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ON THE CONTINUITY SET
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Abstract. In this paper, we study the continuity of rational func-
tions realized by Büchi finite state transducers. It has been shown by
Prieur that it can be decided whether such a function is continuous.
We prove here that surprisingly, it cannot be decided whether such a
function f has at least one point of continuity and that its continuity
set C(f) cannot be computed. In the case of a synchronous rational
function, we show that its continuity set is rational and that it can
be computed. Furthermore we prove that any rational Π0

2-subset of
Σω for some alphabet Σ is the continuity set C(f) of an ω-rational
synchronous function f defined on Σω.

Mathematics Subject Classification. 68Q05, 68Q45, 03D05.

1. Introduction

Acceptance of infinite words by finite automata was firstly considered in the
sixties by Büchi in order to study decidability of the monadic second order theory
of one successor over the integers [5]. Then the so called ω-regular languages have
been intensively studied and many applications have been found. We refer the
reader to [25, 31, 34] for many results and references.
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Gire and Nivat studied infinitary rational relations accepted by Büchi trans-
ducers in [15, 17]. Infinitary rational relations are subsets of Σω × Γω, where Σ
and Γ are finite alphabets, which are accepted by 2-tape finite Büchi automata
with two asynchronous reading heads. They have been much studied, in partic-
ular in connection with the rational functions they may define, see for example
[3, 7, 27, 29, 31].

Gire proved in [16] that one can decide whether an infinitary rational relation
R ⊆ Σω ×Γω recognized by a given Büchi transducer T is the graph of a function
f : Σω → Γω, (respectively, is the graph of a function f : Σω → Γω recognized by
a synchronous Büchi transducer). Such a function is called an ω-rational function
(respectively, a synchronous ω-rational function).

The continuity of ω-rational functions is an important issue since it is related to
many aspects. Let us mention two of them. First, sequential functions that may
be realized by input deterministic automata are continuous but the converse is not
true. Second, continuous functions define a reduction between subsets of a topo-
logical space that yields a hierarchy called the Wadge hierarchy. The restriction
of this hierarchy to rational sets gives the Wagner hierarchy.

This paper is focused on the continuity sets of rational functions. Prieur proved
in [27,28] that it can be decided whether a given ω-rational function is continuous.
This means that it can be decided whether the continuity set is equal to the
domain of the function. We show however that it cannot be decided whether a
rational function has at least one point of continuity. We show that in general
the continuity set of a rational function is not rational and even not context-free.
Furthermore, we prove that it cannot be decided whether this continuity set is
rational.

We pursue this study with synchronous rational functions. These functions
are accepted by Büchi transducers in which the two heads move synchronously.
Contrary to the general case, the continuity set of synchronous rational function is
always rational and it can be effectively computed. We also give a characterization
of continuity sets of synchronous functions. It is well known that a continuity set
is a Π0

2-set. We prove conversely that any rational Π0
2-set is the continuity set of

some synchronous rational function.
The paper is organized as follows. In Section 2 we recall the notions of in-

finitary rational relation, of ω-rational function, of synchronous or asynchronous
ω-rational function, of topology and continuity; we recall also some recent results
on the topological complexity of infinitary rational relations. In Section 3 we study
the continuity sets of ω-rational functions in the general case, stating some unde-
cidability results. Finally we study the case of synchronous ω-rational functions
in Section 4.
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2. Recall on ω-rational functions and topology

2.1. Infinitary rational relations and ω-rational functions

Let Σ be a finite alphabet whose elements are called letters. A non-empty finite
word over Σ is a finite sequence of letters: x = a1a2 . . . an where ∀i ∈ [1; n] ai ∈ Σ.
We shall denote x(i) = ai the ith letter of x and x[i] = x(1) . . . x(i) for i ≤ n. The
length of x is |x| = n. The empty word will be denoted by λ and has 0 letter. Its
length is 0. The set of finite words over Σ is denoted Σ�. Σ+ = Σ� − {λ} is the
set of non empty words over Σ. A (finitary) language L over Σ is a subset of Σ�.
The usual concatenation product of u and v will be denoted by u.v or just uv. For
V ⊆ Σ�, we denote by V � the set R = {v1 . . . vn | n ∈ N and ∀i ∈ [1; n] vi ∈ V }.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1a2 . . . an . . .
where for all integers i ≥ 1 ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . . and σ[n] = σ(1)σ(2) . . . σ(n) the finite word of length
n, prefix of σ. The set of ω-words over the alphabet Σ is denoted by Σω. An
ω-language over an alphabet Σ is a subset of Σω. For V ⊆ Σ�, V ω = {σ =
u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V } is the ω-power of V . The concatenation
product is extended to the product of a finite word u and an ω-word v: the
infinite word u.v is then the ω-word such that: (u.v)(k) = u(k) if k ≤ |u|, and
(u.v)(k) = v(k − |u|) if k > |u|.

