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A NOTE ON UNIVOQUE SELF-STURMIAN NUMBERS ∗

Jean-Paul Allouche1

Abstract. We compare two sets of (infinite) binary sequences whose
suffixes satisfy extremal conditions: one occurs when studying itera-
tions of unimodal continuous maps from the unit interval into itself,
but it also characterizes univoque real numbers; the other is a disguised
version of the set of characteristic Sturmian sequences. As a corollary
to our study we obtain that a real number β in (1, 2) is univoque and
self-Sturmian if and only if the β-expansion of 1 is of the form 1v, where
v is a characteristic Sturmian sequence beginning itself in 1.
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1. Introduction

The kneading sequences of a unimodal continuous map f from [0, 1] into itself,
with f(1) = 0 and sup f = 1, are classically studied by first looking at the com-
binatorial properties of the kneading sequence of 1. Cosnard proved that, using
a simple bijection on binary sequences (namely mapping the sequence (xn)n≥0 to
(yn)n≥0, where yn :=

∑
0≤j≤n xj mod 2), the set of kneading sequences of 1 for

all maps f as above, maps to the set Γ defined by

Γ := {u = (un)n≥0 ∈ {0, 1}N, ∀k ≥ 0, u ≤ Sku ≤ u}

where u = (un)n≥0 is the sequence defined by un := 1 − un, where Sk is the
kth iterate of the shift (i.e., Sk((un)n≥0) := (un+k)n≥0), and where ≤ is the
lexicographical order on sequences induced by 0 < 1. See [2,10], where the relevant
set is actually Γ \ {(10)∞}. See also [1] for a detailed combinatorial study of the
set Γ.
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A slight modification of the set Γ describes the expansions of 1 in the bases
β, where β runs through the univoque numbers belonging to (1, 2). Recall that
a number β is called univoque if 1 admits only one expansion in base β. More
precisely, the set of expansions of 1 in all the univoque bases β ∈ (1, 2) is the set

Γ1 := {u = (un)n≥0 ∈ {0, 1}N, ∀k ≥ 0, u < Sku < u}

(see [11], Rem. 1 p. 379; see also [4] and the bibliography therein).

Remark 1.1. Note that a binary sequence belongs to Γ1 if and only if it belongs
to Γ and is not purely periodic.

Other sequences can be defined by extremal properties of their suffixes: charac-
teristic Sturmian sequences and Sturmian sequences. More precisely the following
results can be found in several papers (see in particular [7,8,14–16]; see also the
survey [6] and the discussion therein).

A binary sequence u = (un)n≥0 is characteristic Sturmian if and only if it is
not periodic and belongs to the set Ξ defined by

Ξ := {u = (un)n≥0 ∈ {0, 1}N, ∀k ≥ 0, 0u ≤ Sku ≤ 1u}.

A binary sequence u = (un)n≥0 is Sturmian if and only if it is not periodic and
there exists a binary sequence v = (vn)n≥0 such that u belongs to Ξv, where

Ξv := {u = (un)n≥0 ∈ {0, 1}N, ∀k ≥ 0, 0v ≤ Sku ≤ 1v}.

The sequence v has the property that 1v = supk Sku and 0v = infk Sku. This is
the characteristic Sturmian sequence having the same slope as u.

Remark 1.2. The reader can find the essentials on Sturmian sequences in [13]
Chapter 2. A hint for the proof of the two assertions above is that a sequence is
Sturmian if and only if it is not periodic and for any binary (finite) word w, the
words 0w0 and 1w1 cannot be simultaneously factors of the sequence. Furthermore
a sequence u is characteristic Sturmian if and only if 0u and 1u are both Sturmian.

2. Comparing the sets Γ and Ξ

The analogy between the definitions of Γ and Ξ suggests the natural question
whether any sequence can belong to their intersection. The disappointing answer
is the following proposition.

