RAIRO-Theor. Inf. Appl. 42 (2008) 69-82 Available online at:
DOI: 10.1051/ita:2007053 www.rairo-ita.org

A COMPLETE CHARACTERIZATION OF PRIMITIVE
RECURSIVE INTENSIONAL BEHAVIOURS

P. VALARCHER'

Abstract. We give a complete characterization of the class of func-
tions that are the intensional behaviours of primitive recursive (PR)
algorithms. This class is the set of primitive recursive functions that
have a null basic case of recursion. This result is obtained using the
property of ultimate unarity and a geometrical approach of sequential
functions on N the set of positive integers.

Mathematics Subject Classification. 68Q25, 68Q55, 68W40.

1. INTRODUCTION

In [4,5], Colson studies the behaviour of PR algorithms and proves that there is
no algorithm (in PR) that computes the minimum of two (unary) integers in time
O(inf). He proves this result by studying the interpretation of PR algorithms
on the domain of lazy (or partial) integers [12]: this domain captures the way an
algorithm writes on its output as a function of what it has already read on its
inputs, this function is called intensional behaviour. He notices that all algorithms
look ultimately at at most one of their inputs so that ultimate interpretations are
unaries functions (this propety is called ultimate obstinacy). Later, Coquand [7]
gives a constructive proof of this property and as side effect he gives a definition
of the class of functions that are ultimately the intensional behaviours of PR
algorithms: successor function, constant functions, projections, predecessor, closed
by composition and an iteration schema.

The author has shown some new results on intensional behaviour (now called
structural complexity) of other primitive recursive schemas (in [17]). In the same
framework, Colson and Fredholm (see [6,13]) show that call-by-value strategy
(with primitive recursion over lists of integers and with primitive recursion in

Keywords and phrases. Intensional behaviour, semantics, primitive recursion.

L LACL, Université Paris Est, France; valarcher@univ-paris12.fr
© EDP Sciences 2007

Article published by EDP Sciences and available at http://www.rairo-ita.org or http://dx.doi.org/10.1051/ita:2007053

http://www.edpsciences.org
http://www.rairo-ita.org
http://dx.doi.org/10.1051/ita:2007053

70 P. VALARCHER

higher types, called system T of Goedel) does not allow to compute the good
algorithm of the min function. Similar questions have been studied by Brookes
and Dancanet in [3,9] with non-determinism and CDS languages. Recently, in
[15], Moschovakis has established a linear lower bound for the complexity of non-
trivial primitive recursive program from piecewise linear given functions. His main
result is that logtime programs for the greatest common divisor from such givens
(such as Steins) cannot matched in efficiency by primitive recursive programs from
the same given functions. He ended by an open problem relative to the classical
Euclidean algorithm (Van Den Dries gives a partial answer in [11]). And lastly,
Crolard et al. extend the result of incompleteness of algorithms to imperative
language in [8].

In this paper, we give a complete characterization of the intensional behaviour
of PR algorithms: these are functions that verify the property of sequentiality [2]
and with ultimate behaviours definable by primitive recursive schema with null
basic case.

The paper is organized as follow: in Section 2 we present the language of PR
terms as term rewriting systems, we present some computations (reductions) of
terms that contain free variables. In Section 3 we give the interpretation of PR
terms on the domain of lazy integers, this domain captures the central notion of
this paper: intensional behaviours. This notion is defined in Section 4 with a geo-
metrical approach of sequentiality. Section 5 is devoted to a new class of functions
prn (primitive recursion with null basic case) and a new language PRN that ex-
tensionally computes prn functions. We show that with PRN terms intensionality
coincide with extensionality, so intensional behaviours of PRN terms are exactly
prn functions. In Section 6 we define the property of ultimate unarity and give a
proof that all PR terms have this property. Finally, we prove that prn functions
are exactly the class of function that are intensional behaviours of PR terms using
previous property and the geometrical approach of sequentiality.