We assume the reader to be familiar with the theory of formal languages and
of ω-regular languages, see [5, 8, 25, 31, 34] for many results and references. We
recall that ω-regular languages form the class of ω-languages accepted by finite
automata with a Büchi acceptance condition and this class, denoted by RAT , is
the omega Kleene closure of the class of regular finitary languages.

We are going now to recall the notion of infinitary rational relation which ex-
tends the notion of ω-regular language, via definition by Büchi transducers:

Definition 2.1. A Büchi transducer is a sextuple T = (K, Σ, Γ, ∆, q0, F ), where
K is a finite set of states, Σ and Γ are finite sets called the input and the output
alphabets, ∆ is a finite subset of K ×Σ� ×Γ� ×K called the set of transitions, q0

is the initial state, and F ⊆ K is the set of accepting states.
A computation C of the transducer T is an infinite sequence of consecutive

transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1) . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf . The input word and output
word of the computation are respectively u = u1.u2.u3 . . . and v = v1.v2.v3 . . .
The input and the output words may be finite or infinite. The infinitary rational
relation R(T ) ⊆ Σω ×Γω accepted by the Büchi transducer T is the set of couples
(u, v) ∈ Σω × Γω such that u and v are the input and the output words of some
successful computation C of T . The set of infinitary rational relations will be
denoted RAT2.
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If R(T ) ⊆ Σω × Γω is an infinitary rational relation recognized by the Büchi
transducer T then we denote Dom(R(T )) = {u ∈ Σω | ∃v ∈ Γω (u, v) ∈ R(T )}
and Im(R(T )) = {v ∈ Γω | ∃u ∈ Σω(u, v) ∈ R(T )}.

It is well known that, for each infinitary rational relation R(T ) ⊆ Σω ×Γω, the
sets Dom(R(T )) and Im(R(T )) are regular ω-languages.

The Büchi transducer T = (K, Σ, Γ, ∆, q0, F ) is said to be synchronous if the
set of transitions ∆ is a finite subset of K × Σ × Γ × K, i.e. if each transition is
labelled with a pair (a, b) ∈ Σ× Γ. An infinitary rational relation recognized by a
synchronous Büchi transducer is in fact an ω-language over the product alphabet
Σ×Γ which is accepted by a Büchi automaton. It is called a synchronous infinitary
rational relation. An infinitary rational relation is said to be asynchronous if it can
not be recognized by any synchronous Büchi transducer. Recall now the following
undecidability result of Frougny and Sakarovitch.

Theorem 2.2 [14]. One cannot decide whether a given infinitary rational relation
is synchronous.

A Büchi transducer T = (K, Σ, Γ, ∆, q0, F ) is said to be functional if for each
u ∈ Dom(R(T )) there is a unique v ∈ Im(R(T )) such that (u, v) ∈ R(T ). The
infinitary rational relation recognized by T is then a functional relation and it
defines an ω-rational (partial) function fT : Dom(R(T )) ⊆ Σω → Γω by:

For each u ∈ Dom(R(T )), fT (u) is the unique v ∈ Γω such that (u, v) ∈ R(T ).
An ω-rational (partial) function f : Σω → Γω is said to be synchronous if there

is a synchronous Büchi transducer T such that f = fT .
An ω-rational (partial) function f : Σω → Γω is said to be asynchronous if there

is no synchronous Büchi transducer T such that f = fT .

Theorem 2.3 [16]. One can decide whether an infinitary rational relation rec-
ognized by a given Büchi transducer T is a functional infinitary rational relation
(respectively, a synchronous functional infinitary rational relation).

