic presentation of A ∈ AutStr. Then for each

FO∞,mod-formula ϕ(�a, �x) with parameters �a from A, defining a k-ary re-
lation R over A, one can construct a k-tape synchronous automaton rec-
ognizing ν−1(R).

ii) The FO∞,mod-theory of every automatic structure is decidable.
iii) AutStr is effectively closed under FO∞,mod-interpretations.

In this paper we extend these results to MSO over word structures having
automatic presentations of a certain kind, cf. Definition 4.1. It will be convenient
to consider automatic presentations up to equivalence.

Definition 2.3 (Equivalence of automatic presentations).
Two presentations (d1, ν1) and (d2, ν2) of some A ∈ AutStr are equivalent if for
every relation R over A, ν−1

1 (R) is regular iff ν−1
2 (R) is regular.

In other words, two automatic presentations are equivalent if there is no dif-
ference between them in terms of representability of relations via automata, i.e.
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if they are expressively equivalent. In [3] we have shown that two presentations
are equivalent iff the transduction translating names of elements from one presen-
tation to the other is computable by a semi-synchronous transducer: a two-tape
finite automaton whose transitions, with the possible exception of a final one, are
labelled by elements of Σk × Γl uniformly for some fixed positive k and l. Note
that, except in trivial cases, k/l is uniquely determined [3].

Theorem 2.4 ([3]). Two presentations (d1, ν1) and (d2, ν2) of some A ∈ AutStr

are equivalent if and only if the transduction T = {(x, y) ∈ D × D′ | ν1(x) =
ν2(y)}, translating names of elements from one presentation to the other, is semi-
synchronous rational.

So equivalent presentations are truly identical modulo such a simple coding, in
other words “expressive equivalence” coincides with “computational equivalence”.

To give a simple example, the translation from the base 4 representation of natu-
rals into binary numerals (assuming both to be least-significant-digit-first fashion)
is the uniform morphism mapping 0 
→ 00, 1 
→ 10, 2 
→ 01 and 3 
→ 11. The
two automatic presentations based on these numerals are thus equivalent. Recall,
that, on the other hand, the celebrated theorem of Cobham and Semenov (see
e.g. [7,13]) implies that for p and q having no common power the base p and base
q numeration systems are as far from being equivalent as they can be.

3. Word structures

An ω-word over Σ is a function w : N → Σ. The set of ω-words over Σ is de-
noted Σω. To every w ∈ Σω we associate its word structure Ww = (N, <, {Pa}a∈Σ),
where Pa = w−1(a) for each a ∈ Σ. Word structures of finite words are defined
similarly. Note that we consider the ordering, as opposed to the successor relation,
as given in our word structures. When one is working with monadic second-order
logic, there is of course no difference in terms of expressiveness. However, as we
are engaging in an investigation of automatically presentable word structures, the
presence of the ordering is not without significance.

Morphic words. A particularly well understood class of ω-words is that of the
so called morphic words. The basic idea, successfully applied by Thue, is to obtain
an infinite word via iteration of a suitable morphism τ : Σ∗ → Σ∗. Suitability
is expressed by the condition that τ(a)[0] = a for some a ∈ Σ. In this case τ is
said to be prolongable on a. This ensures that the sequence (τn(a))n∈N converges
to either a finite or infinite word, which is a fixed point of τ , denoted τω(a). An
ω-word w ∈ Γω is morphic, if w = σ(τω(a)) for some τ prolongable on a and some
σ ∈ Hom(Σ∗,Γ∗) extended in the obvious way to ω-words.

Example 3.1. Consider τ : a 
→ ab, b 
→ ccb, c 
→ c and σ : a, b 
→ 1, c 
→ 0
both homomorphically extended to {a, b, c}∗. The fixed point of τ starting with
a is the word abccbccccbc6b . . ., and its image under σ, 1100100001061 . . ., is the
characteristic sequence of the set of squares.
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In general, as was shown in [17], the characteristic sequence of every set of the
form {

∑n
k=0 sk | n ∈ N}, where 0 < (sk) is an N-rational sequence is morphic.

This result follows trivially from the characterization of [45], cf. Proposition 4.3.

Example 3.2. Let φ : a 
→ ab, b 
→ a. Its fixed point φω(a) is the Fibonacci word
f = abaababaabaababaababa . . ., so called for the recursive dependence φn+2(a) =
φn+1(a) · φn(a) implying that |φn(a)| is the nth Fibonacci number.

Automatic presentations

In accordance with Definition 2.1 an automatic presentation (D,R, {Pa}a∈Σ) of
Ww as above comprises a regular set D partitioned by the regular sets Pa for each
a ∈ Σ over some alphabet Γ, together with a regular relation R, which is a linear
ordering of type ω over D such that the i-th word in this ordering belongs to Pa
iff the i-th symbol of w is a. Elements of D can be seen as numerals, each x ∈ D
representing the number ν(x) where ν is the coordinate map of the presentation.
To enhance readability we identify x with ν(x) and tacitly write e.g. w[x] in place
of w[ν(x)] when indexing symbols or factors of w.

The most frequently, if not exclusively, used regular ordering of type ω is the
length-lexicographic ordering, also called military-, radix-, or genealogical order-
ing by some and shortlex by others. Starting point of our investigation is the
observation that those ω-words admitting an automatic presentation using the
length-lexicographic ordering are precisely the morphic ones (cf. [45]). Neverthe-
less there are other choices of ordering worth investigating. Indeed, as we shall
see, increasing the complexity of the ordering widens the class of words thus pre-
sentable. First we define the key concept of canonicity and derive extensions of
Theorem 2.2 to MSO over word structures having a canonical presentation.

Definition 3.3 (Canonical presentations). An automatic presentation d = (D,<,
{Pa}a∈Σ) of some infinite word w ∈ Σω is canonical if there is an algorithm, which
constructs for every homomorphism ψ ∈ Hom(Σ∗,M) into a finite monoid M and
for every monoid element m ∈M a synchronous two-tape automaton recognizing
the relation

Bm = {(x, y) ∈ D2 | x < y ∧ ψ(w[x, y]) = m}.

Thus, canonicity means that membership of finite factors of w in a regular language
can be decided by an effectively constructable automaton reading the representa-
tions of the two endpoints of the factor. It is very easy to derive decidability of
the monadic second-order theory of words having canonical presentations.

Lemma 3.4. Let d = (D,<, {Pa}a∈Σ) and ν constitute a canonical presentation
of w ∈ Σω. Then for every deterministic Muller automaton A an automaton
recognizing the following set can be effectively constructed.

EA = {x ∈ D | w[x,∞) ∈ L(A)}.

Proof. Consider A as a pair (ψ,M) with M = (Q → Q, ◦) and ψ ∈ Hom(Σ∗,M).
Canonicity of d yields automata recognizing Xq = {(x, y) ∈ D2 | x < y ∧
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ψ(w[x, y])(q0) = q} for each q ∈ Q. Using Theorem 2.2 we can construct au-
tomata recognizing YF = {x ∈ D |

∧
q∈F ∃∞yXq(x, y) ∧

∧
q �∈F ¬∃∞y Xq(x, y)} for

all F ⊆ Q. Finally, EA is the union of those YF such that a run of A is accepting
with F being the set of infinitely often occurring states. The claim follows. �

Corollary 3.5. Let w be an ω-word having a canonical automatic presentation.
Then the MSO-theory of Ww is decidable.

Proof. In line with the well known correspondence between automata and MSO
on ω-words deciding the MSO-theory of a word structure amounts to deciding
acceptance of the word by any given deterministic Muller automaton A. Given a
canonical presentation this can be done by checking membership of ν−1(0) in EA
constructed as in the above lemma. �

Canonicity yields more than just decidability as we shall see next. Let ϕ be an
MSO sentence in a language of word structures and let x, y be first-order variables
not occurring in any subformula of ϕ. We define three kinds of relativizations
of ϕ: ϕ[0,x], ϕ[x,y], and ϕ[x,∞) obtained by relativizing all first- and second-order
quantifications to the noted intervals. For instance (∃zϑ)[x,y] = ∃z(x ≤ z ∧ z ≤
y ∧ ϑ[x,y]), and (∀Zϑ)[x,∞) = ∀Z(∀z(z ∈ Z → x ≤ z) → ϑ[x,∞)). The relevance of
relativization is expressed by the equivalence Ww |= ϕI ⇐⇒ WwI |= ϕ , where I
is an interval of any of the three kinds.

Lemma 3.6 (Normal form of MSO formulas over word structures). Every MSO
formula ϕ(�x) having free first-order variables x0, . . . , xn−1 and no free second-
order variables is equivalent to a boolean combination of formulas xi < xj and
relativized MSO sentences1 ϑ[0,xi], ϑ[xi,xj], and ϑ[xi,∞) with i, j ∈ [n].

Proof. A similar normalform applies to MSO formulas over trees [21] and is a
typical application of the composition method as introduced by Shelah [51]. Here
we sketch a proof through automata.

Via standard construction [53], there is a deterministic Muller automaton A
over the alphabet Σ × {0, 1}n such that Ww |= ϕ(�k) iff w ⊗ ξ�k ∈ L(A) for all
�k ∈ Nn, where ξ�k ∈ ({0, 1}n)ω is the characteristic word of the tuple �k, i.e.
ξ�k[i]j = 1 iff kj = i. We collect for each pair of states (p, q) of A the regular
language Lp,q = {u ∈ Σ∗ | δ∗(p, u ⊗ (0n)|u|) = q}. Additionally, we let Lq = {u ∈
Σω | A accepts u⊗(0n)ω from state q}. Again, by standard constructions, we find
MSO sentences ϑp,q respectively ϑq defining these languages.