2. PR ALGORITHMS

2.1. TERMS

We consider an alphabet with the following symbols:

e a countable infinite set of variables x,y,...;

e for each integer n > 1 a countable infinite set of function symbol of arity n;
e the constant symbol 0O;

e the function symbol S of arity 1.

t

From this alphabet we define the set Term of terms inductively:

variables are in Term;

0 is in Term;

if t is in Term then S(t) is in Term;

if £ is a function symbol of arity n and if t4,...,t, are in Term then
f(t1, ..., tn) is in Term.

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION 71
Terms without variables are said to be closed. Otherwise a term is open.

2.2. PR REWRITING SYSTEMS

We define the notion of PR system of rewriting rules inductively:

e The empty set is a PR system of rules.

e If X is a PR system of rules, if t is a term with all function symbols occurring
in X, with variables among x, ..., %, and if £ is a symbol of function of
arity » not in X, then ¥ U {Exps +} is a PR system of rules where Exps is
defined by the following rule:

f(x1,..,%) = t.
We say that £ is defined by explicit definition (or rule).
e If 3 is a PR system of rules, if g,h are functions symbols occurring in X
with arity n and n + 2 respectively, and if £ is a function symbol of arity

n 4+ 1 not occurring in 3, then X U {Rectg,h} is a PR system of rules where
Recs g n is the pair of rules:

£(0,%X1, .00, Xp) = g(X1,.e,Xn)
f(S(X)vxla "'7Xn) = h(X, f(X,Xl, "'7Xn)7xla "'7Xn)'

We say that £ is defined by recursive definition (or rule) from g and h.

2.3. EXAMPLES OF PR SYSTEMS

add; system. This system computes the addition of two integers, and is defined by:

Id(x) = x
piss(x,y,z) = S(y)
add;(0,y) = Id(y)
add;(S(x),y) = piss(x,addi(x,y),y).

Remark 2.1. For sake of simplicity we write such a system as: add;(0,y) =y
and add;(S(x),y) = S(addi(x,y)).

adds system.
adda(x,y) = adds(y,x).

Following 2.1, instead of this explicit definition, we may use the following simpler
system: add,(x,0) = x;adda(x,S(y)) = S(adda(x,y).
pred system. Using the last simplification: pred(0) = 0; pred(S(x)) = x.

2.4. COMPUTATION

Let ¥ be a PR system of rules. We say that a redez is a term that has one of
the following forms.

72 P. VALARCHER

(1) £(t1,...,tn), where £ is defined by explicit rule.
(2) £(0,t4,...,tn), where f is defined by recursive rule.
(3) £(8(t),t1, ..., tn), where £ is defined by recursive rule.
We denote by f[vi/x4,+-,vn/%y) the usual capture-avoiding substitution. We
define the one-step reduction relation —1 as the smallest relation between terms
that verifies:
(1) If £(xq,...,%p) = tisin X, £(t1, ..., tn) —1 t[t1/X1, vy to/Xnl-
(2) If £ is defined by recursive rule:
o £(0,ty,...,tn) —1 g(t1, .., tn);
b f(S(t)7 te,.. tn) -1 h(t7 f(ta T, tn)a t1,.., tn)'
and is compatible with contexts: if t —7 u then
* S(t) —1 8(u);
e j(ug, .y tyeytn) —1 j(U, ooy Uy oo, Up)e
We denote the reflexive and transitive closure of —1 with —. A term t is irreducible
(or in normal form) if there is no u such that t — u.

Remark 2.2.
e The term f(x,ty, ..., ty) where £ is defined by recursion rule is not a redex
(x is a variable).
e A irreducible term may be an open term: from the add; system we
compute:

add; (S(8(x)),add;(0,S(0))) —1 S(addi(S(x),add;(0,8(0)))
—1 S(addi(S(x),5(0))
—1 S(S(adds(x,S(0)).

2.5. CLASSICAL RESULTS

We recall some main results concerning PR systems: they compute primitive
recursive functions and satisfy the strong normalisation property and the Church-
Rosser property.