Proposition 2.1. A sequence u ∈ {0, 1}N belongs to Γ∩Ξ if and only if it is equal
to 1∞ or there exists j ≥ 1 such that u = (1j0)∞.
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Proof. If the sequence u belongs to Γ, we have in particular u ≥ u. Hence u = 1w
for some binary sequence w. If u is not equal to 1∞ (which clearly belongs to
Γ ∩ Ξ), let us write u = 1j0z for some integer j ≥ 1 and some binary sequence z.
Since u belongs to Γ we have Sj+1u ≤ u, i.e., z ≤ u. Now u belongs to Ξ, thus
Sju ≥ 0u, i.e., 0z ≥ 0u, hence z ≥ u. This gives z = u. Hence u = (1j0)∞, which
in turn clearly belongs to Γ ∩ Ξ. �

The next question is whether a Sturmian sequence can belong to Γ. The answer
is more interesting.

Proposition 2.2. A (binary) Sturmian sequence u belongs to Γ if and only if there
exists a characteristic Sturmian sequence v such that v begins in 1 and u = 1v.

Proof. Let us first suppose that the Sturmian sequence u belongs to Γ. As above,
since u belongs to Γ, u begins in 1. Hence u = 1w for some binary sequence w.
The inequalities Sku ≤ u for all k ≥ 0 imply that supk Sku = u (the inequality ≥
is trivial since S0u = u). This can be written supk Sku = 1w. On the other hand
u is Sturmian, hence there exists a characteristic Sturmian sequence v such that u
belongs to Ξv. We also know that v is such that 1v = supk≥0 Sku. Hence v = w.
Now infk Sku = 0v = 0w. But Sku ≥ u for all k ≥ 0, since u belongs to Γ. Hence
0v = 0w ≥ u = 0w, thus w ≥ w, hence w begins in 1.

If, conversely, u = 1v where v is a characteristic Sturmian sequence (which
actually implies that u is Sturmian) beginning in 1, we first note that 0v ≤ Skv ≤
1v for all k ≥ 0. Hence, immediately, Sku ≤ 1v = u for all k ≥ 0 (using that
Sk+1u = Skv and that S0u = u = 1v). And also Sku ≥ 0v ≥ 0v = u (using
furthermore that v ≥ v since v begins in 1, and that S0u = u ≥ u since u begins
in 1). �
Remark 2.3. We see in particular that a Sturmian sequence belonging to Γ must
begin in 11. This is not surprising since the only sequence belonging to Γ that
begins in 10 is (10)∞. This claim is a particular case of a lemma in [1]: if a
sequence t belonging to Γ begins with mm, where m is a (finite) nonempty binary
word, then t = (mm)∞.

3. Univoque self-Sturmian numbers

Several papers were devoted to univoque numbers having an extra property.
For example:

• the smallest univoque number in (1, 2) is determined in [12]; it is related
to the celebrated Thue-Morse sequence and was proven transcendental in
[3];

• univoque Pisot numbers belonging to (1, 2) are studied in [5].
The notion of self-Sturmian numbers was introduced in [9]. These are the real num-
bers β such that the greedy β-expansion of 1 is a Sturmian sequence on some two-
digit alphabet. It is tempting to ask which univoque numbers are self-Sturmian.
We restrict the study to the numbers in (1, 2) for simplicity.
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Proposition 3.1. The real self-Sturmian numbers in (1, 2) that are univoque are
exactly the real numbers β such that 1 =

∑
n≥1

un

βn , where u = (un)n≥0 is a binary
sequence of the form u = 1v, with v a characteristic Sturmian sequence beginning
in 1.

Proof. This is a rephrasing of Proposition 2.2. �
Remark 3.2.

– The equality 1 =
∑

n≥1
un

βn , where u = (un)n≥0 is a binary sequence, uniquely
determines the real number β in (1, 2).

– Self-Sturmian numbers correspond to Sturmian sequences of the form u = 1v,
where v is any characteristic Sturmian sequence (see [9], Rem. p. 399). All self-
Sturmian numbers are transcendental [9].
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