Each infinite word w ⊗ ξ�k is naturally factored into segments in between con-
secutive ki’s, some of which can be equal. Accordingly, each run of A can be
factored into finite number of finite segments and an infinite segment by those
positions where in at least one of the last n components of the symbol read a 1 is
encountered. The intermediate segments and the last infinite segment are models
of the appropriate sentences ϑp,q and of ϑq respectively.

1For a sentence ϑ its relativization ϑ[xi,xj ], for instance, will have xi and xj , and only these,

as its free variables.
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By summing up all possible factorizations of accepting runs we obtain in a first
attempt a boolean combination of formulas of type xi < xj , xi = xj , Paxi and
of relativized sentences of the form ϑ

[0,xi)
q0,q , ϑ(xi,xj)

p,q and ϑ
(xi,∞)
q . Equality can be

expressed using <, and integrating the Paxi into the neighboring openly relativized
segment formulas we finally arrive at a normal form as promised. �

Theorem 3.7 (MSO definability). Let w be an ω-word having a canonical pre-
sentation d having domain D and bijective coordinate function ν : D → N. Then
there is an algorithm transforming every MSO formula ϕ(�x) having n free first-
order variables (and no free set variables) into an n-tape synchronous automaton
A such that for every u1, . . . , un ∈ D

Ww |= ϕ[ν(�u)] ⇐⇒ �u ∈ L(A).

Proof. Using Lemma 3.6, we transform ϕ into a boolean combination of relativized
sentences and comparison formulas xi < xj . Canonicity and Lemma 3.4 yield
automata recognizing the relations defined by relativized sentences ϑ[0,xi], ϑ[xi,xj ],
respectively ϑ[xi,∞). Recall that synchronized rational relations form an effective
boolean algebra [27]. Thus, by the appropriate combination of the automaton
recognizing < and of the automata recognizing the relativized subformulas of the
normal form we obtain A as required. �

Note that a set X ⊆ N is definable by an MSO formula ψ(X) in Ww iff it is
point-wise definable by one of the form ϕ(x). Thus, (Ww , X) is automatic for
every canonically presentable Ww and for every X MSO-definable in Ww.

4. k-lexicographic presentations

Let Γ be a finite non-empty alphabet. To each word u = a0a1 . . . an−1 ∈ Γ∗ of
length n and to each 0 < k we associate its k-split (u(1), u(2), . . . , u(k)) defined as
follows. Let t be such that tk ≤ n < (t + 1)k. Then the ith word of the k-split is
u(i+1) = aiak+ia2k+i . . . atk+i for each i < k. In other words, the i+1st component
of the k-split, u(i+1), is the subword of u restricted to letters in a position equal
to i modulo k. We call k-merge the operation ⊗k producing the original word
u = ⊗k(u(1), . . . , u(k)) from the components (u(1), . . . , u(k)). The rk+ ith letter of
⊗k(u(1), . . . , u(k)) is thus the rth letter of u(i). The k-merge will only be applied
to words obtainable as components in a k-split. E.g. the 2-merge of abaa and cddc
is acbdadac. Additionally, we define u(0) = |u| ∈ N or in unary presentation as
1|u| ∈ 1∗, whichever is more convenient. For 0 ≤ i < k we define the equivalence

u =i v
def⇐⇒ ∀j ≤ i u(j) = v(j).

This implies, in particular, |u| = |v|. Let now < be a linear ordering of Γ, and
let <lex denote the induced lexicographic ordering. For each 0 ≤ k we define the
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k-length-lexicographic ordering (<k-llex ) of Γ∗ as

u<k-llex v
def⇐⇒ |u| < |v| ∨ ∃i < k : u =i v ∧ u(i+1) <lex v

(i+1).

To give an example let {0 < 1 < a < b < c} be an ordered alphabet. In the
induced 2-lexicographic ordering we have, e.g.,

a0a0a0a0<2-llex a1a1b1a1<2-llex a0a0b0b1<2-llex a0a1b1b0<2-llex b0a0b1b1

and a0a0b0b1 =1 a0a1b1b0 holds.

Definition 4.1 (k-lexicographic words). An ω-word w ∈ Σω is k-lexicographic
(short: k-lex ) if there is an automatic presentation (D, <k-llex , {Pa}a∈Σ) of the
associated word structure Ww. For each k, the class of k-lexicographic words is
denoted Wk, and we also let W =

⋃
kWk.

Observe that the 0-lexicographic ordering is just the ordering of words according
to their length. Therefore, by definition, the domain of a 0-lex presentation has to
be thin, i.e. containing at most one word of each length. All such presentations are
easily seen to be equivalent to one over a unary alphabet (the length-preserving
morphism mapping each letter to 1 is a rational projection to 1∗ that is length
preserving, hence synchronous rational [27]). Thus, W0 is precisely the class of
ultimately periodic words.

Proposition 4.2. W0 is the class of ultimately periodic words.

Further, it is not hard to see, that an ω-word is 1-lex iff it is morphic. For the
sake of completeness and to illustrate the techniques of Section 5 in this simple
case we present a compact proof of this fact, which has appeared in [45].

To each morphism ϕ ∈ Hom(Σ∗,Σ∗) with |ϕ| = l we associate its index tran-
sition system Iϕ = (Σ, [l], δ) where δ(a, i) = ϕ(a)[i] for every i < |ϕ(a)| and
undefined otherwise. For each a ∈ Σ considered as the initial state, the DFA
(Iϕ, a,Σ) accepts the set I(a) = Iϕ(a) of valid sequences of indices starting from
a. Applying ϕ n times to a gives the word

ϕn(a) =
lex∏

x∈I(a)∩[l]n

δ∗(a, x) (1)

where x is meant to run through all valid sequences of indices of length n in
lexicographic order. Thus ϕn(a) is the sequence of labels of the nth level of the
tree unfolding of Iϕ from a.

Conversely, given a linear ordering a0 < a1 < . . . < as of Σ we associate to
each DTS T = (Q,Σ, δ) its transition morphism τ = τT ∈ Hom(Q∗, Q∗) defined
as τ(q) = δ(q, ai1)δ(q, ai2 ) . . . δ(q, aik) where ai1 < ai2 < . . . < aik are precisely
those symbols for which a transition from q is defined. Just as in (1) applying τ
n times to some q results in τn(q) =

∏lex
w∈L(T ,q,Q)∩Σn δ∗(q, w), where w runs, in
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lexicographic order, through all words of length n, which are labels of some path
in T starting from q. Thus τnT (q) is the sequence of labels of the nth level of the
tree unfolding of T from q.

Proposition 4.3 ([45]). W1 is the class of morphic words.

Proof. Let τ ∈ Hom(Γ∗,Γ∗) be prolongable on a and consider its index transition
system I = Iτ . It is clear from our previous observations that the language
L(I, a,Γ) recognized by I with all states final and a as its initial state provides,
equipped with the prefix-ordering, an automatic presentation of the tree unfolding
T = TI,a of I from the initial state a. As also remarked, τn(a) is precisely
the word one obtains by reading the nth level of T from “left to right”, i.e.
in lexicographic order. Also note that τ being prolongable on a, Iτ contains a
transition a 0
→a, therefore the subtree of T rooted at 0 is isomorphic to the whole
tree. Let τ(a) = au for some u = u1 . . . ut ∈ Γ∗ and let Ui be the subtree
rooted at 0 < i ≤ t. Then τn+1(a) = auτ(u) · · · τn(u) = τn(a) · τn(u) and
T ∼= a(T ,U1, . . . ,Ut). To obtain a length-lexicographic presentation of τω(a) we
dispense with the subtree rooted at 0 so that the levels of the remaining regular
tree a(U1, . . . ,Ut) correspond to the increments τn(u) between iterations of τ . We
have thus shown that D = L(Iτ , a,Γ)\0[|τ |]∗ and Pc = L(Iτ , a, c)\0[|τ |]∗ for each
c ∈ Γ together with the natural length-lexicographic ordering provide an automatic
presentation of τω(a). To give a lexicographic presentation of w = σ(τω(a)) where
σ ∈ Hom(Γ∗,Σ∗) we set D′ = {xi | c ∈ Γ, x ∈ Pc, i < |σ(c)|} and Pb = {xi | c ∈
Γ, x ∈ Pc, σ(c)[i] = b} for each b ∈ Σ.

Conversely, given a lexicographic presentation (AD, <lex, {APa}a∈Σ) of some w
consider the product automaton A =

∏
a∈Σ APa . Let τ = τA be the associated

transition morphism, and let us define σ ∈ Hom(Q(A)∗,Σ∗) by stipulating that
σ(�q) = a whenever the ath component of �q is an accepting state of APa (assuming
the APa are trim a is clearly uniquely determined) and σ(�q) = ε when no such a
exists. To ensure that τ is prolongable, we introduce a new symbol qinit �∈ Q(A)
and set τ(qinit) = qinitτ(�q0) and σ(qinit) = σ(�q0), where �q0 is the initial state of A.
We leave it to the reader to check that w = σ(τω(�q′0)). �
Example 4.4. Recall the Fibonacci word generated by the morphism φ : a 
→
ab, b 
→ a of Example 3.2. The index transition system of φ,

accepts, with a being initial and both states being final, the language {0, 1}∗\{0, 1}∗
11{0, 1}∗ of Fibonacci numerals with leading zeros. The construction of the proof
of Proposition 4.3 dispenses precisely with those numerals starting with a zero,
thus producing an injective presentation. Length-lexicographically ordered, the
first few numerals are ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, . . . with
10n representing the nth Fibonacci number.
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Let us now give an example of a 2-lexicographic word, which is not morphic.