Definition 2.3. The class of primitive recursive functions is defined as the smallest
set of functions f : N® — N containing 0, Succ, projections that is closed by
composition and by the following schema: from g : N* — N and h : N**2 — N
we define f : N™t! — N by

fO, 21, ..., zp) = g(x1,...,2p)
f(Suce(x), z1,...,zn) = hlz, flz,z1,...,20),21,...T0).

The two following theorems say that all primitive recursive functions are com-
putable by a PR system and that all PR systems defines a p.r. function.

Theorem 2.4. Let f be a p.r. function. There exists a PR system containing the
function symbol £ such that, for all integers k1, ..., kn

£(8F(0),...,85(0)) =p pu(f(Succ®(0), ..., Succk (0))

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION 73

where p is defined inductively by p(0) = 0 and p(Succ(t)) = S(u(t)). And =pg is
the reflexive, symmetric and transitive closure of —1.

Theorem 2.5. Let ¥ be a PR system and let £ be a function symbol over X.
Then £ computes a p.r. function.

Theorem 2.6.
Strong Normalization: Let t be a term of a PR system. All sequences of
reduction starting by t are finite.
Church-Rosser: Let t be a term of a PR system such thatt — u andt — v
then there exists a term w such that u — w and v — w.

Remark 2.7. An irreducible closed term is of the form $¥(0) for a non-negative
integer k.

2.6. REDUCTION OF OPEN TERMS

As we have seen PR systems compute p.r. functions when inputs are of the form
S¥(0). We are interested in the class of functions that are computed by PR systems
when all inputs are of the form 8¥(x) where x is a variable. Let T be the following
PR system:

add;(0,y) =y
addy(S(x),y) = S(addi(x,y))
t(x) = add;(S(0), add; (S(S(x)), add4 (0, $(0)))).

Look at a computation of t(0) and t(y) (of course we may compute more than
one redex at each step-reduction):

t(0) —1 S(add;(0,2add(S(S(0)),adds(0,5(0)))))

), ad

—1 S(addi(S(S(0)) add, (0,5(0))))
—1 S(8(add:(S(0),2dd:(0,5(0)))))
—1 5(8(8(add1(0, add1(0 S(O))))))
—1 5(8(5(adds(0,5(0)))))

—1 5(8(5(5(0))))

and
t(y) —1 S(adds(0, addi((8(y)),add1(0,5(0)))))

8(

—1 8(add;(8(S(y)), add1(0,8(0)))
5(S(addy (S(y), addy (0,5(0)))
5(S(3(addy (y, add; (0,5(0))))

—1 5(5(5(adds(7,5(0))))).

The two computations do not lead to the same normal form, moreover they do

not lead to the same number of S in front of their normal form. More generally,

if we give to the term t an input of the form $*(0) we obtain S¥+4(0) (as normal
form) and with input S*(y) we obtain $¥+3(u), where u is irreducible.
To capture these behaviours, we use denotational semantics with the specific

domain of lazy natural numbers (following [4,5]).

~— — —

74 P. VALARCHER

S(S(...(5(0))..)) 2

0 s(1)

NS

1

S(Q)

FIGURE 1. The domain D of lazy integers.

3. FINITE DENOTATIONAL SEMANTICS

The domain of lazy integers D captures the above intuition.

3.1. THE DOMAIN

Elements of D have the following form: Dy = {S*(0)}xen or D) =
{S*(L)}ken. They are ordered by the <p relation (see Fig. 1):

o l<pux, forall x #£1;
e if u <p v then S(u) <p S(v).

Remark 3.1. L does not have the standard denotational semantic meaning of
a non terminating computation. Here, it means a computation that is not yet
finished.

3.2. INTERPRETATION

Since terms of PR systems contain variables, the interpretation of a term needs
a context which allow us to assign a value of D to each variables.

Definition 3.2. An environment p for the variables x;, ..., x, is a function from
{x1,"- ,xa} to D that assigns to each variables a value p(x;) of D.