2.2. Topology

We assume the reader to be familiar with basic notions of topology which may
be found in [18, 22, 24, 25, 31]. There is a natural metric on the set Σω of infinite
words over a finite alphabet Σ which is called the prefix metric and defined as
follows. For u, v ∈ Σω and u �= v let d(u, v) = 2−lpref(u,v) where lpref(u,v) is the
least integer n such that the (n + 1)th letter of u is different from the (n + 1)th
letter of v. This metric induces on Σω the usual Cantor topology for which open
subsets of Σω are in the form W.Σω, where W ⊆ Σ�. Recall that a set L ⊆ Σω

is a closed set iff its complement Σω − L is an open set. We define now the next
classes of the Borel Hierarchy:

Definition 2.4. The classes Σ0
n and Π0

n of the Borel Hierarchy on the topological
space Σω are defined as follows:

– Σ0
1 is the class of open sets of Σω.

– Π0
1 is the class of closed sets of Σω.
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And for any integer n ≥ 1:
– Σ0

n+1 is the class of countable unions of Π0
n-subsets of Σω.

– Π0
n+1 is the class of countable intersections of Σ0

n-subsets of Σω.
The Borel Hierarchy is also defined for transfinite levels: The classes Σ0

α and Π0
α,

for a non-null countable ordinal α, are defined in the following way.
– Σ0

α is the class of countable unions of subsets of Σω in ∪γ<αΠ0
γ .

– Π0
α is the class of countable intersections of subsets of Σω in ∪γ<αΣ0

γ .

Let us recall the characterization of rational Π0
2-subsets of Σω, due to Landweber

[21]. This characterization will be used in the proof that any rational Π0
2-subset

is the continuity set of some rational synchronous function.

Theorem 2.5 (Landweber). A rational subset of Σω is Π0
2 if and only if it can

be recognized by a deterministic Büchi automaton.

There are some subsets of the Cantor set, (hence also of the topological space
Σω, for a finite alphabet Σ having at least two elements) which are not Borel sets.
There exists another hierarchy beyond the Borel hierarchy, called the projective
hierarchy. The first class of the projective hierarchy is the class Σ1

1 of analytic
sets. A set A ⊆ Σω is analytic iff there exists a Borel set B ⊆ (Σ × Y )ω, with
Y a finite alphabet, such that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B, where
(x, y) ∈ (Σ × Y )ω is defined by: (x, y)(i) = (x(i), y(i)) for all integers i ≥ 1.

Remark 2.6. An infinitary rational relation is a subset of Σω ×Γω for two finite
alphabets Σ and Γ. One can also consider that it is an ω-language over the finite
alphabet Σ×Γ. If (u, v) ∈ Σω ×Γω, one can consider this couple of infinite words
as a single infinite word (u(1), v(1)).(u(2), v(2)).(u(3), v(3)) . . . over the alphabet
Σ × Γ. Since the set (Σ × Γ)ω of infinite words over the finite alphabet Σ ×
Γ is naturally equipped with the Cantor topology, it is natural to investigate
the topological complexity of infinitary rational relations as ω-languages, and to
locate them with regard to the Borel and projective hierarchies. Every infinitary
rational relation is an analytic set and there exist some Σ1

1-complete, hence non-
Borel, infinitary rational relations [9]. The second author has recently proved
the following very surprising result: infinitary rational relations have the same
topological complexity as ω-languages accepted by Büchi Turing machines [12,13].
In particular, for every recursive non-null ordinal α there exist some Π0

α-complete
and some Σ0

α-complete infinitary rational relations, and the supremum of the set
of Borel ranks of infinitary rational relations is the ordinal γ1

2 . This ordinal is
defined by Kechris et al. in [19] and it is proved to be strictly greater than the
ordinal δ1

2 which is the first non ∆1
2 ordinal. Thus the ordinal γ1

2 is also strictly
greater than the first non-recursive ordinal ωCK

1 , usually called the Church-kleene
ordinal. Notice that amazingly the exact value of the ordinal γ1

2 may depend on
axioms of set theory, see [13, 19].

Remark 2.7. Infinitary rational relations recognized by synchronous Büchi trans-
ducers are regular ω-languages thus they are boolean combinations of Π0

2-sets
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hence ∆0
3-sets [25]. So we can see that there is a great difference between the

cases of synchronous and of asynchronous infinitary rational relations. We shall
see in the sequel that these two cases are also very different when we investigate
the continuity sets of ω-rational functions.