Example 4.5. Consider the Champernowne word s = 12345678910111213 . . .
(also called Smarandache sequence) obtained by concatenating all decimal numer-
als (without leading zeros) in ascending, i.e. length-lexicographic order. To give
a natural 2-lex presentation of Ws we use words ⊗2(x(1), x(2)) such that x(1) is a
decimal numeral (not starting with a zero) and x(2) ∈ 1∗01∗. We use the single 0
in x(2) to mark a position within x(1). For each digit d ∈ [10] we can thus define
the unary predicate Pd as ([10]1)∗d0([10]1)∗\0[10]∗.

We close this section with two simple but useful observations.

Lemma 4.6 (Normal form lemma). Let 1 < k ∈ N. Each k-lexicographic pre-
sentation d = (D, <k-llex ) of (N, <) over an alphabet Σ is equivalent to one
d′ = (D′, <k-llex ) over some Γ such that D′ ⊆ (Γk)∗. In fact, one can choose
Γ = {0, 1} in the above.

Proof. Let first Γ = Σ�{0̂, . . . , k̂ − 1, �} endowed with the ordering � < 0̂ < . . . <

k̂ − 1 < a1 < . . . < as where a1 < . . . < as is the ordering of Σ used in the
presentation d. We define the translation t : Σ∗ → (Γk)∗ padding each word x to
t(x) = l̂ �k−1 x�k−l where l = |x| mod k. Observe that the moduli of the positions
of symbols of x are preserved in the process of this coding, i.e. t(x)(i) = αx(i)� with
α being l̂ for i = 0 and � otherwise. Consequently x<k-llex y iff t(x)<k-llex t(y) in
the orderings induced by that of the symbols. Since t is a synchronized rational
bijection d′ = (t(D), <k-llex ) is, by Theorem 2.4, equivalent to d.

Finally, to obtain an equivalent presentation over {0, 1} take any binary cod-
ing a 
→ b0 . . . bl−1 of the symbols a ∈ Γ uniformly of length l and such that
a < a′ iff b0 . . . bl−1<1-llex b

′
0 . . . b

′
l−1. Extend this into a coding of blocks of k

consecutive symbols as a0 . . . ak−1 
→ b00 . . . b
k−1
0 . . . b0l−1 . . . b

k−1
l−1 , and extend this

homomorphically to (Γk)∗. Due to the uniformity requirement, this translation is
semi-synchronous, and further it respects the k-lexicographic ordering. Hence, by
Theorem 2.4, it yields an equivalent k-lexicographic presentation. �

The important implication of the presentation in normalform being equivalent
to the original one is that one is canonical if and only if the other one is. There-
fore, in order to establish canonicity of all k-lexicographic presentations it will be
sufficient to treat k-lexicographic presentations in normalform, as we shall do.

Proposition 4.7 (Closure under homomorphic mappings). The class of automat-
ically presentable ω-words is closed under homomorphic mappings. In particular,
if w is k-lexicographic, then so is h(w) for every homomorphism h.

Proof. The idea is to append each word x ∈ Pa of a given presentation of w
indexing a symbol a by |h(a)| many appropriately chosen suffixes ua,i with i <
|h(a)|. For instance, one can take ua,i = #i where # is a new symbol. Then
P ′
c = {x#i |

∨
a x ∈ Pa∧h(a)[i] = c} for all letters c in the image alphabet of h. For

k-lexicographic presentations, wlog. in normalform, we can simply choose |ua,i| =
0k−1i, though this will typically not yield a presentation in normalform. �
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5. Canonicity, closure and decidability

This section is devoted to proving our main result, Theorem 5.3, stating that all
k-lexicographic presentations are canonical. Recall that this asserts that for every
k-lexicographically presented ω-word w and every regular language L a synchro-
nous automaton can be constructed that recognizes pairs of words representing
endpoints of precisely those factors of w, which belong to L. The proof of this
theorem proceeds by induction on k and is segmented into three layers. As the
basic machinery at the bottom layer stands a “higher-order” automaton transfor-
mation on which the entire construction rests. We present it in Section 5.1. On
the intermediate layer we have the Contraction Lemma 5.2, which is the heart of
the inductive argument. At the top of the construction the pieces are put together
in the proof of Theorem 5.3.

5.1. Technical tools: automata transformations

Consider a finite deterministic and complete transition system T = (Q,Σ, δ) and
the associated pair (M,ϕ) consisting of the finite monoid M = (Q→ Q, ◦) and the
homomorphism ϕ ∈ Hom(Σ∗,M) induced by δ. We call Hom(Σ∗,M) the derived
state space and denote it by Q(Σ). Furthermore, we call M (Σ) = Q(Σ) → Q(Σ) the
monoid of automata transformations. Note that both Q(Σ) and M (Σ) are finite.
This terminology is justified by the fact that Q(Σ) = Hom(Σ∗,M) is in essence
the set of all Σ-labelled DTS’s over the state space Q, hence M (Σ) is indeed the
monoid of all transformations of such transition systems.

A particular submonoid of M (Σ) that interests us is that of inverse homo-
morphic transformations H(Σ) defined as follows. Consider a homomorphism
h ∈ Hom(Σ∗,Σ∗). We can associate to h the element Φ(h) of M (Σ) defined as
(Q(Σ) � χ 
→ χ ◦ h). It can be readily seen that Φ is a monoid homomorphism
from Hom(Σ∗,Σ∗) to M (Σ), therefore H(Σ)def=Φ(Hom(Σ∗,Σ∗)) is a submonoid of
M (Σ). In terms of automata transformations this amounts to mapping a transition
function δ to δ′ such that δ′(q, a) = q′ whenever δ∗(q, h(a)), where δ∗ denotes as
usual the extension of δ to all words over Σ. We let h−1(T ) denote the transition
system (Q,Σ, δ′). Thus, for every q, q′ ∈ Q and w ∈ Σ∗ there is a path in h−1(T )
labelled w from q to q′ iff there is a path in T labelled h(w) from q to q′.

Consider a finite alphabet Θ and a mapping ϑ : Θ → Hom(Σ∗,Σ∗). We extend
ϑ to Θ∗ according to the rule

ϑ(x · x′) = ϑ(x′) ◦ ϑ(x) (2)

which ensures that Φϑ = Φ ◦ ϑ is a homomorphism from Θ∗ to H(Σ):

Φ(ϑ(x · x′))(χ) = Φ(ϑ(x′) ◦ ϑ(x))(χ) = χ ◦ ϑ(x′) ◦ ϑ(x)
= Φ(ϑ(x′))(χ) ◦ ϑ(x) = Φ(ϑ(x))(Φ(ϑ(x′))(χ))
= (Φ(ϑ(x)) ◦ Φ(ϑ(x′)))(χ).
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Therefore, the pair (H(Σ),Φϑ) represents, in accordance with our initial correspon-
dence, a Θ-labelled finite transition system with state space Q(Σ). Elements of Θ∗

can thus be seen as words over Θ, or, via ϑ as homomorphisms from Σ∗ to Σ∗, or,
via Φϑ, as transformations of Σ-labelled transition systems. Given a word w ∈ Σ∗

and a monoid element m ∈M , we are interested in the following subset of Θ∗.

LT ,w,m,ϑ = {x ∈ Θ∗ | the state transformation induced by w in ϑ(x)−1(T ) is m}.

Lemma 5.1 (Higher-Order Regularity (HOR) Lemma). For every T = (Q,Σ, δ)
with associated (M,ϕ) and for every w ∈ Σ∗, m ∈M , and every Θ and ϑ as above
we can construct an automaton recognizing LT ,w,m,ϑ.

Proof. Observe that we can write LT ,w,m,ϑ equivalently as

LT ,w,m,ϑ
def= {x ∈ Θ∗ | the state transformation induced by w in ϑ(x)−1(T ) is m}
= {x ∈ Θ∗ | the state transformation induced by ϑ(x)(w) in T is m}
= {x ∈ Θ∗ | ϕ(ϑ(x)(w)) = m}
= {x ∈ Θ∗ | Φ(ϑ(x))(ϕ)(w) = m}
= {x ∈ Θ∗ | Φ(ϑ(x)) ∈ Hm,ϕ,w}
= Φ−1

ϑ (Hm,ϕ,w)

where Hm,ϕ,w = {ξ = Φ(h) ∈ H(Σ) | ξ(ϕ)(w) = ϕ(h(w)) = m}. Hence, LT ,w,m,ϑ
is recognized by the subset Hm,ϕ,w of the finite monoid H(Σ) under the morphism
Φϑ.

Alternatively, we can describe the automaton recognizing LT ,w,m,ϑ as one hav-
ing as its states all deterministic transition systems having the same set of states as
T and for every h ∈ Θ and DTS T ′ a transition labelled h from T ′ to h−1(T ′). The
initial state is T and a transition system T ′ is accepting if with the corresponding
homomorphism ϕT ′ we have ϕT ′(w) = m. �

Recall that an HDT0L system is a collection H = (h, h1, . . . , hr, w), where
h1, . . . , hr ∈ Hom(A∗, A∗), h ∈ Hom(A∗, B∗) and w ∈ A∗ [32,47]. Given H let
Θ = {h1, . . . , hr} and ϑ be defined as above. The HDT0L mapping tH : Θ∗ → A∗

associated to H is defined, just like above, by tH(x) = h(ϑ(x)(w)) = Φϑ(x)(h)(w)
for all x ∈ Θ∗. A mapping of this kind is said to be (effectively) continuous if
t−1
H (L) is rational for every rational language L (and an automaton recognizing
t−1
H (L) can be constructed) [42]. Now if L is recognized by the morphism ϕ then

an automaton/morphism recognizing t−1
H (L) can be constructed as in the HOR

Lemma. Hence, in essence, our HOR Lemma asserts that HDT0L mappings are
effectively continuous.