From an environment p, a value v € D and a variable y, we construct the
environment p’ = ply < wu] such that p/(x) = p(x), if x # y and p'(y) = u
otherwise.

We now define by simultaneous induction the interpretation Sem(t), of terms
over PR systems relatively to an environment p and sem(f) of function symbols

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION

over PR systems:
e Interpretation of terms:
— Sem(0), =0,
— Sem(x1), = p(x1),
~ Sem(S(w)), = S(Sem(u),).
— Sem(£(t1,...,tn)), = sem(£f)(Sem(t1),, ..., Sem(ta),).
e Interpretation of function symbols:
— if £ is defined by explicit rule (£(x4,...,%n) = t), then

sem(£)(dy,...,dn) = Sem(t)g ... xoedn;
— if £ is defined by recursive rules from g and h, then
sem(£)(d,dy,....,dn) = (Ax1..2,.0(d))d; ...d,

with 6 defined by:

6(L) = L
0(0) = sem(g)(x1,...xn)
0(S(m)) = sem(h)(m,0(m),x1,...Tn).

For the sake of simplicity, if t is a term over a PR system we write sem(t)(d, ...

instead of Sem(t)p, —d, ... xy—dn]-

4. INTENSIONAL BEHAVIOUR

We now define the central notion of the paper.

75

Definition 4.1. The intensional behaviour of a term t over a PR system is the

function Int(t) : N™ — N defined by:

Int(t)(k1,...kn) = n < sem(t)(S* (L),..., S¥ (L)) = S"(1), t=0or L.

The intensionality of t is the function sem(t) defined on D, (elements of the form

Sk(L) for k > 0).

Remark 4.2. The extensional function associated to the term t, named

Ext(t), is defined by:
Ext(t)(k1,..k,) = n < sem(t)(S*(0), ..., 5% (0)) = S™(0).
4.1. EXAMPLES
e Int(add;) = 7%, Ext(add;) = +;

e Int(addy) = 73, Ext(addy) = +;
e Int(pred) = pred, Ext(pred) = pred.

76 P. VALARCHER

We may now state the central question of this paper:

“What can we say about the class of functions that are intensional
behaviours of PR systems?”
We first recall a well-known result from Theory of Domains that restricts the class
of intensional behaviours (it is not a restriction of mathttPR systems but is due
to the sequentiality of the language [1,2]). We give a geometrical approach to the
class of functions that may be intensional behaviours.

4.2. GEOMETRICAL APPROACH OF INTENSIONAL BEHAVIOUR

From results in denotational semantics, we know that the semantics of PR sys-
tems have the property of sequentiality. Intuitively a function f is sequential
in (x1,...,2,) if either the function is constant or there exists i such that the
incompleteness of f “comes from” that of ;. More formally (from [1]):

Definition 4.3.
e fis monotonicif X and Y are two uplets of terms and X <Y = f(X) <
fY).

e f is continuous if f is monotonic and verifies

f(maz{X,Y}) = maz{f(X), f(Y)}.

e f: D™ — D is sequential iff f is monotonic, continuous and satisfies the
following condition: for all X € D™, if f(X) = S¥(L) then
— either for all X <p Y, we have f(Y) = S*(L);
— or there exists an integer ¢ € {1,...,m} and X (i) = SP(L) for some
p, and for all Y € D™ if S¥(L) <p f(Y) then SP(L) <p Y (4).
Note: the order is that of D!
The integer i is called a sequentiality index for f at X.

Remark 4.4. Using the informational interpretation of the order on D, this means
that for f(Y") to be more informative than f(X), it is necessary that for some i,
Y (7) is more informative than X (7).

Theorem 4.5. Fvery denotation of an algorithm of PR verifies the property of
sequentiality.

As intensional behaviour is defined over N, we translate the definition of se-
quentiality to this domain.

Definition 4.6. We say that a function p : N™ — N is step-stair iff p is
monotone, continuous and satisfies the following condition: for all X € N™, if
f(X) =k then
e cither for all Y > X, we have f(Y) =k;
e or there exists an integer ¢ € 1,...,m and X (i) = p, and for all Y € N"
if f(Y) > k then Y (i) > p.
Note: the order is the usual order on N.