2.3. Continuity

We have already seen that the Cantor topology of a space Σω can be defined
by a distance d. We recall that a function f : Dom(f) ⊆ Σω → Γω, whose domain
is Dom(f), is said to be continuous at point x ∈ Dom(f) if:

∀n ≥ 1 ∃k ≥ 1 ∀y ∈ Dom(f) [ d(x, y) < 2−k ⇒ d(f(x), f(y)) < 2−n ].

The function f is said to be continuous if it is continuous at every point x ∈ Σω.
The continuity set C(f) of the function f is the set of points of continuity of f .
Recall that if X is a subset of Σω, it is also a topological space whose topology

is induced by the topology of Σω. Open sets of X are traces on X of open sets
of Σω and the same result holds for closed sets. Then one can easily show by
induction that for every integer n ≥ 1, Π0

n-subsets (resp. Σ0
n-subsets) of X are

traces on X of Π0
n-subsets (resp. Σ0

n-subsets) of Σω, i.e. are intersections with X
of Π0

n-subsets (resp. Σ0
n-subsets) of Σω.

We recall now the following well known result.

Theorem 2.8 (see [18]). Let f be a function from Dom(f) ⊆ Σω into Γω. Then
the continuity set C(f) of f is always a Π0

2-subset of Dom(f).

Proof. Let f be a function from Dom(f) ⊆ Σω into Γω. For some integers n, k ≥ 1,
we consider the set

Xk,n = {x ∈ Dom(f) | ∀y ∈ Dom(f) [ d(x, y) < 2−k ⇒ d(f(x), f(y)) < 2−n ]}.

We know, from the definition of the distance d, that for two ω-words x and y over
Σ, the inequality d(x, y) < 2−k simply means that x and y have the same (k + 1)
first letters.

Then it is easy to see that the set Xk,n is an open subset of Dom(f), because for
each x ∈ Xk,n, the set Xk,n contains the open ball (in Dom(f)) of all y ∈ Dom(f)
such that d(x, y) < 2−k.

By union we can infer that Xn =
⋃

k≥1 Xk,n is an open subset of Dom(f) and
then the countable intersection C(f) =

⋂
n≥1 Xn is a Π0

2-subset of Dom(f). �

In the sequel we are going to investigate the continuity sets of ω-rational func-
tions, firstly in the general case and next in the case of synchronous ω-rational
functions.
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3. Continuity set of ω-rational functions

Recall that Prieur proved the following result.

Theorem 3.1 [27, 28]. One can decide whether a given ω-rational function is
continuous.

Prieur showed that the closure (in the topological sense) of the graph of a ratio-
nal relation is still a rational relation that can be effectively computed. From this
closure, it is quite easy to decide whether a given ω-rational function is continuous.

So one can decide whether the continuity set of an ω-rational function f is equal
to its domain Dom(f). We shall prove below some undecidability results, using
the undecidability of the Post correspondence problem which we now recall.

Theorem 3.2 (Post). Let Γ be an alphabet having at least two elements. Then
it is undecidable to determine, for arbitrary n-tuples (u1, . . . , un) and (v1, . . . , vn)
of non-empty words in Γ�, whether there exists a non-empty sequence of indices
i1, . . . , ik such that ui1 . . . uik

= vi1 . . . vik
.

We now state our first undecidability result.

Theorem 3.3. One cannot decide whether the continuity set C(f) of a given
ω-rational function f is empty.

Proof. Let Γ be an alphabet having at least two elements and (u1, . . . , un) and
(v1, . . . , vn) be two sequences of n non-empty words in Γ�. Let A = {a, b} and
C = {c1, . . . , cn} such that A ∩ C = ∅ and A ∩ Γ = ∅.

We define the ω-rational function f of domain Dom(f) = C+.Aω by:
• f(x) = ui1 . . . uik

.z if x = ci1 . . . cik
.z and z ∈ (A�.a)ω.

• f(x) = vi1 . . . vik
.z if x = ci1 . . . cik

.z and z ∈ A�.bω.
Notice that (A�.a)ω is simply the set of ω-words over the alphabet A having an
infinite number of occurrences of the letter a. And A�.bω is the complement of
(A�.a)ω in Aω, i.e. it is the set of ω-words over the alphabet A containing only a
finite number of letters a.

The two ω-languages (A�.a)ω and A�.bω are ω-regular, so they are accepted by
Büchi automata. It is then easy to see that the function f is ω-rational and we
can construct a Büchi transducer T that accepts the graph of f .