5.2. Canonicity of k-lexicographic presentations

Let a (k + 1)-lex presentation d = (D, <(k+1)-llex , {Aa}a∈Σ) of w ∈ Σω in
normal form over the alphabet Γ together with the bijective coordinate function
ν : D → N as well as a homomorphism ψ ∈ Hom(Σ∗,M) into a finite monoid
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M be given. We associate to d the DFA Ad =
∏
a∈Σ Aa consisting of the DTS

Td = (Qd,Γ, δd) and having initial state �q0. Recall that A denotes the completion
of the automaton A as defined on page 421. Further let σd ∈ Hom(Q∗

d,Σ
∗) be

such that σd(�q) = a whenever the ath component of �q is in an accepting state
(in which case a is uniquely determined) and σd(�q) = ε otherwise. Finally, we set
wd =

∏<(k+1)-llex

x∈Γ∗ δ∗d(�q0, x) ∈ Qωd , which makes sense since Ad is complete. Clearly,
w = σd(wd)

For every x = ⊗k+1(x(1), . . . , x(k+1)) let x′ = ⊗k(x(1), . . . , x(k)) be the projec-
tion of x onto its first k splitting components when k > 0 and let x′ = x(0) = 1|x|

when k = 0. We define D′ = {x′ | x ∈ D} as the point-wise projection of D. The
equivalence =k partitions the set D of indices into consecutive intervals. Let c(x′)
denote the interval containing x, i.e. c(x′) = {y ∈ D | y′ = x′}, and consider the
factorization of w according to such intervals.

w =
<k-llex∏
x′∈D′

w[c(x′)].

The contraction (compare with that of [25]) of w wrt. d and ψ is the ω-word

cψd (w) =
<k-llex∏
x′∈D′

ψ(w[c(x′)]) ∈Mω

indexed by elements of D′ ordered according to <k-llex . We can prove that cψd (w)
is in fact automatically presentable over (D′, <k-llex ).

Lemma 5.2 (Contraction Lemma). Let d = (D, <k+1-llex , {Aa}a∈Σ) be a (k+1)-
lex presentation with coordinate function ν of the word structure of an ω-word
w ∈ Σω. Then for every finite monoid M , every ψ ∈ Hom(Σ∗,M) and for each
m ∈M the following relations are regular.

B′
m = {(x, y) ∈ D2 | x≤k+1-llex y ∧ x =k y ∧ ψ(w[x, y]) = m}

P ′
m = {x′ ∈ D′ | ψ(w[c(x′)]) = m}

whence, (D′, <k-llex , {P ′
m}m∈M ) is a k-lexicographic presentation of cψd (w).

Proof. We are going to employ the machinery introduced in Section 5.1. The
crucial observation hereto is that the transduction x′ 
→ w[c(x′)] is an HDT0L
mapping. In order to make this more precise and to apply the HOR Lemma 5.1
we first generalize the notion of transition morphisms (cf. Prop. 4.3).

Wlog. the ordered alphabet Γ of the presentation d is [t] = 0 < 1 < . . . < t− 1.
Let Q = {q, �q, q�, �q� | q ∈ Qd} and π : Q→ Qd be the projection forgetting the
markers and just keeping the states. We define the mapping β : ([t]k([t]× [t]))∗ →
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Hom(Q∗, Q∗) via homomorphic extension as in (2) while stipulating that

βu(i,j)(q) = δ∗d(q, u0)δ∗d(q, u1) . . . δ∗d(q, u(t− 1))
βu(i,j)(�q) = �δ∗d(q, ui) δ∗d(q, u(i+ 1)) . . . δ∗d(q, u(t− 1))
βu(i,j)(q�) = δ∗d(q, u0) . . . δ∗d(q, u(j − 1)) δ∗d(q, uj)�

βu(i,j)(�q�) =

⎧⎨⎩
ε (i > j)
�δ∗d(q, ui)� (i = j)
�δ∗d(q, ui) δ∗d(q, u(i+ 1)) . . . δ∗d(q, u(j − 1)) δ∗d(q, uj)� (i < j)

where u ranges over Γk and i, j < t. Note that β does not introduce any new
markers, rather it is merely keeping track of them by applying � and � , if at
all, only to the first and last symbols, respectively, on the right-hand side. Also
note that i and j are only taken into account as delimiters in connection with
� and � , respectively. We regard β as a mapping from pairs of =k-equivalent
words x, y ∈ D. Indeed, each pair (x, y) of words with x′ = y′ determines
a sequence u1(i1, j1) . . . un(in, jn), and vice versa, such that x(k+1) = i1 . . . in,
y(k+1) = j1 . . . jn and x′ = y′ = u1 . . . un. In accordance with (2) we can thus de-
fine βx,y as the composition βun(in,jn)◦· · ·◦βu1(i1,j1). We further let τu = βu(0,t−1).
Note that, for k = 0, τε is essentially the transition morphism τ associated to Td

as defined on page 427. To allow for uniform treatment we set τ1n = τε
n when

k = 0.
Claim. For all k ∈ N and x, y ∈ (Γk+1)∗ such that x′ = y′ and x≤k+1-llex y:

π(βx,y(��q�) =
∏y
z=x δ

∗
d(�q, z)

where the concatenation product is taken over the values of z in the (k + 1)-
lexicographic ordering. Consequently, when in addition x, y ∈ D then we have

σdπ(βx,y(��q0�)) = w[x, y]
σdπ(τx′(��q0�)) = w[c(x′)].

By the above claim we know that ψ(w[x, y]) = ψ(σd(π(βx,y(��q0�))) and that
ψ(w[c(x′)]) = ψ(σd(π(τx′(��q0�))). Recall that βx,y was defined as βun(in,jn) ◦
· · · ◦ βu1(i1,j1) for all x′ = y′ = u1 . . . un with ui ∈ [t]k and x(k+1) = i1 . . . in,
y(k+1) = j1 . . . jn. Similarly, τx′ = τun ◦ · · · ◦ τu1 . The results are established
by applying the HOR Lemma 5.1 with ϕ = ψ ◦ σd ◦ π and Θ = [t]k([t] × [t]),
ϑx⊗y = βx,y in the first case, respectively with Θ = [t]k, ϑx′ = τx′ in the second
case. �

In particular, the contraction of a morphic word wrt. any given lexicographic
presentation and any given morphism into a finite monoid is an ultimately periodic
sequence. This is already sufficient to yield MSO decidability of morphic words,
and is essentially the proof given in [17]. Obviously, by iterating this contraction
process starting from any given k-lex presentation of an ω-word we arrive after
(at most) k contractions, at an ultimately periodic sequence. It is now easy to use
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this fact to prove MSO decidability of k-lexicographic words. However, we aim for
the stronger canonicity result.

Main Theorem 5.3 (Canonicity of k-lex presentations). All k-lexicographic pre-
sentations are canonical.

Proof. The proof is by induction on k, the base case being clear. For the induction
step, we consider a k + 1-lex presentation. Observe that if two k + 1-lex presen-
tations of the same ω-word are equivalent, then one is canonical iff the other one
is. Therefore, by the Normal Form Lemma, it is sufficient to provide a proof for
k + 1-lex presentations in normal form. So let d = (D, <k+1-llex , {Pa}a∈Σ) be a
k + 1-lex presentation in normal form of an ω-word w ∈ Σω. Let a morphism
ψ ∈ Hom(Σ∗,M) into a finite monoid M be given. We need to construct au-
tomata deciding, given words x, y ∈ D with x≤k+1-llex y, whether ψ(w[x, y]) = m.
There are two cases. If x′ = y′ then we simply verify (x, y) ∈ B′

m as in the
Contraction Lemma. When on the other hand x′<k-llex y

′ then we partition the
interval x≤k+1-llex z≤k+1-llex y into three segments according to whether x′ = z′,
x′<k-llex z

′<k-llex y
′ or z′ = y′, i.e. consider the factors w[x, x̂], w[{z ∈ D |

x′<k-llex z
′<k-llex y

′}] and w[ŷ, y], where x̂ is the greatest element of c(x′) with
respect to <k+1-llex and similarly ŷ is the least element of c(y′). Note that both
x̂ and ŷ are first-order definable using <k-llex and =k, hence automaton com-
putable from x, respectively from y. We can therefore compute ψ(w[x, x̂]) as well
as ψ(w[ŷ, y]) by an automaton simultaneously verifying B′

m for both pairs (x, x̂)
and (ŷ, y) for all m ∈M .

It remains to show that the value of the central segment is also automaton com-
putable. By the Contraction Lemma we know that d′ = (D′, <k-llex , {P ′

m}m∈M) is
a k-lex presentation of cψd (w). Thus, by the induction hypothesis, d′ is canonical.
We use this fact to compute the value of the central segment. To this end, we
employ the multiplier morphism μM ∈ Hom(M∗,M) defined by stipulating that
μM (m) = m for all m ∈ M . Let ν′ denote the coordinate mapping associated
to d′. By definition of a contraction ψ(w[ν(c(z′))]) = cψd (w)[ν′(z′)], therefore the
value of the central segment ψ(w[{z ∈ D | x′<k-llex z′<k-llex y′}]) can be written
as μM (cψd (w)(x′, y′)), which is by canonicity of d′ automaton computable. �

Corollary 5.4 (MSO decidability). The MSO theory of the word structure Ww

associated to a k-lex word w ∈ W is decidable.