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION 77

Output
Input 2

ety o A
~1

2(0) ¢(1)

Input 1

FIGURE 2. A binary step-stair function.

In fact, on N, the notion of sequentiality and stability coincide (f is stable if f
is monotonic and verify for all X, Y € N™, f(X AY) = f(X)A f(Y)). Then using
stability instead of sequentiality we can prove that

Proposition 4.7.

e p is a step-stair function iff p is stable;
e and then if £ is a term over a PR system then Int(£f) is a step-stair function.

A more suggestive presentation of step-stair functions uses the following notion:

Definition 4.8. Given A, B in N™, with A < B, we call Corner the set:
Co(A,B) = {MeN™M2>Aand M % B}.

We also consider the case when B is missing.

A is called the origin point and B is called the extrem point of the corner
Co(A, B). The following proposition is easy to prove:

Proposition 4.9. f is step-stair iff f is increasing and f~'(a) is a corner for all
a in range(f).

Proof. The proof is straightforward by the stability of f. O

Remark 4.10.

e If o and (3 are consecutive elements of range(f) then the origin point of
f~Y(B) is obtained by incrementing some components of the extrem point
of f~1(a) (namely the x component in case (1), the y in case (2), both in
case (3) of Fig. 3).

e range(f) is finite iff f~!(maxz(range(f))) has an infinite extrem point.

We may now define the origin sequence of a function f.

78 P. VALARCHER

1 (2) (3) (4)

FIGURE 3. The four kinds of corners in NZ2.

Definition 4.11. Let range(f) = {ap, a1, -} with ap < a1 < --- and A; be the
origin point of f~!(c;). The sequence (Ag, A1, ---) is called the origin sequence

of f.

Following [14] the origin sequence may be called trace of the function.

5. p.r.n. FUNCTIONS AND PRN SYSTEMS

We introduce in this section a language that has a class of extensional functions
equals to its class of intensional behaviours.

Definition 5.1. The class of p.r.n functions (recursive primitive with basic case
null) is the smallest set of functions from N™ — N containing 0, Succ, projections
and which is closed by composition and schema prn: from h : N*"*1 — N we
construct f by:

f(on) = 0,
f(Suce(z),Y) = h(z, f(z,Y),Y).

We define PRN systems as PR systems in which all recursive rules are of the form
Recson. We now prove that the intensional behaviour of a term t over a PRN
system (Int(t)) is the extensional function associated to t (Ex¢(t)) (this function
is in p.r.n).

Theorem 5.2. Lett be a term over a PRN system with variables Xy, ..., Xp, Y1, ..., ¥a-
Let p and 6 be two environment such that p(y;) = 0(y;) = S4(0), p(xi) = S*(0)
and 0(x;) = S*i(L). Then Sem(t), = S'(0) and Sem(t)s = S'(1) (t=10 or L).

Proof. For the sake of simplicity, we consider only the case p = 1. From the
inductive definition of Sem, we reduce to the case when f is defined by recursion
over x5 and k1 = 0 so that Sem(t)s =L. But t is in PRN so Sem(t), = 0. O

Corollary 5.3. Int(PRN) = Ext(PRN) = p.r.n.

Proof. Ext(PRN) = p.r.n by definition of Exzt and Int(PRN) Ext(PRN) by
Theorem 5.2.]

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION 79
6. ULTIMATE UNARITY

We give now a new proof of the well known result [4,5,7] about the inten-
sional behaviours of terms over PR systems, i.e. they obstinate on only one of its
arguments.

Definition 6.1. We say that a step-stair function f : N* — N is ultimately

unary of index i, 1 < i < n, from the point A € N" if VX > A iis a
sequentiality index for f in X, i.e.

VXY =2 A, (X (i) =Y (i) — (f(X) = f(Y)).
In particular, for X > A, f(X) depends only on X (7).