We are going to prove firstly that if x = ci1 . . . cik
.z ∈ C+.Aω is a point of

continuity of the function f then the Post correspondence problem of instances
(u1, . . . , un) and (v1, . . . , vn) would have a solution i1, . . . , ik such that ui1 . . . uik

=
vi1 . . . vik

.
We distinguish two cases.

First Case. Assume firstly that z ∈ (A�.a)ω. Then by definition of f it holds
that f(x) = ui1 . . . uik

.z. Notice that there is a sequence of elements zn ∈ A�.bω,
n ≥ 1, such that the sequence (zn)n≥1 is convergent and lim(zn) = z. This is due
to the fact that A�.bω is dense in Aω. We set xn = ci1 . . . cik

.zn. So we have also
lim(xn) = x.
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By definition of f , it holds that f(xn) = f(ci1 . . . cik
.zn) = vi1 . . . vik

.zn.
If x = ci1 . . . cik

.z is a point of continuity of f then we must have lim(f(xn)) =
f(x) = ui1 . . . uik

.z. But f(xn) = vi1 . . . vik
.zn converges to vi1 . . . vik

.z. Thus this
would imply that ui1 . . . uik

= vi1 . . . vik
and the Post correspondence problem of

instances (u1, . . . , un) and (v1, . . . , vn) would have a solution.

Second Case. Assume now that z ∈ A�.bω. Notice that (A�.a)ω is also dense
in Aω. Then reasoning as in the case of z ∈ (A�.a)ω, we can prove that if x =
ci1 . . . cik

.z is a point of continuity of f then ui1 . . . uik
= vi1 . . . vik

so the Post
correspondence problem of instances (u1, . . . , un) and (v1, . . . , vn) would have a
solution.

Conversely assume that the Post correspondence problem of instances
(u1, . . . , un) and (v1, . . . , vn) has a solution, i.e. a non-empty sequence of indices
i1, . . . , ik such that ui1 . . . uik

= vi1 . . . vik
.

Consider now the function f defined above. We have:

f(ci1 . . . cik
.z) = ui1 . . . uik

.z = vi1 . . . vik
.z for every z ∈ Aω .

So it is easy to see that the function f is continuous at point ci1 . . . cik
.z for every

z ∈ Aω.
Finally we have proved that the function f is continuous at point ci1 . . . cik

.z, for
z ∈ Aω, if and only if the non-empty sequence of indices i1, . . . , ik is a solution of
the Post correspondence problem of instances (u1, . . . , un) and (v1, . . . , vn). Thus
one cannot decide whether the function f has (at least) one point of continuity. �

Theorem 3.4. One cannot decide whether the continuity set C(f) of a given ω-
rational function f is a regular ω-language (respectively, a context-free ω-language).

Proof. We shall use a particular instance of Post correspondence problem. For two
letters c, d, let PCP1 be the Post correspondence problem of instances (t1, t2, t3) and
(w1, w2, w3), where t1 = c2, t2 = t3 = d and w1 = w2 = c, w3 = d2. It is easy to see
that its solutions are the sequences of indices in {1i.2i.3i | i ≥ 1}∪{3i.2i.1i | i ≥ 1}.
In particular this language over the alphabet {1, 2, 3} is not context-free and this
will be useful in the sequel.

Let now Γ be an alphabet having at least two elements such that Γ∩{c, d} = ∅,
and (u1, . . . , un) and (v1, . . . , vn) be two sequences of n non-empty words in Γ�. Let
PCP be the Post correspondence problem of instances (u1, . . . , un) and (v1, . . . , vn).

Let A = {a, b} and C = {c1, . . . , cn} and D = {d1, d2, d3} be three alphabets
two by two disjoints. We assume also that A ∩ {c, d} = ∅.

We define the ω-rational function f of domain Dom(f) = C+.D+.Aω by:
• f(x) = ui1 . . . uik

.tj1 . . . tjp .z if x = ci1 . . . cik
.dj1 . . . djp .z and z ∈ (A�.a)ω.