MSO interpretations are usually understood to be one-dimensional. We use
the notation ≤I

mdMSO to stress that I might be multi-dimensional. Further, we
say that a tuple (ϕ(x), {ϕb(x)}b∈Γ) of MSO formulas, together with the formula
ϕ<(x, y) = x < y, form a restricted MSO interpretation I (the restriction being
that I can only redefine the coloring, but not <) of a finite or infinite word
structure Ww′ ≤I

rMSO Ww. From Theorem 5.3 and Theorem 2.2 we conclude the
next corollaries.

Corollary 5.5 (Closure under MSO interpretations). Let w be a k-lexicographic
word. For every structure A and word w′ we have
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1. A ≤mdMSO Ww =⇒ A is automatic,
2. Ww′ ≤rMSO Ww =⇒ Ww′ is k-lexicographic.

Corollary 5.6 (Closure under d.g.s.m. mappings). For each k ∈ N the class Wk

is closed under deterministic generalized sequential mappings.

Proof. Let S be a deterministic sequential transducer. Wlog. we may assume that
S stores in its every state the last symbol read. With this assumption the image
S(w) of a word w under S can be obtained by a homomorphic mapping of the
run of S over w. The homomorphism corresponding to the output function of the
sequential transducer S. The run of S on w is of course rMSO interpretable in
Ww. Thus for each w ∈ Wk the run of S over w is in Wk by Corollary 5.5 and
therefore also S(w) ∈ Wk by Proposition 4.7. �

As an example of what can be interpreted in a word consider the following.

Theorem 5.7 (Automatic equivalence structures). Consider A = (A,E) with E
an equivalence relation on a countably infinite set A having only finite equivalence
classes. Assume further that for each n there are f(n) ∈ N many equivalence
classes of size n.
Then A ∈ AutStr if and only if there is a 2-lex word w = 0m010m110m21 . . . such
that f(n) = |{i | mi = n}|, in which case A ≤I

FO Ww for a fixed one-dimensional
FO-interpretation I, also implying that ThMSO(A) is decidable.

Proof. For the “if” direction, the interpretation in question is I = (ϕA(x), ϕE(x, y))
with ϕA(x) = P0(x) and ϕE(x, y) = ϕA(x) ∧ϕA(y)∧∀z(x < z < y ∨ y < z < x→
P0(z)). It is now easy to check that I(Ww) is indeed isomorphic to A and is thus,
by Theorem 2.2 or by Corollary 5.5, automatic.

For the “only if” direction we construct, given an automatic presentation (LA,
LE) of A, an automatic presentation of a binary word with the claimed property.

First observe that since all equivalence classes of A are finite, in other words
E is a locally finite relation, there is a constant C such that ||x| − |y|| < C for
all x, y ∈ LA with (x, y) ∈ LE. This can be verified using a standard pumping
argument (cf. e.g. [10], Prop. 6.1) and does not require the classes to be globally
bounded. We can therefore easily construct by padding an equivalent presentation
of A in which |x| = |y| holds for all x and y representing equivalent elements. We
shall now assume this holds.

Let Γ be the alphabet of the presentation of A. Wlog. Γ = {0, . . . , s− 1}. The
alphabet of the presentation of w will be Γ′ = {0, . . . , s− 1, s} ordered naturally.
We set P0 = {⊗2(x, y) | (x, y) ∈ LE ∧ ∀(x, z) ∈ LE x ≤lex z}, P1 = {⊗2(x, s|x|) |
∀(x, z) ∈ LE x <lex z}, and D = P0 ∪ P1. It is now clear that (D, <2-llex , P0, P1)
is an a.p. as promised. �

6. Hierarchy theorem

It is readily seen, that Wk is included in Wk+1 for each k. Next we show
that each Wk is properly included in the next one by exhibiting ω-words sk+1 ∈
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Wk+1 \ Wk. We call the sk stuttering words. Each sk is a word over the (k + 1)-
letter alphabet {a0, . . . , ak} and is defined as the infinite concatenation product
sk =

∏∞
n=0 sk,n, where s0,n = a0 and sk+1,n = (sk,n)2

n

ak+1 for every k and n.
That is

sk =
∞∏
n=0

(· · · (((a2n

0 )a1)2
n

) · · · )2
n

ak.

To give an illustration, we write for convenience a, b, c, d . . . instead of a0, a1, a2, a3 . . .
for small k. The first few stuttering words are

s0 = aω

s1 = abaabaaaaba8ba16b . . .
s2 = abcaabaabc(aaaab)4c(a8b)8c . . .
s3 = abcd(aabaabc)2d((aaaab)4c)4d((a8b)8c)8d . . .

...

As to the complexity of these stuttering words let us note that s2 is not a fixed
point of any d.g.s.m. mapping [2].

Theorem 6.1 (Hierarchy Theorem). For each k ∈ N we have sk+1 ∈ Wk+1\Wk.

Proof. We leave it to the reader to give a k-lex presentation of sk for every k.
To show that sk+1 �∈ Wk we argue indirectly as follows. Assume that there is a
k-lex presentation (D, <k-llex , {Pai}i≤k+1) of sk+1, and assume it to be in normal
form, i.e. D ⊆ ({0, 1}k)∗. Consider for each i ≤ k + 1 the (regular) relations
Si(x, y) consisting of pairs of consecutive words x, y ∈ Pai , i.e. such that there are
no occurrences of ai on intermediate positions. Let automata be given for D, Pai ,
and Si for every i ≤ k+ 1 and let C be greater than the maximum of the number
of states of any of these automata.

Claim. For every i = 1, . . . , k there is a ti such that for all N ∈ N there are
x = ⊗k(x(1), . . . , x(k)), and y = ⊗k(y(1), . . . , y(k)) with |x| = |y| > N and such
that Si(x, y) and x =k−i y (i.e. x(j) = y(j) for all j ≤ k − i) and that x(k−i+1)

and y(k−i+1) differ only on their last ti bits.

For i = 1 we immediately get a contradiction since for large enough N there
are more than 2t1 many a0’s between consecutive a1’s represented by words x and
y of length N contrary to the above claim that x and y differ only on the least
significant t1 bits of their least significant components leaving room for at most
2t1 many intermediate positions in the k-lexicographic ordering.

Proof of claim. We start with i = k and proceed inductively in descending order.
Values of the ti will be implicitly given during the proof.

First note that |v| < |u| + C for every Sk+1(u, v) because the tail of a longer
v could otherwise be pumped up to produce infinitely many would-be Sk+1-
successors of u when there is but one. Let n > C logC and let u represent the
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position of the nth occurrence of ak+1 in sk+1 and chose v with Sk+1(u, v). Then
there are 2n many ak’s distributed evenly between u and v, therefore there must be
some |u| ≤ L ≤ |v| such that there are at least 2n/C > 2C many u<k-llex x<k-llex v,
|x| = L, and x ∈ Pak

.
Consider the ascending sequence of all such x ordered according to <k-llex .

Then the first C bits of their first components (these are the most significant bits)
are lexicographically non-decreasing. Since there are more than 2C such x we must
find two consecutive ones agreeing on the first C bits of their first components.

Let x and y be such a pair, i.e. |x| = |y| = L, Sk(x, y) and such that x(1)

and y(1) agree on their first C bits. Set tk = L − C. By pumping into the initial
segment of length kC of the pair (x, y) (this involves the first C symbols of each
component of both x and y) we can obtain arbitrary long x′, y′ with Sk(x′, y′)
and whose first components may only differ on their last ti bits. Thus we have
established the case i = k.

To advance from i + 1 to i we do the same as above. By the induction hy-
pothesis we have for arbitrary large L two words u = ⊗k(u(1), . . . , u(k)) and
v = ⊗k(v(1), . . . , v(k)) both of length L such that Si+1(u, v) and having u(j) = v(j)

for all j < k− i and u(k−i) and v(k−i) differing only on their last ti+1 bits. Choose
L large enough to ensure that there are more than 2C+ti many occurrences of ai
in between these two positions. As x runs through, in the k-length-lexicographic
order, all the words representing positions of consecutive ai’s from u to v the last
ti bits of the (k− i)th component together with the first C bits of the (k− i+1)th
component of x is lexicographically non-decreasing. As there are more than 2C+ti

many such x for large enough L we must have two consecutive ai’s on positions
represented by some x and y agreeing on their first (k− i) components and on the
first C bits of their (k − i+ 1)th components. Thus, by pumping into the initial
segment of length kC of the pair (x, y) we obtain arbitrary long x′, y′ fulfilling the
conditions of our claim for i. �

7. Equivalent characterizations

In the previous sections we have been concerned with k-lexicographic presenta-
tions of ω-words. Each automatic presentation provides a finite description of an
ω-word that is internal in the sense that positions within the ω-word are individu-
ally named and that their properties and relationships are given in terms of these
names chosen. The description of a morphic word via two morphisms generating it
can, in contrast, be seen as being external or generative in nature. Proposition 4.3
demonstrated how to transform a length-lexicographic presentation of a morphic
ω-word into an equivalent description in terms of morphisms and vice versa.

In this section we generalize both the notion of morphic ω-words and the tech-
nique of Proposition 4.3 to each level k providing equivalent external descriptions of
k-lexicographic ω-words in the form of iterating morphisms of higher-order stacks
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of level k. In addition we give equivalent characterizations of k-lexicographic ω-
words in terms of MSO-interpretations and deterministic generalized sequential
mappings restricted in a certain sense and applied to a fixed ω-word of level k+1.

A number of generalizations of morphic words, given as so-called HD0L TAG-
systems, have been introduced. These include DGSM TAG-systems, double or
triple D0L TAG-systems, etc. [31]. To the knowledge of the author the notion of
higher-order morphic words introduced here is new. It generalizes HD0L TAG-
systems in a new direction close to the spirit of [50].