Notations. If f is ultimately unary then:

e we denote by Ay the smallest point of N™ such that f is ultimately unary
from Ay and such that VX 2 Ay then f(X) < f(Ay). It’s the first origin
point from which the index of sequentiality is constant afterward;

e we denote by Ulty : N — N the unary function defined by

Ulty(z) = 0if 2 < Af(7)
Ulty(2) = f(AfQ),-+,2,--,Ar(n)).

The proof of the previous theorem gives the ultimate class of intensional behaviours
as in [7] except that it’s not constructive. Let t be a term of a PR system then:

Theorem 6.2. The intensional behaviour of t is ultimately unary.

Proof. The proof follows the one of Coquand in [7]. It can be found in [16]. O

7. FULL CHARACTERIZATION

Corollary 7.1 (Coquand [7]). The ultimate intensional behaviours of PR systems
are among the asymptotic behaviours of the smallest set containing constant func-
tions, identity functions beyond a certain rank, and which is closed by composition
and the following schemas: n — ¢(n — 1) and n — ¢™(Ny) if ¢(No) > No, Ny an
integer. We denote this class by Ult(PR).

Remark 7.2. In fact, this class shows that we do not have sub-linear and poly-
nomial ultimate intensional behaviours with PR systems.

7.1. ULTIMATE INTENSIONAL BEHAVIOURS ARE prn

We show that the class Ult(PR) is in prn.

Proposition 7.3. The function pred is in prn and if ¢ is an increasing function
in prn such that ¢(No) > Ny then n— ¢"(Np) is in prn.

80 P. VALARCHER

Proof.
e The pred function is defined by:

pred(0) = 0; pred(S(p)) = p;

e for the iteration n — ¢"(Ng) with Ny an integer and ¢(Ng) > Ny, we
define h(n) = Succ™o(h/(n)) as followed:

W'(0)=0; h'(S(n)) = pred™ (s(S™°(h'(n)))). O
7.2. OUTSIDE THE ULTIMATE INTENSIONAL BEHAVIOURS

Using the geometrical approach of the trace of a step-stair pr functions, we
characterize the set of points that are not concerned with the ultimate unarity
(the beginning of the trace of the function).

We introduce some basic functions:

ifo(0,y) = 0;ifo(S(x),y) =y

Z‘faJrl(Oa y) = 0; Z‘.]l‘aJrl(S(gc)v y) = Z.fa(ma y)

distr(; p.a) (X, 2) = i fo(X (i), 2)

distr; p ayai(X, 2) = distrg p o) (X, SP(distr(X, 2))).

The function ¢ f, is defined such that if the first input is greater than a then the
value is the second input else 0 (if, is in prn).

The function distr is a composition of if,. It is indexed by a list of triplets
(i,p,a) where 7 is a place in the list of inputs. Using if,, it tests if the input on
the ¥ argument is greater than S® and produces p S’s, else it stops (given a list
I, distr; is a macro definable in prn).

Theorem 7.4. The class of functions that are intensional behaviours of PR sys-
tems is exactly the set of prn functions.

Moreover, this intensional behaviour may be written with the canonical follow-
ing form using distr function: distrs(X, f(X(i))) where f is a unary function of
Ult(PR) and s the beginning of the trace.

Proof. Let t be a term of a PR system. We construct the list s from the trace Ty =
0,71, -, Ty, = A; of the intensional behaviour of t: s = (i1,p1,a1), -, (ik, Dk, ak)
where i; and a; are such that T} is obtained from 7}_; by incrementing by a; the

ijth argument and p; is t(T};) — t(Tj_1). We let f = pred?* ™ +P» o Ult, and

i = 1. O
The following term matches with Figure 4:
SP(1£1(x, SP2(1£1(y, SP2(1£5(x, SP4(1£2(y, g(%)))))))))

where g is an unary function. We may use the distr function as follows:

distr(1,p1,1),(2,p2,1),(1,p3,5),(2,p4,2) (T, Y5 9(T)).