• f(x) = vi1 . . . vik
.wj1 . . . wjp .z if x = ci1 . . . cik

.dj1 . . . djp .z and z ∈ A�.bω.
Reasoning as in the preceding proof and using the fact that (A�.a)ω and A�.bω

are both dense in Aω, we can prove that the function f is continuous at point
x = ci1 . . . cik

.dj1 . . . djp .z, where z ∈ Aω, if and only if the sequence i1, . . . , ik is
a solution of the Post correspondence problem PCP of instances (u1, . . . , un) and
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(v1, . . . , vn) and the sequence j1, . . . , jp is a solution of the Post correspondence
problem PCP1. There are now two cases.

First Case. The Post correspondence problem PCP has not any solution. Thus
the function f has no points of continuity, i.e. C(f) = ∅.
Second Case. The Post correspondence problem PCP has at least one solu-
tion i1, . . . , ik. We now prove that in that case the continuity set C(f) is not
a context-free ω-language, i.e. is not accepted by any Büchi pushdown automa-
ton. Towards a contradiction, assume on the contrary that C(f) is a context-free
ω-language. Consider now the intersection C(f) ∩ R where R is the regular ω-
language ci1 . . . cik

.(d+
1 .d+

2 .d+
3 ).Aω. The class CFω of context-free ω-languages is

closed under intersection with regular ω-languages, [31], thus the language C(f)∩R
would be also context-free. But C(f) ∩ R = ci1 . . . cik

.{di
1.d

i
2.d

i
3 | i ≥ 1}.Aω and

this ω-language is not context-free because the finitary language {di
1.d

i
2.d

i
3 | i ≥ 1}

is not context-free. So we have proved that C(f) is not a context-free ω-language.
In the first case C(f) = ∅ so C(f) is a regular hence also context-free ω-language.

In the second case C(f) is not a context-free ω-language so it is not ω-regular.
But one cannot decide which case holds because one cannot decide whether the
Post correspondence problem PCP has at least one solution i1, . . . , ik. �

4. Continuity set of synchronous ω-rational functions

We have shown that for non-synchronous rational functions, the continuity set
can be very complex. In this section, we show that the landscape is quite different
for synchronous rational functions. Their continuity set is always rational. Fur-
thermore we show that any Π0

2 rational set is the continuity set of some rational
function.

Theorem 4.1. Let f : Aω → Bω be a rational synchronous function. The conti-
nuity set C(f) of f is rational.

Proof. We actually prove that the complement Aω \ C(f) is rational. Since the
inclusion C(f) ⊆ Dom(f) holds and the set Dom(f) is rational, it suffices to prove
that Dom(f) \ C(f) is rational.

Suppose that f is realized by the synchronous transducer T . Without loss of
generality, it may be assumed that T is trim, that is, any state q appears in an
accepting path. Let x be an element of the domain of f . We claim that f is not
continuous at x if there are two infinite paths γ and γ′ in T such that the following
properties hold:

i) the path γ is accepting and y = f(x);
ii) the labels of γ and γ′ are (x, y) and (x, y′) with y �= y′.

The path γ exists since x belongs to the domain of f . Remark that the path γ′

cannot be accepting since T realizes a function. It is clear that if such a path γ′

exists, the function f cannot be continuous at x.
Suppose that f is not continuous at x. There is a sequence (xn)n≥0 of elements

from the domain of f converging to x such that d(f(x), f(xn)) > 2−k for some



192 O. CARTON, O. FINKEL AND P. SIMONNET

integer k. Since each xn belongs to the domain of f , there is a path γn whose label
is the pair (xn, f(xn)). Since the set of infinite paths is a compact space, it can be
extracted from the sequence (xn)n≥0 another sequence (xs(n))n≥0 such that the
sequence (γs(n))n≥0 converges to a path γ′. Let (x′, y′) be the label of this path γ′.
Since (xn)n≥0 converges to x, x′ is equal to x and since d(f(x), f(xn)) > 2−k, y′

is different from y. This proves the claim.
From the claim, it is easy to build an automaton that accepts infinite words x

such that f is not continuous at x. Roughly speaking, the automaton checks
whether there are two paths γ and γ′ as above. Let T be the transducer (Q, A, B, E,
q0, F ). We build a non deterministic Büchi automaton A. The state set of A is
Q×Q×{0, 1}. The initial state is (q0, q0, 0) and the set of final states is F×Q×{1}.
The set of transitions of this automaton is

G = {(p, p′, 0) a→ (q, q′, 0) | ∃b ∈ B p
a|b→ q ∈ E and p′

a|b→ q′ ∈ E}

∪ {(p, p′, 0) a→ (q, q′, 1) | ∃b, b′ ∈ B p
a|b→ q ∈ E, p′

a|b′→ q′ ∈ E and b �= b′}

∪ {(p, p′, 1) a→ (q, q′, 1) | ∃b, b′ ∈ B p
a|b→ q ∈ E and p′

a|b′→ q′ ∈ E}. �

Theorem 4.2. Let X be a rational Π0
2 subset of Aω. Then X is the continuity

set C(f) of some rational synchronous function f of domain Aω.