We begin with the definition of higher-order stacks. Let Γ be a finite, non-empty
stack alphabet. A (level 1) stack is a finite sequence of symbols of Γ, and level
k + 1 stacks are sequences of level k stacks. Additionally, we shall call individual
symbols of Γ level 0 stacks. Formally

Stack
(0)
Γ = Γ

Stack
(k+1)
Γ = [(Stack

(k)
Γ )∗]

where ‘[’ and ‘]’ are used to identify the boundaries of lower-level stacks within
higher-level ones. Outer most brackets will most often be omitted.

Level k stacks can be viewed as trees of height k having an unbounded number
of ordered branches and leaves labelled by elements of Γ. Each leaf, i.e. each
level 0 element stored in a k-stack γ can be accessed by a vector of k indices
(i0, . . . , ik−1) leading to it. We denote the sequence of “leaves” of a k+ 1-stack γ,
taken in the natural ordering, by leaves(γ). In other words, leaves(γ) is obtained
from γ by forgetting the brackets.

The concatenation of two (k + 1)-stacks γ(k+1) = [γ(k)
1 . . . γ

(k)
s ] and ξ(k+1) =

[ξ(k)1 . . . ξ
(k)
t ] is the (k + 1)-stack γ(k+1) · ξ(k+1) = [γ(k)

1 . . . γ
(k)
s ξ

(k)
1 . . . ξ

(k)
t ]. Con-

catenation can also be regarded as operations on trees. For k > 0 every k-stack
γ(k) = [γ(k−1)

0 . . . γ
(k−1)
s−1 ] can be written as the concatenation product

∏s−1
i=0 [γ(k−1)

i ]
and by propagating through all dimensions as

γ(k) =
∏
i0

[∏
i1

[
· · ·
∏
ik−1

[
γ

(0)
(i0,...,ik−1)

]
· · ·
]]

(3)

where the index vector (i0, . . . , ik−1) runs through all allowed tuples (all branches
of length k) in lexicographic fashion.

Definition 7.1 (Morphisms of k-stacks). Morphisms of k-stacks over Γ are just
k-stacks of actions of Γ. That is, Hom

(k)
Γ = Stack

(k)
Γ→Γ, i.e. Hom

(0)
Γ = Γ → Γ and

Hom
(k+1)
Γ = [(Hom

(k)
Γ )∗]. Application is defined inductively as follows.

• ϕ(0)(γ(0)) is as given;
• for ϕ(k+1) = [ϕ(k)

1 . . . ϕ
(k)
s ] ∈ Hom

(k+1)
Γ

and γ(k+1) = [γ(k)
1 . . . γ

(k)
t ] ∈ Stack

(k+1)
Γ let

ϕ(k+1)(γ(k+1)) = [ϕ(k)
1 (γ(k)

1 ) . . . ϕ(k)
s (γ(k)

1 ) · · ·ϕ(k)
1 (γ(k)

t ) . . . ϕ(k)
s (γ(k)

t )].
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Figure 1. Iteratively applying ϕ = [τσ] of Example 7.3 to γ = [[#]].

Definition 7.2 (k-morphic words). Let k ∈ N. An infinite word w ∈ Σω is k-
morphic if there is a finite alphabet Γ, an initial k-stack γ(k) = [· · · [γ(0)

0 ] · · · ] ∈
Stack

(k)
Γ , a k-morphism ϕ(k) ∈ Hom

(k)
Γ and a terminal homomorphism h : Γ∗ → Σ∗

such that

w = h

( ∞∏
n=0

leaves(ϕn(γ))

)
.

Note that our morphisms are uniform, e.g. Hom
(1)
Γ consists of the uniform ho-

momorphisms of Γ∗ 2. To illustrate the workings of morphisms of higher-level
stacks consider the following level 2 example generating a relative of the binary
Champernowne word (cf. Ex. 4.5).

Example 7.3. Consider the initial 2-stack γ = [[#]] and the level 2 morphism
ϕ = [τσ] containing τ = [τ0τ1] and σ = [σ0σ1] with

τ :

∣∣∣∣∣∣∣
τ0 τ1

0 �→ 0 �
1 �→ 1 �
# �→ 0 #
� �→ � �

σ :

∣∣∣∣∣∣∣
σ0 σ1

0 �→ 0 �
1 �→ 1 �
# �→ 1 #
� �→ � �

.

Note that τ is just a complicated way of writing the morphism (0 
→ 0, 1 
→ 1,
# 
→ 0#) in our framework as a sequence of 0-morphisms. Padding is needed to
compensate for the inherent uniformity in our definition.

The stacks obtained in the first few iterations of ϕ on γ are depicted as trees in
Figure 1. Let further h be the morphism erasing �’s and #’s. Then the 2-morphic
word generated by ϕ on γ and filtered by h, is the concatenation of all finite binary
sequences in length-lexicographic order:

0 1 00 01 10 11 000 001 010 011 100 101 110 111 . . .

Clearly, an infinite word is 0-morphic iff it is ultimately periodic, and 1-morphic
iff it is morphic in the customary sense despite the uniformity restriction on ϕ,
which can be made up for by the choice of h. The next Lemma generalizes (1).

Lemma 7.4 (Iteration Lemma). Consider a k-stack γ = [· · · [γ0] · · · ] ∈ Stack
(k)
Γ

and a morphism ϕ = ϕ(k) =
∏
j0

[∏
j1

[
· · ·
∏
jk−1

[
ϕ

(0)
j0...jk−1

]
· · ·
]]

∈ Hom
(k)
Γ . Let

2This could be remedied by defining Hom
(1)
Γ as the set of mappings Γ → Γ ∪ {ε}. Although

this would not increase the expressive power of our formalism it could allow a simpler description
of certain examples. However, for the sake of compacter proofs we opted for the definition as
given. See also Remark 7.6.
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B be the set of those words w = j0 . . . jk−1 of length k corresponding to branches
of the tree associated to ϕ, and let ϕ(0)

u = ϕ
(0)
wn ◦ · · · ◦ ϕ(0)

w1 for all words u =
w1w2 · · ·wn ∈ B∗. Then, applying ϕ n times to γ yields

ϕn(γ) =
∏
u(1)

[∏
u(2)

[
· · ·
∏
u(k)

[
︸ ︷︷ ︸ ϕ

(0)
u (γ0)

]
· · ·
]]
.

u=⊗k(u(1),...,u(k))∈Bn

Consider a regular well-ordering ≺ of finite binary words and let u0 ≺ u1 ≺
u2 ≺ . . . be the sequence of words in this ordering. We define the infinite word
w≺ ∈ {0, 1,#}ω as the concatenation of the ui in ascending order separated by
# symbols: w≺ = u0#u1#u2# · · · . Let wk−llex be the word thus associated to
<k-llex (restricted to words of length divisible by k). For instance,

w1−llex=#0#1#00#01#10#11#000#001#010#011#100# . . .
w2−llex=#00#01#10#11#0000#0001#0100#0101#0010#0011#0110#0111 . . .

Further, let w0−llex = #0#00#000# . . .. It is easy to see that wk−llex ∈ Wk+1 for
all k ∈ N. We say that a sequential transducer S with input alphabet {0, 1,#}
and output alphabet Σ is #-driven if it is deterministic and in each transition S
produces either no output (i.e. the empty string ε) or a single letter output a ∈ Σ,
but this only on reading a # on the input tape.

Theorem 7.5 (Equivalent Characterizations). Let Σ be a finite alphabet. For
every k ∈ N and every ω-word w ∈ Σω the following are equivalent.

(1) w is k-morphic;
(2) w is k-lexicographic;
(3) w = S(wk−llex) for some #-driven sequential transduction S;
(4) Ww ≤I

rMSO Wwk-llex
for some I = (ϕD, <, {ϕa}a∈Σ) such that

|= ∀x(ϕD(x) → P#(x)).

Moreover, there are effective translations among these representations.

Proof. (1)⇒(2) (for k > 0.). Let w = h (
∏∞
n=0 leaves(ϕn(γ))) with γ=[· · ·[γ0]· · ·],

ϕ and h as in the definition of k-morphic words. Consider the tree structure of ϕ,
let l be the maximum of the number of children of any of the nodes, and let B ⊆ [l]k

be the set of labels of ordered branches from the root to a leaf, using the natural
ordering on [l]. We define the index transition system of ϕ as Iϕ = (Γ, [l]k, δ) with
δ(g, w) = ϕ

(0)
w (g) for each g ∈ Γ and w ∈ B and δ(g, w) undefined otherwise. Note

that for uniform morphism of words this definition is identical to that used in the
proof of Proposition 4.3. By the Iteration Lemma

leaves(ϕn(γ)) =
<k-llex∏
u∈Bn

ϕ(0)
u (γ0)
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and, since for each g ∈ Γ the set Pg = {u ∈ B∗ | ϕ(0)
u (γ0) = g} is obvi-

ously accepted by Iϕ with initial state γ0 and single final state g, we can con-
clude that (B∗, <k-llex , {Pg}g∈Γ) is a k-lex presentation (in normal form) of ŵ =∏∞
n=0 leaves(ϕn(γ)) ∈ Γω. By Proposition 4.7, w = h(ŵ) is also k-lex.