INTENSIONAL BEHAVIOURS OF PRIMITIVE RECURSION 81

pl+p2+p3
pl
Af
A2 pl+p2+p3+pd
A3
pl+p2
A0 Al

FIGURE 4. The graph of an ultimately unary function.

8. CONCLUSION

From denotational semantics theory, it is well know that PR systems may com-
pute only sequential function on D) domain. Moreover PR systems verify the
stronger property called ultimately unary or ultimate obstinacy [4,5,7]. We give in
this paper a geometrical approach of sequentiality (and stability) that allows us
to reason with sequential function. A new (and short) proof of ultimate unarity
is sketched allowing to remark that ultimate intensional behaviours are definable
with prn functions. Geometrical approach and remarks on prn functions give a
complete (but non constructive) characterization of PR intensional behaviours.

Depending on the ultimate property this may not be extended to some other
languages such as mutual primitive recursion (PRM) and alternate primitive re-
cursion (PRA) where a similar result may occur, i.e. the class of functions that
are intensional behaviours of PRM (resp. PRA) systems is exactly the set of func-
tions definable with prmn (resp. pran) (PRM with null basic case of recursion).
In a forthcoming paper, David and the author prove that the framework of trace
(introduced by David in [10]) allows to extend the result of this paper for PRM
and PRA.

Acknowledgements. 1 am grateful to Pr. Serge Grigorieff for his help and his permanent
support.

82

(1]
2]
(3]

[4]

[10]
[11]

[12]
[13]

[14]
[15]
[16]

[17]

P. VALARCHER

REFERENCES

R. Amadio and P.-L. Curien, Domains and Lambda-Calculi. Cambridge Tracts in Theor.
Comput. Sci. 46. Cambridge University Press (1998).

G. Berry, Séquentialité de ’évaluation formelle des lambda-expressions. 3éme Colloque In-
ternational sur la Programmation, Paris (1978).

S. Brookes and D. Dancanet, Sequential algorithms, deterministic parallelism, and inten-
sional expressiveness, in 22nd Annual Symposium on POPL (1995).

L. Colson, About primitive recursive algorithms. Theor. Comput. Sci. 372 (1989).

L. Colson, About primitive recursive algorithms. Lect. Notes Comput. Sci. 83 (1991) 57-69.
L. Colson and D. Fredholm, System t, call-by-value and the minimum problem. Theor.
Comput. Sci. 206 (1998).

T. Coquand, Une preuve directe du théclvoréme d’ultime obstination. C. R. Acad. Sci.
Sér. I314 (1992).

T. Crolard, S. Lacas and P. Valarcher, On the expressive power of loop language. Nordic J.
Comput. 13 (2006) 46-57.

D. Dancanet and S. Brookes, Programming language expressiveness and circuit complexity,
In Internat. Conf. on the Mathematical Foundations of Programming Semantics (1996).
R. David, On the asymptotic behaviour of primitive recursive algorithms. Theor. Comput.
Sci. 266 (2001) 159-193.

L. Van Den Dries, Generating the greatest common divisor, and limitations of primitive
recursive algorithms, in Foundations of Computational Mathematics (2003) to appear.
M.H. Escardo, On lazy natural numbers with applications. SIGACT News 24 (1993).

D. Fredholm, Computing minimum with primitive recursion over lists. Theor. Comput. Sci.
163 (1996).

P. Taylor, J.Y. Girard and Y. Lafont, Proofs and Types. Cambridge Tracts in Theor. Com-
put. Sci. 7. Cambridge University Press (1989).

Y.N. Moschovakis, On primitive recursive algorithms and the greatest common divisor func-
tion. Theor. Comput. Sci. 301 (2003) 1-30.

P. Valarcher, Contribution a ’etude du comportement intentionel des algorithmes: le cas de
la récursion primitive. PhD. Thesis, Université P 7 (1996).

P. Valarcher, Intensionality vs. extensionality and primitive recursion. ASIAN Computing
Science Conference. Lect. Notes. Comput. Sci. 1179 (1996).