Proof. If A only contains one symbol a, the result is trivial since Aω only contains
the infinite word aω. We now assume that A contains at least two symbols. Let b
be a distinguished symbol in A let c a new symbol not belonging to A.

We define a synchronous function f that is of the following form:

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x if x ∈ X

wcω for some prefix w of x if x ∈ X \ X

wbω for some prefix w of x if x ∈ (A∗b)ω \ X

wcω for some prefix w of x otherwise,

where w is a word precised below.
By Theorem 2.5, there is a deterministic Büchi automatonA=(Q, A, E, {q0}, F )

accepting X . We assume that A is trim.
The function f is now defined as follows. If x belongs to X , then f(x) is equal

to x. If x belongs to the closure X of X but not to X , let w be the longest prefix
of x which is the label of a path in A from q0 to a final state. Then f(x) is equal
to wcω . If x does not belong to the closure of X , let w be the longest prefix which
is the label of a path in A from q0. Then f(x) is equal to wbω if b occurs infinitely
many times in x and it is equal to wcω otherwise. It is easy to verify that the
continuity set of f is exactly X .

We now give a synchronous transducer T realizing the function f . Let R be the
set of pairs (q, a) such that there is no transition q

a→ p in A. The state set of T
is Q × {0} ∪ (Q \ F ) × {1} ∪ {q1, q2, q3, q4}. The initial state is q0 and the set of
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final states is F × {0} ∪ (Q \ F ) × {1} ∪ {q2, q4}. The set of transitions is defined
as follows.

G = {(p, 0)
a|a→ (q, 0) | p

a→ q ∈ E}

∪ {(p, 0)
a|c→ (q, 1) | p

a→ q ∈ E and q /∈ F}

∪ {(p, 1)
a|c→ (q, 1) | p

a→ q ∈ E and p, q /∈ F}

∪ {(p, 0)
a|b→ q1 | (p, a) ∈ R}

∪ {(p, 0)
a|c→ q3 | (p, a) ∈ R}

∪ {p a|b→ q1 | p ∈ {q1, q2} and a �= b}

∪ {p b|b→ q2 | p ∈ {q1, q2}}

∪ {q3
a|c→ q3 | a ∈ A}

∪ {p a|c→ q4 | p ∈ {q3, q4} and a �= b}. �

Recall that a point x of a subset D of a topological space X is isolated if there is a
neighborhood of x whose intersection with D is equal to {x}. Isolated points have
the following property with regard to continuity. Any function from a domain D
is continuous at any isolated point of D. Therefore, if X is the continuity set of
some function of domain D, X must contain all isolated points of D. The following
theorem states that for rational Π0

2 sets, this condition is also sufficient.

Theorem 4.3. Let D and X be two rational subsets of Aω such that X ⊆ D.
If there exists a rational Π0

2-subset X ′ of Aω such that X = X ′ ∩ D, and if
X contains all isolated points of D, then it is the continuity set C(f) of some
synchronous rational function f of domain D.

In the proof of Theorem 4.2, the complement of the set X has been partitioned
into two dense sets. The following lemma extends this result to any rational set
of infinite words.

Lemma 4.4. Let X be a rational set containing no isolated points. Then, the
set X can be partitioned into two rational sets X ′ and X ′′ such that both X ′

and X ′′ are dense in X.

Proof. Let X be a rational set of infinite words with no isolated points and let A
be a deterministic and trim Muller automaton accepting X . We refer the reader
for instance to [25,34] for the definition and properties of Muller automata. From
any state q, either there is no accepting path starting in q or there are at least two
accepting paths with different labels starting from q.

We first consider the case where the table T of A only contains one accepting
set F . Since the automaton is trim, all states of F belong to the same strongly
connected component of A. We consider two cases depending on whether the set F
contains all states of its connected component.
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Suppose first that the state q does not belong to F but is in the same strongly
connected component as F . Let X ′ and X ′′ the sets of words which respectively
label an accepting path which goes an odd or an even number of times through
the state q. It is clear that X and X ′′ have the required property.