(2)⇒(1) (for k > 0). By the Normal Form Lemma w has a k-lex presentation
(D, <k-llex , {Pa}a∈Σ) in normal form over {0, 1}, i.e. with D and each Pa being a
regular subset of ({0, 1}k)∗. Recall Ad, Td, σd, etc. from Section 5. To provide a
proof, we only need to adapt the notion of transition morphisms to k-stacks. The
stack alphabet will, of course, be Γ = Qd. We define for each l ≤ k and for every
u ∈ {0, 1}k−l a morphism τ

(l)
u ∈ Hom

(l)
Γ recursively by setting τ

(l+1)
u = [τ (l)

u0 τ
(l)
u1 ]

for each u of length k − l − 1, l < k, and by setting τ (0)
u (�q) = δ∗d(�q, u) for every

u ∈ {0, 1}k. Finally, let ϕ = τ
(k)
ε =

∏1
j0=0

[∏1
j1=0

[
· · ·
∏1
jk−1=0

[
τ

(0)
j0...jk−1

]
· · ·
]]

and γ = [..[�q0]..] ∈ Stack
(k)
Γ . Observe that the structure of ϕ is the complete

binary tree of depth k. Noting that τ (0)
wn (. . . τ (0)

w2 (τ (0)
w1 (�q)) . . .) = δ∗(�q, w1w2 . . . wn)

the Iteration Lemma yields

ϕn(γ) =
1n∏

u(1)=0n

[ 1n∏
u(2)=0n

[
· · ·

1n∏
u(k)=0n

[
δ∗(�q0,⊗k(u(1), . . . , u(k)))

]
· · ·
]]

and we can conclude that w = σd(
∏∞
n=0 leaves(ϕn(γ))).

(2)⇒(3): (Hint) S simulates Ad, restarting on every #.
(3)⇒(4): (Hint) The run of S is obviously restricted MSO-interpretable.
(4)⇒(2): There is a k + 1-lex presentation (d, ν) of wk-llex, similar to that given
in Example 4.5, such that each maximal factor u# with u ∈ {0, 1}∗ is represented
on words x ∈ D satisfying x′ = u and with the k + 1st component telling the
position within u#. Let I = (ϕD, <, {ϕa}a∈Σ) be a restricted MSO- interpretation
as in (4). By Theorem 3.7 each color-formula ϕa can be transformed into an
equivalent automaton Aa. Finally, to obtain a a k-lex presentation of I(Wwk-llex),
we construct automata A′

a accepting those x′ such that x ∈ L(Aa). �

Remark 7.6 (On the irrelevance of uniformity). Let us point out, that in the
proof of (2)⇒(1) of Theorem 7.5 we made use of the Normal Form Lemma 4.6 to
first uniformize the k-lexicographic presentation in preparation for turning it into
a k-morphism generating the same word. This step was necessary due to the above
hinted uniformity of our morphisms. Thus, Lemma 4.6 shows that this uniformity
is really no restriction in terms of generating power as long as we allow ourselves
to apply an arbitrary homomorphism h in the final step.

Remark 7.7 (On morphic predicates, cf. [38]). Our definition of morphisms of
k-stacks not only resembles that of k-dimensional “pictures”, but is essentially
identical with that, up to a natural coding. Indeed, k-dimensional pictures are k-
stacks satisfying the uniformity condition that every level l+ 1 sub-stack consists
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of exactly the same number nl+1 of l-stacks, where (n1, . . . , nk) are the dimen-
sions of the picture. Due to their above mentioned uniformity our morphisms
preserve uniformity of stacks. Hence, morphisms of k-stacks and morphisms of
k-dimensional pictures are easily seen to be one and the same, up to this coding.

8. Connection to the pushdown hierarchy

8.1. Caucal’s pushdown hierarchy

Following Courcelle we say that a function T mapping structures of one sig-
nature σ to structures of another signature σ′ is (effectively) MSO-compatible if
there is an algorithm mapping each monadic formula ϕ of signature σ′ to a monadic
formula ϕT in the signature σ such that whenever T (A) is defined

A |= ϕT ⇐⇒ T (A) |= ϕ.

The fact that MSO-interpretations are MSO-compatible is straightforward. The
more difficult result that the unfolding operation mapping graphs to trees is also
MSO-compatible appeared in [24], see also [23] for an exposition and a treatment
of the simpler case of deterministic graphs. We note that this result follows from
Muchnik’s theorem [6,55] and that it implies Rabin’s theorem.

With the aid of the MSO-compatible operations of MSO-interpretations and un-
folding a rich class of graphs of decidable monadic theories can be constructed [54].
In [20] Caucal proposed to consider, starting with finite graphs, the hierarchies of
graphs and trees obtained by alternately applying unfoldings and MSO-interpreta-
tions as follows. Below we let TG,v denote the tree resulting from unfolding the
graph G from its vertex v.

Graphs0 = {finite edge- and vertex-labelled graphs}
T reesn+1 = {TG,v | (G, v) ∈ Graphsn}

Graphsn+1 = {I(T) | T ∈ T reesn+1, I is an MSO interpretation}.

If follows from the fact that both interpretations and unfolding are MSO-compatible
that the MSO theory of each tree T ∈ T reesn and of each graph G ∈ Graphsn is
decidable for every n ∈ N.

This turns out to be a very rich and robust hierarchy: various weakenings
and strengthenings of the above definition yield the exact same classes [16]. This
hierarchy of graphs is also referred to as the pushdown hierarchy owing to the fact
that for each n, Graphsn contains, up to isomorphism, those graphs obtained as
the ε-closure of the configuration graph of some higher-order pushdown automaton
of level n [16]. This characterization was also used to show the strictness of the
hierarchy [16].

The level-zero graphs are the finite graphs, trees of level one are the regu-
lar trees, the level-one graphs are those prefix-recognizable or equivalently VR-
equational [9,18,19]. The deterministic level-two trees are known as algebraic trees.
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However, from the second level onward we have no clear structural understand-
ing of what kind of graphs inhabit the individual levels. For an exposition we
recommend [54].

8.2. k-lex words are on the 2k-th level: Wk ⊂ Graphs2k

In this section we demonstrate that for each k all k-morphic words are on the
2k-th level of the pushdown hierarchy of graphs. It is open whether this is tight.

Note that it only makes sense to try to locate infinite words in the hierarchy of
graphs rather than of trees, for unless a word is ultimately periodic it is not the
unfolding of anything simpler than itself. Therefore we wish to view infinite words
as graphs. To this end we identify each ω-word a1a2a3 . . . with the edge-labelled
successor graph •a1→• a2→ • a3→· · ·

Without doubt, the ω-words inhabiting the first level of the pushdown hierarchy
are precisely the ultimately periodic ones. Indeed, the first level graphs are prefix-
recognizable [19] and those among them of finite degree are context-free [9] and as
such, by a classical result of Muller and Schupp [40], have only finitely many ends
up to isomorphism (cf. also [37]). For our word graphs this means precisely that
they are ultimately periodic. The converse containment is obvious.

On the next level, Caucal [20] has shown that morphic words, in the classical
sense, are on the second level of the pushdown hierarchy. Whether they also
exhaust the second level word graphs is, to the authors knowledge, not settled,
though very plausible.

Starting with the third level, the pushdown hierarchy contains graphs of binary
words of faster than exponential growth, which can hence not be automatic as
can be verified by a standard pumping argument. An example of a fast growing
sequence that is on the third level of the pushdown hierarchy is the characteristic
sequence of the set of factorials, 0110001017109510 . . ., also known as the Liouville
word [11].

In order to place k-morphic words in the pushdown hierarchy, for each k we
only need to locate a single tree T<k-llex , defined as follows. Let

T<k-llex = {1n#w1# ⊗2 (w1, w2)# . . .# ⊗k (w1, w2, . . . , wk) | ∀i : wi ∈ {0, 1}n}

P<k-llex = Pref(T<k-llex ) the set of prefixes of words in T<k-llex and T<k-llex be the
tree (P<k-llex , succ0, succ1, succ#) illustrated in Figure 2. It has a single infinite
branch 1ω off of which at every position 1n a finite subtree of depth (n + 1)k is
hanging, the maximal paths of which are labelled by elements of T<k-llex . This set
was designed so that the lexicographic ordering (for # < 0 < 1) of these paths will
correspond to the <k-llex ordering of their final segment below the last #-edge.

We claim that an infinite word is k-lex iff its word graph is MSO-interpretable as
a lexicographically ordered subset of the leaves of T<k-llex . Relying on the Normal
Form Lemma 4.6 it is straightforward to give such an interpretation of any k-lex
word. The converse implication (a proof of which can be found in [4], Sect. 6.2.1)
is more involved as it yields the main results of Section 5.2 as corollaries.
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Figure 2. The tree T<2-llex facilitating 2-lex words.

We show by induction that T<k-llex ∈ Graphs2k for each k > 0, implying, by
our previous observation, that k-morphic words are level 2k pushdown graphs.

Surely, T<1-llex is an algebraic (level 2) tree as it is the unfolding of the graph
of a one-counter automaton. This is essentially Caucal’s argument [20] showing
that morphic words are on the second level of the pushdown hierarchy.

To proceed with the induction we give MSO-interpretations I,J ,K, such that
T<k+1-llex = K(Unfold(J (Unfold(I(T<k-llex ))))) for each k > 0. This approach was
first suggested to the author by Thomas Colcombet, the construction presented
below was conceived during discussions with Arnaud Carayol and owes a lot to his
assistance.

The first interpretation, I, preserves the original structure while also introduc-
ing two kinds of new edges: 1) reflexive #-edges on all leaves; 2) σ̄-labelled reversals
of σ-edges, for σ = 0, 1, but only in “final segments”: between nodes which do not
have a #-edge in the subtree below them. Obviously, these definitions are MSO
expressible.