Suppose now that F contains all the states in its strongly connected component.
Since X has no isolated point, there must be a state q of F with two outgoing
edges e and e′. Let X ′ be the set of words which label a path of the following
form. The trace of this path over the two edges e and e′ is an infinite sequence of
the form (e + e′)∗(ee′)ω.

We now come back to the general case where the table T of A may contain
several accepting sets {F1, . . . , Fn}. Let Xi be the set of words accepted by the
table {Fi}. Note first that if the both sets Xi and Xj can be partitioned into
dense rational sets into X ′

i, X ′′
i , X ′

j and X ′′
j , the both sets X ′

i ∪ X ′
j and X ′′

i ∪ X ′′
j

are dense in Xi ∪ Xj.
Note also that if Fi is accessible from Fj , then any set dense in Xi is also dense

in Xj and therefore in Xi ∪ Xj . It follows that if the set Xi can be partitioned
into two dense rational sets X ′

i and X ′′
i , the set Xi ∪ Xj can be partitioned into

X ′
i ∪ Xj and X ′′

i .
From the previous two remarks, it suffices to partition independently each Xi

such that the corresponding Fi is maximal for accessibility. By maximal, we mean
that Fi is maximal whenever if Fj is accessible from Fi, then Fi is also accessible
from Fj and both sets Fi and Fj are in the same strongly connected component.
This can be done using the method described above. �

We now come to the proof of the previous theorem.

Proof. The proof is similar to the proof of Theorem 4.2 but the domain D has
to be taken into account. By hypothesis there exists a rational Π0

2-subset X ′ of
Aω such that X = X ′ ∩ D. Let A a trim and deterministic Büchi automaton
accepting X ′.

We define the function f of domain D as follows. For any x in X , f(x) is still
equal to x. If x belongs to X ∩D \X , f(x) is equal to wcω where w is the longest
prefix of x which is the label in A of a path form the initial state to a final state.

By Lemma 4.4, the set Z = D \X can be partitioned into two rational subsets
Z1 and Z2 such that both Z1 and Z2 are dense into Z. If x belongs to D \ X,
then f(x) is defined as follows. Let w be the longest prefix of x which is the label
in A of a path from the initial state. Then f(x) is equal to wbω if x ∈ Z1 and
f(x) = wcω if x ∈ Z2. �

The following corollary provides a complete characterization of sets of continuity
of synchronous rational functions of domain D ⊆ Aω when D is the intersection
of a rational Σ0

2-subset and of a Π0
2-subset of Aω. This is in particular the case if

D is simply a Σ0
2-subset or a Π0

2-subset of Aω .

Corollary 4.5. Let D and X be two rational subsets of Aω such that X is a Π0
2-

subset of D and D = Y1 ∩ Y2, where Y1 is a rational Σ0
2-subset of Aω and Y2 is a
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Π0
2-subset of Aω. If X contains all isolated points of D, then it is the continuity

set C(f) of some synchronous rational function f of domain D.

Proof. Let D and X satisfying the hypotheses of the corollary.
Assume firstly that D = Y1 is a Σ0

2-subset of Aω. Then it is easy to see that
X ′ = X ∪ (Aω −D) is a rational Π0

2-subset of Aω such that X = X ′ ∩D. Thus in
this case Corollary 4.5 follows from Theorem 4.3.

Assume now that D = Y1 ∩ Y2, where Y1 is a rational Σ0
2-subset of Aω and

Y2 is a Π0
2-subset of Aω. By hypothesis X is a Π0

2-subset of D thus there is a
Π0

2-subset X1 of Aω such that X = X1 ∩ D = X1 ∩ (Y1 ∩ Y2) = (X1 ∩ Y2) ∩ Y1.
This implies that X is also a Π0

2-subset of Y1 because X1 ∩ Y2 is a Π0
2-subset of

Aω as intersection of two Π0
2-subsets of Aω . From the first case we can infer that

there is a rational Π0
2-subset X ′ of Aω such that X = X ′ ∩ Y1. Now we have also

X = X ′∩(Y1∩Y2) = X ′∩D because X ⊆ Y2. Thus in this case again Corollary 4.5
follows from Theorem 4.3. �
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