It should be clear that the unfolding of I(T<k-llex ), let us denote this tree by
T ′ for now, contains all branches of the form

1n#w1# ⊗2 (w1, w2)# . . .# ⊗k (w1, w2, . . . , wk)#⊗k(w1, w2, . . . , wk)
rev

(4)

where w1, . . . , wk ∈ {0, 1}n, and the last segment ⊗k(. . .)
rev

denotes the reversal of
⊗k(. . .) with barred symbols. This is precisely what we have intended. However,
aside of these, the unfolding produces an abundance of unwanted “junk” paths
obtained by alternately traversing forward and backward edges and/or by passing
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Figure 3. Constructing T<2-llex from T<1-llex : illustration on a
finite subtree.

through a reflexive edge more than once. The interpretation J is defined in order
to achieve the following tasks.
– Restrict T ′ to nodes appearing on branches of type (4) above.

This is done by forbidding unintended patterns, e.g. repeated reflexive edges,
etc, as implicated above, on branches leading to a node from the root.

– Reversing the final ⊗k(w1, w2, . . . , wk)
rev

segments of branches of type (4).
This is a very simple operation, which can be done without producing any
“junk”: σ-labelled reversals of σ-edges are added, while σ-edges will be deleted,
and those #-edges closest to a leaf are redirected to that leaf below them.

– Making room for wk+1 on every final segment: by introducing reflexive a- and
b-labelled edges on nodes z from which the leaf below them is reachable on a
#-free path of length divisible by k.

After the second unfolding we obtain a tree T ′′ = Unfold(J (Unfold(I(T<k-llex )))),
which includes essentially T<k+1-llex as an induced subtree (once a- and b-edges are
renamed to 0 and 1 respectively), again, together with some unwanted branches
arising from repeated traversals of reflexive a- or b-edges around the same node.
The final clean-up needed is performed by the interpretation K by first restricting
the domain to nodes reached from the root on a path avoiding immediate repe-
titions of a- or b-edges and finally renaming e.g. a-labels to 0 and b’s to 1. The
two-step construction is illustrated in Figure 3 3. Thus we have established

Theorem 8.1. For every k the word structure of every k-morphic word is on the
2k-th level of the pushdown hierarchy: Wk ⊂ Graphs2k.

9. Closing remarks and open questions

In this section we hint at some possible further generalizations of the notion of
k-lexicographic and k-morphic words and the results reported in this paper and

3Note that for the sake of a simpler illustration we decomposed J into two interpretations:
J ′ purging unwanted branches produced by the previous unfolding and J ′′ preparing ground
for the second unfolding by the introduction of reverse edges and loops.
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we also raise a handful of related questions.

Variations on k-lex. Although it is yet unclear whether and how our results
can be extended to all automatically presentable ω-words, our techniques seem
to extend easily to a mild generalization of k-lexicographic presentations. Let us
sketch the idea here.

Imagine a variant of the 2-lexicographic ordering, which still compares the
length of words x and y first, then x(1) with y(1) lexicographically, but in case
these coincide then x(2) and y(2) are compared in reverse lexicographic order. We
may denote such an ordering by <lr. In general, for every sequence α ∈ {l, r}∗
one can define the family of α-lexicographic orderings in a similar fashion, and
commonly denote them by <α, when the ordered alphabet is understood or irrel-
evant. Thus, <α generalizes <k-llex in that those components with an r in the
respective position in α are compared not lexicographically but rather in reverse
lexicographic order.

Based on this notion of α-lexicographic ordering we can introduce the class
Wα of α-lexicographic ω-words as those automatically presentable using <α. The
classes Wα form an infinite and possibly richer hierarchy as the classes of k-lex
words. Let l = r and r = l and further extended to {l, r}-sequences. It is easily
seen that Wα = Wα for each α since the reversal of all numerals transforms an
α-lex presentation into an α-lex presentation and vice versa.

Although an automatic presentation obtained by reversal is not equivalent to
the original one, relying on a recent result of Colcombet it is easy to see that
an automatic presentation of an ω-word is canonical iff its reversal is canonical.
Indeed, in [21] Colcombet proved that MSO-definable relations on ω-words (and
on trees in general) are in fact first-order definable from < and from certain MSO-
definable unary predicates4 and it is well-known that regularity of unary predicates
is preserved under reversal.

Notice that the proof of the Hierarchy Theorem can be adapted to show that
the (k + 1)-st stuttering word sk+1 is not α-lex presentable for any α ∈ {l, r}≤k.
Also, if α is a proper subword (not necessarily a factor) of α′ then Wα � W ′

α.
A comprehensive comparison of the Wα classes remains open. It is for instance
unclear how Wlr and Wll are related.

We claim without giving a thorough proof that all α-lex presentations are canon-
ical. This can be checked by adapting the proof of the Contraction Lemma 5.2 on
which the inductive step in the proof of Theorem 5.3 is based. One can argue that
if the last symbol of α is l, i.e. if the last components are lexicographically ordered,
then the proof goes through without any necessary adjustments. Furthermore, the

4According to Lemma 3.6 (cf. [21], Lem. 1) all MSO-definable relations on ω-words are first-
order definable from < and from MSO-definable binary predicates. The fact that already unary
predicates are hereto sufficient and the tools involved in proving this have some very interesting
implications and applications [22]. For instance, it allows us to define canonicity equivalently by
requiring only that all MSO-definable unary predicates be regularly represented. However, this
does not seem to make our proof of Theorem 5.3 with the method of contractions significantly
simpler.
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Contraction Lemma is invariant under reversal of all numerals of a presentation.
Therefore, the Contraction Lemma holds for α iff it also holds for α, and obviously
one of them ends with l. The MSO-decidability and MSO–definability results thus
extend to all α-lexicographic ω-words.

Our approach of embedding Wk into the pushdown hierarchy is equally simple
to adapt for Wα. Assuming the Normal Form Lemma 4.6, we can associate to
each α a tree Tα to be constructed inside the pushdown hierarchy. We know of no
better way of defining Tαr then via unfolding from Tαl. Also note that a single
unfolding and MSO-interpretations suffice to build Tαl from Tα.

In light of the above we would be eager to find answers to the following pressing
questions. We conjecture that the answer to at least three of them is affirmative.

(1) Is every automatic presentation of every ω-word canonical?
(2) Is every automatic ω-word constructable in the pushdown hierarchy?
(3) Is every aut. pres. of an ω-word equivalent to an α-lex presentation?
(4) Does every automatic ω-word allow a k-lex presentation for some k?

Variations on morphisms of level k stacks. One way to overcome the inherent
uniformity of morphisms of level k stacks would be to utilize derivation rules Δ of
level k + 1 of the form

Δ : A0
x −→ A1

δ1(x) . . . A
s
δs(x)

where the Ai’s are “non-terminals” of level k+1 and the δi’s are derivation rules of
level k and x is a variable of order k. If one defines level 1 rules as homomorphisms
of finite words, then it is not hard to extend Theorem 7.5 to show that every finite
system of level ≤k rules of the above form generates, in the style of Definition 7.2,
a k-lexicographic ω-word.

Although we have thus far not found a proper means of generating α-lexicographic
ω-words in a similar fashion for arbitrary α, it seems that the extension of the above
scheme allowing for rules of the form

Δ : A0
x −→ A1

δ1,1(x)...δ1,t1 (x) . . . A
s
δs,1(x)...δs,ts (x)

would necessitate the use of both left- and right-ordered components to allow for an
automatic presentation. The relationship of ω-words generated by rules of the lat-
ter form and between Wα classes is unclear. The pursuit of these ideas is left open.

Finite factors and combinatorics. A key aspect of the theory of automatic
ω-words we have not touched upon concerns combinatorics of finite factors. Let us
now note some sporadic facts involving finite factors of automatic ω-words while
leaving any kind of systematic study entirely open.

From [15,39,46] we know that the set of finite factors and of finite prefixes of
every automatic ω-word is context sensitive. Clearly, the growths of distances of
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consecutive occurrences of infinitely often occurring factors in an automatic ω-
word are bounded by an exponential function. It would be desirable to have much
finer conditions of (non-)automaticity.

It is a classical result that the subword complexity of every morphic word is
bounded by O(n2) (see e.g. [1] for a finer classification). We have seen that the
Champernowne word having all finite words as factors, hence an exponential sub-
word complexity, is 2-morphic. How can the possible subword complexities of
k-morphic words be classified?

Analyzing ω-regular sets using methods from descriptive set theory Staiger
points out a key property of ω-words having all finite words as factors, called
rich in [52]. Observe that the first-order theory of a rich ω-word cannot allow an
elementary decision procedure, for it can interpret the finite satisfiability problem
of FO[<] on word structures [28].

Isomorphism and lower bounds. Interesting and difficult questions not con-
sidered here concern deciding the exact level of a given ω-word in our hierarchy,
and deciding isomorphism of ω-words on each level. Both of these problems have
long been open for morphic ω-words, that is for level one, having known solutions
in very special cases only (see for instance [30] and the references therein).

(5) Is isomorphism of k-lexicographic words decidable?
(6) Let k > k′. Is it decidable whether a k-lex word is k′-lexicographic? In

particular, is eventual periodicity of k-lex words decidable?
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[2] J.-M. Autebert and J. Gabarró, Iterated GSMs and Co-CFL. Acta Informatica 26, 749–769
(1989).
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[4] V. Bárány, Automatic Presentations of Infinite Structures. Ph.D. thesis, RWTH Aachen
(2007).

[5] J. Berstel, Transductions and Context-Free Languages. Teubner, Stuttgart (1979).
[6] D. Berwanger and A. Blumensath, The monadic theory of tree-like structures. In Automata,

Logics, and Infinite Games. Lect. Notes Comput. Sci. 2500, 285–301 (2002).
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